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We address the long-standing problem of the structure of the low-energy eigenstates and long-time
coherent dynamics in quantum spin-glass models. Below the spin-glass freezing transition, the energy
landscape of the spin system is characterized by a proliferation of local minima where classical dynamics gets
trapped. A theoretical description of quantum dynamics in this regime is challenging due to the complex
nature of the distribution of the tunneling matrix elements between the local minima of the energy landscape.
We study the transverse-field-induced quantum dynamics of the following “impurity band” (IB) spin model:
zero energy of all spin configurations except for a small fraction of spin configurations (“marked states”) that
form a narrow band at a large negative energy. At a zero transverse field, the IB model demonstrates the
freezing transition at inverse temperature βf ∼ 1 characterized by a nonzero value of the Edwards-Anderson
order parameter. At a finite transverse field, the low-energy dynamics can be described by the effective down-
folded Hamiltonian that acts in the Hilbert subspace involving only the marked states. We obtain in an explicit
form the heavy-tailed probability distribution of the off-diagonal matrix elements of the down-folded
Hamiltonian. This Hamiltonian is dense and belongs to the class of preferred basis Levy matrices.
Analytically solving nonlinear cavity equations for the ensemble of down-folded Hamiltonians allows us
to describe the statistical properties of the eigenstates. In a broad interval of transverse fields, they are
nonergodic, albeit extended. It means that the band of marked states splits into a set of narrow minibands.
Accordingly, the quantum evolution that starts from a particular marked state leads to a linear combination of
the states belonging to a particular miniband. An analytical description of this qualitatively new type of
quantum dynamics is a key result of our paper. Based on our analysis, we propose the population transfer (PT)
algorithm: The quantum evolution under constant transverse fieldB⊥ starts at a low-energy spin configuration
and ends up in a superposition of Ω spin configurations inside a narrow energy window. This algorithm
crucially relies on the nonergodic nature of delocalized low-energy eigenstates. In the considered model, the
run-time of the best classical algorithm (exhaustive search) is tcl ¼ 2n=Ω. For

ffiffiffi
n

p
≫ B⊥ ≫ 1, the typical run-

time of the quantum PTalgorithm
ffiffiffiffiffi
tcl

p
en=ð2B2⊥Þ scales with n andΩ as that of Grover’s quantum search, except

for the small correction to the exponent. Unlike the Hamiltonians proposed for analog quantum unstructured
search algorithms, the model we consider is nonintegrable and the transverse field delocalizes the marked
states. As a result, our PT protocol does not require fine-tuning of the transverse field and may be initialized in
a computational basis state. We find that the run-times of the PT algorithm are distributed according to the
alpha-stable Levy law with tail index 1.We argue that our approach can be applied to study the PT protocol in
other transverse-field spin-glass models, with a potential quantum advantage over classical algorithms.
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I. INTRODUCTION

The idea to use quantum computers for the solution of
search and discrete optimization problems has been
actively pursued for decades, most notably in connection
to Grover’s algorithm [1], quantum annealing [2–10], and,
more recently, quantum approximate optimization [11].
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Hard optimization problems have their counterparts in spin-
glass models of statistical physics [12,13]. The energy
function of a hard optimization problem is characterized by
a large number of spurious local minima separated from
each other by a large Hamming distance (number of bit
flips transforming one to another). At a low temperature,
the rate of transition between the local minima is exponen-
tially suppressed, and, therefore, the classical dynamics
(realized, for example, via the single-spin-flip Metropolis
algorithm) remains constrained to the vicinity of a single
local minimum and is, therefore, inefficient at exploring the
configuration space, i.e., is nonergodic. Consider an appli-
cation to such a nonergodic classical regime of a quantum
computer (QC) realized using a system of interacting qubits
(quantum spins 1=2) in a transverse field:

H ¼ Hcl þHD; HD ¼ −B⊥
Xn
k¼0

σkx; ð1Þ

Hcl ¼
X
z

EðzÞjzihzj; ð2Þ

where the energy function EðzÞ is defined over the set of
2n configurations of n bits (bit strings) z ¼ ðz1; z2;…; znÞ,
where zk¼f0;1g, computational basis, and σkα, α¼x, y, z,
are Pauli matrices. Off-diagonal matrix elements con-
nect states separated by one bit flip; therefore, Eq. (1)
describes the Hamiltonian of the tight-binding model
with diagonal disorder on the Boolean hypercube [14].
It is a generalization of the Anderson model initially
introduced in the context of transport in finite-dimensional
lattices [15–17].
An important insight into the output of quantum oper-

ations realized in the model Eq. (2) is provided by the
structure of its eigenstates in the computation basis which
also fully determines the quantum dynamics in the model.
For a sufficiently weak transverse field, the eigenstates are
localized in the space of bit strings; i.e., each one has
significant amplitudes on a few bit strings which form its
support set. An increasing transverse field results in the
amplitude spreading over a subset of bit strings which
increases exponentially with the number of qubits n. Such
eigenstates are called extended. The transition between the
extended and localized phases of a QC is an example of the
many-body localization (MBL) transition, recently identi-
fied in models of mean-field spin glass [5,18,19], with
important implications for the efficiency of the quantum
annealing algorithm [7,14,20].
At a sufficiently strong transverse field, eigenstates could

be extended and ergodic (EE), meaning that their ampli-
tudes are spread over the entire Hilbert space, and prob-
abilities to detect any particular bit string is of the order
of the inverse number of bit strings N−1 ¼ 2−n. EE states
arise, for example, as a result of applying a random unitary
to a product state or as eigenstates of a random Hamiltonian
drawn from a Gaussian random matrix ensemble. However,

in general, the extended state could be spread over a much
smaller number of bit strings NS ∝ ND ¼ 2nD. The corre-
sponding exponent D is the fractal dimension of the
eigenstate’s support set. Localized states correspond to
D ¼ 0 and EE to D ¼ 1, and the case 0 < D < 1 we call
nonergodic extended (NEE).
NEE eigenstates have been discovered in random matrix

models such as theRosenzweig-Portermodel [21]. It has been
proposed that Anderson models on random regular graphs
[22] also demonstrate a NEE phase; however, this question
remains open and an active topic of research [23–25]. In this
paper, we demonstrate that the existence of NEEs is not
limited to abstract matrix models. On the contrary, we show
conclusively that NEEs arise naturally in a broad class of
quantum spin-glass Hamiltonians of the form Eq. (2). A
transverse field applied to a nonergodic classical model in
Eq. (1) gives rise to tunneling matrix elements between its
deep local minima. In this regime, NEE eigenstates could be
formed by coherent superpositions of local minima separated
by large Hamming distances. Such coherent superpositions
form minibands of states with shared support sets.
A theoretical description of such nonergodic extended

states for quantum spin-glass models is very challenging.
A key challenge is the calculation of the statistics of the
tunneling matrix elements between deep local minima
separated by large Hamming distances d. On the one hand,
the many-body delocalized regime is associated with the
divergence of the so-called locator expansion [16], which is
related to the transverse-field perturbation theory in the case
of Eq. (1), which, therefore, is no longer a well-controlled
expansion for the tunneling matrix element. Moreover, in
general, the tunnelingmatrix element is given by a sum over a
large number of virtual trajectories which interfere with each
other, which is the case for themodel considered in this paper
as we show below. As a result, the perturbative expansion of
the matrix element in B⊥ must include multiple looped
trajectories and, therefore, cannot be approximated by the
leading-order term, also called the forward scattering approxi-
mation (FSA) [26]. On the other hand, a direct numerical
solution of the Schrödinger equation is possible only for a
very small system size, and, therefore, the results are strongly
affected by finite size effects and are inconclusive in the NEE
regime. Therefore, up to this point, there is nowell-controlled
theory of a NEE phase in a quantum spin glass.
A key technical achievement of this paper is the novel

theoretical approach that allows an asymptotically exact
analytical calculation of the matrix elements and their
statistics as well as a well-controlled description of the
structure of NEE eigenstates and the associated quantum
dynamics. We apply our approach to a sufficiently simple
yet nontrivial impurity band model of EðzÞ:

