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We address the long-standing problem of the structure of the low-energy eigenstates and long-time
coherent dynamics in quantum spin-glass models. Below the spin-glass freezing transition, the energy
landscape of the spin system is characterized by a proliferation of local minima where classical dynamics gets
trapped. A theoretical description of quantum dynamics in this regime is challenging due to the complex
nature of the distribution of the tunneling matrix elements between the local minima of the energy landscape.
We study the transverse-field-induced quantum dynamics of the following “impurity band” (IB) spin model:
zero energy of all spin configurations except for a small fraction of spin configurations (“marked states”) that
form a narrow band at a large negative energy. At a zero transverse field, the IB model demonstrates the
freezing transition at inverse temperature 3, ~ 1 characterized by a nonzero value of the Edwards-Anderson
order parameter. At a finite transverse field, the low-energy dynamics can be described by the effective down-
folded Hamiltonian that acts in the Hilbert subspace involving only the marked states. We obtain in an explicit
form the heavy-tailed probability distribution of the off-diagonal matrix elements of the down-folded
Hamiltonian. This Hamiltonian is dense and belongs to the class of preferred basis Levy matrices.
Analytically solving nonlinear cavity equations for the ensemble of down-folded Hamiltonians allows us
to describe the statistical properties of the eigenstates. In a broad interval of transverse fields, they are
nonergodic, albeit extended. It means that the band of marked states splits into a set of narrow minibands.
Accordingly, the quantum evolution that starts from a particular marked state leads to a linear combination of
the states belonging to a particular miniband. An analytical description of this qualitatively new type of
quantum dynamics is a key result of our paper. Based on our analysis, we propose the population transfer (PT)
algorithm: The quantum evolution under constant transverse field B | starts at a low-energy spin configuration
and ends up in a superposition of Q spin configurations inside a narrow energy window. This algorithm
crucially relies on the nonergodic nature of delocalized low-energy eigenstates. In the considered model, the
run-time of the best classical algorithm (exhaustive search) is 74 = 2"/Q. For\/n > B, > 1, the typical run-

time of the quantum PT algorithm /7 ¢"/(2B1) scales with n and Q as that of Grover’s quantum search, except
for the small correction to the exponent. Unlike the Hamiltonians proposed for analog quantum unstructured
search algorithms, the model we consider is nonintegrable and the transverse field delocalizes the marked
states. As a result, our PT protocol does not require fine-tuning of the transverse field and may be initialized in
a computational basis state. We find that the run-times of the PT algorithm are distributed according to the
alpha-stable Levy law with tail index 1. We argue that our approach can be applied to study the PT protocol in
other transverse-field spin-glass models, with a potential quantum advantage over classical algorithms.
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The idea to use quantum computers for the solution of
search and discrete optimization problems has been
actively pursued for decades, most notably in connection
to Grover’s algorithm [1], quantum annealing [2—10], and,
more recently, quantum approximate optimization [11].
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Hard optimization problems have their counterparts in spin-
glass models of statistical physics [12,13]. The energy
function of a hard optimization problem is characterized by
a large number of spurious local minima separated from
each other by a large Hamming distance (number of bit
flips transforming one to another). At a low temperature,
the rate of transition between the local minima is exponen-
tially suppressed, and, therefore, the classical dynamics
(realized, for example, via the single-spin-flip Metropolis
algorithm) remains constrained to the vicinity of a single
local minimum and is, therefore, inefficient at exploring the
configuration space, i.e., is nonergodic. Consider an appli-
cation to such a nonergodic classical regime of a quantum
computer (QC) realized using a system of interacting qubits
(quantum spins 1/2) in a transverse field:

n
H=Hy+Hp,  Hp=-B.Y of, (1)
k=0

Hy = £z, 2)

where the energy function £(z) is defined over the set of
2" configurations of n bits (bit strings) z = (z!, 22, ..., "),
where zK = {0,1}, computational basis, and aﬁ, a=x,y,z,
are Pauli matrices. Off-diagonal matrix elements con-
nect states separated by one bit flip; therefore, Eq. (1)
describes the Hamiltonian of the tight-binding model
with diagonal disorder on the Boolean hypercube [14].
It is a generalization of the Anderson model initially
introduced in the context of transport in finite-dimensional
lattices [15-17].

An important insight into the output of quantum oper-
ations realized in the model Eq. (2) is provided by the
structure of its eigenstates in the computation basis which
also fully determines the quantum dynamics in the model.
For a sufficiently weak transverse field, the eigenstates are
localized in the space of bit strings; i.e., each one has
significant amplitudes on a few bit strings which form its
support set. An increasing transverse field results in the
amplitude spreading over a subset of bit strings which
increases exponentially with the number of qubits n. Such
eigenstates are called extended. The transition between the
extended and localized phases of a QC is an example of the
many-body localization (MBL) transition, recently identi-
fied in models of mean-field spin glass [5,18,19], with
important implications for the efficiency of the quantum
annealing algorithm [7,14,20].

At a sufficiently strong transverse field, eigenstates could
be extended and ergodic (EE), meaning that their ampli-
tudes are spread over the entire Hilbert space, and prob-
abilities to detect any particular bit string is of the order
of the inverse number of bit strings N~! = 27", EE states
arise, for example, as a result of applying a random unitary
to a product state or as eigenstates of a random Hamiltonian
drawn from a Gaussian random matrix ensemble. However,

in general, the extended state could be spread over a much
smaller number of bit strings Ng o« N? = 2"P_ The corre-
sponding exponent D is the fractal dimension of the
eigenstate’s support set. Localized states correspond to
D =0 and EE to D = 1, and the case 0 < D < 1 we call
nonergodic extended (NEE).

NEE eigenstates have been discovered in random matrix
models such as the Rosenzweig-Porter model [21]. It has been
proposed that Anderson models on random regular graphs
[22] also demonstrate a NEE phase; however, this question
remains open and an active topic of research [23-25]. In this
paper, we demonstrate that the existence of NEEs is not
limited to abstract matrix models. On the contrary, we show
conclusively that NEEs arise naturally in a broad class of
quantum spin-glass Hamiltonians of the form Eq. (2). A
transverse field applied to a nonergodic classical model in
Eq. (1) gives rise to tunneling matrix elements between its
deep local minima. In this regime, NEE eigenstates could be
formed by coherent superpositions of local minima separated
by large Hamming distances. Such coherent superpositions
form minibands of states with shared support sets.

A theoretical description of such nonergodic extended
states for quantum spin-glass models is very challenging.
A key challenge is the calculation of the statistics of the
tunneling matrix elements between deep local minima
separated by large Hamming distances d. On the one hand,
the many-body delocalized regime is associated with the
divergence of the so-called locator expansion [16], which is
related to the transverse-field perturbation theory in the case
of Eq. (1), which, therefore, is no longer a well-controlled
expansion for the tunneling matrix element. Moreover, in
general, the tunneling matrix element is given by a sum over a
large number of virtual trajectories which interfere with each
other, which is the case for the model considered in this paper
as we show below. As a result, the perturbative expansion of
the matrix element in B; must include multiple looped
trajectories and, therefore, cannot be approximated by the
leading-order term, also called the forward scattering approxi-
mation (FSA) [26]. On the other hand, a direct numerical
solution of the Schrédinger equation is possible only for a
very small system size, and, therefore, the results are strongly
affected by finite size effects and are inconclusive in the NEE
regime. Therefore, up to this point, there is no well-controlled
theory of a NEE phase in a quantum spin glass.

A key technical achievement of this paper is the novel
theoretical approach that allows an asymptotically exact
analytical calculation of the matrix elements and their
statistics as well as a well-controlled description of the
structure of NEE eigenstates and the associated quantum
dynamics. We apply our approach to a sufficiently simple
yet nontrivial impurity band model of £(z):

Hy = Zg(zj)|zj><zj|- (3)
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Here, M >> 1 marked states |z;) (n-bit strings z;) are chosen
uniformly at random from all bit strings of length n, with
energies £(z;) independently distributed around —n within a
narrow band of width W < B . All other states z have
energies £(z) = 0 and are separated by a large gap ~n from
the very narrow band of marked states (see Fig. 1). This
model is inspired by the impurity band model in doped
semiconductors [31]. It also corresponds to a classical
unstructured search problem with multiple marked states.
Each marked state £(z) is a deep local minimum of the
classical energy landscape: A single spin flip with high
probability raises the energy to £(z) = 0 and is, therefore,
strongly suppressed. For M < 2", randomly chosen
marked states are separated by Hamming distances that
scale with n. A classical IB model at low temperature f >
pr =12~ (1/n)In M captures the frozen phase of a spin
glass at the tail of the density of states, which, as we show
below, is characterized by a nonzero Edwards-Anderson
order parameter.

We develop a microscopic analytical theory of the “mini-
bands” of nonergodic delocalized states in the IB model.
We derive an effective down-folded Hamiltonian in the
energy strip associated with the marked states. Its matrix
elements correspond to the tunneling between the deep local
minima described by the Wentzel-Kramers-Brillouin (WKB)

E

1

2B,

—n-2m-2)B, !

Band of marked states

—-(n—-2m+2)B;

—(n=2)B;

—nBL

FIG. 1. Cartoon of the level diagram. Horizontal blue lines
depict the energy levels —B | (n — 2m) of the driver Hamiltonian
Hp in Eq. (1) separated by 2B | . A narrow impurity band of width
W <« B, is marked in light green. The sequence of short black
lines depicts the energies of marked states £(z;). Dashed lines
depict the elementary path to the leading-order perturbation
theory in B, for the tunneling matrix element c;;(E) given in
Eq. (19). In this paper, we focus on the case of relatively large
transverse fields B, > 1 so that the IB energies lie above the
ground state of the total Hamiltonian (1) that corresponds to
nearly all qubits polarized in the x direction.

analysis. Remarkably, the distribution of the matrix elements
is heavy tailed. The ensemble of down-folded Hamiltonians
for the marked state subspace corresponds to the preferred
basis Levi matrices. We use the cavity method for Levi
matrices [32-37] to find analytically the fractal dimension of
the delocalized minibands and the probability distribution
of their spectral width. This method also determines the
probability distribution and the scaling with n of the set of
characteristic timescales that describe the quantum dynamics
of the NEE minibands.

Our asymptotically exact analysis gives a number of
predictions that cannot be reproduced within the leading-
order perturbation theory in a transverse field, called the
forward scattering approximation (FSA) in the literature.
Most notably, we uncover an asymptotic orthogonality of
the subspace of marked states to the rest of the Hilbert
space that extends, rather counterintuitively, to large trans-
verse-field regime B, > 1. As shown in detail below,
accounting for this orthogonality catastrophe is critically
important for the correct calculation of fractal dimensions
of the support set and the miniband width statistics in the
spectrum and, therefore, for the prediction for quantum
dynamics of the IB model Eq. (3). In other words, the FSA
gives a qualitatively incorrect prediction for the quantum
dynamics of the NEE phase of the IB.

It is crucial that the dynamics within the IB of model
(3) in the transverse field can be nonergodic yet delocalized
in the computational basis. The model is by no means
unique from this point of view. We believe that extended
but nonergodic quantum states exist for quantum exten-
sions of any problem Hamiltonian which is characterized
by a classical spin-glass behavior: for the random energy
model [30], Sherrington-Kirkpatrick model [38], p-spin
model [39], K satisfiability [40], etc.

Indeed, the main difference between classical and
quantum spin-glass models is the existence of the MBL
phase in the latter case. However, we see no reason to
expect a direct transition between the MBL and ergodic
phases without an intermediate nonergodic phase similar
to the case of ordinary Anderson localization in finite-
dimensional space. This difference is due to the fact that
the number of relevant bit strings at a given Hamming
distance d from a given one increases for spin-glass models
exponentially with d, or even quicker, whereas for finite-
dimensional models this increase is only polynomial.

The formation of minibands of NEE eigenstates has
important implications for quantum search and optimiza-
tion algorithms. Quantum tunneling of collective spin
excitations was proposed and studied experimentally as
a mechanism for moving between states in the energy
landscape that can lead to shorter transition timescales
compared to classical simulated annealing approaches
under certain conditions [4]. Experimental evidence of
the faster timescales was later corroborated numerically
using an imaginary-time quantum Monte Carlo (QMC)
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algorithm [41,42]. Furthermore, recent studies [43,44] show
that, in QMC, the tunneling corresponds to the Kramers
escape through the free-energy barrier in an extended spin
system that includes spin replicas in an imaginary time
direction. As a result, the incoherent quantum tunneling rate
does not have a scaling advantage over such a QMC
simulation. This result happens because incoherent tunneling
dynamics corresponded to sequential transitions connecting
individual minima, where each transition is dominated by a
single tunneling path [43]. NEE eigenstates give rise to a
qualitatively different tunneling dynamics, where a large
number of tunneling paths interfere constructively, giving
rise to minibands of the nonergodic many-body states
delocalized in the computational basis. We demonstrate that
transport within the minibands can be used for an efficient
quantum search in spin-glass problems and propose a
population transfer (PT) protocol based on this theoretical
insight. In the case of a search in the space of marked states
in the IB model, PT asymptotically approaches the run-time
of the multitarget Grover which is optimal for unstructured
problems such as IB.

The paper is organized as follows. Section II contains an
analysis of the classical IB model, a qualitative discussion of
the main results, and a detailed description of the population
transfer protocol and its run-time. In Sec. III, we develop a
down-folding procedure to reduce the original problem to
the nonlinear eigenproblem in the marked state subspace.
In Sec. IV, we calculate the off-diagonal (tunneling) matrix
elements of the down-folded Hamiltonian and studied their
dependence on n and the Hamming distance using the WKB
theory. In Sec. V, we develop an expansion of the nonlinear
eigenproblem near the center of the IB shifted by a transverse
field and obtain the effective Hamiltonian H of the PT
problem. In Sec. VI, we study the statistical ensemble of
Hamiltonians . Section VII discusses numerical results. In
Sec. VIII, we study the PT within the Born approximation.
In Sec. IX, we estimate the number of states in the miniband.
In Sec. X, we provide an overview of the cavity method for
dense random matrices. In Sec. XI, we solve the cavity
equations and obtain the distributions of the real and
imaginary parts of self-energy. In Sec. XII, we discuss the
complexity of the PT algorithm. In Sec. XIII, we provide a
comparison between PT and Grover’s algorithm with multi-
ple target states and systematic errors in the oracle phase and
driver weight. In Sec. XIV, we provide a summary and
concluding remarks.

II. BACKGROUND AND QUALITATIVE
SUMMARY OF RESULTS

A. Impurity band model:
Classical spin-glass freezing transition

It is instructive to discuss spin-glass characteristics of
the classical IB model H. in Eq. (3). Its free energy
demonstrates a discontinuity:

—%IHZ, B <Py,

f=
—[ljlnM— 1, B> B

(4)

at the inverse temperature of the freezing transition f; =
In2 - (1/n)InM which separates the high-temperature
regime f# < f3; with the statistical weight concentrated on
2" — M states with £(z) =0 and the low-temperature
regime f > f, with the statistical weight concentrated in
the band of marked states —n+ W < E&(z) < —-n—W.
Below the transition temperature for any of the marked
states, the rate of a single bit flip is exponentially small
exp[—p|€(z)|], and, therefore, the classical single-spin-flip
dynamics of the model is frozen. Such a nonergodic
classical dynamical phase is characterized by a nonzero
value of the Edwards-Anderson order parameter [45]:

Gpa = }H?o ,}Lr?o {[s7 (1o + )57 (t0)]n Yais- (5)

where s7(r) stands for the value of the projection the
ith spin on the z axis at time ¢ resulting from the single-
spin-flip dynamics. In Eq. (5), [...], stands for averaging
over the thermal ensemble for a given realization of
disorder (choice of M marked states and their energies)
with subsequent averaging over disorder realizations
denoted by [...]s. Note that the system size limit is
taken prior to taking the time to infinity, which means
that the time of a single spin flip diverges. The Edwards-
Anderson order parameter in the frozen phase at > f;
is gga = 1. It is instructive to compare gp, with the
average overlap between bit string configurations

dRrRSB — Zz,z’ exp{—ﬁ[g(zi) + S(Zjﬂ}dz,-zj’ where dz,-z/- =
(1/n) >4 (22f = 1)(22 = 1). grsp # 0 indicates replica
symmetry breaking in the model. Note that for the impurity
band model grgg = 0 for any finite inverse temperature
p~0On°).

It is instructive to compare the behavior of the impurity
band model Eq. (3) with that of the random energy model
(REM) [30], in which, instead of the relatively small
number of M <« 2" marked sates, all 2" bit strings are
randomly assigned energies drawn from a Gaussian dis-
tribution of width y/n. The REM model demonstrates the
freezing transition at f; — 0 and a replica symmetry-

breaking transition at frgg = 2v/In2 such that for 0 < f§ <
Prsg We have gpa = 1 and grgg = 0 and, for B > frgg,
qea = q = 1. In this sense, the impurity band model
captures the nonergodic phase of the classical spin glass.
Note that the finite value of the freezing temperature f; > 0
in the IB is the consequence of the bimodal distribution of
classical energies which leaves a finite gap in the energy
density between the marked states and the rest of the
spectrum. This degeneracy of the classical spectrum is an
important distinction of the IB model from the REM, and,
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therefore, the comparison between the quantum behavior of
these two models has to be done with extreme care.

B. Population transfer protocol

Given a generic spin-glass model Eq. (2), we consider
the following computational primitive: Given an initial bit
string z; with an atypically low energy, we wish to produce
other bit strings with energies in a narrow range A&
around the initial one. In general, this computation can be a
difficult search problem if the number of bit strings of
interest is exponentially small compared to 2".

Inspired by the Hamiltonian-based approaches to quan-
tum search [46] and optimization [2-4], we propose the
following quantum PT)protocol: First preparing the system
in a computational state |z;) with classical energy £(z;), we
then evolve it under the Hamiltonian without fine-tuning
the evolution time or the strength of the time-independent
transverse field B . At the final moment, we projectively
measure in the computational basis and check if the outcome
zis a “solution,” i.e., z # z; and the energy £(z) is inside the
window A&, The second term in the Hamiltonian (1)
proportional to B, is responsible for the PT. It is usually
referred to as a “driver Hamiltonian” in the quantum
annealing literature [3].

We note that the output of PT z can be used as an input of
a classical optimization heuristic such as simulated
annealing or parallel tempering in a “hybrid” optimization
algorithm [47], where quantum and classical steps can be
used sequentially to gain the complementary advantages
of both [48].

In model (3), the most efficient classical algorithm is a
purely random search with running time approximately 2".
We find that the typical run-time of the PT algorithm #py
displays the following scaling dependence on n:

on 1/2 /08 6
1 —_— n 17,
T Qg ¢ (6)

Here, Q> 1 is the number of computational basis states
within the target window of energies that contribute
with comparable probabilities to the quantum state at the
end of PT. The expression applies in the range of
transverse fields n'/2>> B, —1 = O(1) [for arbitrary
B, see Eq. (34)].

The dependence of fpr on Q is the same as in the
multitarget Grover quantum algorithm that searches for Q
marked states starting from the fully symmetric state
|S) =27"2%" |z). In the Hamiltonian version of this
algorithm [46], one uses the projector to |S) as a driver:
Hp = w|S)(S|. This algorithm is proven to be optimal for
problems without structure. We emphasize that according
to Eq. (6) the exponential scaling of #py with n differs from
that in the Grover algorithm by a term ~B7* that can be
made arbitrary small at sufficiently large transverse fields.

The PT algorithm is qualitatively different from
the quantum annealing, adiabatic optimization, and
Hamiltonian implementation of a Grover search, because
it exploits the structure of the excited energy spectrum.
The PT Hamiltonian H (1) is nonintegrable, and its
eigenstates are delocalized in the low-energy manifold.

In the analytically tractable example considered here,
the PT algorithm has new and potentially advantageous
features compared to the Grover algorithm, whose
Hamiltonian is integrable and all of its eigenstates but
one are localized. Therefore, the quantum evolution result-
ing from the Grover Hamiltonian cannot form a massive
superposition of Q> 1 solutions if it starts from a
computational basis state. The algorithm must always start
from the state |S). Moreover, Grover’s algorithm perfor-
mance is exponentially sensitive to fine-tuning of the
weight of the driver w on the scale Sw ~ 271/ 2\/@. In
contrast, the scaling of the run-time of PT (6) with n is
robust to the choice of B that can take on a broad range of
values for B, > 1.

The nearly optimal (Grover-like) performance of the PT
protocol is the consequence of the asymptotic orthogonality
between the eigenstates in the marked state subspace to the
rest of the Hilbert space, which suppresses the population
transport from the marked states to the O(2") of states |z)
with classical energies E, = 0 even at large B, . Such an
“orthogonality catastrophe” cannot be obtained within the
perturbative in B approach such as the FSA.

C. Qualitative discussion of results

Each marked state |z;) is a deep local minimum of &£(z)
separated from other minima by a typical Hamming distance
n/2, while the separation from the nearest marked state is
also extensive: d;, = O(n) for M =2#" and u < 1.

The transverse field B, gives rise to multiqubit tunneling
between the states. The tunneling amplitudes from a given
minimum to its neighbors located at a Hamming distance d
decrease exponentially with d, while the number of
neighbors increases exponentially with d for d = O(n).
As a result, an eigenstate [y;) of H associated with
the impurity band can become delocalized over a large
subset of marked states Sy with size 1 < [Sy| o« M* and
0 < a < 1. For a = 0, the eigenstate |y4) is localized; for
a =1, the eigenstate is delocalized in the entire space
of marked states. For 0 < a < 1, the eigenstate can be
considered “nonergodic,” and its support set Sy is sparse in
the space of the marked states. We express the transition
probability from |z;) to |z)

S il )

p

P(t,z

Zj) =

in terms of the eigenstates and corresponding eigenvalues
of H, where H|yy) = Eglyy). In the delocalized phase,
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for a given state |z;) there exists a large set of eigenstates
lys) that have peaks at |z;). These eigenstates possess
important properties [21,22,49]: They have largely over-
lapping supports Ny Sy~ S(z;), and they are close in
energy, thus forming a narrow miniband. The miniband
width I" may be interpreted as the inverse scrambling time
and determines the width of the plateau in the Fourier
transform of the typical transition probability P(w,z|z;)
[21,50]. In other words, the significant PT of P(, z|z;) from
the initial marked state |z;) € S into the other states of the
same miniband S occurs over the time fpr ~ 1/I". The
window A&, is related to the miniband width T

Understanding the properties of nonergodic delocalized
states is crucial for describing the dynamics of quantum
spin glasses driven by many-body coherent tunneling
processes. Developing its microscopic theory is a chal-
lenging problem. This paper studies the transport problem
in an IB model (3) by making use of the down-folded
Hamiltonian in the marked state subspace derived in
Secs. III and V. While the original Hamiltonian (1) is
sparse in the basis of states |z) (it couples only states
separated by Hamming distance 1), the down-folded
Hamiltonian H (41) is a dense M x M matrix.

The transverse field leads to a uniform shift ~B2 of the
marked state energies as shown in Sec. V, Egs. (36) and
(37). Diagonal elements of H;; are given by the marked
state energies counted off from the center of the shifted
impurity band. Their probability density function (PDF)
is assumed to be exponentially bounded with some
width W.