Hcl ¼
XM
j¼1

EðzjÞjzjihzjj: ð3Þ

VADIM N. SMELYANSKIY et al. PHYS. REV. X 10, 011017 (2020)

011017-2



Here,M ≫ 1 marked states jzji (n-bit strings zj) are chosen
uniformly at random from all bit strings of length n, with
energies EðzjÞ independently distributed around −n within a
narrow band of width W ≪ B⊥. All other states z have
energies EðzÞ ¼ 0 and are separated by a large gap ≃n from
the very narrow band of marked states (see Fig. 1). This
model is inspired by the impurity band model in doped
semiconductors [31]. It also corresponds to a classical
unstructured search problem with multiple marked states.
Each marked state EðzÞ is a deep local minimum of the
classical energy landscape: A single spin flip with high
probability raises the energy to EðzÞ ¼ 0 and is, therefore,
strongly suppressed. For M ≪ 2n, randomly chosen
marked states are separated by Hamming distances that
scale with n. A classical IB model at low temperature β >
βf ¼ ln 2 − ð1=nÞ lnM captures the frozen phase of a spin
glass at the tail of the density of states, which, as we show
below, is characterized by a nonzero Edwards-Anderson
order parameter.
We develop a microscopic analytical theory of the “mini-

bands” of nonergodic delocalized states in the IB model.
We derive an effective down-folded Hamiltonian in the
energy strip associated with the marked states. Its matrix
elements correspond to the tunneling between the deep local
minima described by theWentzel-Kramers-Brillouin (WKB)

analysis. Remarkably, the distribution of the matrix elements
is heavy tailed. The ensemble of down-folded Hamiltonians
for the marked state subspace corresponds to the preferred
basis Levi matrices. We use the cavity method for Levi
matrices [32–37] to find analytically the fractal dimension of
the delocalized minibands and the probability distribution
of their spectral width. This method also determines the
probability distribution and the scaling with n of the set of
characteristic timescales that describe the quantum dynamics
of the NEE minibands.
Our asymptotically exact analysis gives a number of

predictions that cannot be reproduced within the leading-
order perturbation theory in a transverse field, called the
forward scattering approximation (FSA) in the literature.
Most notably, we uncover an asymptotic orthogonality of
the subspace of marked states to the rest of the Hilbert
space that extends, rather counterintuitively, to large trans-
verse-field regime B⊥ ≫ 1. As shown in detail below,
accounting for this orthogonality catastrophe is critically
important for the correct calculation of fractal dimensions
of the support set and the miniband width statistics in the
spectrum and, therefore, for the prediction for quantum
dynamics of the IB model Eq. (3). In other words, the FSA
gives a qualitatively incorrect prediction for the quantum
dynamics of the NEE phase of the IB.
It is crucial that the dynamics within the IB of model

(3) in the transverse field can be nonergodic yet delocalized
in the computational basis. The model is by no means
unique from this point of view. We believe that extended
but nonergodic quantum states exist for quantum exten-
sions of any problem Hamiltonian which is characterized
by a classical spin-glass behavior: for the random energy
model [30], Sherrington-Kirkpatrick model [38], p-spin
model [39], K satisfiability [40], etc.
Indeed, the main difference between classical and

quantum spin-glass models is the existence of the MBL
phase in the latter case. However, we see no reason to
expect a direct transition between the MBL and ergodic
phases without an intermediate nonergodic phase similar
to the case of ordinary Anderson localization in finite-
dimensional space. This difference is due to the fact that
the number of relevant bit strings at a given Hamming
distance d from a given one increases for spin-glass models
exponentially with d, or even quicker, whereas for finite-
dimensional models this increase is only polynomial.
The formation of minibands of NEE eigenstates has

important implications for quantum search and optimiza-
tion algorithms. Quantum tunneling of collective spin
excitations was proposed and studied experimentally as
a mechanism for moving between states in the energy
landscape that can lead to shorter transition timescales
compared to classical simulated annealing approaches
under certain conditions [4]. Experimental evidence of
the faster timescales was later corroborated numerically
using an imaginary-time quantum Monte Carlo (QMC)

FIG. 1. Cartoon of the level diagram. Horizontal blue lines
depict the energy levels −B⊥ðn − 2mÞ of the driver Hamiltonian
HD in Eq. (1) separated by 2B⊥. A narrow impurity band of width
W ≪ B⊥ is marked in light green. The sequence of short black
lines depicts the energies of marked states EðziÞ. Dashed lines
depict the elementary path to the leading-order perturbation
theory in B⊥ for the tunneling matrix element cijðEÞ given in
Eq. (19). In this paper, we focus on the case of relatively large
transverse fields B⊥ > 1 so that the IB energies lie above the
ground state of the total Hamiltonian (1) that corresponds to
nearly all qubits polarized in the x direction.
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algorithm [41,42]. Furthermore, recent studies [43,44] show
that, in QMC, the tunneling corresponds to the Kramers
escape through the free-energy barrier in an extended spin
system that includes spin replicas in an imaginary time
direction. As a result, the incoherent quantum tunneling rate
does not have a scaling advantage over such a QMC
simulation. This result happens because incoherent tunneling
dynamics corresponded to sequential transitions connecting
individual minima, where each transition is dominated by a
single tunneling path [43]. NEE eigenstates give rise to a
qualitatively different tunneling dynamics, where a large
number of tunneling paths interfere constructively, giving
rise to minibands of the nonergodic many-body states
delocalized in the computational basis. We demonstrate that
transport within the minibands can be used for an efficient
quantum search in spin-glass problems and propose a
population transfer (PT) protocol based on this theoretical
insight. In the case of a search in the space of marked states
in the IB model, PT asymptotically approaches the run-time
of the multitarget Grover which is optimal for unstructured
problems such as IB.
The paper is organized as follows. Section II contains an

analysis of the classical IB model, a qualitative discussion of
the main results, and a detailed description of the population
transfer protocol and its run-time. In Sec. III, we develop a
down-folding procedure to reduce the original problem to
the nonlinear eigenproblem in the marked state subspace.
In Sec. IV, we calculate the off-diagonal (tunneling) matrix
elements of the down-folded Hamiltonian and studied their
dependence on n and the Hamming distance using the WKB
theory. In Sec. V, we develop an expansion of the nonlinear
eigenproblem near the center of the IB shifted by a transverse
field and obtain the effective Hamiltonian H of the PT
problem. In Sec. VI, we study the statistical ensemble of
HamiltoniansH. Section VII discusses numerical results. In
Sec. VIII, we study the PT within the Born approximation.
In Sec. IX, we estimate the number of states in the miniband.
In Sec. X, we provide an overview of the cavity method for
dense random matrices. In Sec. XI, we solve the cavity
equations and obtain the distributions of the real and
imaginary parts of self-energy. In Sec. XII, we discuss the
complexity of the PT algorithm. In Sec. XIII, we provide a
comparison between PT and Grover’s algorithm with multi-
ple target states and systematic errors in the oracle phase and
driver weight. In Sec. XIV, we provide a summary and
concluding remarks.