Each pair of marked states is coupled via multiqubit
tunneling. The off-diagonal matrix elements H;; =
V(d;j)cos¢p(d;;) are completely determined by the
Hamming distance d;; between the marked states z; and
z;. The amplitude V(d) decays steeply with d, inversely
proportional to a square root of (7)) [see Eq. (42)]. The
phase ¢ shown in Fig. 5 monotonically increases by O(1)
when d is changed by 1. In the analysis of spectral
properties of H,;, the quantity cos¢(d;;) can be replaced
by a random sign. The explicit form of V(d) and ¢(d) is
obtained using the WKB theory of collective spin tunnel-
ing. At B, > 1, the tunneling paths correspond to long
spin-flip sequences connecting the initial and final states.
They include many loops passing through the states with
E(z) = 0 that are neglected in the FSA.

The typical matrix element between the two marked
states is Vyy, ~n?27"/2¢~"/(#B1) The typical matrix element
between a given marked state and its nearest neighbor
is also exponentially small in n, but it is exponentially
larger than the value V. This fact corresponds to a
strong hierarchy of the off-diagonal matrix elements of
H;; which is a signature of their heavy-tailed probability
density function [33,37]. Such matrices are called Levi
matrices.

The PDF of the rescaled squared amplitudes w;; =
V2(d;j)/ V3, derived in Sec. VIB is

1
w?/mlogw’

The particular form of scaling is the direct consequence of
the fact that our problem has no “structure”: The tunneling
matrix elements depend only on the Hamming distance,
and marked states are chosen at random.

The key difference of the ensemble of matrices H;; from
Levy matrices studied in the literature [33-35,37] is that
the dispersion W of the diagonal matrix elements is much
larger than the typical magnitude of the off-diagonal
elements V. Therefore, H;; can be called preferred basis
Levi matrices (PBLMs).

We note that the existence of heavy tails in the PDF of
the off-diagonal matrix elements of the down-folded
Hamiltonian H is due to the infinite dimension of the
Hilbert space of the original problem (1) for n — oco. This
result happens because the exponential decay of the matrix
elements with the Hamming distance d is compensated
by the exponential growth of the number of states at the
distance d from a given state. We believe that the PBLM
structure is a generic feature of the effective Hamiltonians
for PT at the tail of the density of states in quantum spin-
glass problems.

Unlike the standard Levi ensemble, the eigenstates of
PBLMs allow for the existence of nonergodic delocalized
states when the width W is much bigger than the largest off-
diagonal matrix element in a typical row of H,; and much
smaller than the largest off-diagonal element in a matrix

PDE(w) = we[l,0). (8)

VipM'? < W < Vi M. 9)

For smaller dispersion W <V ,,M 1/2 the matrix eigen-
states are ergodic, while for W 2 VM the eigenstates are
localized. Such a phase diagram resembles the one in the
Rosenzweig-Porter (RP) model [21,36]. The difference of
RP from PBLM is that the statistics of the off-diagonal
matrix elements in the RP ensemble are Gaussian [51]
rather than polynomial (8). In this paper, we focus on
exploring PT transfer within the nonergodic delocalized
phase, which is more likely to generalize to other models.
We note that the localized phase does not support pop-
ulation transfer.

Because of the PBLLM structure of the Hamiltonian H, one
can expect that the run-time of the PT protocol #pr will have
a heavy-tailed PDF whose form is of practical interest. It is
closely related to the PDF of the miniband widths I" ~ 1/fpr.
We obtain the PDF(I") by making use of the cavity method
for random symmetric matrices [32,33,35,52].

In previous work, the cavity equations are solved only in
their linearized form, i.e., near the localization transition.
We are able to solve fully nonlinear cavity equations in the
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delocalized nonergodic phase. We obtain the boundaries of
the phase in terms of the ratio of W/V,y,, and also the form
of P(I') inside the phase. It is given by the alpha-stable
Levi distribution [33,53] with the tail index 1, most
probable value Iy, = V., (7Qlog ©/4)!/2, and character-
istic dispersion zI'y,/(4logQ), where Q is the typical
number of states in the miniband. This number Q =
(xMV\y,/W)?* is a square function of the ratio of the
typical tunneling matrix element V', to the level separation
W/M. In a nonergodic delocalized phase, M > Q> 1,
and the typical PT time #py ~ 1/Ty, obeys the condition

(MlogM)™'? < tprVyy, ~ (Qlog Q)12 < 1. (10)

We build on the observations made in the IB model and
provide qualitative arguments that PT will have a quadratic
speedup over QMC in some quantum search problems
where tunneling is a computational bottleneck.

It is instructive to connect the phase boundaries of the
NEE regime to that of the Rosenzweig-Porter random
matrix model. We proceed by parametrizing the scaling of
the width W with M as follows:

W =AMV, (11)

where y is a real non-negative parameter, V., is the typical
off-diagonal matrix element, and 4 is an auxiliary constant
of the order of one. A direct analogy between the scaling
exponent y and its counterpart in the RP model can now be
made. It determines the number of matrix elements reso-
nant with the given one. y > 2 correspond to a vanishing
number of resonances and, therefore, a localized phase.
The nonergodic phase in these notations corresponds to
1 <y < 2, where the number of resonances scales with the
system size yet remains measure zero compared to the total
number of levels in the system. y < 1 corresponds to the
ergodic phase.

III. DOWN-FOLDING INTO THE SUBSPACE
OF THE MARKED STATES AND
NONLINEAR EIGENPROBLEM

The driver Hamiltonian Hp in Eq (1) connects bit strings
that are separated by a Hamming distance d = 1. We note
that, on one hand, marked states are separated by large
Hamming distances d;; with typical value d = n/2.
Therefore, a pair of marked states |i) and |j) is coupled
by elementary spin-flip processes corresponding to high
orders (Hp)* of the driver Hamiltonian with k > d;;. On
the other hand, the resolvent of the driver Hamiltonian

G(E) =

T (12)

connects directly every pair of marked states. Furthermore,
because Hp is invariant under permutations of bits, the
matrix elements G,;(E) = (z;|G(E)|z;) depend only on the
Hamming distance d;; between the corresponding states.
They are exponentially small in n for extensive d;; = O(n).
Therefore, one might expect that under certain conditions
the quantum evolution stays approximately confined to the
marked state subspace and can be naturally described by
the down-folded Hamiltonian whose M x M matrix rep-
resentation is dense in the basis of marked states.
We use the identity

G(E)Hqly) = |w). (13)

where E and |y) are an eigenvalue and the corresponding
eigenvector of H, respectively. We introduce a new vector

[A) = VHaly) (14)

that has no support in the subspace orthogonal to that of
marked states. Then, multiplying both parts of Eq. (13) by
vH_, we obtain after simple transformations

(Ha + A)A) = E|A), (15)

where

A = \/HyHpG(E)\/Hy. (16)

The operator A plays the role of a “driver Hamiltonian”
in the down-folded picture, and it couples states in the
marked subspace.

Equation (15) can be written in matrix form (see the
Appendix A for details)

> Hy(E)A; = EA;, (17)

M
Jj=1

where A; = (A|z;) and H;; is a dense symmetric M x M

matrix
Hij(E) = 6;E(zi) + 1/ E(zi)E(zj)ci; (E).  (18)

Here, 6;; is the Kronecker delta, and

c;i(E) = c(E,

i~ Zj|> = <Zi|HD (19)

1
Hy—E
is a coupling coefficient that depends only on a Hamming
distance |z; — z;| between the bit strings z; and z;.

We note that Eq. (17) has the form of a nonlinear
eigenproblem. A solution of Eq. (17) for the M-dimensional
vector |A) with a nonzero norm requires
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det[H(E) — IE] = 0, (20)

where [ is the identity matrix. Because the down-folded
Hamiltonian H(E) explicitly depends on the energy E,
different roots E; of Eq. (20) correspond to different
Hamiltonian matrices H,;(E;). This correspondence can
be understood from the fact that the original 2" x 2"
Hamiltonian (1) couples the M-dimensional marked state
subspace to the rest of the Hilbert space. Therefore, the
projections of the eigenvectors [y4) of H onto the subspace
are, in general, neither normalized nor orthogonal. The same
is true for the corresponding vectors | Az) = /H|ys). The
normalization condition for the projections has the form
(see Appendix A for details)

Mo

> mwﬂ(zj)l//ﬁ(zi) =1, (21)
Jri=1=Jt

where

Qijl(E) N \/md% (H%(Ev (22)

This condition along with Egs. (17)—(20) completely defines
the eigenvector projections onto the marked state subspace
and the corresponding eigenvalues.

We observe that there are exactly M roots Ej of Eq. (20)
that originate from M classical energies of the marked
states £(z;) at B, = 0. These eigenvalues and the corre-
sponding eigenstates are the sole focus of our study. Here,
we just mention briefly that the rest of the states originate
in the limit H,; — 0 from the eigenstates of the driver
Hamiltonian whose energy levels —B | (n —2m) (shown
in Fig. 1) correspond to the total spin-x projections
n—2m € [-n,n|. The levels —B, (n —2m) have degen-
eracy ('), which is partially lifted due to the coupling to the
impurity band with M states. The splitting of the driver
energy levels —B | (n — 2m) increases as a function of the
transverse field in the vicinity of “resonances” with the
levels of the impurity band where B, (n — 2m) ~ —n for
integer values of m. At resonance, the eigenstates of the
driver with total spin-x projection n —2m are strongly
hybridized with the marked states |z;). As discussed below,
the width of the resonances remains exponentially small in
n for B, = O(n°). In Fig. 6, we plot the evolution of the
energy spectrum of the Hamiltonian H as a function of the
transverse field for the case of two impurity states M = 2.

IV. COUPLING COEFFICIENTS IN THE
DOWN-FOLDED HAMILTONIAN
The coupling coefficient ¢;;(E) = c(E.d;;) for i # j
determines the off-diagonal matrix element of the down-
folded Hamiltonian (18) corresponding to the tunneling

transition that connects marked states |z;) and |z;). In the IB
model, the tunneling matrix element depends only on the
Hamming distance d;; between the states. It can be
calculated in the explicit form from Eq. (19). For this
calculation, we use the basis of eigenstates |x) of the driver
Hamiltonian Hp|x) = H},|x) in Eq. (19). They correspond
to bit strings x = (x!, ..., x") of individual qubits polarized
in the positive x* = 0 and negative x* = 1 direction of the
x axis. The eigenvalues of the driver HY, = —B | (n — 2h,)
depend only on the Hamming weight of the bit strings x.
Therefore, one can perform explicitly the partial summation
over basis vectors |x) in Eq. (19) under the conditions that
> _qX* =k for all bit positions a such that z{ # z{ and
> x“ =l for all a where z§ = z{. Finally, the result (19)
can be written as a double sum over k € (0,n —d,;) and
1€ (0,d;):

n—d:: d::

k=0 I= n—2k-21)

Here, d;; is the Hamming distance between bit strings z;
and z;. Plots of coupling coefficients as a function of
Hamming distance d based on Eq. (23) are given in Fig. 2.
They display qualitatively different behavior depending on
the value of the parameter nB, /|E|.

For nB| /|E| < 1, the coefficient ¢(E, d) decays expo-
nentially with d in the entire range of values d € [0, n]. For
nB,/|E| > 1, the coefficient decays until d ~ n/2, corre-
sponding to a minimum overlap between the marked states,
and then begins to grow. For large transverse field B, > 1,
the behavior with d is nearly symmetric with respect to
d = n/2, and to leading order it does not depend on B .
Unfortunately, the expression (23) is quite involved and is
not suitable for the study of the asymptotic properties of the
population transfer in the limit of large n.

For a very weak transverse field B; < n , using the
perturbation theory in B, to the leading order, one can
obtain a standard expression [18] for the coupling coef-
ficient: |c(E, d)| ~d!(B,/n)“. Itis given by the sum of the
transition amplitudes over the d! shortest paths between
the states |z;) and |z;) separated by a Hamming distance d.
Intermediate states |z) along each path correspond to
E(z) =0, while energies of initial and final states are
—n (see Fig. 1).

For larger transverse-field values (but still B, <« 1), the
perturbative expression in the small-B; limit can be
modified to include the range of B, = O(n’) but
B, < 1. In that range,

-1/2

d
Ic(E, d)|:d!<ﬁ) B Gn2d) /() +1n/ (2]} (24)
n

One can see that for small B the matrix element falls down
with d extremely steeply despite the presence of the
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FIG. 2. Colored lines show the dependence of the rescaled
logarithm of the coupling coefficient n~! log ¢?(E, d) [Eq. (23)]
on the rescaled Hamming distance d/n for n = 400. The energy
E is set to the value E(®) ~ —n — B? that reflects the overall shift
of the impurity band due to the transverse field [cf. Egs. (36) and
(37)]. Different colors correspond to different values of the
transverse field B, = 1.93 (red), 1.43 (blue), 1.11 (green),
1.01 (brown), 0.99 (purple), and 0.95 (gray). The scale along
the y axis suggests that c(E(®),d) scales exponentially with
n for d/n = O(n°). The inset shows the leading-order factor
in the d dependence of the coupling coefficient for B, > |E|/n
[cf. Eq. (33)]. Black dots show the boundaries d = n/2 — my,
n/2 + my of the region of the oscillatory behavior of ¢(E,d)
with d given by the WKB theory [Eq. (32)] (see Appendix B
for details).

factorial factor d! in Eq. (24). We note that this perturbation
(FSA) expression is qualitatively valid in the range
B, < |E/n] < 1. Tt gives a correct leading-order form of
the mobility edge in quantum REM [18,27-29] at small
B, < 1.

For transverse field B, > |E|/n, the dependence of
c¢;;(E) on d;; changes qualitatively. It becomes non-
monotonic, reaching its minimum at the point n/2 of
minimum overlap between the bit strings z; and z;. In a
certain region around the minimum, it has oscillatory
behavior, as seen in Fig. 2. The boundary of this region
is shown with black dots. The details of the behavior in
the oscillatory region are shown in Fig. 4. The expo-
nential dependence of the envelope of ¢(E,d) on d is
captured by the factor 1/(’) and is independent of the
transverse-field strength. This region of d and values of
B, > |E|/n are of the most relevance to the transport in
nonergodic minibands which is of central interest in
this paper.

A. WKB calculation of coupling coefficients

In this paper, we develop an approach (described in
Appendix B) based on the WKB theory for large spin [54]
to calculate the coefficient ¢(E, d) for n > 1 and arbitrary
values of transverse fields B, without relying on the
perturbation theory in B, . The coefficient ¢;;(E) can be
expressed in terms of the operator of the total spin-x

projection S, = 1/2>7"_, ox:
cij(E) = 8;; — E(zi|(E 4 2B, S,) 7' z;). (25)

We utilize the basis of eigenstates |m) of the operator
S.=>"_, 6% corresponding to its eigenvalues m €
[-n/2,n/2] and the maximum value of the total spin
S=n/2:

S.|m) = m|m), m=-n/2,...,n/2.  (26)
The state |n/2 — d) is a normalized sum of all computa-
tional basis states |z) with d spins pointing in the negative z
direction and n — d spins pointing in the positive z direction
(m=n/2-4d):

LS e @)

|n/2 —d) =
(@ o1y

Here, |z| = >_7_, z* and &, 4 is a Kronecker delta.

Because the coefficients ¢;;(E) in Eq. (23) depend only
on the Hamming distance |z; — z,| between the bit strings z;
and z;, we can assume, without the loss of generality, that in
Eq. (25) one of the bit strings, e.g., |z;), corresponds to all
individual spins pointing in the positive z direction:

|z;) = 100...0) = |n/2) (m,=n/2). (28)

The main observation is that we can pick, instead of
the state |z;), any computational basis state |z) whose
Hamming weight satisfies the condition |z| = |z;| without
changing the value of the coefficient c¢;;(E) = c(E, |z;).
Therefore, averaging both sides of Eq. (25) over the states
|z;) that satisfy the condition |z;| = d for some integer
d € 10, n], we obtain

E
——=Gu2)-d.(ny2)(E)-  (29)
)

c(E,d) =640 —

Here, G, (2 (E) = (m|{(E+2B,S,)""n/2) are the
matrix elements of the resolvent (12) of the transverse-
field Hamiltonian Hp, between the states (27) that belong to
a maximum total spin subspace S = n/2.

As shown below, for typical instances of the ensemble of
Hamiltonians H, the Hamming distance from a randomly
selected marked state to its closest neighbor is an extensive
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quantity O(n). Therefore, the above off-diagonal matrix
elements of the resolvent can be analyzed in a semiclassical
approximation corresponding to S=n/2> 1. This
approximation for the quantum propagator of a large spin
and diagonal elements of the resolvent is considered in
Refs. [55,56] using the spin coherent state path-integral
representation. The analysis in these papers is quite
involved, because the path-integral formulation requires
a careful treatment of the fluctuation determinant and a so-
called Solari-Kochetov correction in the action. Also, these
results are focused on a general case of a large spin
Hamiltonian and consider only diagonal elements of the
resolvent. Because of this difference, instead of trying to
extend the results in Refs. [55,56] to our case, we follow a
different path.
The resolvent satisfies the equation

1-2B,S,G(E) = EG(E),

where [ is the identity operator. We write this equation in
the basis of states |m) [Eq. (26)]. From Eq. (12), we obtain

Sunin2) + D _u(m=5/2)Gss np) = EGuunp)  (30)
s==£1

n+1
. 1

u(m) =-B, VL*—m?, L=

In the limit of large n > 1, we solve this equation using
the discrete WKB approximation method [54,57]. In the
WKB analysis of Eq. (30), the function 2u(m) plays the
role of an effective potential for the classical system with
coordinate m and energy E. For 2u(m) > E the WKB
solution for the resolvent G,, , > (E) displays an oscillatory
behavior with m, while for 2u(m) < E it exponentially
increases with m. The boundaries of the oscillatory region
m € [—-my(E), mo(E)] are “turning points” of the classical
motion and are given by the condition 2u(my) = E (see
Fig. 3) where

mo = | L* - (%)2. (32)

In Fig. 4, we plot the comparison between the coefficient
c(E,d) computed based on the exact expression (23)
and the WKB asymptotic (details of the WKB analysis
are given in Appendix B).

In what follows, we are interested in the region d €
[n/2 —mg,n/2 +mg)  with  mg~+/(n/2)> = (E/B.)?
defined by the condition u(m() = E. This region is of
oscillatory behavior of ¢(E, d) with d, where the leading-
order exponential dependence on n is given by the
expression

2u(m)
A

—2B,L

FIG. 3. The black line shows the plot of 2u(m) (31) vs m
between the interval boundaries £m = L = (n+ 1)/2. The
horizontal dashed-dotted blue line depicts the region of oscil-
latory behavior of G,, ,,/»(E) with m for a given E described by
the WKB solution (33) [see also Eq. (B5) in Appendix B] and
shown in Fig. 4. The boundaries of this region are the turning
points m = +m(E) given by Eq. (32) and depicted with blue
dots. The regions of m € [my(E), L] U [-L,—my(E)] corre-
spond to the exponential growth of G, ,,(E) with m (or
decrease with d = n/2 — m). The WKB solution for the right
region is given in Eq. (B10).

¢(E, d) x e™B) sin p(E, d), (33)

1
(@)

with the prefactor given in Appendix B, Egs. (B23)
and (B24).
The function #(B ) in Eq. (33) equals

2arctanh(B7') + B, In (1 — B7>
6(B,) = ( L)4BLL 1-B7) (34)

It behaves at a large argument as 6 ~ 1/(4B3).

An explicit form of the WKB phase ¢(E, d) in Eq. (33) is
given in Appendix B, Eq. (B11). The dependence of the
phase on d for different values of B, is shown in Fig. 5.
This phase varies by O(1) when d is changed by 1, and it is
responsible for fast oscillation of the coupling coefficient
with the Hamming distance between marked states d. Its
dependence on d simplifies in the limit of large transverse
field B, > 1:

_nd any(1/2 —d/n)
R

, (35)
where y(x) =~ 1-2 arcsin(x)/x + O(n~'). The second term
in Eq. (35) is much smaller than the first one and varies
very little when d is changed by 1. A predominately linear
dependence of ¢(E, d) on d at large fields can be seen in
Fig. 5. This property is important in the analytical study of
population transfer.
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FIG. 4. The blue curve shows the d dependence of the (rescaled)
coupling coefficients ¢(E, d) computed from the exact expression
(23) with n =224 and E = —226.15. We denote the binomial
coefficient as () = C%. The transverse field is B, = 1.459. For
this value of B, the impurity band levels £(z;) lie approximately
in the middle of the interval between the p = 34th and p = 35th
excited energy levels —B | (n — 2p) of the driver Hamiltonian. Red
points depict the d dependence of the same rescaled coefficients
c(E.d) given by G,p_4,,exp(nf) and determined by the
asymptotic WKB expressions given in Appendix B [see Egs. (B10)
and (B13)]. Dashed lines indicate the boundaries of the oscillatory
behavior of the WKB solution [Eq. (B9)]. The inset shows the
plot for the exponential d dependence of the rescaled coupling
coefficient —c(E, d) in the region of its monotonic behavior d €
[1,n/2 — my(E)] [cf. Egs. (B13) and (29)]. The solid blue line
corresponds to the exact expression (23), while the approximate
WKB solution is shown with red points.

For large transverse fields, the magnitude of the squared
coupling coefficient (33) can be estimated to exponential
accuracy as c¢*(E, d) ~exp[—n/(2B7)]/(%). We note that
the number of marked states M, accessible via all possible
d-bit flips from a given state is M, = M27"(")). Therefore,
the leading-order dependence of the coupling coefficient on
d is proportional to 1/y/M . As shown later, in the limit of
large transverse fields, this dependence leads to a nearly
Grover complexity of the PT algorithm, up to a factor
~exp[—n/(4B?%)], which gives a very small correction to
Grover scaling for large B, . However, when d decreases
below the boundary value d < n/2 —my, the coupling
coefficient grows exponentially faster than 1//M,, as
follows from the discussion in Appendix B [cf. Eq. (B13)].

V. DOWN-FOLDED HAMILTONIAN NEAR THE
CENTER OF THE IMPURITY BAND

The coupling coefficients c¢(E,d) [Eq. (23)] decay
exponentially with Hamming distances for d = O(n)

0.6 [
g 031
S 00
L
<
~ =031

0.6 [ , ,
-1.0 -0.5 0.0 0.5 1.0
1-2d/n
FIG. 5. Plots of the WKB phase ¢, = ¢(E, d) of the oscillations

of the coupling coefficient c¢(E, d) with the Hamming distance d
for a number of qubits n = 1000. Both axes are rescaled by n. The
phase is plotted relative to its value at d = n/2. We set the energy
E=EY, where EO ~—p — Bi_ reflects the overall shift of the
impurity band due to the transverse field [cf. Egs. (36) and (37)].
Different color curves correspond to different values of B, >
|E|/n with B, = 1.1 (brown), B, = 1.2 (orange), B, = 1.5
(red), B, = 2.1 (green), B, = 3.2 (blue), and B, = 10 (black).
Each curve varies in its own range n/2 — d € [—mg, my|, where
mg is given in Eq. (32) and determines the region of oscillatory
behavior of the coupling coeftficients (see Appendix B for details).
For B| ~ 1, the region of oscillatory behavior shrinks to a point
d~n/2. In the limit of large values of B, > 1, this behavior
occupies almost the entire range d € [0, n].

(see details in Sec. IV). Marked states are selected at
random, and Hamming distances between them are of the
order of n when the number of the states M is exponentially
smaller than 2". Because the off-diagonal matrix elements
of the down-folded Hamiltonian H,;(E) « c(E.d;;), they
are exponentially small in n. At the same time, the width of
the distribution of energies of the marked states £(z;) =
—n + ¢; is also assumed to be very small: W < B (it is
exponentially small in n for the cases of interest).
Therefore, we can solve the nonlinear eigenvalue problem
[Egs. (17)—(20)] by an iterative approach treating the off-
diagonal part of H(E) and terms o €; as a perturbation.
Details are given in Appendix C.

At zeroth order in the perturbation, the down-folded

Hamiltonian 'HE? (E) = 6;;n[c(E.0) — 1] has one M-fold
degenerate energy level E() that is a root of the equation

Hg.)) (E) = E that originates from the marked state energy
E® = —p, in the limit of B, —0. Using c(E,0) from
Egs. (19) and (23), the explicit form of the equation

for E© is

EO) = —n—A,, (36)

X /n B, (n—2d)
Ay = n2™" . (37
0= 17 ;<d>n+AO—BL(n—2d) (37)

011017-11



VADIM N. SMELYANSKIY et al.

PHYS. REV. X 10, 011017 (2020)

Here, A, is the root of the above transcendental equation
that satisfies the condition limg _5 Ay = 0. In general, the
sum (37) is dominated by the region of values of d such that
|d —n/2| = O(n'/?) where the factor 27(") reaches its
maximum ~n~'/2. In that region, we replace the binomial
coefficient with a Gaussian function of d and the summa-
tion with the integral over d. Taking the integral, we obtain

A, in a form of a series expansion in powers of n~!:

B4
Ay~ —B% — ﬁ +0(n7?). (38)

A comparison between the exact and asymptotic solutions
for A, is shown in Fig. 6. For B, < n'/?, the overall shift
of the energies of the marked states is negative and
quadratic in B .

According to Eq. (21), all M degenerate eigenstates |y) ;

have the same weight Q(E(®)) = M| |W};O)(Zj)|2 on the
marked state subspace. In the large n limit, we have

-50

51

=52

Eg

-54

FIG. 6. Solid lines show the dependence on the transverse field
B, of the eigenvalues Ej of the nonlinear eigenvalue problem
with Hamiltonian H(E) for the case of n = 50 and M = 2. The
plot shows the repeated avoided crossing between the two
systems of eigenvalues. One system (colored lines) corresponds
to the eigenvalues of the transverse-field (driver) Hamiltonian
Hp=-B, Y1, 6% in the limit H, — 0. The second system of
eigenvalues corresponds to the energies of the two marked states
in the limit B, — 0. The splitting of the eigenvalues is exponen-
tially small in n» and not resolved in the plot. The asymptotic

expressions (36) and (37) for the two eigenvalues E(Ioz) =E©
neglecting the tunneling splitting and setting £(z;) = —n for all
j € [1, M] are shown with a dashed gray line.

Q(E0) ~1 —B72l+ O(B% /n?). (39)

Under the condition o B3 /n <1, the eigenstates are
dominated by their projections on the marked state sub-
space. In the limit n — oo, they are asymptotically orthogo-
nal to the computational basis states outside the IB. Such an
orthogonality catastrophe cannot be obtained within the
perturbative in B approach such as the FSA.

The exact dependence of the weight O on transverse
field B, is given in Fig. 7. The expression (39) is
valid for B, away from their “resonant” values
B, ,~n/(n—2p), where the M-fold degenerate
energy level “crosses” the eigenvalues of the driver
Hamiltonian, E) = —B, (n —2p), for integer values of
p, as shown in Fig. 6. The width of such resonance
regions AB | , o< 27"/ 2(;) remains exponentially small in
n for n/2 — p > n'/%

In this study, we focus on the off-resonance case depicted
in Fig. 1. One can see from Fig. 6 that B, , increases with p
and so is the width of the resonance region. For B
parametrically large compared to unity, one needs to make
sure that n is also large enough so that the width of
the resonance regions is small (cf. Fig. 8). Away from
resonance, all M impurity band eigenstates are well
localized in the marked states subspace [cf. Eq. (39)].

In the spirit of the degenerate perturbation theory, there
exists an effective Hamiltonian H that determines the
correct zeroth-order eigenstates and removes the degen-
eracy of the energy levels:

Hiwy") = Ey ). (40)

1.0

0.8

0.6

1 1 1 1 1
0.0 1.0 1.2 1.4 1.6 1.8 2.0

B.

FIG. 7. The solid red line shows the dependence of the total
weight Q vs transverse field B for n = 40. Vertical black and
blue lines, respectively, depict the locations of p-even and p-odd
resonances B = B, defined in the text. The total weight Q
undergoes sharp decreases in the vicinity of even resonances. For
p < 5, the resonance regions are so narrow that dips in Q are not
seen. The width of the regions grows steeply with p.
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FIG. 8. Plot of the maximum value of the transverse field
at midresonance point BT* as a function of n. We define
BT = (B, + B,.1)/2, where B, ,~n/(n—2p) satisfies
the equation E() = —B | ,(n —2p) and the integer p is equal
to its maximum possible value p = p,..« for which the weight
factor Q = Q((B,, + B, ,+1)/2) > 0.98.

Its matrix in the basis of the marked states has the form
Hij = o€ + nc(E(O),dij), where we neglect small non-
important corrections (see Appendix C). Using the expres-
sion for the coupling coefficient (33) given in Appendix B,
[Egs. (B23) and (B24)], we have

Here, ¢(d) = ¢(E”), d) is a WKB phase shown in Fig. 5
that describes the oscillation of the matrix elements with
the Hamming distance. Its explicit form is given in
Appendix B, Eq. (B11), and also above in Eq. (35)
for the case of large transverse fields. The amplitude V;;
equals

Al )
(@)

where i # j and the coefficient A(p) equals [cf. Eq. (B24)]
T e—BLaIccothBL

Alp) = |=—= , 43

R T

— 9,2\ 1/2
v(p) = (1 —(11_129’;)2) . (44)

V(d) =

It is independent of n apart from the phase ¢(n/2), whose
explicit form is

¢(n/2) =7 [n(1-BT') - B,]. (45)

B

The function O(B,) is given in Eq. (34). Expanding
Eq. (34) in the limit B| > 1,

1 1 1
0~ + +
4B3  24B%  60BS

oo (46)

In that limit, & < 1. We note that, even for modest values of
the transverse field, e.g., B| ~ 1.46 (corresponding to that
in Fig. 4), the first term provides a good estimate to the
value of @ ~0.13 (error 9%). We refer to H in Eq. (41) as
the IB Hamiltonian.

The form of the IB Hamiltonian (41) applies only to the
region of oscillatory behavior d;; € [n/2 —mg, n/2 + m|
of the coupling coefficients ¢;;(E) with Hamming distance
d;;, where m is given in Eq. (32). This above condition for
d;; is always satisfied in a typical row of the matrix d;; for
the values of M considered in this paper [see the discussion
in Appendix G and Eq. (G32)].

VI. STATISTICAL ENSEMBLE
OF THE IMPURITY
BAND HAMILTONIANS

Properties of the eigenstates and eigenvalues
[Eq. (40)] of the IB Hamiltonian H [Eq. (41)] determine
the population transfer within the impurity band and are,
thus, of central interest for us in this study. They depend
on the statistical ensemble of IB Hamiltonians. In the
model considered in this paper, diagonal elements ¢; of
‘H are selected at random, independently from each
other and from the choice of the corresponding marked
states |z;). In the present discussion, we assume that the
PDF p(e) of €; is exponential bounded with the width
W. The results do not depend on the particular form of
p(e). For the sake of specificity in calculations, we use
the window function form

ple) = O(W/2 - |e

): (47)

where 6O(x) is a Heaviside theta function. For the
physical effects discussed in this paper to take place,
the width W needs to scale down exponentially with n:

lim log(W'/") = O(n?). (48)

n—oo

A. Off-diagonal matrix elements

For fixed energies ¢;, the matrix of the IB
Hamiltonian H,; is entirely determined by the symmet-
ric matrix of Hamming distances d;; between the bit
strings corresponding to the marked states. The set
of M bit strings is randomly sampled from the full
set of all possible 2" bit strings {0,1}" without
replacement; see Appendix D. Elements of the matrix
d;; above or below the main diagonal are considered
independent from each other and taken from the
binomial distribution p;:
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Py = %2-" (Z) zZ= iz-" (Z) (49)

d=1

under condition 1 <« M < 2"/2, Then, for a given row
of the matrix M x M of Hamming distances d;;, the

(d)

j
numbers of elements M;”’ with d;; =d are samples

from the multinomial distribution with mean values
(M;d)> = Mp, (see Fig. 9). According to Egs. (41)
and (33), the statistical ensemble of IB Hamiltonians
(41) corresponds to that of symmetric random matrices
whose associated graphs are fully connected and matrix
elements are statistically independent.

As seen below, the spectral properties of H that are
relevant for our study are determined by V%j and not by the
oscillatory factor in Eq. (41). Therefore, we are interested in
the PDF of V?;:

POZ) =3 padlVi(d) ~ V3, (50)
d=1

where i # j.

1. Typical and extreme values of the off-diagonal
matrix elements V;

For a randomly chosen row of the matrix of Hamming
distances d;;, the most probable value (mean) of its
elements equals n/2. According to Eq. (42), the off-
diagonal matrix elements V;; decrease rapidly with the
Hamming distance d;;, reaching the minimum value at
d;;~n/2. Therefore, a typical minimum value of the
matrix elements V;; corresponds to a typical value overall.
We estimate it using Eq. (42) and Stirling’s approximation

A2

1/4
Vigp = V(n/2) ~ (T) n?272emn0 - (51)

where coefficient A = A(E(®), 1/2) [Eq. (43)] is essentially n
independent between the resonances and € is given in
Eq. (34). The matrix elements V;; that scale with n as the
typical value in Eq. (51) correspond to [n/2 — d;;| = O(/n).

We note that in Fig. 9 the plot points do not reach the
boundaries of the interval d = 0,n. In the matrix of
Hamming distances d;;, the typical smallest off-diagonal
element in a randomly chosen row can be estimated as
follows: Mp, = 1, where p, is binomial distribution (49):

n

M2 < dmm> =1. (52

Using Stirling’s approximation for factorials in the limit
n> 1, it is easy to show that the minimum Hamming
distance in a row is extensive for M = 2*" u < 1.

min d;; ~d,;
jAid<j<m Yo M

102 -
101
1 —
| | | | |
10 20 30 40 50
d
FIG. 9. Red points show the empirical probability distribution

Mj-d) vs d with Mﬁd) = >, 8(d;; — d). Here, d;; is a matrix of
Hamming distances d;; between the set of M randomly chosen
n-bit strings (marked states), and i is a randomly chosen marked
state. The distribution corresponds to M = 107 and n = 60.
Black stars connected by a black line show the samples m,
from multinomial distribution with mean values (M 5-‘1)) =Mpy,
where p, is binomial distribution (49). '

The typical largest magnitude off-diagonal matrix
element in a randomly chosen row of V;; is equal to
V(dpmin)- Using Stirling’s approximation in Eq. (42), we get

|~ M2
j¢i1,1112;(SM|V”| MV . (53)

Using Eq. (51), one can see that the maximum off-diagonal
matrix element in a randomly chosen row is still exponen-
tially small in n.

Similarly, one can estimate the typical value of the
absolute minimum dp i, of a Hamming distance d;;
between a pair of marked states. This distance remains
extensive for 4 < 1, M = 2#". This distance corresponds to
the overall largest in magnitude element of the matrix V;;:

max |V;;| ~MVy,. (54)

I<i<j<M

Using Eq. (51), the largest element is exponentially small in
n provided that u < 1/2, which corresponds to the con-
dition of statistical independence of the elements of V;;.
A tight bound for the maximum eigenvalues of H can be
obtained using the Gerschgorin circle theorem [58]; see
Appendix E.

B. Heavy tails

It can be shown that the variance of H;; is not a good
statistical characteristic of its PDF and is dominated by
the extremely rare atypical instances of the ensemble (see
details in Appendix F). We observe that the relationship
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between the typical matrix element (51), maximum matrix
element in a randomly chosen row of V;; (53), and the
largest element of V;; overall (54) form a strong hierarchy
that is a characteristic of the ensemble of dense matrices
with broad nonexponential distribution of matrix elements
(Levy matrices) [33]. The form of the hierarchy [37]
suggests (up to a logarithmic factors) the following
asymptotic behavior at the tail of the PDF of the matrix
elements:

PDR(V}) o V|2

for [V;j| > Vi,

We build on the above observation and obtain the explicit
form of the PDF of the matrix elements P(V%j) [Eq. (50)],
including its tails. In the asymptotic limit of large n > 1,
we consider n to be a continuous variable (the validity
of this approximation is justified below). We replace the
summation over d in Eq. (50) by an integral and Kronecker
delta 6(x) by Dirac delta

P(Vizj)z[) PO

This expression is obtained using the analytical continu-
ation of the binomial distribution p,; [Eq. (49)] from the
integer domain d € (0, ) onto the interval of a real axis
x € (0,n) in terms of the Beta function and the resulting
identity [ dxp, =1 (see Appendix G for details).

In what follows, we study the rescaled quantities

[V2(x) = Vi ]dx. (55)

Vi V3(d;
wij = VTJ = v(z ) ; (56)
typ typ

where i # j and V., is given in Eq. (51). We apply
Stirling’s approximation for the binomial coefficient in
Egs. (42) and (49) and obtain asymptotic expressions for
V2(d) and p,, respectively. Plugging them into Eq. (55)
and taking the integral there, we can obtain the PDF

g(wij) = Vtzpr(Vt2ypwij)1 (57)

whose form is given in Appendix G, Egs. (G14) and (G15).
The following assumption is applied throughout this

paper:

M =2 U<l (58)

According to Egs. (42), (52), and (GS5), a typical largest
element in a randomly chosen row of the matrix w;; is ~M.
Therefore, based on Eq. (58), the following condition is
satisfied in a randomly chosen row of w;;:

1
n

Under this condition, the PDF of w;; takes a particularly
simple form, g(w) =~ g, (w):

1
Geo (W) = w?y/mlogw’

with normalization condition [ g,,(w)dw = 1. Details of
the derivation are given in Appendix G.

The above analysis assumes the scaling behavior (42) of
V;; with d;; that requires [n/2 — d,;| < m, with m, given in
Eq. (32). As shown in Appendix G, this condition is always
satisfied for a typical row of d;; provided the constraint (58)
on the values of M.

w e (1,00), (60)

C. PBLMs

The problem of population transfer is reduced to the
analysis of the described-above ensemble of real symmetric
M x M matrices H,;; of the down-folded IB Hamiltonian
(41). The matrices 'H;; form an ensemble of PBLMs, a
generalization of Levy matrices actively studied in the
literature (cf. e.g., Refs. [33-35,37]). Unlike Levy matrices,
PBLMs have a new control parameter: the ratio of typical
diagonal to off-diagonal matrix elements W/V,, that
controls the preferential basis (computation basis). This
distinction is analogous to that between the Gaussian
orthogonal ensemble and the Gaussian ensemble with
broken SU(N) symmetry, the RP model [51].

Recent studies of the RP ensemble [21] demonstrate two
localization transitions that occur with a varying parameter
that controls the relative weight of the diagonal and off-
diagonal matrix elements. One of them is the Anderson
transition from localized to the extended states that are
nonergodic and possess distinct multifractal features. These
states and the corresponding eigenvalues are organized in
minibands so that the states within the same miniband
mostly share the same support over basis states. The
spectral width of the minibands is polynomially small
(in M) compared to W. The second transition is from the
extended nonergodic states to the extended ergodic states
similar to the eigenstates of the Gaussian orthogonal
ensemble. We demonstrate analogous behavior in the 1B
model and analyze the population transfer in the non-
ergodic regime.

VII. NUMERICAL SIMULATIONS: MINIBANDS
OF NONERGODIC DELOCALIZED STATES

In this section, we report an exact diagonalization
analysis of both the eigenvector statistics and the dynamical
eigenstate correlator. Instead of the sparse 2" x 2"
Hamiltonian Eq. (1), it is efficient to diagonalize the
dense M x M matrices obtained by down-folding the
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Hamiltonian into the marked state subspace. This diago-
nalization allows access to systems of n =200 qubits,
reducing the finite size effects. The down-folded matrix
Hamiltonian ensemble is constructed as in Sec. VI:

Hii = e, Hij= ”C(E(O)’ dij)? (61)
where the diagonal elements ¢,, are distributed uniformly
in the energy window [—n— W/2,—n+ W/2] and the
off-diagonal elements are constructed by sampling
Hamming distances between uniformly random bit strings
of length n and using Eq. (23) with E = E(*) determined
from Eqgs. (36) and (37).

We introduce the scaling of the width of the distribution
of ¢,, with the matrix size M:

W =AMV, (62)

where y is a real non-negative parameter that controls
the scaling of the typical diagonal to off-diagonal matrix
element Vy, given in Eq. (51) and 4 is an auxiliary constant
of the order of one.

A. Eigenvector statistics

We define the inverse participation ratios (IPRs) 7, and
the entropy H* as

Iy = ZI(WIOIZ? (63)

==Y gl gl (64)

respectively, where y; denotes an eigenstate with eigen-
value Ey. IPR 1, is the second moment of the wave function
probability distribution |(y4|i)|* in the computational basis
(bit strings) |i). The entropy H? characterizes the support
set of an eigenstate in the computational basis [59], i.e., the
subset of bit strings where the probabilities |(y|i)|* are
concentrated.

Figure 10 shows the participation ratio /, as a function
of the ratio of mean level spacing de to the typical matrix
element Vi, a measure of the number of states in
resonance with a typical classical level €;. The regime
oe >V, corresponds to the localized phase, where the
eigenstates have significant weight on a small number
of bit strings that are close to each other in Hamming
distance. In this regime, I, ~ 1 and is system size inde-
pendent. In our model, marked states are separated by
Hamming distance d ~ n/2 + O(y/n) with a high proba-
bility, and, therefore, most localized states have sharp peaks
at exactly one bit string; hence, I, = 1. As the ratio d¢/V
decreases, I, becomes system size dependent. Figure 11
indicates that the combination I,M /3 ~ 1 becomes system

10° T T

107'E

— M =500
=102 — M = 1000 :
M = 2000
M = 5000
Lo3 M = 10000 ]
— M = 20000
—4 | Il
10 1071 10° 10 102

¢/ Viyp

FIG. 10. The inverse participation ratio I, = >, |(ilys)|* as a
function of the average classical (at a vanishing transverse field)
energy level spacing e in units of the typical coupling V., for
different numbers M of states in the impurity band. We see that
for 6¢/Vy, > 1 the eigenstates become localized and I, — 1
independent of M, indicative of eigenstates localized on single bit
string each.

size independent as the level spacing becomes smaller
than the typical matrix element, characteristic of the
delocalized regime, where the wave function amplitude
spreads over O(M) bit strings, |(wg|i)|* ~1/M. The
saturation value of I,M ~ 3 is consistent with approach
to Porter-Thomas distribution of the wave function ampli-
tudes. Both Figs. 10 and 11 show a wide intermediate
region between the localized and ergodic phases where
nonergodic dynamics is expected. This intermediate regime
becomes apparent in Fig. 12, where we introduce the
multifractal dimensions D, and D, which determine the
scaling of I, and H* with M, respectively:

Inl,(M)=-D,(g—1)InM + c,, (65)
H*(M)=D;InM + ¢, (66)

where ¢, is a g-dependent fitting parameter. The extracted
dimensions shown in Fig. 12 as a function of the parameter
y vary continuously between D, = 1 in the ergodic phase
y <1 and Dq = 0 in the localized phase y > 2, with 1 <
y < 2 corresponding to a nonergodic regime for ¢ = 1, 2.

B. Eigenstate overlap correlator
for nonergodic minibands

Population transfer dynamics in the nonergodic regime
can be characterized by the survival probability; see Sec. II.
The Fourier transform of the survival probability for a given
initial marked state i is given by
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FIG. 11. The rescaled inverse participation ratio I,M/3 as a
function of the rescaled impurity band width W/(MV,y,) for
different numbers M of states in the impurity band. We see that
in the ergodic regime, W/(MV,y,) <1, we have L,M/3 =1,
corresponding to the orthogonal Porter-Thomas distribution of
states in the impurity band. The inset shows the numerical
probability distribution of normalized probabilities Mp for an
eigenstate over computational states z in the ergodic regime in
black and the analytical orthogonal Porter-Thomas distribution
in red. Qualitative arguments in Sec. VIII suggest that in the
nonergodic delocalized regime I,M/3  [W/(MVy,)]*. The
black line is proportional to [W/(MV,,)]?, and we see that
I,M /3 aligns with this quantity as long as we do not enter the
localized regime de/Vyy, > 1; see Fig. 10.

pi(@) = Re /0 ™ dte| iy (1))

=xy_ilwp) Plwy|i)P6(Ey — Ey — w).  (67)
pp

Note that the limit @ — 0 gives the inverse participation
ratio of a given bit string in the basis of eigenstates:

pi(0) =y _[ilwp)l*. (68)
5

The average of p;(w) over the initial state is related to the
overlap correlation function K(w) defined by [21]

1

K(w) EM

> Hwisli) P wp ) PS(Ey — Ey — )
i

1
=M Z:Pi(w)- (69)
The fractal dimension extracted from the scaling of K(0)

with M is shown in Fig. 12, and it follows closely
those extracted from the IPR in the computational basis.

a

FIG. 12. The multifractal dimensions D; [defined in Eq. (66)]
and D, [defined in Eq. (65)] as functions of y for the ensemble
of IB Hamiltonians with the dispersion of classical energies
W= lVlpr 7/2 with A = 3.3. All the multifractal dimensions D,
approach 1 in the ergodic regime (y = 1) and O in the localized
regime (y = 2). The difference between D, and D, is also likely
due to finite size effects. We also extract a scaling exponent from
the dynamical correlator [see Egs. (68) and (69)]. The dot-dashed
line corresponds to the analytical value in the Rosenzweig-Porter
limit given by Eq. (72).

The collapse of the plots in Fig. 13 is achieved when the
frequency is rescaled by the characteristic energy:

[, =Ty,M, T oV ,M72(logM)/2, (70
10° . . .
M =1000 ——
M =2000 ——
M = 5000
M = 10000
M = 20000 ——
102 £ _
=
€
=
10' £ _
10° : : :
107! 10° 10*
w/T.