II. BACKGROUND AND QUALITATIVE
SUMMARY OF RESULTS

A. Impurity band model:
Classical spin-glass freezing transition

It is instructive to discuss spin-glass characteristics of
the classical IB model Hcl in Eq. (3). Its free energy
demonstrates a discontinuity:

f ≈

"
− 1

β ln 2; β < βf;

− 1
β lnM − 1; β > βf;

ð4Þ

at the inverse temperature of the freezing transition βf ¼
ln 2 − ð1=nÞ lnM which separates the high-temperature
regime β < βf with the statistical weight concentrated on
2n −M states with EðzÞ ¼ 0 and the low-temperature
regime β > βf with the statistical weight concentrated in
the band of marked states −nþW ≤ EðzÞ ≤ −n −W.
Below the transition temperature for any of the marked
states, the rate of a single bit flip is exponentially small
exp½−βjEðzÞj�, and, therefore, the classical single-spin-flip
dynamics of the model is frozen. Such a nonergodic
classical dynamical phase is characterized by a nonzero
value of the Edwards-Anderson order parameter [45]:

qEA ≡ lim
t→∞

lim
n→∞

f½szi ðt0 þ tÞszi ðt0Þ�thgdis; ð5Þ

where szi ðtÞ stands for the value of the projection the
ith spin on the z axis at time t resulting from the single-
spin-flip dynamics. In Eq. (5), ½…�th stands for averaging
over the thermal ensemble for a given realization of
disorder (choice of M marked states and their energies)
with subsequent averaging over disorder realizations
denoted by ½…�dis. Note that the system size limit is
taken prior to taking the time to infinity, which means
that the time of a single spin flip diverges. The Edwards-
Anderson order parameter in the frozen phase at β > βf
is qEA ¼ 1. It is instructive to compare qEA with the
average overlap between bit string configurations
qRSB ¼ P

z;z0 expf−β½EðziÞ þ EðzjÞ�gdzizj , where dzizj ¼
ð1=nÞPkð2zki − 1Þð2zkj − 1Þ. qRSB ≠ 0 indicates replica
symmetry breaking in the model. Note that for the impurity
band model qRSB ¼ 0 for any finite inverse temperature
β ∼Oðn0Þ.
It is instructive to compare the behavior of the impurity

band model Eq. (3) with that of the random energy model
(REM) [30], in which, instead of the relatively small
number of M ≪ 2n marked sates, all 2n bit strings are
randomly assigned energies drawn from a Gaussian dis-
tribution of width

ffiffiffi
n

p
. The REM model demonstrates the

freezing transition at βf → 0 and a replica symmetry-

breaking transition at βRSB ¼ 2
ffiffiffiffiffiffiffi
ln 2

p
such that for 0 < β <

βRSB we have qEA ¼ 1 and qRSB ¼ 0 and, for β > βRSB,
qEA ¼ q ¼ 1. In this sense, the impurity band model
captures the nonergodic phase of the classical spin glass.
Note that the finite value of the freezing temperature βf > 0

in the IB is the consequence of the bimodal distribution of
classical energies which leaves a finite gap in the energy
density between the marked states and the rest of the
spectrum. This degeneracy of the classical spectrum is an
important distinction of the IB model from the REM, and,
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therefore, the comparison between the quantum behavior of
these two models has to be done with extreme care.

B. Population transfer protocol

Given a generic spin-glass model Eq. (2), we consider
the following computational primitive: Given an initial bit
string zj with an atypically low energy, we wish to produce
other bit strings with energies in a narrow range ΔEcl
around the initial one. In general, this computation can be a
difficult search problem if the number of bit strings of
interest is exponentially small compared to 2n.
Inspired by the Hamiltonian-based approaches to quan-

tum search [46] and optimization [2–4], we propose the
following quantum PT)protocol: First preparing the system
in a computational state jzjiwith classical energy EðzjÞ, we
then evolve it under the Hamiltonian without fine-tuning
the evolution time or the strength of the time-independent
transverse field B⊥. At the final moment, we projectively
measure in the computational basis and check if the outcome
z is a “solution,” i.e., z ≠ zj and the energy EðzÞ is inside the
window ΔEcl. The second term in the Hamiltonian (1)
proportional to B⊥ is responsible for the PT. It is usually
referred to as a “driver Hamiltonian” in the quantum
annealing literature [3].
We note that the output of PT z can be used as an input of

a classical optimization heuristic such as simulated
annealing or parallel tempering in a “hybrid” optimization
algorithm [47], where quantum and classical steps can be
used sequentially to gain the complementary advantages
of both [48].
In model (3), the most efficient classical algorithm is a

purely random search with running time approximately 2n.
We find that the typical run-time of the PT algorithm tPT
displays the following scaling dependence on n:

tPT ∝
�

2n

Ω logΩ

�
1=2

en=ð2B2⊥Þ: ð6Þ

Here, Ω ≫ 1 is the number of computational basis states
within the target window of energies that contribute
with comparable probabilities to the quantum state at the
end of PT. The expression applies in the range of
transverse fields n1=2 ≫ B⊥ − 1 ¼ Oð1Þ [for arbitrary
B⊥, see Eq. (34)].
The dependence of tPT on Ω is the same as in the

multitarget Grover quantum algorithm that searches for Ω
marked states starting from the fully symmetric state
jSi ¼ 2−n=2

P
z jzi. In the Hamiltonian version of this

algorithm [46], one uses the projector to jSi as a driver:
HD ¼ wjSihSj. This algorithm is proven to be optimal for
problems without structure. We emphasize that according
to Eq. (6) the exponential scaling of tPT with n differs from
that in the Grover algorithm by a term ∼B−2⊥ that can be
made arbitrary small at sufficiently large transverse fields.

The PT algorithm is qualitatively different from
the quantum annealing, adiabatic optimization, and
Hamiltonian implementation of a Grover search, because
it exploits the structure of the excited energy spectrum.
The PT Hamiltonian H (1) is nonintegrable, and its
eigenstates are delocalized in the low-energy manifold.
In the analytically tractable example considered here,

the PT algorithm has new and potentially advantageous
features compared to the Grover algorithm, whose
Hamiltonian is integrable and all of its eigenstates but
one are localized. Therefore, the quantum evolution result-
ing from the Grover Hamiltonian cannot form a massive
superposition of Ω ≫ 1 solutions if it starts from a
computational basis state. The algorithm must always start
from the state jSi. Moreover, Grover’s algorithm perfor-
mance is exponentially sensitive to fine-tuning of the
weight of the driver w on the scale δw ∼ 2−n=2

ffiffiffiffi
Ω

p
. In

contrast, the scaling of the run-time of PT (6) with n is
robust to the choice of B⊥ that can take on a broad range of
values for B⊥ ≫ 1.
The nearly optimal (Grover-like) performance of the PT

protocol is the consequence of the asymptotic orthogonality
between the eigenstates in the marked state subspace to the
rest of the Hilbert space, which suppresses the population
transport from the marked states to the Oð2nÞ of states jzi
with classical energies Ez ¼ 0 even at large B⊥. Such an
“orthogonality catastrophe” cannot be obtained within the
perturbative in B⊥ approach such as the FSA.