FIG. 13. We plot the rescaled overlap correlation function
K(o)l, vs w/T,, where T, = Iy ,M*® and Ty, = 2%, is the
typical and X, o Vi,M'77/2(log M)"/?
[Eq. (128)]. Different curves correspond to different values
of M and collapse well with ¢ = 0.05. We use the ensemble
of IB Hamiltonians with a dispersion of classical energies

W = AV,,,M?/?, with y = 1.2 and 1 = 3.3.

miniband width
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with a fitting parameter ¢ < 1. The correlator K(w) is
constant for a range of energy differences w < I', and
decays quickly o« @™ as @ > I',. This result can be
interpreted in terms of the formation of nonergodic mini-
bands of eigenstates that share support in the computation
basis: For an average bit string, there is a range of
eigenenergies E; within a width I', around a bit-string-
dependent value €; where the eigenfunction overlaps with
z; are relatively large, whereas for a larger energy differ-
ence the correlation decays quickly below the value
corresponding to uncorrelated case K(w) < 1/M; i.e.,
the amplitudes repel each other. The relation between
the survival probability and eigenfunction overlap corre-
lator [Eq. (69)] suggests that the characteristic population
transfer is given by the inverse of the characteristic energy
scale of the miniband width I',, the range of energy
eigenstates with a significant amplitude at the given bit
string. The auxiliary fitting parameter takes a small value of
€ = 0.05, indicating only a small deviation from I',, most
likely due to finite size effects. In Appendix M, we show
the results of a direct simulation of dynamics of the model
in the course of the PT protocol and confirm the scaling of
the PT time.

C. Discussion of numerical results

The size of the matrix of marked states used in exact
diagonalization M < 20000 is a small fraction of the size
of the total Hilbert space Hamiltonian 2" x 2" with
n = 200. For such a small sample, the distribution of
Hamming distances d;; between marked states is domi-
nated by |d;; — n/2| ~ O(y/n). In this regime, the square of
the off-diagonal matrix element (see Sec. IV) has an
approximately Gaussian dependence on d;; [cf. Egs. (42)
and (51)]:

H2 w2 exp| 2 (d =) (71)
ij ~ Viyp p n ij 2 ’

and the probability to find a pair of bit strings at a
smaller distance d;; is strongly suppressed. The sign of
H;; rapidly fluctuates as a function of d,;, resulting in a
negligible average (H;;(d)) ~ O(27"). The distribution of
off-diagonal matrix elements in Eq. (71) is non-Gaussian
and, instead, has a heavy tail that cannot be fully charac-
terized by the variance alone; see Sec. VIB and
Appendix F, where we introduce the class of preferred
basis Levy matrices and derive the asymptotic form of the
distribution of matrix elements. For numerically accessible
matrix sizes M, we expect the deviation from the Gaussian
distribution in the observables to be very small.

The eigenstate statistics and the respective fractal dimen-
sions for the model Eq. (71) can be calculated using the
strong disorder perturbation theory. The calculation pro-
ceeds similarly to that in Ref. [21], resulting in

A comparison of the approximate Eq. (72) with numerical
results is shown in Fig. 12 as the dot-dashed line. It
appears that the Dy and D, do not quite coincide with
each other nor with Eq. (72), which may be due to finite
size effects.

It is instructive to draw an analogy between character-
istics of the PBLMs and that of the RP model from random
matrix theory; see Refs. [21,51], and references therein,
where the matrix elements are given by a Gaussian random
variable with zero mean and variance for diagonal and all
off-diagonal matrix elements set (H7;) =1 and (H7;) o M.
Transition points between localized, delocalized, and
nonergodic delocalized regimes as well as perturbative
expressions for fractal dimensions [Eq. (72)] are con-
sistent in the two models. The dynamical correlator also
shows similar behavior indicative of the formation of
minibands of nonergodic eigenstates with the leading
exponent 1 —y/2 in the scaling of the population transfer
time with M coinciding in the two models. The prefactor
(log M)'/2, however, is affected by the heavy tail of the
distribution of the matrix elements and needs to be
calculated analytically. It is difficult to extract it accu-
rately from the numerical simulations due to the finite
size effects.

VIII. BORN APPROXIMATION FOR THE
TRANSITION RATES

In this section, we develop a simple picture relying
on the Fermi golden rule (FGR) to study the rates of
population transfer away from a given marked state to a set
of other marked states inside the same miniband. Assume
that the system is initially prepared at a randomly chosen
marked state |z;). The probability amplitude to remain in
the initial state |z;) equals

V) = e,
p

where |y/(7)) evolves with the IB Hamiltonian 7 (41) and
Hlwp) = Eplyy). If the eigenstates dominantly coupled to
the marked state |z;) are extended, then the amplitude
w(z;.t) undergoes a decay in time.

Here, we calculate y/(z > t) using a simple effective Fano-
Anderson model for the decay of a discrete state into a
continuum [60]. This model captures the Born approxi-
mation for the ensemble of Hamiltonians introduced in
Sec. VI. The model Hamiltonian 7{ is obtained from the IB
Hamiltonian H (41) by zeroing out all off-diagonal matrix
elements except those in the jth column and the jth row
connecting state |z;) to the rest of the marked states. The

Hamiltonian 7 has the form
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= €lz) (5l + D (em = in)|zm) (2l
m#j
) Hin(12) 2l + ) (z50) (74)

oy

where the summation is over m € [1...M], m # j. We
consider the dynamics on a timescale when the population
of the state |z;) decays into the other states and introduce a
small imaginary part —in to their energies. It is assumed
to be much bigger than the typical energy spacing 7 >
d6e = W/M but smaller than the timescale on which the
decay takes place. We introduce the parameterization
similar to that in Sec. VII for the distribution of energies ¢;:

W = AV, ,M?/2, (75)

where 1 is a (redundant) number of the order of O(M?).
The amplitude w(z, z;) has a well-known form [60]:

® dz ¥/(z) exp(—izt)
1) = — , 76
v =[5 Y@ - Zepr
where we used a shorthand notation
Zi(z) = Zi(z) —iZ](2) (77)

for real and imaginary parts of self-energy of the marked
state |z;),

5= 79)

mii & T €m +in

and we keep z real. Calculating the above integral to the
leading order in 'H;,, (j # m), we get

1
w(z;.t) ~exp [—i(ej + Ae;)t - zl"jt] , (79)
where

Ae; ~T'(e;), [; =2%7(e;). (80)

The quantity I'; above is the total decay rate of the state
|z;), which is twice the imaginary part of the self-energy 7.
The latter equals to the “width” of the level €; due to the
decay. Expressions (79) and (80) correspond to a well-
known Born approximation for the self-energy Z}’ . Using
Eq. (78), we get

=z Y HZ(e
me(l...M]/j

— €. 1), (81)

where we defined a function:

_1
5(6,7’]) =;€2+’72.

(82)

The matrix elements Hi ; [see Eqs. (41) and (42)] depend
only on the Hamming distance d,,;. The dominant con-
tribution into the sum (81) comes from the transitions to
the states with |e; —¢€,,| <#. If the number of such states
is large, the sum can be replaced by the integral corre-
sponding to the approximation where the Lorentzian
5(e; — €,.1) = (6(e; — €,,, 1)) is replaced with its average
over realizations of ¢,. The average is independent of
n < W, which, therefore, drops out from the PDF of the
transition rate I" and the resulting level width X" =T/2.
This case corresponds to the leading-order Born approxi-
mation described in Sec. VIII A.

A more accurate treatment of 6(e; — €,,,7) as a random
variable results in the form of the PDF of I" (and X") being
explicitly dependent on 7. The physical meaning of 7 is the
decay rate at the “children” sites €,,, m # j, which gives
rise to the width X" or the energy level ¢; at the parent site.
In a large system, the statistics of the decay rate for children
and parents are expected to be the same. The crude
approximation that captures this effect is obtained by
substituting 7 with a typical value of £”. This approxima-
tion corresponds to self-consistent Born approximation
described in Sec. XI A 2. It gives rise to a more accurate
expression for the PDF of X’ (and I') whose shape is
rescaled compared to the leading-order Born. A systematic
analysis is given by the cavity method described in
Secs. X and XI.

A. Leading-order Born approximation

We can break down the decay rate I'; = 2X7 into a sum
over different decay channels:

A ﬂi V2(d)|
d=1

where each term in the sum corresponds to the transition
rate from the initial state |z;) into the subset of the marked
states on a given Hamming distance d from |z;) (see
Fig. 14). The factor Q{;(d) in Eq. (83) is a spectral density of
the marked states located at a distance d from the state |z;)
within the window of energies 7 around €;:

= 8(e; = €nn)A(d — djy,), (84)

m#j

1 —cos2¢(d)]ep(d).  (83)

where A(d) is a Kronecker delta and (e, n) is defined
in Eq. (82).

We denote as Mﬁ-d) the number of marked states that
are separated by a Hamming distance d from the state |z;)
[number of terms in the sum (84)]:
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FIG. 14. Cartoon of the energies of the marked states ¢,, within
the impurity band. Energy levels are shown with solid black lines
forming groups arranged vertically. All states |z,,) within one
group lie at the same Hamming distance d;,, = d from a given
state |z;) with d increasing from right to left. The energy level ¢;
is depicted at the right side of the figure with a thick black line.
Arrows depict the transitions away from the initial state |y (0)) =
|z;) into the marked states |z,,) whose energy levels lie inside the
miniband of the width I'; centered at ¢;; i.e., they satisfy the
condition |e; — €,,| ST';. The miniband width is indicated with
the gray shading area. Arrows of the same color depict transitions
within one decay channel, connecting the state |z;) to the states a
Hamming distance d away from it. Smaller values of d corre-
spond to bigger typical level spacings 565? [Eq. (87)] and
fewer states in a miniband Q; [Eq. (98)] within the decay
channel given by d.

d
MY =S A~ d;,,). (85)
m#j

As discussed in Appendix D, the elements of the set
{M;”l)};’,:1 are sampled from the multinomial distribution
with mean values

n
o) =wps. pa=2(l)s6

where coefficient p, defined in Eq. (49) is the probability
that a randomly chosen state is located a Hamming distance
d # 0 from |z;). The mean separation between the adjacent
energies €, in the sum (84) equals

——=~oe——~ (M7 > 1), (87)
M;d) (,1) !

where 6¢ = W/M is the mean spacing between the marked
state energies. A substantial contribution to the sum in
Eq. (84) comes from the terms corresponding to the
marked states whose energy levels ¢; lie within the width
n from the energy e,,; ie., they satisfy the resonant
condition |e; — €,,| < 7 as shown in Fig. 14.

The contribution to a sum from each resonance is ~1/7
and the number of the resonances in a given decay channel

is Qy ~ Mﬁd)r]/W (cf. Fig. 14). It is shown in Appendix J
that the dominant contribution to the zypical values of X7
[Eq. (83)] comes from the values of d that correspond to
Q, > 1. For them, the function 6(¢; — €,,.7) in Eq. (84)
changes weakly between the adjacent values of ¢,,, and in
the leading-order Born approximation we estimate the sum
over m in Eq. (84) by replacing it with an integral. Then, the
spectral density can be estimated as

j d
ah(d) =M p(c)), (88)
where we require
Se<n< W, (89)

and p(e) is the PDF of the marked state energies e with the
width W [see Eq. (47)].

We plug Eq. (88) into the expression (83), obtaining the
following relation:

S = 7p(e)) " MOV = cos 24(d)],  (90)
d=1

where the sum is dominated by values of d corresponding

to large values MA(id) > 1 (see Appendix J). The steep
exponential decrease with d of the matrix element V?(d) «

1/() [Eq. (42)] is canceled by equally steep growth with d

of the average number of states in the d channel (Mgd)
(%) [Eq. (86)]. As a result, the binomial factors cancels out,

)

and the average quantity <Ml§-d))V2(d) changes only by
O(n~') when d changes by 1.

The term involving cos 2¢(d) above oscillates around 0
on the scale d ~ 1 [cf. Eq. (35)]. Therefore, the contribu-
tions to the sum from the terms (Mﬁ-d)) cos 2¢(d)
average out. In what follows, we neglect the cross-

product of fluctuational and oscillatory parts (Mﬁd) -

<M§d)>) cos 2¢p(d) and drop the second term in the rhs of
Eq. (90) that contains cos2¢(d).

Essentially, the above approximation corresponds to
replacing the oscillatory part in the expression for the
off-diagonal matrix elements H;;.; = V(d, j)\/§ sing(d;;)
[Eq. (41)] as follows:

Hij — V(dij)ﬁijv pij==x1, i<}, (o1)
where f3;; are instances of a dichotomous random variable
that takes values of 1 with probability 1/2. This approxi-
mate model of the ensemble of H,; is also used in the cavity
method calculation in Sec. XI.
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Using the expression (47) for p(e) and also Egs. (56),
(42), and (51), we obtain the relation between the PDFs of
the random variables

V2
Ry B = mpn (92)
1 M

Here, w,, are random variables independently sampled
from the probability distribution g, (w) given in Eq. (60).
The level widths X7 of individual marked states for
1 < j <M are samples of the random variable X",

In Eq. (92), we introduce the characteristic value of the
level width /. This equation relates the PDF of X" (or the
decay rate I = 2%") to that of € and Ms,,. We note that
the resulting expression for the level width X" of a marked
state formally corresponds to that given by the FGR for the
decay of the discrete level into the continuum [60]. The
energies of the marked states ¢, into which a given marked
state |z;) decays form a miniband of the width X7. The
decay occurs simultaneously in many channels correspond-
ing to different Hamming distances between the initial
marked state and the states of the miniband.

The heavy-tailed PDF of the random variable s,, is
studied in detail in Appendix I. Using the generalized
central limit theorem (GCLT) for the sums of a large
number of identical heavy-tailed random variables [33,53],
it can be represented in the form

SMéGMX‘l'bM, (94)

where x obeys a so-called Levy alpha-stable distribution
Li‘l (x) [33] defined in Appendix I, Eq. (I8), and shown in
Fig. 15. The scaling factor and shift are

[ n
=,/ 95
o 4logM (93)

2 2
bM = 61;11 - ;GM log(d&l) + ; (1 - }/Euler)UMa (96)

respectively (Ypuer 2 0.577 is the Euler constant). They
display very weak logarithmic dependence on M as com-
pared with the main factor « Vtzyp /&€ in Eq. (92). The width
of the PDF of s, is shrunk by a factor of (log M)"/? > 1,
and the location of its maximum is increased by a factor of
(log M)'/? 3> 1 compared to L} (x).

The PDF of s;, has a polynomial tail. Therefore, decay
rates of marked states I'; = 22” can take range values that
are much bigger than thelr typ1cal values 2% [Eq. (92)], up
to M times bigger in the sample of size M. These atypically
large decay rates correspond to rare clusters of marked

FIG. 15.

stable distribution L&” (x) [33] with tail index a = 1, asymmetry
parameter =1, and unit scale parameter C = 1. The inset
shows asymptotic behavior of the distribution at large positive x.
At —x > 1, the function decays steeply as a double exponential,
log L} (x) & —exp[—(7/2)x]. The blue line shows the Cauchy
distribution L}°(x) = {1/[z(1 +x*)]}. We follow here the
definition introduced in Ref. [33] and used in subsequent papers
on Levi matrices in the physics literature. In the mathematical
literature [61,62], a different definition is usually used, corre-

sponding to f(x;a, 8. C"/*,0) = LE7 (x).

The black solid line shows the plot of the Levy alpha-

states that are located anomalously close to each other.
When clusters are formed by O(1) states, the above picture
of the decay fails.

IX. NUMBER OF STATES IN A MINIBAND WITHIN
BORN APPROXIMATION

Using the expression (92) for the miniband width, we
can estimate the number of marked states € in a miniband
corresponding to a given state |z;). As before, we divide
the states into groups of sizes €2;, each corresponding to
the transitions away from |z;) with a fixed number of
flipped bits d. The level width can be written in the form
I =3 41 Zj 4 where 7  is the partial level width due to
the transmons w1th ﬂlpplng d bits. Then, using Eq. (90) and
making use of the expression (86) for the average values of

M E-d) , We obtain

(@)
P 1M (97)

"se \Jan)2 (M)

"o~
z.i,d -

The quantity Mﬁ-d) / (Mj-d)> ~ 1 in Eq. (97), which results in
the interesting phenomenon due to cancellation mentioned
in the previous section: While the typical number of
marked states in a decay channel varies very steeply
with d, typical values of partial decay rates X’/ id in different

channels do not.
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The estimate for the typical number of states in the
miniband at the distance d from |z;) is Q; ~ X7,/ 567:

> 1% 2
Q,~Q Q~—Ln (22 98
d Pd> Se (56 > ( )

where p, = 27"(") and Q is the total number of states in
the miniband.

One can also write the partial decay rate as I“E-d)
V(d)Qy, where the product V(d)Q, does not depend on
d (except from the prefactor). Of course, the analysis based
on the decay rate does not apply for the transition to the

channels with very few states. The condition Q; ~ 1 leads

~

to F;d) ~V(d) for d = d* corresponding to the typical

min
Hamming distance from |z;) to the nearest marked state in a
miniband where the condition V(d) =~ 56‘;1 is satisfied [see
Eq. (J1) in Appendix J].
The above estimate gives the correct timescale
~1/V(di ) over which the two states become hybridized.

We note, however, that the total number of channels is
n—2d = O(n). As all Fﬁ-d) are nearly the same, each

min

channel contributes a small fraction O(1/n) to the total
rate. Therefore, V(d ) ~T;/n, and marked state |z;)
decays into the large number of marked states within a
miniband before it has a chance to hybridize with the
nearest one at a distance dy;,. This property is markedly
different from the situation at a finite dimension [15].

Using the scaling ansatz (75), we estimate the mean

separation between the energies of marked states as

w

Be = 0= AV MI271, (99)

Using Egs. (92) and (98), we obtain the estimates for

typical values of the decay rates and number of marked

states in a miniband:
=23~V M2 Q~M*7  (100)

We immediately observe that in the range of y > 2 the
number of marked states in a miniband vanishes. It
corresponds to a localized phase, consistent with the fact
that typical energy spacing 6 becomes greater than the
typical tunneling matrix element V,y, connecting the states.
The number of states in a miniband € cannot be greater
than the total number of states M in the IB. The expression
above does not apply for y < 1. This regime corresponds to
the ergodic phase.

In the region 2 > y > 1, the separation between adjacent
eigenvalues of H is of the same order as de. The typical
number of marked states in a miniband € corresponds to
the typical number of nonergodic delocalized eigenstates of
‘H that form the miniband:

W>>F>>6€:K. (101)
M

The number of states in a miniband scales as a fractional
power of M less than one. This result is a hallmark of the
nonergodic delocalized phase.

X. CAVITY METHOD: SUMMARY OF THE
PREVIOUS RESULTS

The cavity method has been actively used to study
Anderson localization in Levy matrices in the past several
decades [33-37,52,63] starting from the seminal work in
Ref. [33]. In the present work, we use the cavity method to
study the properties of minibands of delocalized nonergodic
states that were previously discovered in the studies of the
Rosenzweig-Porter [21,36] and regular random graph
[22,49] models. Initial studies suggest the existence of the
mixed region with localized but nonergodic states [33].
However, recent numerical studies based on exact diago-
nalization using a very large number of samples establish
that initially a large crossover region between localized and
extended states collapses in the limit of increasing matrix
sizes [35]. Multifractal properties of eigenstates in the
localized phase and at criticality are studied in Ref. [37]
using the strong disorder perturbation theory.

Numerical solutions of cavity equations to study locali-
zation transition in Levi matrices with power-law distribu-
tions P (H%j) x1/ Hfj((”l) are obtained using the population
dynamics algorithm [34] utilizing the approach developed
in Ref. [63]. An alternative approach is based on the
integral equation for the PDF of the diagonal elements of
the resolvent [33,52]. It is obtained in the limit where the
imaginary part of the self-energy is vanishingly small
[33,35,52] (with the limit of an infinite matrix size taken
first). This approach allows one to derive analytically the
global density of states [33,52] and the mobility edge E*(«)
which gives the a dependence of the energy E* separating
extended and localized eigenvalues of H [35].

The cavity method proceeds as follows. First, we
generate a random M x M matrix H;; (41) from the
ensemble described in Sec. VI. Then, we add a new row
(and a symmetric column) of independent numbers iden-
tically distributed as those in the old matrix H;;. This
process is done by generating a random energy ¢, from the
distribution (1/W)p,(e/W) and then generating a random
bit string z,, computing the array of Hamming distances d
between 7, and z; and the corresponding matrix elements
Hjo = H,, for integer j € [1, M]. As a result, we obtain a
new (M + 1) x (M + 1) matrix H*!, where +1 empha-
sizes that it has one more row and one more column than H.
We number elements of the new matrix by indices running
over the range [0, M], where the index 0 corresponds to the
added marked state |zy). The cavity equations have the
form [33,52]
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M
25 (2) =Y H3, G (2),
m=1

where
Gmm(z) = (Z —€m Zm)_l .

It does not involve the nondiagonal matrix elements of
the Green’s function G,,,,(z) when statistical average
(Hom) =0, which is effectively our case as well
[see Eq. (F1)].

The main assumption of the cavity method is that in the
limit M — o the difference between the PDFs of Z}'(z)
and X,(z) disappears. This disappearance results in self-
consistent equations for the self-energy. Following
Ref. [32], we add small imaginary parts to the diagonal
matrix elements H,,,, = €,, — in. It is a small “fictitious”
quantity that is still assumed to be much bigger than the
marked state energy spacing 5 > W/M. Results are not
expected to depend on the value of 7, provided its scaling
with M is chosen appropriately, as discussed below. We
separate the real and imaginary parts of the self-energy,
%, (2) =2,(z) —iZ),(z) [cf. Eq. (77)], obtaining

M
S Eny M6 2 —en =), (102a)
m=1
4 M
SyEn Y H3,0(z— €y =T T +1n).  (102b)
m=1

where the function 8(x,y) = (1/x)[y/ (x> + y?)] is already
introduced in Eq. (82).

The self-consistent Eqgs. (102) were derived by Abou-
Chacra, Anderson, and Thouless [32] for matrices on
Bethe lattices and by Cizeau and Bouchaud for Levy
matrices [33]. The solution of these equations was found
only in the case when they can be linearized in X,
[32,33,35], giving the location of mobility edge E*(a) as
a function of the power « in the tail of the PDF of the matrix
elements P(H%j) x 1 /H?}aﬂ). Here, we provide a full
solution of the nonlinear equations.

We solve the self-consistent equations (102) under the
assumption that pairs of variables (X],,%),) for each state
m € [0, M] are taken from the same PDF P(X,X";z)
defined over the domain x € (—o0, ), y € [0, ). In
what follows, for brevity, we omit the explicit dependence
on the parameter z. Following Ref. [32], we introduce the
characteristic function F(ky, k,) of the PDF P(X', X"):

F(ki,ky) = /oo dz’/oo dz//'P(z/’2//)eik.2’+ik22”’
—00 0

that satisfies the equation F, "(kl k) = Q,?M (ky, k,), where

g(kl’ kz) — <eifk15(17+Z”,z—e—Z’)+ifk26(z—e—2’,n+2”)>.

Here, f = H},, and the average is performed with the joint
PDF P(X,Z")(1/W)p(e/W)dfP(f). The above relation
between F (ky, k,) and G(k,, k,) is actually an equation for
the PDF P(X', X"), because both G and F depend on P.