C. Qualitative discussion of results

Each marked state jzji is a deep local minimum of EðzÞ
separated from other minima by a typical Hamming distance
n=2, while the separation from the nearest marked state is
also extensive: dmin ¼ OðnÞ for M ¼ 2μn and μ < 1.
The transverse field B⊥ gives rise to multiqubit tunneling

between the states. The tunneling amplitudes from a given
minimum to its neighbors located at a Hamming distance d
decrease exponentially with d, while the number of
neighbors increases exponentially with d for d ¼ OðnÞ.
As a result, an eigenstate jψβi of H associated with
the impurity band can become delocalized over a large
subset of marked states Sβ with size 1 ≪ jSβj ∝ Mα and
0 < α ≤ 1. For α ¼ 0, the eigenstate jψβi is localized; for
α ¼ 1, the eigenstate is delocalized in the entire space
of marked states. For 0 < α < 1, the eigenstate can be
considered “nonergodic,” and its support set Sβ is sparse in
the space of the marked states. We express the transition
probability from jzji to jzi

Pðt; zjzjÞ ¼
����X

β

hzjψβihψβjzjie−iEβt

����2; ð7Þ

in terms of the eigenstates and corresponding eigenvalues
of H, where Hjψβi ¼ Eβjψβi. In the delocalized phase,
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for a given state jzji there exists a large set of eigenstates
jψβi that have peaks at jzji. These eigenstates possess
important properties [21,22,49]: They have largely over-
lapping supports ∩β Sβ ≈ SðzjÞ, and they are close in
energy, thus forming a narrow miniband. The miniband
width Γ may be interpreted as the inverse scrambling time
and determines the width of the plateau in the Fourier
transform of the typical transition probability P̃ðω; zjzjÞ
[21,50]. In other words, the significant PTof Pðt; zjzjÞ from
the initial marked state jzji ∈ S into the other states of the
same miniband S occurs over the time tPT ∼ 1=Γ. The
window ΔEcl is related to the miniband width Γ.
Understanding the properties of nonergodic delocalized

states is crucial for describing the dynamics of quantum
spin glasses driven by many-body coherent tunneling
processes. Developing its microscopic theory is a chal-
lenging problem. This paper studies the transport problem
in an IB model (3) by making use of the down-folded
Hamiltonian in the marked state subspace derived in
Secs. III and V. While the original Hamiltonian (1) is
sparse in the basis of states jzi (it couples only states
separated by Hamming distance 1), the down-folded
Hamiltonian H (41) is a dense M ×M matrix.
The transverse field leads to a uniform shift ∼B2⊥ of the

marked state energies as shown in Sec. V, Eqs. (36) and
(37). Diagonal elements of Hii are given by the marked
state energies counted off from the center of the shifted
impurity band. Their probability density function (PDF)
is assumed to be exponentially bounded with some
width W.
Each pair of marked states is coupled via multiqubit

tunneling. The off-diagonal matrix elements Hij ¼
VðdijÞ cosϕðdijÞ are completely determined by the
Hamming distance dij between the marked states zi and
zj. The amplitude VðdÞ decays steeply with d, inversely
proportional to a square root of ðndÞ [see Eq. (42)]. The
phase ϕ shown in Fig. 5 monotonically increases by Oð1Þ
when d is changed by 1. In the analysis of spectral
properties of Hij, the quantity cosϕðdijÞ can be replaced
by a random sign. The explicit form of VðdÞ and ϕðdÞ is
obtained using the WKB theory of collective spin tunnel-
ing. At B⊥ > 1, the tunneling paths correspond to long
spin-flip sequences connecting the initial and final states.
They include many loops passing through the states with
EðzÞ ¼ 0 that are neglected in the FSA.
The typical matrix element between the two marked

states is V typ∼n22−n=2e−n=ð4B2⊥Þ. The typical matrix element
between a given marked state and its nearest neighbor
is also exponentially small in n, but it is exponentially
larger than the value V typ. This fact corresponds to a
strong hierarchy of the off-diagonal matrix elements of
Hij which is a signature of their heavy-tailed probability
density function [33,37]. Such matrices are called Levi
matrices.

The PDF of the rescaled squared amplitudes wij ¼
V2ðdijÞ=V2

typ derived in Sec. VI B is

PDFðwÞ ¼ 1

w2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π logw

p ; w ∈ ½1;∞Þ: ð8Þ

The particular form of scaling is the direct consequence of
the fact that our problem has no “structure”: The tunneling
matrix elements depend only on the Hamming distance,
and marked states are chosen at random.
The key difference of the ensemble of matricesHij from

Levy matrices studied in the literature [33–35,37] is that
the dispersion W of the diagonal matrix elements is much
larger than the typical magnitude of the off-diagonal
elements V typ. Therefore, Hij can be called preferred basis
Levi matrices (PBLMs).
We note that the existence of heavy tails in the PDF of

the off-diagonal matrix elements of the down-folded
Hamiltonian H is due to the infinite dimension of the
Hilbert space of the original problem (1) for n → ∞. This
result happens because the exponential decay of the matrix
elements with the Hamming distance d is compensated
by the exponential growth of the number of states at the
distance d from a given state. We believe that the PBLM
structure is a generic feature of the effective Hamiltonians
for PT at the tail of the density of states in quantum spin-
glass problems.
Unlike the standard Levi ensemble, the eigenstates of

PBLMs allow for the existence of nonergodic delocalized
states when the widthW is much bigger than the largest off-
diagonal matrix element in a typical row of Hij and much
smaller than the largest off-diagonal element in a matrix

V typM1=2 ≪ W ≪ V typM: ð9Þ

For smaller dispersion W ≲ V typM1=2, the matrix eigen-
states are ergodic, while for W ≳ V typM the eigenstates are
localized. Such a phase diagram resembles the one in the
Rosenzweig-Porter (RP) model [21,36]. The difference of
RP from PBLM is that the statistics of the off-diagonal
matrix elements in the RP ensemble are Gaussian [51]
rather than polynomial (8). In this paper, we focus on
exploring PT transfer within the nonergodic delocalized
phase, which is more likely to generalize to other models.
We note that the localized phase does not support pop-
ulation transfer.
Because of the PBLM structure of the HamiltonianH, one

can expect that the run-time of the PT protocol tPT will have
a heavy-tailed PDF whose form is of practical interest. It is
closely related to the PDF of the miniband widths Γ ∼ 1=tPT.
We obtain the PDF(Γ) by making use of the cavity method
for random symmetric matrices [32,33,35,52].
In previous work, the cavity equations are solved only in

their linearized form, i.e., near the localization transition.
We are able to solve fully nonlinear cavity equations in the
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delocalized nonergodic phase. We obtain the boundaries of
the phase in terms of the ratio of W=V typ and also the form
of PðΓÞ inside the phase. It is given by the alpha-stable
Levi distribution [33,53] with the tail index 1, most
probable value Γtyp ¼ V typðπΩ logΩ=4Þ1=2, and character-
istic dispersion πΓtyp=ð4 logΩÞ, where Ω is the typical
number of states in the miniband. This number Ω ¼
ðπMV typ=WÞ2 is a square function of the ratio of the
typical tunneling matrix element V typ to the level separation
W=M. In a nonergodic delocalized phase, M ≫ Ω ≫ 1,
and the typical PT time tPT ∼ 1=Γtyp obeys the condition

ðM logMÞ−1=2 ≪ tPTV typ ∼ ðΩ logΩÞ−1=2 ≪ 1: ð10Þ

We build on the observations made in the IB model and
provide qualitative arguments that PTwill have a quadratic
speedup over QMC in some quantum search problems
where tunneling is a computational bottleneck.
It is instructive to connect the phase boundaries of the

NEE regime to that of the Rosenzweig-Porter random
matrix model. We proceed by parametrizing the scaling of
the width W with M as follows:

W ¼ λMγ=2V typ; ð11Þ

where γ is a real non-negative parameter, V typ is the typical
off-diagonal matrix element, and λ is an auxiliary constant
of the order of one. A direct analogy between the scaling
exponent γ and its counterpart in the RP model can now be
made. It determines the number of matrix elements reso-
nant with the given one. γ > 2 correspond to a vanishing
number of resonances and, therefore, a localized phase.
The nonergodic phase in these notations corresponds to
1 < γ < 2, where the number of resonances scales with the
system size yet remains measure zero compared to the total
number of levels in the system. γ ≤ 1 corresponds to the
ergodic phase.

III. DOWN-FOLDING INTO THE SUBSPACE
OF THE MARKED STATES AND
NONLINEAR EIGENPROBLEM

The driver HamiltonianHD in Eq (1) connects bit strings
that are separated by a Hamming distance d ¼ 1. We note
that, on one hand, marked states are separated by large
Hamming distances dij with typical value d ¼ n=2.
Therefore, a pair of marked states jii and jji is coupled
by elementary spin-flip processes corresponding to high
orders ðHDÞk of the driver Hamiltonian with k ≥ dij. On
the other hand, the resolvent of the driver Hamiltonian

GðEÞ ¼ 1

E −HD
ð12Þ

connects directly every pair of marked states. Furthermore,
because HD is invariant under permutations of bits, the
matrix elements GijðEÞ ¼ hzijGðEÞjzji depend only on the
Hamming distance dij between the corresponding states.
They are exponentially small in n for extensive dij ¼ OðnÞ.
Therefore, one might expect that under certain conditions
the quantum evolution stays approximately confined to the
marked state subspace and can be naturally described by
the down-folded Hamiltonian whose M ×M matrix rep-
resentation is dense in the basis of marked states.
We use the identity

GðEÞHcljψi ¼ jψi; ð13Þ

where E and jψi are an eigenvalue and the corresponding
eigenvector of H, respectively. We introduce a new vector

jAi ¼
ffiffiffiffiffiffiffi
Hcl

p
jψi ð14Þ

that has no support in the subspace orthogonal to that of
marked states. Then, multiplying both parts of Eq. (13) byffiffiffiffiffiffiffi
Hcl

p
, we obtain after simple transformations

ðHcl þ ΛÞjAi ¼ EjAi; ð15Þ

where

Λ ¼
ffiffiffiffiffiffiffi
Hcl

p
HDGðEÞ

ffiffiffiffiffiffiffi
Hcl

p
: ð16Þ

The operator Λ plays the role of a “driver Hamiltonian”
in the down-folded picture, and it couples states in the
marked subspace.
Equation (15) can be written in matrix form (see the

Appendix A for details)

XM
j¼1

HijðEÞAj ¼ EAi; ð17Þ

where Ai ¼ hAjzii and Hij is a dense symmetric M ×M
matrix

HijðEÞ ¼ δijEðziÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðziÞEðzjÞ

q
cijðEÞ: ð18Þ

Here, δij is the Kronecker delta, and

cijðEÞ ¼ cðE; jzi − zjjÞ ¼ hzijHD
1

HD − E
jzji ð19Þ

is a coupling coefficient that depends only on a Hamming
distance jzi − zjj between the bit strings zi and zj.
We note that Eq. (17) has the form of a nonlinear

eigenproblem. A solution of Eq. (17) for theM-dimensional
vector jAi with a nonzero norm requires
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det½HðEÞ − IE� ¼ 0; ð20Þ

where I is the identity matrix. Because the down-folded
Hamiltonian HðEÞ explicitly depends on the energy E,
different roots Eβ of Eq. (20) correspond to different
Hamiltonian matrices HijðEβÞ. This correspondence can
be understood from the fact that the original 2n × 2n

Hamiltonian (1) couples the M-dimensional marked state
subspace to the rest of the Hilbert space. Therefore, the
projections of the eigenvectors jψβi of H onto the subspace
are, in general, neither normalized nor orthogonal. The same
is true for the corresponding vectors jAβi ¼

ffiffiffiffiffiffiffi
Hcl

p jψβi. The
normalization condition for the projections has the form
(see Appendix A for details)

XM
j;i¼1

1

QjiðEβÞ
ψβðzjÞψβðziÞ ¼ 1; ð21Þ

where

1

QijðEÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðziÞEðzjÞ

q d
dE

�
HijðEÞ

E

�
: ð22Þ

This condition along with Eqs. (17)–(20) completely defines
the eigenvector projections onto the marked state subspace
and the corresponding eigenvalues.
We observe that there are exactlyM roots Eβ of Eq. (20)

that originate from M classical energies of the marked
states EðzjÞ at B⊥ ¼ 0. These eigenvalues and the corre-
sponding eigenstates are the sole focus of our study. Here,
we just mention briefly that the rest of the states originate
in the limit Hcl → 0 from the eigenstates of the driver
Hamiltonian whose energy levels −B⊥ðn − 2mÞ (shown
in Fig. 1) correspond to the total spin-x projections
n − 2m ∈ ½−n; n�. The levels −B⊥ðn − 2mÞ have degen-
eracy ðnmÞ, which is partially lifted due to the coupling to the
impurity band with M states. The splitting of the driver
energy levels −B⊥ðn − 2mÞ increases as a function of the
transverse field in the vicinity of “resonances” with the
levels of the impurity band where B⊥ðn − 2mÞ ≈ −n for
integer values of m. At resonance, the eigenstates of the
driver with total spin-x projection n − 2m are strongly
hybridized with the marked states jzji. As discussed below,
the width of the resonances remains exponentially small in
n for B⊥ ¼ Oðn0Þ. In Fig. 6, we plot the evolution of the
energy spectrum of the Hamiltonian H as a function of the
transverse field for the case of two impurity states M ¼ 2.