XI. SOLUTION OF CAVITY EQUATIONS IN
NONERGODIC DELOCALIZED PHASE

A. Analysis of the imaginary part of self-energy

We note that the exponent in the integrand of the above
expression for G depends on X' and € — z only via their
combination ¥’ + ¢ —z. In the nonergodic delocalized
phase, the typical width of the PDF of ¥’ is much more
narrow than the width W of p(e) [Eq. (47)]. We also
consider small values of |z] < W. Therefore, in the first
approximation we neglect ¥’ and z compared to e. Then,
G(ky, k,) depends only on the marginalized PDF

PE) = /_ T TP Y. (103)

(So]

Once this PDF is obtained, the PDF P(X,X") can be
analyzed from its characteristic function F (0, k,). Inverting
it, we obtain the self-consistent equation for P(X") in the
limit M — oo:

73(2//) — zi/oo dkeMe(k)—ikE”’

0(k) = Am dde”th(f)P(Z/’)pn+E,,(h)(eikfh —1).
(104)

Here, 6(k) = 1 — G, (0, k) and the domain of integration for
all variables is [0, c0). The function p,.y(h) above is a
conditional PDF of a random variable

h=6(e,n+Y)

with Y fixed and §(x, y) given in Eq. (82). The explicit form
of the PDF p,, y(h) is obtained in Appendix K, Egs. (K6)
and (K8).

To achieve further progress, we use the approximation
(91) and drop oscillatory factors in the off-diagonal matrix
elements H,,. Then, we have for the PDF P(f) =
9o (f/Vip)/ Vi [Eq. (60)], and in what follows we use
the rescaled variable w = f/ Vtzyp for the squared matrix
elements, in accordance with Eq. (56). Instead of the
variable / in Eq. (104), we use the rescaled variable

y=+Vh(n+Zx"),

that obeys the distribution

(105)
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2+ 1
w y2 1 _y2

p17+2” (y) = (106)

[see details in Appendix K, Eq. (K19)]. Then, 0(k) takes
the form

(k) = / ” dZ”P(Z”)¢2~H<kVt2yp). (107)

0 X+

Here, ¢py(u) is a characteristic function

by(u) = / ® drgy(x)(e™ 1) (108)

0

of the PDF gy (x) of the random variable x = wy?, where w
obeys g, (w) and y obeys py(y) [Eq. (106)]. A detailed
study of gy(x) is given in Appendix L. The PDF gy(x)
depends on Y via the ratio Y/W, and its plot is shown in
Fig. 16. It goes over into g, (y) for ¥ — co.

We now make a key observation: In the limit of large
x> 1 and for W > Y, the following relations hold for the
PDF ¢y (u) and its characteristic function [see the corre-
sponding Eqgs. (L26) and (L10) in Appendix L]:

nY Y

Tyl =T g (109

gy (x) =

The reason for this result can be explained as follows.
For large deviations of x = wY?/(e? + Y?), the conditional
PDF p(e|x) of the marked state energy ¢ is narrowly peaked
in the range of values |¢| ~ Y. In contrast, typical energy
values are much bigger: ¢ ~ W. This narrowing of the

1001
5x107L

gy

10 F
5x1072

W/2Y =30

102
5x1073 |
0.0 0.5 1.0 1.5 2.0

FIG. 16. Plot of the PDF gy(x) of the random variable
x = {(wY?)/[(z — €)* + Y?*]}, where random variables ¢ and w
obey distributions W=!p,(e/W) and g, (w), respectively, and
W/(2Y) = v/30. A detailed discussion of gy(x) is given in
Appendix L [see Eq. (L7)]. Its maximum is located at
x~ (Y/W)?. The singularity at x = 1 corresponds to € = z.
For large values of x>> 1, the conditional PDF of {¥?/[(z—¢€)*+
X?]} is narrowly peaked around its mean value zY/W with
le — z| ~ Y, giving rise to the relation in Eq. (109).

conditional PDF p(e|x) gives rise to a small factor zY/W in
the rhs of Eq. (109).

We observe that lim;_, ., 0(k) = 0 and for M — oo the
integral in Eq. (104) is dominated by |k| < 1. We make an
assumption (whose validity becomes obvious below) that
for small enough k the integral in Eq. (107) is dominated
by values of X such that kV3,, /(X" 4 1) < 1. Therefore,
we use in Eq. (107) the approximate expression for
the characteristic function ¢y, given by Eq. (109). We
rescale X" with the typical value of the imaginary part of
the self-energy of marked states X [Eq. (92)] obtained in
the FGR-based calculation in Sec. VIII. Making a change
of variables

1

2 =3l PE) = gels), (110)

we rewrite the self-consistent equation (104) in the
limit x> 1, W> Y for the rescaled PDF p(s) in the
following form:

1 [ .
p(s) _ E/ due—zuerCD(u,Q)’ (1 1 1)
O(u,Q) = / : dup(v — B,) Wi, <Qiy> ,
n
by = SR (112)
and

X! Vi \ 2

Q=== (W/tly\fl) . (113)

¥ and Viyp are defined in Egs. (92) and (51), respectively.
We observe that Q corresponds to the typical number of
marked states in the miniband that we estimate in Sec. VIII
using the Born approximation.

Assuming Q> 1 (delocalized phase), we expand
Quepo[g/(Qu)] in inverse powers of logQ using the
asymptotic form of the characteristic function ¢ (u) at
the small argument studied in Appendix H, Eqs. (H13) and

(H14). Truncating the expansion at terms ~(logM)~!/2,
we get
q 7lq|
OReg (L) -1
e (g> 2/log 2
q log Q\ 1/2 1 -C—loglq]
Qimg, (L) ~2 4 g oeldl
e () =20(57) o
(114)

where C ~ 0.577 is the Euler constant. It is clear from com-
paring individual terms in Eq. (114) with the exponential in
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Eq. (111) that ¢ = O(y/TogQ). This result justifies the
order of truncation [see details in Appendix I, Eq. (I5)].
We make a change of variables in the integral in

Eq. (111), g = 24/logQ/xt, and obtain

p(s) = 05 Ly (s = pa) /o). (115)

where the quantity uq satisfies the equation
2UQ o0
MQ:bQ+7 dsp(s)log|s + p,[.  (116)

Above LI'(x) is the Levy distribution [33] defined in
Appendix I, Eq. (I8), and shown in Fig. 15. Coefficients

g = \/7/(4logQ) and bg ~ 1 /6 are given in Egs. (95)
and (96), where the parameter M needs to be replaced
by Q.

We plug the above expression for p(s) into Eq. (116) and
express pq in terms of a new variable x:

2
o = bg — &log ool + ogx. (117)
T

Then, this variable satisfies the following equation:

x_—/oodsL}’l(s)log|s—I—x—I—CQ|, (118)
T J-o

that involves a scale-free Levy distribution and a single
parameter {q:

bg 2 1 1 7
CQ:—Q——l g( >+_7’

oQ oQ

(119)

where we use an explicit form of g, [Eq. (112)]. We note
that the self-consistent equation for the function p(s) is now
reduced to the simple transcendental equation (118).
Using the explicit form of og and bg [Egs. (95) and
(96)], one can see that g is 1arge compared to unity in the
delocalized phase: (g ~ 6" ~ log Q > 1. With this prop-
erty, the equation for x (118) can be solved by iteration
using the asymptotic expansion of the Levy distribution at

large arguments: Li"'(v) =~ (2/z)v™2 (u>> 1). To leading
order,
2 1
x~—10g§g+(’)<0g€9> (120)
Co
Then, using Eq. (117), the expression for pg is
1 2 200(1 —
0o T Xl 7

where we neglect terms ~o logQ that are much
smaller than the width g of the distribution p(s) =
oa' Ly [(s — ua) /oq).

We note that the dependence of uqg [Eq. (121)] on the
initial (fictitious) level broadening 7 disappears when
the latter is chosen to be much smaller than the miniband
width [22,36,49] W/M < n < X/og. Using Egs. (92)
and (75), the scaling behavior of # with M in the non-
ergodic delocalized regime must satisfy the condition

n =M, k| <1-%

e(1,2). (122)

Finally, the expression for the distribution function of the
imaginary part of the self-energy has the form

(ZH) _ Lll - Zg’P ,
C C

C= UQEZ.

(123)

Here, X, is a shift of the distribution and C its scale

parameter (characteristic width). Also,

1 2 1 — YEuler
ﬂgﬁ_+ 6Q< yEl )’ (125)
oQ V3
T
%27 1\/410g @ (126)

Using the scaling ansatz (75) for the width W of the IB in
terms of M, the typical number of states in a miniband
(number of resonances) equals

7\ 2
Q= (=) M*7.
)

Using the same scaling ansatz (75) and the expressions
for oq [Eq. (95)] and uq [Eq. (125)], we obtain

(127)

" 27/ 1—y/2 1/2

i = 7 —— VM7 (log Q)'/7, (128)
32

C:ﬁVtprl‘V/z(logQ)‘l/z. (129)

Here, V., ~ n!/227/2¢="/(4B1) is given in Eq. (51). The
shift X, corresponds to the typical value of £”. One can
see from the above that it is logQ ~logM > 1 times
bigger than the distribution width. We note in passing that
the distribution of X" determines that of the miniband width

I' = 2%" [Eq. (100)].
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1. Comparison between the cavity method and
leading-order Born approximation

It is instructive to compare the above distribution
of X obtained using the cavity method with that obtained
within the Born approximation (92)—(96). In both cases,
the distribution of X’ is given by the appropriately
rescaled and shifted Levy alpha-stable distribution
Ly (x). In both cases, the scale parameter C (characteristic
width) of the distribution has the form C = 64X/ with
os = +/n/(4logS). In the case of the Born approximation
S = M, corresponding to the total number of marked states,
and in the case of cavity method S = Q <« M, correspond-
ing to the (much smaller) number of states in the miniband.
Using Eq. (127), we estimate

M _ 2=y <1 (W=iM"?).

oo

(130)

Therefore, the Born approximation underestimates the
width of the distribution of . The ratio (130) is especially
pronounced near the localization transition y = 2. The
value of og' shrinks to zero at the transition, while that
of o3, does not depend on the closeness to the transi-
tion point.

We note, however, that factors o and ¢,; depend on M
only logarithmically. At the same time, the leading-
order (power-law) dependence of the rescaling coefficient
on M is given by the factor £ & M'~7/? and is identical
in the cavity method and the Born-approximation-based
expressions.

The situation is similar with the shift parameter X in
the Levy distribution of £” corresponding its typical value
iy = X /og with § = M (Born approximation) and S = Q
(cavity method). The leading-order dependence of the shift
on M is the same in both cases and is given by /. In both
cases, the shift is greater than the rescaling coefficient by a
factor of ~log M. However, the Born approximation over-
estimates the shift by a factor of (2 —y)~/2.

2. Comparison between the cavity method and
self-consistent Born approximation

The leading-order Born approximation recovers the
typical shift X, and the scale parameter C of the
distribution of X" with exponential accuracy in log M.
However, it gives an incorrect dependence of the prefactor
on log M in these coefficients. The main approximation in

Sec. VIIT A is to assume that the sum in the expression for
the spectral density p,’}(d) [Eq. (84)] can be replaced by an
integral. We revisit the decay rate equation (81) using the
statistical ensemble (91):

VZ M 2
il :%me, o= (131)
m=1

:e%—&—nz'

Here in the lhs, we omit the subscript in X} and make
the rescaling V(d;,,)* = Vi,w,,. Random variables x,, are
sampled from the distribution g, (x) given in Eq. (109) and
plotted in Fig. 16. Using the GCLT for the sum in Eq. (131),
one can obtain the PDF of X". The details are given in

Appendix L, and here we provide the result:

d & ~
A~ "
VLS +xC, B

— " _ 1

= bgnz*, C= quz*. (132)
Here, x is a random variable that obeys Levy distribution
L1 (x), coefficient o, is given in Eq. (126), and bq, is given
in Eq. (96), where one should replace M with the number of

marked states in a miniband of width #:

_ ™

Q =—.
T e

(133)
Unlike the discussion in the cavity method, the statistics
of X explicitly depends on 7. We make a self-consistent

assumption and set  equal to the characteristic width of the
miniband:

"
Xl

n==%=Q, = S

(134)

We conclude that the typical number of states in a miniband
Q, = Q given by the self-consistent Born approximation is
the same as that given by the cavity method [Eqgs. (113)].
Therefore, using Eq. (132), one can see that the width C
of the distribution of £ is also the same in both methods.
The difference between the typical values of " in the two
methods is

S _ S

2
—1 "
typ typ — ;ClOg Oq o>

typ*

This error is much smaller than in the case discussed in
Sec. XI A1 [cf. Eq. (130)], where the self-consistent
condition is not used. However, it exceeds the distribution
width C for sufficiently large M > 1, because in the
nonergodic delocalized phase log og! ~ loglog M.

B. Real part of self-energy

In this section, we find the marginalized probability
distribution of real parts of the self-energy:

P = / T dYP(E. 3. (135)
0

We consider the first equation in Eq. (102). Following
the arguments provided in Sec. XI A, we neglect the terms
7z — 2, in the rhs of the equation and drop the oscillatory
factors in H,,, using the probability distribution P(f) =
9o (f/Viyp)/ Viyp [Eq. (60)] instead. Then, Eq. (102) takes
the form
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(136)

Here, r,, are instances of a random variable R such that

€

where ¢, f, and ¥’ are random variables independently
sampled from the distributions p(e), P(f), and P(X"),
respectively. Using the GCLT, in the asymptotic limit of
M — oo the sum in Eq. (136) is determined by the tail of
the probability distribution of r at |r| — oo. This analysis is
very similar to the one already discussed in Secs. VIII
and XI A and in Appendix I. Here, we omit details of the
calculations and simply provide the result. The tail of the
PDF of r in the limit |r| — oo has the form

log(p)

r 1
PDF(p) ~ —

= 2 a) AV (139

p

(p > 1). The distribution function P(X’) of the sum in
Eq. (136) is the Cauchy distribution

1 P

=
'P(E/) — _ typ Z{yp — =

" (G + (T o
Here, the expression for o) ~1/y/logM is given in
Eq. (95). The Cauchy distribution has a form very similar
to the stable distribution L} (x) that describes the fluctua-
tions of the X" [Eq. (123)] up to the shift and rescaling
coefficients. Both distributions are displayed in Fig. 15.
The tail of the Cauchy distribution differs from that of
L;"' (x) by a factor of 2. Unlike that of X", the distribution
of X' is symmetric for impurity states with energies near the
center of the band. The typical value of ¥’ is greater than
that of X" by a constant factor

|

= (W = am7/?).
z'g/p 2- 14

(140)

The width of the distribution of X' is the same as its
typical value, while the width C of the distribution of X" is
smaller by a factor of ~1/log M [cf. Egs. (128) and (129)].
These relations between the distributions of ¥’ and X have
implications for the complexity of the population transfer
as discussed below. We also note that the real and
imaginary parts of the self-energy of a given marked state
are correlated with each other, because, according to
Egs. (102a) and (102b), the values of Z;. and Z}’ depend
on the same set of parameters (H,,, €,,, etc). In this work,
we do not study their correlations.

C. Dynamic correlations

For states close to the center of the band of marked states,
the typical value of the miniband width can be connected
to the average of the dynamical correlator, with the delta

function regularized by a finite scale n, X, > 1 > Je,
8(x) = 8,(x) = (1/m)[n/(x* + )],
1 1 / % n
- = dw p(w), 141
Tt ) @ ) (141)
which can be inverted to obtain
(@) lL o (142)
p(w) ~ "
z{l’yp (WTT)Zv @ > Ot
where we introduce the Thouless energy
! PN 143
Wty = 5” typ* ( )

The typical value of the miniband width is obtained in
Eq. (128). From the comparison of the respective Fig. 12,
we conclude that the scaling of the typical population
transfer time 1/wy, and the scaling of the value of the
dynamical correlator K(w) are consistent in numerical and
analytical calculations, subject only to a small correction in
the scaling exponent & = 0.05.

XII. COMPLEXITY OF THE POPULATION
TRANSFER PROTOCOL

After the system is prepared at a given marked state |z;)
at t = 0, the probability for the population to be transferred
to other marked states is 1 —y?(z j»1). At the initial stage,
the survival probability decays exponentially [Eq. (79)]
with the mean decay time 1/T; = 1/(2X]).

The initial marked state decays into the eigenstates |y)
of the IB Hamiltonian H with typical energies Ej inside the
narrow interval corresponding to the miniband associated
with |z;). Ithas a width 27 and is centered around H;; = e;.
Typical classical energies ¢ of the bit strings measured at
the end of PT protocol obey the probability distribution
P(e —e; — X)) with P given in Eq. (139). The success of
the PT protocol is to find a bit string distinct from z; at a
time 7 with energy inside that window A& around €;. The
expected time to succeed in the PT equals

i 1 A‘gcl Ag
[‘/ = —, = — 2/4 — o d .
M e T [ ( T )

Here, p,¢ is the probability of detecting a bit string inside
the target window A& under the condition that the initial
state has decayed. Let us assume that the PT window is as

wide as the typical miniband width, A = X{,,. In this
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case, pnp differs from 1 only by a constant factor that does
not depend on M [cf. Eq. (140)]. Therefore, we detect the
bit string inside the PT window with a finite probability as
long as we wait long enough for the transition away from
the initial marked state to occur. Because the initial state
|z;) is picked at random, we can estimate the typical time to
success of PT tpy ~ 1/Xf, corresponding to the inverse
typical width of the miniband. All of the states in a
miniband are populated at (roughly) the same time fpr,
because the transition rate to a subset of states on a distance
d away from |z;) depends on d very weakly [see Eq. (97)
and the related discussion in Sec. IX].

From a computational perspective, it is of interest to
characterize the PT by the relation between the typical
success time of PT fpr and the number of states Q over
which the population is spread during the PT:

1 2" 172
tpp ~ ~ 20n 144
o Viypv/2log Q (nQ log Q) ¢ (144)

where we set AE; ~ X/ (see the discussion above). We note
that the time ¢ for the Grover algorithm for an unstructured
quantum search to find Q items in a database of the size 2"
is 1t ~ (2"/Q)"/2. PT time tpr scales worse than Grover
time 7 by an additional exponential factor ¢20" ~ e["/(252)]
[Eq. (46)]. The scaling exponent 26 can be made arbitrarily
small at large transverse fields 1 < B, = O(n°).

One can expect that the distributions of eigenvalues and
eigenvectors inside the miniband are very similar to those
in the ergodic case, albeit with the appropriately rescaled
effective dimension Q of the Hilbert space [21]. For
example, the energy spectrum of the minibands in the
nonergodic delocalized phase of the RP model corresponds
to the Gaussian orthogonal ensemble. There, according to
the semicircle law [64], the typical spectral width of the
miniband (approximately 1/tpy) is proportional to the
square root of the number of states Q in it. Therefore,
the Grover scaling (144) for the PT is consistent with
the semicircle law in the Gaussian random matrix models
that allow for a nonergodic delocalized phase such as the
RP model.

However, in the case of Levy matrices, the distribution
of eigenvalues has polynomial tails [33], their spectrum is
not bounded, and the semicircle law does not apply. As
mentioned above, this situation leads to a broad distribution
of PT rates. There exist statistically significant clusters of
states of a relatively small size that are populated faster than
the typical case, because the corresponding classical bit
strings are located closer to each in Hamming distance
than the typical interstate separation. At first glance, this
tendency is counter to the Grover scaling (144). We note,
however, that fluctuations of X’ and X are correlated with
each other. Faster decay of a marked state also corresponds
to a bigger self-energy shift, which reduces the likelihood

of finding a marked state with its energy inside the target
window A&, ~ XV

However, the Grover scaling still survives in a typical
case corresponding to the PT away from a randomly
selected bit string. For Levy matrices [33], it reflects the
fact that the fypical width X, of the curve of the global
density of states along the energy axis must scale as a
square root of the corresponding typical number of states
(area under the curve).

XIII. COMPARISON WITH THE ANALOG
GROVER SEARCH

A. Grover search starting from
a fully symmetrized state

So far, we have studied the PT protocol with the
Hamiltonian (1) H = Hp + H that starts from a given
marked state of an IB model H (3) and aims at finding a
different marked state inside a given window of energies
using a transverse-field Hamiltonian Hp, = —B| Y " | o7,
(1) as a driver.

We consider here a different protocol inspired by the
Hamiltonian version of the Grover algorithm proposed in
Ref. [46]. The new protocol finds marked states in the IB
model H starting from the ground state of Hp, which is a
fully symmetric state |S) =27/2%7" | |z) in a computa-
tional basis. This protocol can be implemented by adjusting
the value of transverse field B| =~ | so that the ground-state
energy of the driver is set near the center of the IB. Then,
we can replace the full driver with the projector on its
ground state: Hp, — —nB | |S)(S|. The quantum evolution
is guided by the Hamiltonian:

Hg = —nB_|S)(S|+ Zg(zj)|zj><2/|- (145)

J=1

With the initial condition, |y (0)) = |S). In the case where
all impurity energies are equal to each other, {£(z;) =
—n}fil and B, = 1, the Hamiltonian H is a generaliza-
tion of the analog version of a Grover search [46] for the
case of M target states. The system performs Rabi oscil-
lations between the initial state |S) and the state which is
an equal superposition of all marked (solution) states. The
time to solution is the half-period of the oscillations, the
“Grover time” t5:

T 2"
= —. 14

e

Hamiltonian versions of a Grover search with a transverse-
field driver whose ground state is tuned at resonance with
that of the solution state are considered in Refs. [65,66].

The robustness of the Grover algorithms to phase noise
was considered previously in the case of a single marked
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state [67,68]. Here, we investigate the role of systematic
phase errors in quantum oracle for the case of multiple
solutions by assuming that marked state energies take
distinct values £(z;) = —n + ¢€; randomly distributed over
some narrow range W. We also investigate the systematic
error in the Grover diffusion operator [1]. In the
Hamiltonian formulation [46], this error corresponds to
the deviation from unity of the parameter B | that controls
the weight of the driver in Eq. (146). We define
B, =1-2, (147)
n

where € is the driver error.

We denote the computational basis states as |j) = |z;)

with j € [1,N], N =2", and assume that marked states
correspond to the range j € [1, M]. We also introduce the

state |0) = (1/vV/N )Z, w41 J) that is orthogonal to
all the marked states. The subset of basis vectors S =
{7) }?4:0 spans the M + 1-dimensional subspace with the
remaining set S, of basis vectors spanning the orthogonal
N — M — 1-dimensional subspace. One can show that Hg;
does not have matrix elements that couple S with S, .