IV. COUPLING COEFFICIENTS IN THE
DOWN-FOLDED HAMILTONIAN

The coupling coefficient cijðEÞ≡ cðE; dijÞ for i ≠ j
determines the off-diagonal matrix element of the down-
folded Hamiltonian (18) corresponding to the tunneling

transition that connects marked states jzii and jzji. In the IB
model, the tunneling matrix element depends only on the
Hamming distance dij between the states. It can be
calculated in the explicit form from Eq. (19). For this
calculation, we use the basis of eigenstates jxi of the driver
Hamiltonian HDjxi ¼ Hx

Djxi in Eq. (19). They correspond
to bit strings x ¼ ðx1;…; xnÞ of individual qubits polarized
in the positive xa ¼ 0 and negative xa ¼ 1 direction of the
x axis. The eigenvalues of the driver Hx

D ¼ −B⊥ðn − 2hxÞ
depend only on the Hamming weight of the bit strings x.
Therefore, one can perform explicitly the partial summation
over basis vectors jxi in Eq. (19) under the conditions thatP

a x
a ¼ k for all bit positions a such that zaj ≠ zai andP

a x
a ¼ l for all a where zaj ¼ zai . Finally, the result (19)

can be written as a double sum over k ∈ ð0; n − dijÞ and
l ∈ ð0; dijÞ:

cijðEÞ ¼
Xn−dij
k¼0

Xdij
l¼0

�
n
k

��
n − dij

l

� ð−1Þl2−n
1þ E

B⊥ðn−2k−2lÞ
: ð23Þ

Here, dij is the Hamming distance between bit strings zi
and zj. Plots of coupling coefficients as a function of
Hamming distance d based on Eq. (23) are given in Fig. 2.
They display qualitatively different behavior depending on
the value of the parameter nB⊥=jEj.
For nB⊥=jEj < 1, the coefficient cðE; dÞ decays expo-

nentially with d in the entire range of values d ∈ ½0; n�. For
nB⊥=jEj > 1, the coefficient decays until d ∼ n=2, corre-
sponding to a minimum overlap between the marked states,
and then begins to grow. For large transverse field B⊥ ≫ 1,
the behavior with d is nearly symmetric with respect to
d ¼ n=2, and to leading order it does not depend on B⊥.
Unfortunately, the expression (23) is quite involved and is
not suitable for the study of the asymptotic properties of the
population transfer in the limit of large n.
For a very weak transverse field B⊥ ≪ n−1=2, using the

perturbation theory in B⊥ to the leading order, one can
obtain a standard expression [18] for the coupling coef-
ficient: jcðE; dÞj ≃ d!ðB⊥=nÞd. It is given by the sum of the
transition amplitudes over the d! shortest paths between
the states jzii and jzji separated by a Hamming distance d.
Intermediate states jzi along each path correspond to
EðzÞ ¼ 0, while energies of initial and final states are
−n (see Fig. 1).
For larger transverse-field values (but still B⊥ ≪ 1), the

perturbative expression in the small-B⊥ limit can be
modified to include the range of B⊥ ¼ Oðn0Þ but
B⊥ ≪ 1. In that range,

jcðE; dÞj ≃ d!

�
B⊥
n

�
d
eB

2⊥f½(d2ð3n−2dÞ)=ð6n2Þ�þ½n=ð12Þ�g: ð24Þ

One can see that for small B⊥ the matrix element falls down
with d extremely steeply despite the presence of the
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factorial factor d! in Eq. (24). We note that this perturbation
(FSA) expression is qualitatively valid in the range
B⊥ < jE=nj ≪ 1. It gives a correct leading-order form of
the mobility edge in quantum REM [18,27–29] at small
B⊥ ≪ 1.
For transverse field B⊥ > jEj=n, the dependence of

cijðEÞ on dij changes qualitatively. It becomes non-
monotonic, reaching its minimum at the point n=2 of
minimum overlap between the bit strings zi and zj. In a
certain region around the minimum, it has oscillatory
behavior, as seen in Fig. 2. The boundary of this region
is shown with black dots. The details of the behavior in
the oscillatory region are shown in Fig. 4. The expo-
nential dependence of the envelope of cðE; dÞ on d is
captured by the factor 1=ðndÞ and is independent of the
transverse-field strength. This region of d and values of
B⊥ > jEj=n are of the most relevance to the transport in
nonergodic minibands which is of central interest in
this paper.

A. WKB calculation of coupling coefficients

In this paper, we develop an approach (described in
Appendix B) based on the WKB theory for large spin [54]
to calculate the coefficient cðE; dÞ for n ≫ 1 and arbitrary
values of transverse fields B⊥ without relying on the
perturbation theory in B⊥. The coefficient cijðEÞ can be
expressed in terms of the operator of the total spin-x
projection Sx ¼ 1=2

P
n
j¼1 σ

j
x:

cijðEÞ ¼ δij − EhzijðEþ 2B⊥SxÞ−1jzji: ð25Þ

We utilize the basis of eigenstates jmi of the operator
Sz ¼

P
n
k¼1 σ

k
z corresponding to its eigenvalues m ∈

½−n=2; n=2� and the maximum value of the total spin
S ¼ n=2:

Szjmi ¼ mjmi; m ¼ −n=2;…; n=2: ð26Þ

The state jn=2 − di is a normalized sum of all computa-
tional basis states jzi with d spins pointing in the negative z
direction and n − d spins pointing in the positive z direction
(m ¼ n=2 − d):

jn=2 − di ¼ 1ffiffiffiffiffiffiðndÞ
p X

z∈f0;1gn
δjzj;djzi: ð27Þ

Here, jzj ¼ P
n
k¼1 z

k and δk;d is a Kronecker delta.
Because the coefficients cijðEÞ in Eq. (23) depend only

on the Hamming distance jzi − zjj between the bit strings zi
and zj, we can assume, without the loss of generality, that in
Eq. (25) one of the bit strings, e.g., jzji, corresponds to all
individual spins pointing in the positive z direction:

jzji ¼ j00…0i≡ jn=2i ðmz ¼ n=2Þ: ð28Þ

The main observation is that we can pick, instead of
the state jzii, any computational basis state jzi whose
Hamming weight satisfies the condition jzj ¼ jzij without
changing the value of the coefficient cijðEÞ ¼ cðE; jzijÞ.
Therefore, averaging both sides of Eq. (25) over the states
jzii that satisfy the condition jzij ¼ d for some integer
d ∈ ½0; n�, we obtain

cðE; dÞ ¼ δd;0 −
EffiffiffiffiffiffiðndÞ

p Gðn=2Þ−d;ðn=2ÞðEÞ: ð29Þ

Here, Gm;ðn=2ÞðEÞ ¼ hmjðEþ 2B⊥SxÞ−1jn=2i are the
matrix elements of the resolvent (12) of the transverse-
field HamiltonianHD between the states (27) that belong to
a maximum total spin subspace S ¼ n=2.
As shown below, for typical instances of the ensemble of

Hamiltonians H, the Hamming distance from a randomly
selected marked state to its closest neighbor is an extensive

FIG. 2. Colored lines show the dependence of the rescaled
logarithm of the coupling coefficient n−1 log c2ðE; dÞ [Eq. (23)]
on the rescaled Hamming distance d=n for n ¼ 400. The energy
E is set to the value Eð0Þ ≃ −n − B2⊥ that reflects the overall shift
of the impurity band due to the transverse field [cf. Eqs. (36) and
(37)]. Different colors correspond to different values of the
transverse field B⊥ ¼ 1.93 (red), 1.43 (blue), 1.11 (green),
1.01 (brown), 0.99 (purple), and 0.95 (gray). The scale along
the y axis suggests that cðEð0Þ; dÞ scales exponentially with
n for d=n ¼ Oðn0Þ. The inset shows the leading-order factor
in the d dependence of the coupling coefficient for B⊥ > jEj=n
[cf. Eq. (33)]. Black dots show the boundaries d ¼ n=2 −m0;
n=2þm0 of the region of the oscillatory behavior of cðE; dÞ
with d given by the WKB theory [Eq. (32)] (see Appendix B
for details).
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quantity OðnÞ. Therefore, the above off-diagonal matrix
elements of the resolvent can be analyzed in a semiclassical
approximation corresponding to S ¼ n=2 ≫ 1. This
approximation for the quantum propagator of a large spin
and diagonal elements of the resolvent is considered in
Refs. [55,56] using the spin coherent state path-integral
representation. The analysis in these papers is quite
involved, because the path-integral formulation requires
a careful treatment of the fluctuation determinant and a so-
called Solari-Kochetov correction in the action. Also, these
results are focused on a general case of a large spin
Hamiltonian and consider only diagonal elements of the
resolvent. Because of this difference, instead of trying to
extend the results in Refs. [55,56] to our case, we follow a
different path.
The resolvent satisfies the equation

I − 2B⊥SxGðEÞ ¼ EGðEÞ;

where I is the identity operator. We write this equation in
the basis of states jmi [Eq. (26)]. From Eq. (12), we obtain

δm;ðn=2Þ þ
X
s¼�1

uðm − s=2ÞGmþs;ðn=2Þ ¼ EGm;ðn=2Þ; ð30Þ

uðmÞ ¼ −B⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 −m2

p
; L ¼ nþ 1

2
: ð31Þ

In the limit of large n ≫ 1, we solve this equation using
the discrete WKB approximation method [54,57]. In the
WKB analysis of Eq. (30), the function 2uðmÞ plays the
role of an effective potential for the classical system with
coordinate m and energy E. For 2uðmÞ > E the WKB
solution for the resolvent Gm;n=2ðEÞ displays an oscillatory
behavior with m, while for 2uðmÞ < E it exponentially
increases with m. The boundaries of the oscillatory region
m ∈ ½−m0ðEÞ; m0ðEÞ� are “turning points” of the classical
motion and are given by the condition 2uðm0Þ ¼ E (see
Fig. 3) where

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 −

�
E

4B⊥

�
2

s
: ð32Þ

In Fig. 4, we plot the comparison between the coefficient
cðE; dÞ computed based on the exact expression (23)
and the WKB asymptotic (details of the WKB analysis
are given in Appendix B).
In what follows, we are interested in the region d ∈

½n=2 −m0; n=2þm0� with m0 ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn=2Þ2 − ðE=B⊥Þ2

p
defined by the condition uðm0Þ ¼ E. This region is of
oscillatory behavior of cðE; dÞ with d, where the leading-
order exponential dependence on n is given by the
expression

cðE; dÞ ∝ 1ffiffiffiffiffiffiðndÞ
p e−nθðB⊥Þ sinϕðE; dÞ; ð33Þ

with the prefactor given in Appendix B, Eqs. (B23)
and (B24).
The function θðB⊥Þ in Eq. (33) equals

θðB⊥Þ ¼
2arctanhðB−1⊥ Þ þ B⊥ ln ð1 − B−2⊥ Þ

4B⊥
: ð34Þ

It behaves at a large argument as θ ≃ 1=ð4B2⊥Þ.
An explicit form of theWKB phase ϕðE; dÞ in Eq. (33) is

given in Appendix B, Eq. (B11). The dependence of the
phase on d for different values of B⊥ is shown in Fig. 5.
This phase varies byOð1Þ when d is changed by 1, and it is
responsible for fast oscillation of the coupling coefficient
with the Hamming distance between marked states d. Its
dependence on d simplifies in the limit of large transverse
field B⊥ ≫ 1:

ϕðE; dÞ ≃ πd
2

−
πn
4

χð1=2 − d=nÞ
B⊥

; ð35Þ

where χðxÞ ≃ 1–2 arcsinðxÞ=π þOðn−1Þ. The second term
in Eq. (35) is much smaller than the first one and varies
very little when d is changed by 1. A predominately linear
dependence of ϕðE; dÞ on d at large fields can be seen in
Fig. 5. This property is important in the analytical study of
population transfer.

FIG. 3. The black line shows the plot of 2uðmÞ (31) vs m
between the interval boundaries �m ¼ L ¼ ðnþ 1Þ=2. The
horizontal dashed-dotted blue line depicts the region of oscil-
latory behavior of Gm;n=2ðEÞ with m for a given E described by
the WKB solution (33) [see also Eq. (B5) in Appendix B] and
shown in Fig. 4. The boundaries of this region are the turning
points m ¼ �m0ðEÞ given by Eq. (32) and depicted with blue
dots. The regions of m ∈ ½m0ðEÞ; L� ∪ ½−L;−m0ðEÞ� corre-
spond to the exponential growth of Gm;n=2ðEÞ with m (or
decrease with d ¼ n=2 −m). The WKB solution for the right
region is given in Eq. (B10).
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For large transverse fields, the magnitude of the squared
coupling coefficient (33) can be estimated to exponential
accuracy as c2ðE; dÞ ∼ exp½−n=ð2B2⊥Þ�=ðndÞ. We note that
the number of marked states Md accessible via all possible
d-bit flips from a given state is Md ¼ M2−nðndÞ. Therefore,
the leading-order dependence of the coupling coefficient on
d is proportional to 1=

ffiffiffiffiffiffiffi
Md

p
. As shown later, in the limit of

large transverse fields, this dependence leads to a nearly
Grover complexity of the PT algorithm, up to a factor
∼ exp½−n=ð4B2⊥Þ�, which gives a very small correction to
Grover scaling for large B⊥. However, when d decreases
below the boundary value d < n=2 −m0, the coupling
coefficient grows exponentially faster than 1=

ffiffiffiffiffiffiffi
Md

p
, as

follows from the discussion in Appendix B [cf. Eq. (B13)].