Assuming that N > M, one can consider the decay of
the state |0) instead of the state |S). We use Eq. (147) and
omit constant terms and small corrections O(M/N) in H.
The nonzero matrix elements HY = (i|H|j) in this sub-
space S have the form

Ji
HG = €j,

HY =—(1-6)V, V=n2"2(148)
where j € [0,M] and HY = HY. On a timescale 1 <
1/6¢ = M/W much smaller than the inverse spacing of
the energies €, the quantum evolution with initial condition
lw(0)) = 10) corresponds to the decay of the discrete state
with energy ¢, into the continuum [60] with the finite
spectral width W [69]. It is a similar problem to that
discussed in Sec. VIIL

1. Sensitivity to systematic oracle phase error

We first consider the case of relatively large oracle errors
(wide energy band W)

VVM < W < VM (149)
and modest driver errors
€0:n<1—BL>§W. (150)

In this case, following the results of Sec. VIII on the
solution of the Fano-Anderson model [69], we obtain an
exponential decay of the initial amplitude [cf. Eq. (79)]

wo(t) =exp [-Zyt — iegt — iXy(eo +i01)e],  (151)

where Z4(z) = Z(z) + iZ{(z) is a self-energy and

M 2

1 1 VvV
= V2 g , =Ty =—-——.
m=1< " €m 072 0

(152)
The state |0) undergoes an exponential decay with the
rate [y = 2%, After the characteristic time fpp ~ 1/T, the
population is transferred into a subset of the marked states
with energies inside the window |e; — €p| ~ Zj < W.
The number of marked states (solutions) to which
the population is transferred is € ~ X7/e. The relation

between tpr and Q is
1 VvV o\2

e (W/M> ’
the same as in the Grover algorithm (146). It also recovers
the scaling with Q and n, up to a factor exp|—n/(2B?)],
for the time of PT considered in the rest of this paper that
uses a transverse field as a driver and starts from any
marked state instead of a fully symmetric state.

To characterize the effect of oracle errors, we introduce
the scaling ansatz for the marked states bandwidth W ~
27"/2 1/ similar to that in Eq. (75). We observe that the
number Q of solution states populated over the time fpy
cannot be greater than M by construction. For W < V/M
(or y < 1), the value of Q~ M and the scaling of the
transfer time fpr with M are the same as fg in the ideal
Grover algorithm (146). In the region given by Eq. (149)
(or 2>y > 1), the algorithm performance is degraded,
because Q <« M. For W > VM (or y > 2), the algorithm
fails to find even one solution.

(153)

2. Sensitivity to the systematic driver error

We now consider the sensitivity of the algorithm to
an error in the weight of the driver Hamiltonian, i.e., to
the nonzero value of the parameter ey = n(l —B,)
[Eq. (147)]. We assume that €, > W while the spread of
the marked state energies the condition (149), so that,
absent driver errors, the PT time follows a Grover-like
scaling law [Eq. (153)].

In this case, the state |0) is coupled nonresonantly to a
continuum with a narrow bandwidth. The expression for
the population transfer to the marked states can be obtained
from the time-dependent perturbation theory in the param-
eter e,/ W:

Z W (1)

Maximum transfer occurs at the time ¢, = z/¢e, with the
total transferred probability p, = 4MV?/e3. The typical
time fpr~1ty/po to achieve the successful population

2MV2
WP = <1 — cos(egt)

0

sin(Wt/2)
Wt/2 >
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transfer to marked states involves repeating the experiment
1/py times:

1 ﬂ'2€0
Ipr T W (154)
where I’ is given in Eq. (152) and the first multiple in the
rhs gives the typical transfer time in the absence of driver
errors. The latter leads to an increase of the transfer time by
a large factor of ¢,/W.

For the maximum possible bandwidth W when nearly all
states are populated, W ~ Iy ~ V1/M, the time of popula-
tion transfer [Eq. (154)] is

tor ~ tg(tgeo) (69> 15! ~VV/M).  (155)
As expected, when the driver error exceeds inverse
Grover time 1/t;, the performance of analog Grover
algorithms (145) degrades relative to 7. This degradation
is a direct consequence of the fact that the quantum
evolution begins from a fully symmetric state which is a
ground state of the driver Hamiltonian whose energy is
tuned at resonance with the marked states. In this case, the
transverse-field Hamiltonian driver effectively corre-
sponds to the projector (145). Because the ground state
is not degenerate, the resonance region is exponentially
narrow (~27"/2\/M), which results in the exponential
sensitivity of the Grover algorithm performance to the
value of the driver weight. This critical behavior is
studied in the work on quantum spatial search [70] for
the case of one marked state.

In contrast, in the PT protocol considered earlier in this
paper, there is no need to fine-tune the value of B other
than making it large, B| > 1, which happens because the
effective coupling between the marked states described
by the down-folded Hamiltonian H (41) is not due to any
one particular eigenstate of the driver (such as the state
|S) for the Grover case). Instead, this coupling is formed
due to an exponentially large (in n) number of nonreso-
nant, virtual transitions between the marked states and
highly exited states of the transverse-field Hamiltonian
Hp. This coupling results in a significant improvement in
robustness for the proposed PT relative to the analog
Grover algorithm.

B. Grover search starting from a marked state
We now consider an implementation of the analog
Grover search that starts from the marked state similar
to the PT protocol considered in previous sections. The
transition amplitude U,;(t) = (i|exp(—iHgt)|j) between
the two marked states can be written in the form

Uji(1) =D ey, (i), (). (156)
7

Here, y,(j) = (j|lw,) are amplitudes of the eigenstates
of Hg in the M + 1-dimensional subspace, and A are the
corresponding eigenvalues that obey the equation

M oy2 1%
A= R ) = — 157
€0+Jz:l:/1_€j l///l(.]) ﬂ—€j\/Z_,1 ( )
Here,
M V2
Z(A) =1 P E—— 158
() +r§=:0(l_€m)2 ( )

Instead of providing a detailed analysis of the above
solution, we provide an order of magnitude estimate to
extract the relevant scaling behavior. We again assume
that the spread of the marked state energies, W = 1! =
(’)(V\/A_/I ), corresponds to the inverse of the Grover time 7
needed to find any one of the solutions with equal
probability. The typical separation between the adjacent
values of €; is 6¢ = W/M ~ V/VM.

It follows from Eq. (157) that in the ordered array
obtained by combining together the sets of energies {¢; }?4: 0

and eigenvalues {4,,}Y_ their values appear alternatively
and sequentially, e.g., €,_; < 4; <e€; <4;;;. The typical
separation between the adjacent elements in the array is
|A; — €;| ~ 8e. We observe that for a given value of 4 the
sum in the expression for Z(4) [Eq. (158)] is dominated by
the small, O(1), number of terms with |¢,, — | ~ J¢, each
term of the order of M. Indeed, there are O(M) remaining
terms corresponding to |e,, — 4| ~ W. The magnitude of
those terms is V2/W? ~ 1/M, and their aggregated con-
tribution to the sum is O(1). Therefore, we can estimate
Z(4) = O(M), and for the amplitudes we have

(m) \%4 1
m) ~ 0
'$) A—e, VM

m=ij.  (159)

For a given initial state |i) at time 7, we pick the final state
|j) within the energy window €; —e; ~ A = 1/t around ;.
The sum in the expression (156) for the transition ampli-
tude Uj(7) is dominated by the number of terms Q =
A/8e ~ A/M/V corresponding to the eigenvalues A inside
the same window of energies. For those terms 4 —¢;, ¢; —
A ~ A giving the estimate for the amplitudes y, (i), w;(j) ~
1/Q [cf. Eq. (159)]. The magnitude of the sum in Eq. (156)
can be estimated as |U;;(1)| ~ Q[y;())y,(j)| ~1/Q. On
the other hand, because ordered values of A and ¢,, alternate
in sequence, the probability |U;;(¢)|* is distributed over Q
marked states and |U;;(1)| ~ Q~1/2. By equating the above
two estimates for |U;;(¢)|, we immediately obtain Q ~ 1
and, therefore,
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A==~de~——

t VM’

In the case when there are only a few marked states
(M ~1 and W ~ V), the probability is initially localized
on a given marked state |i), and then it spreads over to
other states separated in energy by V during the time
tg~1/V ~2"2 In this case, the algorithm time scales
with n identically to that of the analog Grover search that
starts at the fully symmetric state |S). Similar performance
is achieved by the PT protocol using transverse field
B, > 1 and discussed in previous sections.

The difference from an analog Grover search starting at
|S) from the above PT protocol using a transverse field
becomes dramatic for a large number of marked states
M > 1. Both an analog Grover search and the PT protocol
benefit from the increase in M: The algorithmic time
shrinks o 1/ v/M, and the number of marked (solution)
states € in the number of states in the final superposition
increases with M.

In contrast, the quantum search with H; starting form
the marked state |i) does not create massive superpositions
of solution states when M increases. Instead, it involves
a very few other states that are adjacent in energy,
lej — €| ~V/V/M. The time of the algorithm increases
with M [Eq. (160)]. This increase happens because, unlike
the Hamiltonian H with a transverse field [Eq. (1)], the
Hamiltonian H is integrable. The wave function remains
localized near the initial marked state.

(160)

XIV. CONCLUSION

In this paper, we developed the first well-controlled
theoretical description of the eigenstate structure and
quantum dynamics in the NEE phase in a quantum spin
glass. The distinctive feature of a NEE in quantum spin
glass is that the eigenstates are formed by coherent super-
positions of a large number of local minima separated by
extensive Hamming distances. The local minima are con-
nected by quantum tunneling matrix elements correspond-
ing to a sum over a large number of virtual under the barrier
trajectories. Calculating such matrix elements is challeng-
ing, because contributions from different trajectories inter-
fere with each other; technically, this interference means
that looped paths have to be included in the perturbation
theory expansion, making it difficult to work with.
Moreover, perturbation expansion diverges in the delocal-
ized phase. In this paper, we overcome these difficulties by
developing an asymptotically exact WKB description of
the tunneling matrix elements and, subsequently, a well-
controlled cavity equation approach to describe delocalized
nonergodic states.

We develop this approach considering the IB model with
a “bimodal” energy function: £(z) = 0 for all states except
for M “marked” states |z;) picked at random with energies

forming a narrow band of the width W separated by a
large gap O(n) from the rest of the states. At a zero
transverse field, this classical model demonstrates the
frozen (replica symmetric) spin-glass phase characterized
by Edwards-Anderson order parameter ggp = 1 below
the transition temperature f; =In2—(1/n)InM. The
well-controlled theory of the statistics of matrix elements
allows us to uncover asymptotic orthogonality between
the subspace of marked states and the rest of the Hilbert
space, a qualitatively new feature of the spectrum that
cannot be obtained by the leading-order perturbation
theory in a transverse field. As a result, the subspace
of marked states can be described with an effective down-
folded M x M Hamiltonian H that is dense in the space of
the marked states |z;). Its off-diagonal matrix elements
H;j = V(d;;) cos¢(d;;) depend only on the Hamming
distance d and are obtained using the WKB method. The
distribution of matrix elements H;; has a heavy tail
decaying as a cubic power for V(d) > V,y,. This tail is
a remarkable result of the competition between the very
steep decay of the off-diagonal tunneling matrix element
with the Hamming distance d and the steep increase in
the number of marked states M, o () at distance d. We
emphasize that such a polynomial tail in the distribution
of matrix elements is possible only either in an infinite
dimension or in the presence of long-range interactions
(e.g., dipolar glass).

The dispersion of the diagonal elements H;; = £(z;) is
expected to be large: W ~ V,, ,M7/> >V, with y € [1,2].
Therefore, we call H;; a preferred basis Levi matrix (PBLM),
a generalization of the Levi matrix from the random matrix
theory. We demonstrate two localization transitions in the
PBLM ensemble whose locations are determined by the
strong hierarchy of elements of the PBLM H,;. In the range
1 <y < 2, there exist minibands of nonergodic delocalized
eigenstates of H. Their width is proportional to 1/tp < W.
Each miniband associated with a support set S over the
marked states. If y > 2, then W exceeds the largest matrix
element of H;; and the support set is empty—all eigenstates
are localized. If y < 1, then W is smaller than the typical
largest element in a row of ;; and the support set extends to
all marked states—all eigenstates are “ergodic” within the
subspace of marked states.

We find the distribution of the miniband width I’
analytically by solving the nonlinear cavity equations for
an ensemble of PBLLMs. Unlike previous analyses focused
on linearized cavity equations near the Anderson transition,
we find the solution of the fully nonlinear cavity equations
in the nonergodic delocalized phase. The distribution of
miniband widths I" obeys the alpha-stable Levi law with
tail index 1. The typical value of I" and its characteristic
variance exceeds the typical matrix element of H by a
factor of Q/2, where Q = (MV,,/W)? is the size of the
support set in a typical miniband.
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The novel features of the quantum spin-glass dynamics
described in this paper have important implications for
quantum search and optimization algorithms. Specifically,
coherent multiqubit tunneling gives rise to minibands of
nonergodic delocalized quantum states which provide a
coherent pathway for PT between computational states
with close energies in a spin-glass energy landscape.
Dynamics in the NEE regime cannot be efficiently simu-
lated by QMC, in contrast to sequential tunneling often
arising in quantum annealing algorithms.

We define a computational primitive with the objective to
find bit strings z; # z; inside some narrow energy window
A&, around the energy of the initial bit string z;. The
problem is hard for sufficiently low starting energy £(z;) in
the region proliferated by deep local minima that are
separated by large Hamming distances. This landscape is
similar to that in an analog Grover search [46,65] with
multiple target states and a distribution of oracle values for
the targets. The best-known classical algorithm for finding
another marked state has cost O(2"/M).

We propose to solve this problem using the following
quantum PT protocol: Prepare the system in a computa-
tional state |z;) with classical energy £(z;) and then evolve
it with the transverse-field quantum spin Hamiltonian.
Classical energies £(z) are encoded in the problem
Hamiltonian diagonal in the basis of states |z) similar to
quantum annealing (QA) approaches [2—4]. A key differ-
ence from QA or analog quantum search Hamiltonians
[46,70] is that the transverse field is kept constant through-
out the algorithm and is not fine-tuned to any particular
value. At the final moment of PT, we projectively measure
in the computational basis and check if the outcome z is a
“solution,” i.e., z # z;, and the energy &(z) is inside the
window A&.

We demonstrate that for the IB model quantum PT finds
another state within a target window of energies Q in time
tpr o 2"/2Q71/2 exp[n/(2B%)]. The scaling exponent of #py
with n differs from that in Grover’s algorithm by a factor
of Bf, which can be made small with large transverse
fields n > B3 > 1.

Crucial distinctions between this case and the
Hamiltonian in the analog version of Grover’s algorithm
[46] for the case of multiple target states are the non-
integrability of our model and the delocalized nature of
the eigenstates within the energy band W. Furthermore,
the analog Grover’s algorithm for multiple targets is
exponentially sensitive in n to the weight of the driver
Hamiltonian and cannot be initialized with a computational
basis state.

The model (1) considered in this paper belongs to the
class of n-local infinite range spin glasses similar to
the quantum random energy model in a transverse field
[71]. However, the key feature of our analysis—transport
via a miniband of nonergodic delocalized states at the
tail of the density of states dominated by deep local

minima—is ubiquitous to a broad class of quantum spin-
glass models (1), such as transverse-field Sherrington
Kirkpatrick, p-spin model [39], K satisfiability, etc.

In the above models, one can identify two distinct energy
scales. The second scale is the typical width of nonergodic
minibands, I" ~ V?p, determined by typical values of matrix
element V between low-energy states and the density of
low-energy states p. The delocalized low-energy states
satisfying Vp > 1 form minibands that are nonergodic,
i.e., are characterized by an exponentially small width and,
therefore, an exponentially small fraction of density of
states contributing to a single miniband V2p ~ exp(—¢n)
with an exponent 0 < ¢ < 1. The tunneling transitions
between the states inside the miniband require a large
number of spin flips, and, therefore, Epj, > I'. Starting
from the initial state |z;) inside the strip of energies A&,
the quantum evolution is confined within the corresponding
miniband. The quantum PT can be described by an
effective down-folded Hamiltonian H;; defined over a
subset of computational basis states whose classical ener-
gies lie within the energy strip A& at the tail of the density
of states. We also note that analytical [72] and numerical
[73] analyses of nonergodic delocalized states in random
energy model have been recently reported.
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APPENDIX A: MATRIX ELEMENTS OF THE
DOWN-FOLDED HAMILTONIAN AND
THE NORMALIZATION CONDITION

FOR ITS EIGENVECTORS

We introduce eigenstates |x) of the transverse-field
(driver) Hamiltonian

Hy=-B,Y o = Y Hpl(l.  (A)

xe{0,1}"
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Here,

) = |

where |x*) is the state of the kth qubit such that o, |x¥) =
(1 —2x;)|x*) and x bits take values x* = 0, 1. Also,

n
h,= E xk,
=1

where h, is a Hamming weight of the bit string x and
—B(n—2h) and h € (0,n) are eigenvalues of Hp.

We expand the eigenstates |y) of the system Hamiltonian
H (1) into the basis of the eigenstates |x):

> ¥,

xe{0.1}"

) ® - ® |x"), (A2)

H}y = =B, (n—2h,). (A3)

(A4)

We write the Schrodinger equation H|w) = Ely) in the

form

Hplw) +ZE(Z,')|Z,->W(Z;) = Ely),  (AS)

where y(z;) = (z;|w). Then, we multiply it from the left by
(x| and obtain W(x) in terms of y(z;):

2 Ez)vw (25)
E - HY, ‘

P(x) = (A6)

In Eq. (A6), the coefficients v, ; = (x|z;) equal

Zx (A7)

b= 215, xegy=

and z =0, 1.
We now multiply Eq. (A5) from the left by (z;|, where
€ (1, M) enumerates marked states, and obtain
Y Hp¥()vy; = [E-E)zly).  (A8)

x€{0,1}"

Plugging here the expression for W(x) [Eq. (A6)] into the
matrix eigenvalue problem [Eq. (A5)], we obtain

- Z E(zj)eij(E)y(zj) = Ey(z;),  (A9)
=
where
c;j(E) = Z UXZUX]E HX . (A10)

xe{0.1}"

Because H7, depends on a bit string x only via its Hamming
weight Z7=1 x/, one can perform the partial summation in
Eq. (A10) to get

¢;j(E) = c(E, |z; — zj]),

n
zi—zl = |k =2,
k=1

(Al1)
where the function ¢(E, d) has the form
n—d d In—n
—-1)2
Z(”) ( )7( 27 (A
k=0 == O RO

Above, |z; — z;| denotes the Hamming distance between
the bit strings z; and z;. We introduce the rescaling

A.
z; | ie(l..M. Al3
via) = e LML (AIY)
Then, Eq. (A9) can be written in the form
M
> My, (E)A; = EA, (A14)
=1
where H;; is a symmetric M X M matrix
Hij(E) = 61;E(zi) + 1/ E(zi)E(z;)c(E, dij),  (ALS)

indices k, j = 1: M, and &; is the Kronecker delta. This
nonlinear eigenproblem is given in the main text [Eq. (18)].
We note that the projections of the eigenvectors of H
onto the marked state subspace are not, in general,
normalized, nor are they orthogonal. Let us consider the
eigenstate |y4) and the corresponding eigenvalue E; of H.
We calculate the corresponding amplitude W4(x) using
Eq. (A6) and plug it into the normalization condition

> W) =1 (A16)
x€{0,1}"
obtaining after partial summation
M
Z gigjr(E/i’dij)Wﬂ(Zi)l///i<Zj) =1 (A17)
ij=1
where the coefficient r(E, d) equals
n—d d k(d\(n—d
r(E.d)=2")"%" —D Q) (A18)

£~ ZZOBln—z(k+l)+E]2'

It can be written in the form
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r(E.d) = (A19)

0 C(E, d) - 5d.0
OE E '

where 6, is the Kronecker delta. We use Eq. (A15) and
write

1 OH;(E)
E.d;;) = L A2
l"( ,d11> Eigj 8E ( 0)
We now define the coefficients Q;;(E) such that
1 8Hij(E)
Then, Eq. (A17) takes the form
z;) = 1. A22
> 5@ 55" ) (A22)

The above equations (A21) and (A22) correspond to
Egs. (21) and (22) of the main text.

APPENDIX B: DETAILS OF THE WKB
ANALYSIS OF THE COUPLING COEFFICIENTS

In the main text, we express the coupling coefficient
¢(E,d) in terms of the off-diagonal matrix elements of
the resolvent (12) of the transverse-field Hamiltonian H
between the states that belong to a maximum total spin
subspace S = n/2. The results are given in the expressions
(29) and (30) from the main text repeated below for
convenience:

£
@

Here, the resolvent G,
geneous equation

c(E,d) =640~ Gnj2)-d.n2)(E).  (B1)

—d,(n2)(E) obeys the inhomo-

m (n/2) + Z - S/2 m+s,(n/2) = EGm.(n/Z)v (BZ)
s==+1
1
wm) = -B NI —m?,  L="11 (B3

2

We solve the above equations for the case where the
energy E of the resolvent is not far from the center of the
impurity band:

E=-n+A, A =0(n°). (B4)
The WKB solution to Eq. (B2) is sought in the exponential
form

(BS)

G (n)2) & €Xp (i/m dkp(k)).

It is assumed that [" dkp(k) = O(n) and |p(k)| = O(n°)
so that G,,, ,/2) is varying steeply with m changing by 1.
However, |p’(m)| = O(1/n), and p(m) is varying very
slowly with m due to the similar property of the coefficients
u(m)/L in Eq. (B2). This property is at the root of the
WKB approximation [57]. The quantity p corresponds
to the “momentum” of the effective mechanical system
with coordinate m, energy E, and Hamiltonian function
u(m) cos p. The function p = p(E, m) is obtained from the
equation

u(m)cosp = E. (B6)
This equation also defines the curve on the (m, E) plane
with p = 0 shown in Fig. 3. Points on that curve are turning
points of the classical motion with energy E.

For not too small transverse fields

2L
BJ_>—ﬁ1,

£ (B7)

Eq. (B6) has two types of WKB solution that correspond
to real or imaginary momentum p(m) depending on the
value of m relative to the turning points m = +mg(E)
given below [74]:

my = | L* - £
0= 2B, ) "

n/2+my>d>n/2—mg,

(B8)

In the region
(B9)

the amplitude G(,,/2)-4,(n/2) [Eq. (B5)] is rapidly oscillating
with d and can be written in the form

sing(E, d)
G _ n = —C E ) Blo
(n/2)—d,(n/2) ( ) [m(z)(E) _ (l’l/2 _ d)2]1/4 ( )
where
mg n’l2 — k2 T
E.d) = dk arcsi 9 | -= (BlI
P(E.d) ﬂ s arcsin R 1 (B11)

is a phase of the WKB solution and C(E) is the constant of
integration that is discussed below.
On the other hand, in the two regions
de[0,n/2—myl U

[n/2 + myg, nl, (B12)
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the resolvent G, /2)_4,(n/2) 1s decreasing exponentially with
d. For example, in the left region,

G _CE) e
(/2= (n/2) = (02 = d)? — m2(E)|V*

(B13)

We omit here for brevity the expression in the right
region [Eq. (B12)].

1. Determination of the integration constant
in WKB solution

Within the WKB approach, the integration constant C(E)
can be obtained by matching the exponential asymptotic
(B13) with the solution obtained near the boundary of the
interval d = 0. However, as discussed in Sec. VIB of the
main text, for the relevant range of the model parameters,
the properties of the typical sample in the ensemble of the
IB Hamiltonians H depend only on G,/2)_4,(n/2) in the
region of its oscillatory behavior [Eq. (B9)] away from
the boundaries of the interval d = 0,n. To avoid the
analysis in the region of no consequence for us, we
determine C(E) by equating the above WKB asymptotic
for G(,,/2)-4,(n/2) at the center of the interval d = n/2 with
an expression for G,/ at that point obtained in a
different way.

Using Eq. (23), we write ¢(E, n/2) in the integral form

c E,E — £ /oodr(l_e4i1)n/26i(E/BL—n+i0)r
2) =28, J,

(0o = +0). The integral can be expressed in terms of the
Gamma function I'(x). In the region of not too small
transverse fields [Eq. (B7)], it has the form

21—n 2 _ 1 —lr n
C<E’E> = ﬂ(a—?)'ftl(a (a+l)i (<112—)l)n ’ (B14)
2/ sin(FE (N ()
where
B
=Pl (B15)
E

Using the Sterling formulas for the Gamma function, we
obtain in the limit n>> 1, a = O(n°),

c <E’ I’l> __ v = 'nﬂl2—n/ze—n9(a)’ (B16)
2 2a sin(@)
2arctan h(1 In(l —a2
0a) = arctanh(;) +aln(l —a ) (B17)

da

For large transverse fields, a > 1, and we have 6 ~ a’/4.
Using Eq. (B1), we obtain the asymptotic of the Green
function at the zone center:

. " (L>1/4 exp[—nf(a))
PR \8nY) /B~ Tsing(n/2.E)

Here, we use the equality for the phase WKB ¢(E, n/2)
[Eq. (B11)] at the zone center:

(B18)

(a—1)n
4a

P(E.nj2) == (B19)

On the other hand, from the WKB expression (B10), we get

GOH = —C(E)

,2 <g> Esing(En/2) o

By comparing Egs. (B18) and (B20), we finally obtain the
constant of integration C(E):

xl/4 exp[—nf(a)]

" 32nB% (B2 — 1)/ [sinp(E, n/2)2

C(E) = (B21)

One can use Eq. (B21) in Eqs. (B10) and (29) to obtain
the expression for c¢(E,d) in the region (B9). Before
providing the result, we observe that for energies E not
too far from the impurity band center [cf. Eq. (B4)] the
expression for nf(a) can be expanded in powers of 1/n:

n0(a) =~ no(B,) - ="

B arccothB | + O(n!),

(B22)

where E+n=A = O(n).
Finally, the expression for the coupling coefficient has
the form

n%e—nH(BJ_)

c(E,d) = 7(3)

A(E.d/n) x V2 sing(E, d),

(B23)

where the WKB phase ¢(E, d) is given in Eq. (B11) and the
coefficient A(E, p) equals

el(E+n)/B  JarccothB

AED) =\ B - opsgE ) B2
92\ 12
o(p) = (1 -%) . (B25)

It is related to A(p) in Eq. (43) of the main text as follows:
A(p) = A(E, p). The phase ¢(E,n/2) in Eq. (B24) has
an explicit form:

n+ E

G(E.n)2) —%(n(l —- BT+ > (B26)

€
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2. Limit of large transverse fields B, > 1

In the limit of large transverse fields, the tuning point m,
[Eq. (B8)] is very close to the boundary of the interval
m = L so that one has a small parameter

=— < 1.
L \/gLBL

(B27)

In this case, the expression for the WKB phase takes a
simple form:

nd _wny(E.d/n)

Qb(E’d):? 4T,

= (1-2) (-2 )

(B28)

where A = E +n = O(n°) and values of d are not too
close to the interval boundaries:

n—d,d>>L—m0~Bl2. (B29)
1
We note that for large transverse fields B, > 1 the phase is
a sum of the two terms. The first term changes rapidly with
d with the slope z/2, and the second term changes very
little [by an amount O(n~')] when d is changed by 1.
We note that, unlike the study of the WKB eigenfunc-
tions where one has to select the WKB solution that decays
into the classically forbidden region (B12), the Green
function G, />_4,/2(E) corresponds to the solution that
increases exponentially with m = n/2 —d > my. Using
the oscillating [Eq. (B10)] and exponentially growing
[Eq. (B13)] WKB solutions, one can obtain the coefficient
c(E, d) from the relation (29). This coefficient provides an
asymptotic WKB form of ¢(E, d) almost everywhere on
the interval d € [0, n| except for the small vicinities of the
turning points, |n/2 —my(E) —d| = O(n®), and end
points, n — d,d = O(n°). In Fig. 4, we plot the comparison
between the coefficients c¢(E,d) computed based on the
exact expression (23) and the results of asymptotic WKB
analysis using Eqs. (B10) and (B13).

APPENDIX C: LINEARIZATION OF THE
DOWN-FOLDED HAMILTONIAN NEAR THE
CENTER OF THE IMPURITY BAND

We divide the Hamiltonian H(E) for a given E on two
parts, accordingly:
Hy/(E) = 1 (E) + 1) (E). (C1)

where we define

M (E) = n[c(E,0) - 1]6 (C2)

ijs

H(E) = 5,1 — ¢(E.0))e; + ne(E.dy;)(1 - 5;).

(C3)

We write similar expansions for energies and amplitudes:

EXEO B, p(z)2wO(z) +v0e). (4
and get
0)(E©)
H(E) ~ HOEO) + T ET) gy | gy (o,

OFE

where the parts of the Hamiltonian 7{(*!) are given above.
We plug the above expansions into the system of equa-
tions (17) -1, H,;;(E)A; = EA; and use Eq. (A13) to
express .A;O) = n'%y0(z;). Equating terms of the same
order in €; and c(E, d,;),i # j, we obtain the equation for
eigenstates and eigenvalues in the zeroth order:

nle(E©,0) = 1y 0 (z)) = EO% (). (C5)
j €[1...M], and in the first order:
M
aey%(z;) + b Z nc(E0, d;))w(z;)
J#i=1
— EDyO)(z)). (c6)

The above index j enumerates marked states. Also, the
coefficients a and b equal

dc(E©,0)

bl —1—
"ok

a=b[l —c(EY,0)], (C7)

Similarly to the above, we find from Egs. (21) and (22)
the zeroth-order approximation to the total probabilistic
weight of an eigenfunction |yp) over the marked state

subspace Qﬁ) = 0xQ, where

1 0 (c(E,0)—1
QE(I:) — 5ij’ 2_< ( )

é =n OE E >EE(0)' (C8)

1. Zeroth order of the perturbation theory

Equation (C5) admits the solution corresponding to the
M-fold degenerate energy level that originates from the
band of the marked states, E(©) - —n in the limit of
B, — 0. The corresponding M eigenstates 4(z;)
(B € [1...M]) have support over the part of computational
basis corresponding to marked states: y/f/. #0,j€ (1,M).
Using ¢(E, 0) from Eq. (C16), the explicit form of Eq. (C5)
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for the eigenvalue in the zeroth order is given in the main
text [Eqgs. (36) and (37)], which we repeat here for
convenience:

EO) = —n—A,, (C9)

"~ (n B, (n—2d)
Ay = n2™" . (c10
0="n ;<d>n+AO—BL(n—2d) (C10)

Here, A, is the root of the above transcendental equation
that satisfies the condition limg _y Ay = 0. In general, the
sum (37) is dominated by the region of values of d such that
|d — n/2| = O(n'/?). We obtain A, in the form of a series

expansion in powers of n!:

Bi

By =B} ===+ 0(n7). (C11)

Similarly, using c¢(E, 0) from Eq. (23) in Eq. (C8) for the
zeroth-order total weight over the marked state subspace,
we obtain

Y 0
S P =0
k=1

o 50 mnma-iar

d=0

(C12)

Using Eq. (38) and employing similar approximations to
that from the above, we get an asymptotical expression in
the large n limit:

(C13)

We recall that in our study n is asymptotically large and
we always assume that the transverse field B, = O(n°)
(but can be parametrically large, B| > 1).

The denominator in Egs. (C10) and (C12) corresponding
to d =m becomes zero at ‘“resonant” transverse-field
value B, = B ,, where d = m denominator in the right
hand side of Eq. (C10) vanishes. In the range of B, under
consideration, n/2 — m > n'/2.

Near the mth resonance, the term with d = m in the sum
(37) becomes anomalously large due to a small denomi-
nator despite the factor p,, being very small. We keep
this term (37) along with the terms corresponding to
|n/2 —d| ~n'/? and obtain

(C14)

where we introduce a rescaled transverse-field difference
from its value at resonance:

BL - BLm

, (C15)
BT,

5321’1

where B(fz1 =n/(n—2m).

Clearly, in the resonance region Jp ~np,1n/ 2 and

B, —B,,|~AB,,, where AB,, ~27"/2(")B\") . There,
the weight factor Q is decreasing dramatically (cf. Fig. 7),
and the above perturbation theory breaks down. The width
of the resonant regions AB | ,, remains exponentially small
in n for n/2 —m > n'/2

In this study, we focus only on the off-resonance case,
assuming the condition

ABJ_m < |BJ_m - BJ_| ~ |BJ_m+1 - BJ_l = O<BJ_)

2. First order of the perturbation theory

The first-order equation (C6) determines the correct
zeroth-order eigenstates {w;(z;)}., and removes the
degeneracy of the energy levels. To evaluate the coeffi-
cients a and b in Eq. (C6), we calculate ¢(E, 0) away from
resonance using the same approach as that in the evaluation
of the sum in Eq. (37):

nB> n’B*
¢(E.0) ~ —E—2L+ o( E4L>'

(C16)

The coefficients a, b~ 1 + O(B% /n) and in what follows
are replaced by unity. Then, Eq. (C6) corresponds to the
effective Hamiltonian H with the matrix elements H;; = ¢;
and H;jy = nc(E(()),d,-j), where coupling coefficients ¢
are given in Eq. (33). Using Eqgs. (36) and (37) for zeroth-
order energy E(), the matrix H;; can be written in the
form (41).

APPENDIX D: STATISTICAL INDEPENDENCE
OF MATRIX ELEMENTS

In this paper, the IB Hamiltonian #;; is determined by
the symmetric matrix of Hamming distances d;; between
the bit strings corresponding to the marked states sampled
without replacement from the set of all possible 2" bit
strings. Instead of this ensemble, one can consider a
different one, where each of the M bit strings is sampled
with replacement from the full set {0, 1}". In this ensemble,
Hamming distances d;; for distinct pairs i, j are statistically
independent, allowing for much simpler statistical averag-

ing. Indeed, for a given row i of the matrix d;;, the joint
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probability distribution of the two distinct off-diagonal
matrix elements can be estimated as

1
— Pa,;, Pa, A(dz,l dijz)pd,»j' (D1)

iy l/z ij1 ijp 2 1

Pa;

Here, A(d) denotes the Kronecker delta, j; # j, # i,
and p, as before corresponds to the modified binomial
distribution:

Pa = %2—" (Z) Z= dzl 2" Cl) (D2)

(also, >4 4—1 Pa,.a, = 1)- One can see that the statistical
correlation between a pair of Hamming distances d;; , d;
is exponentially small (in n) and can be neglected.
Such an ensemble allows for multiple copies of the
same bit string to be sampled. However, this effect is not

statistically significant for modest values of M:

iji> %ija

<M <22, (D3)
This result can be seen by comparing the number of ways
to perform unordered sampling of M elements from the
group of 2" elements with and without replacement. Using
Stirling’s formula, we write the former number as

<2” +A1/\I/I - 1) o <i;> exp <A2/I,12)(1 +e), (D4)

where the latter number is given by (%) with

e~M273* « 1. 1t is clear that when condition (D3) is
satisfied the two ensembles are statistically equivalent,
because repetitions can be neglected.

APPENDIX E: BOUND ON THE LARGEST
EIGENVALUE OF V; FROM GERSCHGORIN
CIRCLE THEOREM

One can use the above estimates of the typical largest
matrix elements of the matrix V;; to consider the bounds on
its eigenvalues given by the Gerschgorin circle theorem
[58]. For the case of real eigenvalues, the theorem states
that every eigenvalue lies within at least one of the intervals
[Vii =R, Vii + R|, where i € [1...M] and R; =} .., |V,
is a sum of absolute values of the off-diagonal elements in
the ith row. For a randomly chosen row, the value of R; can
be estimated as follows:

Ri=MY " pyV(d)|,

(E1)

where p, is defined in Eq. (49). From Eq. (42), one can see
that the above sum is dominated by the terms satisfying
|n/2 —d| < n. Using Stirling’s approximation, we get

R; ~M27"/2¢7"%  For typical diagonal matrix elements,
|Viil = |e;] < W. Therefore, from the Gerschgorin theorem,

we conclude the eigenvalues E
bound:

Jof H satisfy the following

|E| < max {W, M2/}, (E2)
One can see that the Gerschgorin bound in our case
precisely corresponds to the typical maximum element
in the matrix H,;.

APPENDIX F: MEAN VALUE AND STANDARD
DEVIATION OF THE OFF-DIAGONAL
MATRIX ELEMENTS H,;

The mean value of the off-diagonal matrix element

n
= (E,d) ~ F1
l] nzpdc 2nBL_1 ( )

is much smaller than its standard deviation

<(sz - <Hij>)2>l/2 ZBL\/ZE,,- (F2)

This difference is related to the symmetry p, = p,_, and
a rapid oscillation of c(E®),d) with d [cf. Egs. (33)
and (B11) and Fig. 4].

We note from Eqgs. (51) and (F2) that the standard
deviation is exponentially larger than the typical value:

(Hij = (H)2)Y? ~ Vigpe?

This difference can be understood by looking at the values
of d;; that dominate the variance of H,;;. We write

) =n?) _(EY.d)p,. (F3)
d=0

It follows from Egs. (33) and (49) that for d € (n/2 — my,
n/2+mgy) the coefficient ¢*(E,d) o 1/(") decreases
exponentially with d, while the distribution p, o (%)
increases exponentially with d. The binomial factors cancel
out, and the expression under the summation in Eq. (F3)
contains a very slowly varying with d (nonoscillatory) part.
However, for d € (0,n/2 —my), the coefficient ¢(E,d)
grows exponentially faster than 1/(}) with decreasing d
[see Egs. (B13) and (29)]. Therefore, the variance (F3) is
dominated by nonextensive values of d = O(n") that
are much smaller than the smallest Hamming distance
dpyin = O(n) [Eq. (52)] in a randomly chosen row of d;;.
Therefore, the variance of H;; is not a good statistical
characteristic of the PDF of H;;. It is dominated by the
extremely rare atypical instances of the ensemble.
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APPENDIX G: PDF OF THE SQUARED
OFF-DIAGONAL MATRIX ELEMENTS OF
IMPURITY BAND HAMILTONIAN

In this section, we provide the details of the derivation of
the PDF for the nonoscillatory parts of the (squared) off-
diagonal matrix elements V%j of the IB Hamiltonian. As
discussed in the main text, in the asymptotical limit of
large n > 1, one can make an approximation that n is a
continuous variable, and we replace the summation over d
in Eq. (50) by an integral and Kronecker delta §(x) by a
Dirac delta. This results in Eq. (55), displayed below for
convenience:

P03 = [ pelvim - Vil @

It is discussed in the main text (see also below) that the
condition for this validity of this approximation is

1
—log, M <« 1. (G2)
n

It corresponds to the number of marked states M that is not
very large. For example, it can still scale exponentially with
n so that M = 2#", = O(n®), but the coefficient y in the
exponent needs to be small, y < 1.

The expression (G1) is obtained using the analytical
continuation p, of the binomial distribution p, [Eq. (49)]
from the integer domain d € [0, n] onto the interval of a real
axis x € [0, n] in terms of the Beta function B(x,y):

n 27"
=27" = G3
P (x) (n+1)B(x+1,n+1-x) (G3)
and the resulting identity
/n dxp,=1. (G4)
0
In what follows, we study the rescaled quantities
Viz. 2\ 1/2 1
Wij = sz = <_> ) (GS)
typ n pd,-l-

where i # j, Vyy, is given in Eq. (51), and p, = 27"(’)).
Using Stirling’s approximation in the binomial coefficient

- )
px = pplx/n), pe(p) = m (Gé6a)
A(p) = plogp + (1 —p)log(1 - p) +log2,  (G6b)

we get from Eq. (42) for V;; = V(d,;)

W _ V2(np) - 4p(1 —p) o1 AR)
=T (@)

where v(p) is given in Eq. (44). Equation (G5) takes the
form

Then, the expression for the PDF for w;;,
g(wij) = Vtzpr(Vtzprij)’ (G9)

can be written in the form [cf. Eq. (G1)]

g(w) = 2n / 2 pa(0)shw —w(p)ldp.  (G10)

We note that the domain of g(w) is bounded from below by
w =1 and from above by w = O(2"). Taking the integral
in Eq. (G10), we get

g(W):ZI’l pB(pw) ,

| dw(p) |
dp P=Pyy

(G11)

where the rescaled Hamming distance p,, is a root of the
transcendental equation

w(p,) =w (G12)
In the leading order in n > 1, this equation gives
1
A(pw) = —IOg w, (G13)

n

where A(p) is given in Eq. (G6b). Also using Egs. (G6)
and (G7) in Eq. (G11), we get

1
W) = ——e——, Gl14
where
£(w) = 502 (p,) [loglpi! = DI, (G1)

Here, the dependence of #(w) on w is shown in Fig. 17. In

the entire range, the dependence is logarithmically slow.
We note that Eq. (G13) is a valid approximation to

Eq. (G12) for p — pg > 1/n, where p, is a zero of v(p):

1
S

It corresponds to Hamming distance npy = n/2 —my,
[Eq. (32)], which lies at the boundary of the interval (B9)

v(po) = 0, (G16)
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where the WKB solution (33) and (42) applies (see the
discussion in Sec. IV). It is assumed that np, is smaller than
the typical smallest Hamming distance d,;, in a randomly
selected row:

dmin —npgy > 1. (G17)
Using the asymptotic expression (G6) for the binomial

distribution in Egs. (52), we get the equation for d,;, in
the form

A(dpin/n) = %logM. (G18)

The function A(p) is decreasing with p for p(0,1/2).
Therefore, Eq. (G17) leads to the condition A(pg)—
A(dpyin/n) > 1/n, or

1 1

Using explicit forms of A(p) and pgy, we get in the limit
of B 1 > 1

2logB| +2log2 +1

1
log2 ——logM >
n

2
4B4
0 <e=O(B). (G20)
0.5 ,,r
0.4f '/
15018 o3} 7
0.2} //
01— R4
0.1 0203 04 0.5 ¢
4
100 -1 ’
_ a = nlogy w ¢
3 g2 e
I JRd
4
I"
,/
50 F R
I',
4
0 1 1 1 1

0.1 0.2 0.3 0.4 0.5

a = nllogy, w

FIG. 17. The solid line shows the dependence of £(w) on a =
(1/n)log,w from Eq. (G15). The dashed line shows the tangent to
the solid curve at the point @ = 0 (w = 1). This line corresponds
to £(w) =~ y/log w, in accordance with Eq. (G24). The inset shows
the dependence of the root p,, of Eq. (G12) on a = log, w!/".
Small a < 1 corresponds to Hamming distances p,, ~ 1/2. Near
that point, the dependence of p,, on a follows Eq. (G23).

This equation is the condition for Eq. (G17). Clearly, it
corresponds to a much weaker constraint on the values
of M than the condition (1/n)log M < log2 provided by
the requirement of a statistical independence of matrix
elements of V;; [cf. Eq. (D3)].

1. Case of (1/n)log,M <« 1

The rescaled Hamming distance p,, depends on w via the
logarithmic factor @ = (1/n)log,w. This dependence is
shown in the inset in Fig. 17. In this section, we consider

1
a=—-log,w<1. (G21)
n
Then, we get
2\ 1/2
polp)= () e,
n
1 2
A(p) ~2 <2 - p> . (G22)
Then, using Eq. (G13), we get
1 a\ 1/2
e , G23
w5 <2> (G23)
£(w) ~logw, (G24)
and, finally,
1
(G25)

gW) = goo (W) = W'

The subscript here indicates that, unlike g(w), the PDF
Joo(w) has the upper boundary of its domain equal to
infinity. It is of interest to calculate for a given w the
magnitude of the relative changes of V?(d) and of the
binomial coefficient p, when the Hamming distance is
chaining by 1 (and p,, is changing by 1/r). We define as in
Egs. (G8) and (G7) w = V?(d)/V%, and obtain

VA(d+1) = V3(d) Ppar1—Pa

V3(d) Pa

(G26)

~4 G - pw> =V8a< 1. (G27)

Here, we use Egs. (G23) and (G21). The above inequality
justifies using the continues approximation (G1) in
Eq. (50).

In a randomly chosen row of w;;, the PDF that the largest
element equals w is
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Me—Mwlogw
PDF(maxw,, = w) 8 ——F—, M>1. (G28)
m wlogw
The typical largest element in a row max;_;;w;; ~M in

agreement with the results obtained earlier; cf. Egs. (42),
(52), and (G5). Therefore, in order to ensure that o < 1

for all matrix elements in a typical row of w;;, we require
that log, M < n:
1
1<wzM, —log,M <« 1. (G29)
n

The typical value of the smallest element in a randomly
selected row of the rescaled matrix of Hamming distances
d;;/n equals

dmin 1 10g2 M
n=——=5—\/—%— G30
pmm n 2 2n ( )
We note that in the case we consider,
n>n/2—dyu, = O(n), (G31)

minimum value d,;, is close to n/2 but is still separated by
an extensive distance from it.

In this paper, we use the expression for the matrix
elements of the IB Hamiltonian H;; (41) that applies only in
the region |n/2 — d;;| < my, where my is given in Eq. (32).
The elements in a typical row of the matrix d;; belong
to this region if the condition |n/2 — d ;| < my is fulfilled.
Using Eq. (G30), we can rewrite this expression as an
inequality for M:

M < 2501-B7) (G32)

This inequality is satisfied under the condition (G29).

APPENDIX H: CHARACTERISTIC FUNCTION
OF THE PDF OF THE SQUARED
OFF-DIAGONAL MATRIX ELEMENTS OF
IMPURITY BAND HAMILTONIAN

Here, we compute the characteristic function of the PDF
9 (W) [Eq. (G25)] [also given in Eq. (60) of the main text].
It is defined as follows:

boolut) = / " dwga(w)(e™ = 1), (HI)

1

We are interested in the asymptotic limit of the above
expression at small |u| < 1. It is convenient to calculate
separately the real and imaginary parts of ¢, (u).

For the real part, we have

st = [ () o

Because ¢, (—u) = ¢, (1), we can assume that u > 0 and
break the interval of integration above in two parts:

€ [1,X/u] U [X/u, ), u<X<l1. (H3)
We write
VT Relpa)] = Ry(u) + Ra(u). (HY
Here,
X/u 1 5 [(ux
Ri(u) = 2 —logxsm ( > (H5)
oo 1 ) ux
u) = A/MXQ\/@SHP <2> (H6)

Using Eq. (H3), the asymptotic expansion of R;(u) has
the form

uX uXlog(1/X)
Ry (u) ~ 12 32 (H7)
4[log(1/u)] 8[log(1/u)]
Also, after some tedious calculations, we obtain
Ry ) u Tz X
U)y~o——m— | ———
2 flog(1/w)] 12 \4 4
”(7Euler - 1)
, H8
2[log(1/u)]?/? 4 (H8)
where
YEuler = 0577 (H9)

is the Euler constant.

Similarly to the above, we also break the interval of
integration in the imaginary part of ¢, («) in two parts
given in Eq. (H3):

Moo ()] =

Iy (u) = [X/u
Iz(u):[:;

Iy (u) + Ir(u), (H10)

where

sin ux
x*/mlogx’

sin ux

x>\/mlogx’

(HI1)

(H12)
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Expanding the integrand (H11) in # and using condition
(H3), we get

1
1 2u IOgW ulog ulog® X
u) =~ - )

1 \/7—1_ ﬂlog|'—‘ 10g3/2 |u|

Performing a similar asymptotic expansion in I, (u), we
obtain

1- —logX log? X
Iz(l/l) ~ M( Y Euler 0g ) (M 0g >

,/nlog‘—}t‘ log*? u

Finally, we combine together Eqs. (H7) and (HS8) into
Eq. (H4) to obtain the first two terms in the asymptotic
expansion of Re[¢, ()] in powers of 1/logu < I:

(.,

W

1 — YEuler
- . H13
o) )

We also combine together the above expressions for /; and
I, to obtain a similar asymptotic expansion of Im[¢p, (u)]:

(i) Y 20 = o)
R \/@'
Ju]

Note that in both cases the terms involving X cancel out,
confirming the validity of the matching procedures.

(H14)

APPENDIX I: GENERALIZED CENTRAL LIMIT
THEOREM FOR THE SUM OF M RANDOM
VARIABLES w,, THAT OBEY THE
DISTRIBUTION g, (w)

In this section, we study the asymptotic PDF for the sum
of the independent identically distributed (IID) random
variables in Eq. (93) sampled from the probability distri-
bution (G25). We note that the variance of the random
variables does not exist. The PDFs with polynomial tails
at infinity are known as Pareto (heavy-tailed) distributions.
According to the GCLT, the PDF of the sum of M Pareto
variables for M — oo approaches its asymptotic form given
by the stable law [53]. This general property coincides with
the usual central limit theorem for the case when random
variables in a sum have finite variances. In this case, the
limiting PDF has a Gaussian form.

We note that the PDF given by Eq. (G25) is not strictly
polynomial at w — oo because of the additional logarithmic
factor. We derive the asymptotic form of the sum (93) of
random variables [Eq. (G25)] explicitly and compare with
the standard GCLT result without the logarithmic factor.

We are interested in the PDF of the random variable s,,
such that [cf. Egs. (60) and (93)]

1 & 1
_ y W) = (Il
o 0 = e ()

Here, w; are IID random variables sampled from g.,(w),

and we are interested in the asymptotic limit M > 1.
Using the convolution property of a sum of statistically

independent random variables, we get for the PDF of s,

PDF(sy) =5 [ dalpula/M e, (12)

where

Poo(tt) = 14 oo (1)

and ¢ (u) is given in Eq. (HI). The limit M > 1
corresponds to |u| < 1. We note that

lime (u) = 0. (13)

Taking into account that ¢(«) is small in the above limit,
we write

PDF(sy) = [ daexpl-igsy + Mila/)).  (14)

—0o0

The quantity M¢.,(q/M) can be expanded in inverse
powers of logM > 1 using the asymptotic form of the
characteristic function at a small argument given in
Egs. (H13) and (H14). The first few terms of expansion
have the form

1 = Viuger — 1
MRe%(g): nlg| , V7lgl(1 = veuer —log|ql)

M)~ 2logM 4(log M)3/? ’
q IOgM 172 1 - VEuler — 10g |CI|
Mime (M> ‘2q< E ) T rlog M) 72

ql()g |6I|(1 - YEuler)
2(/m(logM)*?

where ygy, 1S the Euler constant.

It is clear from comparing individual terms in Egs. (I5)
with the exponential in the integrand in Eq. (I4) that
q = O(y/log M). Therefore, we can drop in Egs. (I5) terms
O[1/(log M)*/?]. We make the change of variables in the
integral in Eq. (14)

(I5)

log M

=2 t 16
q - (16)
and obtain
PDE(s,,) = b L (—SM - bM), (17)
Oy oy
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1 © . .
Ll 1( ) — %/ dte—itx=11l=[(2i)/z]tlog]t| (18)

The function L i‘l (x) above is a so-called Levy alpha-stable
distribution [33,61,62] shown in Fig. 15. The distribution is
defined by its characteristic function. Parameters b;,; and
oy in Eq. (I7) are typical values that characterize the shift
of the maximum of the PDF(s,,) from the origin and its
overall scale, respectively. They are given in Egs. (96)
and (95) of the main text, and we also provide them for
convenience below:

T 1
-z 19
oM =2 (xlog M) 2 1)
-1 2 —1 2
bM =0y — ;GM log(UM ) + ; (1 - }’Euler)UMv (110)

where ygy, 1S the Euler constant.

It is instructive to compare the above expressions with
the result for the sum of random variables that obey a
standard Pareto distribution [i.e., without the logarithmic
factor present in g, (w)]:

| M
U E Wi, wi~go(w) =w=.  (Il1)
i—1

The PDF of 59, has the same form as the PDF of s,, given
in Eq. (I7), but the expressions for the shift 5, and the
overall scale 69, are different:

=50 Wy =10eM+ 1= e +1og(5). (12

One can see that

0 0
‘7_1‘4~b_’”~(logM)1/2 > 1. (113)
oM M

The rescaling factor (log M)'/? between the PDFs of sy,
and s, can be explained by a similar logarithmic factor in
the ratio go(w)/ge (W) ~ (logw)!/2, taking into account the
fact that typically w ~ M.

APPENDIX J: JUSTIFICATION OF REPLACING
SUM WITH INTEGRAL IN EQ. (84)

We note that the number of marked states Q,; in a
miniband [Eq. (98)] on a Hamming distance d from a given
marked state |z;) decreases rapidly when d. There is a
typical minimum Hamming distance d ~ d; such that

des = argmin(Qy)

min

= O(1). (1)

There will be no states in the miniband located at the
Hamming distances d from the state |z;) that lie inside
the intervals d € [1,d'5 ) U (n — d'S , n]. For those values

of d, we have Fﬁ. = 0. Using Eq. (G22), we get

n n 2AQ
A ~——4/=log—=, J2

where A = A(E©), 1/2) [Eq. (43)].

On the one hand, we assume throughout this paper
that the number of marked states in a miniband Q > 1
is sufficiently large so that the number n —2d of
dominant terms in the sum (83) is much bigger than 1.
For example, using the scaling ansatz (75), we have Q ~
M?*7 [Eq. (100)]. Then, assuming that y <2 and
1> (1/n)logyM = O(n®), we can see that the second
term in the rhs of Eq. (J2) is of the order of n and,
therefore, the number n — 2453 = O(n).

On the other hand, we note that the number Q,; [Eq. (98)]
of marked states in a miniband a Hamming distance d
from a given marked state |z;) is large (Mj.d) > Q> 1) for
almost all d, aside from (O(n°) values of d near the
boundaries of the interval d € [dyys,.n —di |.

We recall that all terms in sum (83) are nearly equal to
each other, and, therefore, the relative contribution to I';
from the boundary terms is O(1/n) and can be neglected in
leading-order estimates of the typical quantities. For d
away from the interval boundaries, the function ,(¢; — €,,)
in Eq. (84) changes little between the adjacent values of €,
(by an amount of the order of 1/Q; <« 1). This result
provides the justification for us to replace the sum over m
in (84) by an integral.

APPENDIX K: PDF OF THE RANDOM
VARIABLE £ = {n/[(z-€)* +]}

Consider the PDF p, (h; z) introduced in Eq. (104):

po(hi2) = / L e/ W)lh = 5(z - e.)lde. (K1)

Here, the function of two arguments 5(x, y) is defined in
Eq. (82), and §[x] is the Dirac delta function denoted here
with bold to distinguish from the above function. We also
use the relation (47) for the PDF of marked state energies.
Solving

n
h= K2
(z—€)+n (K2)
for € we get
e =zE\/n(h™" =n) (K3)
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From here and from Eq. (K1), we get

N Vi . .
py(hiz) = T =h (@i (h32) +o_(h;z)],  (K4)
@s(hz) = Wlpalz £ /n(1/h=n)].  (K5)
For |z| < W, we get p,(h;n) =~ p,(h;0):
N
h0) = ——Y—— 1/h—-n)]. (K6
1. Uniform distribution
For the case of uniform distribution
1
pale) = 3 0W/2 =) (K7)

where 6(x) is the Heaviside theta function, we have
- 1
B h3/2 /’7—1 —h ’

The domain of values of 4 is h € [hyy, Ay, Where

py(h;0) (K8)

1 1
Boin = ——————  Hypax = —» K9
w
K =—, K10
=5 (K10)

and the value of the PDF on the lower boundary is

, (1+K3)?

< (K11)

pr/(hmin) =1
n

In the case of delocalized nonergodic states [Eq. (101)],

M> K, > 1. (K12)

The PDF p, (h;0) = p,(h) is plotted in Fig. 18. The PDF
reaches the local maximum on the lower boundary 7,
corresponding to values of marked state energies € ~ W
located at the edges of the IB. In the region /& ~ 1/5, the
probability density reaches very small values, p,(h,z) ~1,
corresponding to the energies of marked states |e — z| ~ 7.
The maximum value of & = 1/5 corresponds to exact
resonance € = z. The PDF p,(h;0) has an integrable
singularity at this point.

It is of interest to consider the PDF of the sum of random
variables %, over all marked states:

1 X n
sh=—SN"h,.  h,=——1 (K3
M Mmz:‘: (z—€n)?+1 (K13)

7’ (1 + K,?)Z

pﬂ(hmin): Kn

Dy

=

0 hfmin 1/77
h

FIG. 18.  Plot of the PDF of p,(h;0) = p,(h) given in Eq. (K6).

In the nonergodic phase W > #, the mean value of 4, is
much smaller than its standard deviation:

2
S
w W

(hn)?.

() (K14)

(i) = (K15)

—_— >
2Wn

Note that the mean is dominated by small marked state
energies €,, ~ 1, while the standard deviation is dominated
by €, ~ W.

However, for sufficiently large M, the mean value of the
sum > M_, h,, is much greater than its standard deviation
provided that de < #:

h\2 _ [ch\2 165
()" = {sn)” , 1 0¢ (K16)
(sir) 2 n
Therefore, in the delocalized phase
W
> e = —, K17
n>de =1, (K17)
the sum Y>-M_, h,, is self-averaging.
It is convenient to introduce rescaled variables
Their PDF has the form
pO) = (K19)
y)=———.
! K,,yzs/ 1 - y2
Boundaries of the domain of p,(y) are
1
(K20)

ymin:7Sy<ymax:1-
\1+K;
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APPENDIX L: PDF OF THE IMAGINARY PART
OF SELF-ENERGY IN SELF-CONSISTENT
BORN APPROXIMATION

In this section, we provide details of calculations of
the self-consistent Born approximation presented in
Sec. XI A 2 of the main text. We study the PDF of the sum

Wl
> =V} . L1
Wige—en) +ir 0

where w,, = V*(dy,,)/ V3, [see Eqs. (G7) and (G8)] are

random variables sampled from the distribution g, (w)
[Eq. (60)] and marked state energies ¢,, obey the distribu-
tion p,(e/W)/W [Eq. (47)]. The sum in Eq. (L1) can be
written in the form

" VIQYP z 2
2= szmv Xm = WmYm> (LZ)
m=1

where y,, are random variables [Eq. (K18)] sampled from
the distribution p,(y) [Eq. (K19)]. For |z| < W, random
variables x,, obey the PDF g, (x) such that

@) = [ dy [ dur,()an0)d(e =), (13)

Using Egs. (K19) and (K20), one can show that [cf. also
Eq. (L7)]

limg, (x) = goo (x). (L4)

In order to calculate the PDF of the sum X" [Eq. (L1)] in
the limit M — oo, we use the GCLT following the same
approach as that in Appendix I. The PDF of the random
variable X" equals

PDF(Y") ~ 2i / % ke K M, KV /)

g (LS)

[Se]

where ¢, (u) is the characteristic function of the PDF g, (x)
[Eq. (L7)]:

ty(u) = /“ e dxg,(x)(e"™ —1). (L6)

1. PDF of individual terms in the sum

After some transformations, we get from Eq. (L3)

1
B x*K,\2x

/min(hﬁ) dy
X .
1/y/156; /(1 = y?)(log x'/% —log y)

Gy(x)

(L7)

0.2
: gp(2) = L =
| K 1 K2
|
|

g, 0.1H !
|
|
| Zmax = 1.35147

0.0 : ' :
1 2 3 4
Z

FIG. 19. Plot of g,(z) given in Eq. (L8) for K, = /30.

The PDF is plotted in Fig. 16. Its maximum lies very close
to the left boundary of its domain x € [1/(1 + K7), o). For
x < 1, the PDF g, (x) depends on x in terms of the rescaled
parameter z = x(1 + K,%), whose PDF is

i erf(d%logz)

o=

The plot of g,(z) is given in Fig. 19, and its maximum
Zmax = 1.35. Typical values of x,, = 2y, /K2 < 1 corre-
spond to w,, ~1 and to a broad PDF of marked state
energies, |z —¢€,,|~W.

We are interested in the limits [cf. Eq. (K12)]

(L3)

x> 1, K,> 1. (L9)

We note that log x > |log y| in the denominator of Eq. (L7)
for all y except for the small interval

1+ K;

~x
whose contribution to the integral is neglected. Expanding
the integrand in powers of (logx)~"/2, we get

El

b2 mwlog2

gn(x) = Z—Kngoo(x) - m

. (L10)
where function g (x) is defined in Eq. (60). We observe
from Egs. (K10) and (K14) that (h,,) = [z/(2K,)]. Using
the expressions for g, [Eq. (60)] and () [Eq. (K14)], we
obtain under the condition (1.9)

Gy(x) 2 n(h)ge, (ﬁ), x> 1. (L11)

Given a large deviation of x,, satisfying Eq. (L9), the
conditional PDF of xh,, is narrowly peaked around its
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mean value corresponding to e, —z| ~#. In contrast,
typical values of x,, correspond to a much broader PDF
of ¢,, ~ W. This correspondence gives rise to a small factor
n/2K, ~n/W in the leading-order term in Eq. (L10).

2. Characteristic function of the PDF
of the elements in the sum

The relation between the characteristic functions ¢, (u)
and ¢, (u) [Eq. (H1)] in the limit
lul < 1 (L12)

should be the same as the relation (L10) between the
corresponding PDFs g, (x) and g, (x) in the limit of large x

[Eq. (L9)]. Here, we establish this relation directly. We
break ¢, (u) in two parts

by (1) = y(u) + ¢y (u), (L13)
where
B = [ v -1, (L4
! VR ’
P (u) = [m dwg,(w)(e™ —1). (L15)
Expanding ¢} (u) in u, we get
by (u) = —lClu (L16)
where
2 Ldx [Vx 1
- W/) 7A SV (T )

To calculate ¢;(u) in the limit of small |u|, we introduce
X > 1 such that

lu| < X|u| <« 1 (L13)
and write
Bu) = $2 () + B2 (w). (L19)
Here,
2= (u) = / " dvg, (e~ 1), (120)
0 = [Tl -0, @2

We use Eq. (L18) and expand ¢;~ (u) in u:

b (u) = iu AX gy(x)dx. (L22)

To calculate the term ¢%+(u), we use the approximation
(L10) and write

2wy = o) — iu e [ gexax (123
2K, 2K,
T log 2 e —

where the characteristic function ¢, is defined in Eq. (H1).

Combining ¢7*(u) together and taking the limit
X — oo, we get after some transformations

) = 55 () = 2

32\12 1 (log(1/y)\ /2
o= ()" o (559)

After some transformations, one can show that {; = {,.
Therefore, terms ~u in ¢} (1) and ¢?(u) cancel each other.
Combining these two quantities together in Eq. (L13), we
finally get

(L25)

Py (u) = (L26)

m |ul
=z of—"—).
s #- O gar)

As expected, this relation corresponds to the relation (L.10)
between the PDFs ¢, and g,.

3. GCLT for the sum

We now revisit the expression (L5) for the PDF of the
variable £” [Eq. (L1)]. In the limit M — oo, the integral
over k in the rhs of Eq. (L5) is dominated by small values
of the argument in ¢, (kV¢,/n). Then, using Eqs. (L26)
and (K10), we get after the change of a variable of

integration in Eq. (L5)

1 " "
PDF(X") = 5 Z”/ dge 4" [Z)+be(a/2) (L27)
where X [Eq. (92) [is the characteristic value of the
imaginary part of the self-energy of marked states obtained
in the FGR-based calculation in Sec. VIII, and the quantity
Q, equals

M 7y
=—=—. L28
" 2K, Ge (L28)
It has a meaning of the typical number of marked states
within the nonergodic miniband of the width # [cf. Eq. (98)
and Fig. 14].
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We make a self-consistent assumption [cf. Eq. (134) in
the main text] and set

n=2=x (L29)
Then, one can immediately see that
Q, =Qy =Q, (L30)

where Q is the typical number of marked states in a
miniband defined in Eq. (113).
Comparing the expression (L.27) with Egs. (I4) and (L30),
we represent the random variable X" in the form
> Loo3ix + boS!,  PDF(x)=LM(x). (L31)
Here, random variable x obeys a Levy alpha-stable distri-
bution [Eq. (I8)] shown in Fig. 15. The quantities bo and o

are given as
T
p— —’ L32
72 =1\ 4logQ (L32)
2 2
bg~og' — P log(og') + . (1 = 7Buer)oq.  (L33)

Their dependence on € is given in the main text [Egs. (96)
and (95)], where we should replace M with Q.

APPENDIX M: NUMERICAL SIMULATIONS

In this section, we provide details of the numerical
analysis of the ensemble of Hamiltonians introduced in
Sec. VI in addition to the results in Sec. VII.

1. Numerical justification of cavity equations

The application of the cavity method to the case of the
ensemble of dense matrices considered in this paper (see
Sec. VI) exploits the similarity between the local structure
of the adjacency graph of the Hamiltonian H and the Bethe
lattice. The derivation of the cavity equations (102a)
and (102b) for the case of H outlined in Sec. X neglects
off-diagonal terms Y in comparison to diagonal X, which is
justified for graphs with an extensive number of neighbors
[33], where

1
X = MZH%G;’;(ZL (M1)
7

2
Y = MZHUHIijk(Z)’ (MZ)

J#k

where G;; is the single-particle Green function correspond-
ing to the Hamiltonian H at an energy near the center of the
band, introduced in Sec. X. It has been shown for Levy

60
50 | [ M =500 1
1 M =1000
40+ M = 2000 i
M = 5000
1 M = 10000

PDF(|Y]/]X])

20 |
LN
10 T ,
0 A 1 —
0.00 0.05 0.10 0.15 0.20 0.25

Yl/1X]

FIG. 20. Probability distribution of the ratio |Y/X| defined in
Egs. (M1) and (M2) for y = 0.6.

35

or C—1 M =500 1
” C—1 M = 1000
S| ]
M = 2000
=l M = 5000 |
= 1 M = 10000
£ 15 -
[l
10 B
5 a
0 Il | b -l Il
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
[Y]/|X]

FIG. 21. The same as in Fig. 20 but with y = 1.2.

matrices [33] that the ratio |Y/X| scales to zero with
growing matrix size M and, therefore, can be neglected.
This argument could be extended to PBLMs considered in
this paper. We confirm the validity of this approximation
numerically by analyzing the probability distribution of
the ratio |Y/X| as a function of the matrix size M. In
Figs. 20-22, the distribution of |Y/X| scales towards a high
weight at vanishing values of |Y/X| with growing M.

2. Numerical analysis of population transfer time

a. Population transfer time from
the dynamical correlator

In addition to Fig. 13 in Sec. VII of the main text, we
perform a similar collapse of the dynamical correlator
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C—1 M =500
1 M = 1000 1
M = 2000
M = 5000 I
1 M = 10000 |

= 1L i I

00 01 02 03 04 05 06 07 08 09
Y1/1X|

FIG. 22. The same as in Fig. 20 but for y = 1.6.

frequency dependence for different matrix sizes M for a
range of different values of y. In Figs. 23-26, the character-
istic energy scale extracted from each set of plots using
this procedure I', =I'y,M*® corresponds to the typical
miniband width with the respective value of the parameter
y. The fitting parameter in the scaling exponent ¢ is small for
all y we consider and is consistent with the finite size effect.

b. Population transfer probability
as a function of time

In the main text, we analyze the complexity of the PT
protocol using the solution of the full nonlinear cavity
equations for the size of the typical miniband and estimate
the number of states in the miniband using the classical
value of the level spacing W/M. In this section, we analyze
the scaling of the population transfer time using exact

103 T T T
M =1000 ——
M =2000 ——
M = 5000
M = 10000
M = 20000 ——
102 1
=
3
3
10 1
109 L L L
1072 107! 10° 10! 102
w/I.
FIG. 23. K(w) rescaled with the characteristic energy I', =

2%, M* where the typical miniband width is given by Eq. (128).

Here, y = 1 with fitting exponent ¢ = —0.025.

10°

10?

10!

100 L L L
1071 10° 10!
w/T.

FIG. 24. The same as in Fig. 23 but with y = 1.4 and fitting
exponent € = 0.04.

M =1000 ——
M =2000 ——
M = 5000
10% £ M = 10000 :
M = 20000 ——
= 10t} |
3
&S
100 ¢ E
1071 L L L
10° 10! 102
w/T.
FIG. 25. The same as in Fig. 23 but with y = 1.8 and fitting

exponent &€ = —0.05.

102l "M =1000 —— ]
M = 2000 ——
M = 5000
M = 10000
10! M = 20000 ——
=
3 0
= 100t J
S
1071 E
1072 L L -
10! 102 107
w/T.

FIG. 26. The same as in Fig. 23 but with y =2 and fitting
exponent € = —0.055.
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FIG. 27. Population transfer probability as a function of time ¢

in units of 1/V,, for various values of parameter y = 2a.

typ

numerical time evolution. We contrast the population
transfer time obtained from the characteristic energy scale
of the frequency dependence of the dynamical correlator in
Figs. 23-26 with the time dependence of the transfer
probability:

p(t) = [ilw(0) P, (M3)
where |i) is the initial bit string and |y/(#)) is the wave
function resulting from the evolution with the impurity
band Hamiltonian in transverse field H (see Sec. VI) for a
time ¢, which is the quantity directly observed experimen-
tally. Note that in Fig. 27 the timescale at which the transfer

1.0

08} / i
b I— ")/ =
Z 06f — =12 4
© =
2 vy=14
£ y=16
g 04y — =18 ]
& s

02} .

0.0 : : ‘ ‘

0.0 0.2 04 0.6 0.8 1.0

VAV,

FIG. 28. Population transfer probability as a function of time
rescaled with the effective miniband width v/Q where the number
of states in the miniband is estimated using Fermi’s golden rule
Q = M*77; see Eq. (100) of the main text.

probability becomes of the order of one depends strongly
on the parameter y, reflecting the fact that the characteristic
time is determined by the size of the many-body miniband
[" rather than the typical off-diagonal matrix element V.
To verify this result, in Fig. 28 we rescale the unit of time
with the square root of the number of states in the miniband

VQ, a good approximation for the scaling of the miniband;
see Sec. VIII for a qualitative discussion and Sec. XI for
rigorous results. We observe an approximate collapse of
the curves for different values of y corroborating the PT
run-time scaling presented in the main text as well as the
estimate of the number of states in the miniband.
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