V. DOWN-FOLDED HAMILTONIAN NEAR THE
CENTER OF THE IMPURITY BAND

The coupling coefficients cðE; dÞ [Eq. (23)] decay
exponentially with Hamming distances for d ¼ OðnÞ

(see details in Sec. IV). Marked states are selected at
random, and Hamming distances between them are of the
order of nwhen the number of the statesM is exponentially
smaller than 2n. Because the off-diagonal matrix elements
of the down-folded Hamiltonian HijðEÞ ∝ cðE; dijÞ, they
are exponentially small in n. At the same time, the width of
the distribution of energies of the marked states EðzjÞ ¼
−nþ ϵj is also assumed to be very small: W ≪ B⊥ (it is
exponentially small in n for the cases of interest).
Therefore, we can solve the nonlinear eigenvalue problem
[Eqs. (17)–(20)] by an iterative approach treating the off-
diagonal part of HðEÞ and terms ∝ ϵj as a perturbation.
Details are given in Appendix C.
At zeroth order in the perturbation, the down-folded

Hamiltonian Hð0Þ
ij ðEÞ ¼ δijn½cðE; 0Þ − 1� has one M-fold

degenerate energy level Eð0Þ that is a root of the equation

Hð0Þ
ij ðEÞ ¼ E that originates from the marked state energy

Eð0Þ→−n, in the limit of B⊥→0. Using cðE;0Þ from
Eqs. (19) and (23), the explicit form of the equation
for Eð0Þ is

Eð0Þ ¼ −n − Δ0; ð36Þ

Δ0 ¼ n2−n
Xn
d¼0

�
n
d

�
B⊥ðn − 2dÞ

nþ Δ0 − B⊥ðn − 2dÞ : ð37Þ

FIG. 4. The blue curve shows the d dependence of the (rescaled)
coupling coefficients cðE; dÞ computed from the exact expression
(23) with n ¼ 224 and E ¼ −226.15. We denote the binomial
coefficient as ðndÞ≡ Cn

d. The transverse field is B⊥ ¼ 1.459. For
this value of B⊥, the impurity band levels EðzjÞ lie approximately
in the middle of the interval between the p ¼ 34th and p ¼ 35th
excited energy levels −B⊥ðn − 2pÞ of the driver Hamiltonian. Red
points depict the d dependence of the same rescaled coefficients
cðE; dÞ given by Gn=2−d;n=2 expðnθÞ and determined by the
asymptoticWKB expressions given in Appendix B [see Eqs. (B10)
and (B13)]. Dashed lines indicate the boundaries of the oscillatory
behavior of the WKB solution [Eq. (B9)]. The inset shows the
plot for the exponential d dependence of the rescaled coupling
coefficient −cðE; dÞ in the region of its monotonic behavior d ∈
½1; n=2 −m0ðEÞ� [cf. Eqs. (B13) and (29)]. The solid blue line
corresponds to the exact expression (23), while the approximate
WKB solution is shown with red points.

FIG. 5. Plots of the WKB phase ϕd ≡ ϕðE; dÞ of the oscillations
of the coupling coefficient cðE; dÞ with the Hamming distance d
for a number of qubits n ¼ 1000. Both axes are rescaled by n. The
phase is plotted relative to its value at d ¼ n=2. We set the energy
E ¼ Eð0Þ, where Eð0Þ ≃ −n − B2⊥ reflects the overall shift of the
impurity band due to the transverse field [cf. Eqs. (36) and (37)].
Different color curves correspond to different values of B⊥ >
jEj=n with B⊥ ¼ 1.1 (brown), B⊥ ¼ 1.2 (orange), B⊥ ¼ 1.5
(red), B⊥ ¼ 2.1 (green), B⊥ ¼ 3.2 (blue), and B⊥ ¼ 10 (black).
Each curve varies in its own range n=2 − d ∈ ½−m0; m0�, where
m0 is given in Eq. (32) and determines the region of oscillatory
behavior of the coupling coefficients (see Appendix B for details).
For B⊥ ≃ 1, the region of oscillatory behavior shrinks to a point
d ≃ n=2. In the limit of large values of B⊥ ≫ 1, this behavior
occupies almost the entire range d ∈ ½0; n�.
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Here, Δ0 is the root of the above transcendental equation
that satisfies the condition limB⊥→0Δ0 ¼ 0. In general, the
sum (37) is dominated by the region of values of d such that
jd − n=2j ¼ Oðn1=2Þ where the factor 2−nðndÞ reaches its
maximum ∼n−1=2. In that region, we replace the binomial
coefficient with a Gaussian function of d and the summa-
tion with the integral over d. Taking the integral, we obtain
Δ0 in a form of a series expansion in powers of n−1:

Δ0 ≃ −B2⊥ −
B4⊥
n

þOðn−2Þ: ð38Þ

A comparison between the exact and asymptotic solutions
for Δ0 is shown in Fig. 6. For B⊥ ≪ n1=2, the overall shift
of the energies of the marked states is negative and
quadratic in B⊥.
According to Eq. (21), allM degenerate eigenstates jψiβ

have the same weight QðEð0ÞÞ ¼ P
M
j¼1 jψ ð0Þ

β ðzjÞj2 on the
marked state subspace. In the large n limit, we have

QðEð0ÞÞ ≃ 1 −
B2⊥
n

þOðB4⊥=n2Þ: ð39Þ

Under the condition ∝ B2⊥=n ≪ 1, the eigenstates are
dominated by their projections on the marked state sub-
space. In the limit n → ∞, they are asymptotically orthogo-
nal to the computational basis states outside the IB. Such an
orthogonality catastrophe cannot be obtained within the
perturbative in B⊥ approach such as the FSA.
The exact dependence of the weight Q on transverse

field B⊥ is given in Fig. 7. The expression (39) is
valid for B⊥ away from their “resonant” values
B⊥;p ≃ n=ðn − 2pÞ, where the M-fold degenerate
energy level “crosses” the eigenvalues of the driver
Hamiltonian, Eð0Þ ¼ −B⊥ðn − 2pÞ, for integer values of
p, as shown in Fig. 6. The width of such resonance
regions ΔB⊥;p ∝ 2−n=2ðnpÞ remains exponentially small in

n for n=2 − p ≫ n1=2.
In this study, we focus on the off-resonance case depicted

in Fig. 1. One can see from Fig. 6 that B⊥;p increases with p
and so is the width of the resonance region. For B⊥
parametrically large compared to unity, one needs to make
sure that n is also large enough so that the width of
the resonance regions is small (cf. Fig. 8). Away from
resonance, all M impurity band eigenstates are well
localized in the marked states subspace [cf. Eq. (39)].
In the spirit of the degenerate perturbation theory, there

exists an effective Hamiltonian H that determines the
correct zeroth-order eigenstates and removes the degen-
eracy of the energy levels:

Hjψ ð0Þ
β i ¼ Eð1Þ

β jψ ð0Þ
β i: ð40Þ

FIG. 6. Solid lines show the dependence on the transverse field
B⊥ of the eigenvalues Eβ of the nonlinear eigenvalue problem
with Hamiltonian HðEÞ for the case of n ¼ 50 and M ¼ 2. The
plot shows the repeated avoided crossing between the two
systems of eigenvalues. One system (colored lines) corresponds
to the eigenvalues of the transverse-field (driver) Hamiltonian
HD ¼ −B⊥

P
n
k¼0 σ

k
x in the limit Hcl → 0. The second system of

eigenvalues corresponds to the energies of the two marked states
in the limit B⊥ → 0. The splitting of the eigenvalues is exponen-
tially small in n and not resolved in the plot. The asymptotic

expressions (36) and (37) for the two eigenvalues Eð0Þ
1;2 ¼ Eð0Þ

neglecting the tunneling splitting and setting EðzjÞ ¼ −n for all
j ∈ ½1;M� are shown with a dashed gray line.

FIG. 7. The solid red line shows the dependence of the total
weight Q vs transverse field B⊥ for n ¼ 40. Vertical black and
blue lines, respectively, depict the locations of p-even and p-odd
resonances B⊥ ¼ B⊥p defined in the text. The total weight Q
undergoes sharp decreases in the vicinity of even resonances. For
p < 5, the resonance regions are so narrow that dips in Q are not
seen. The width of the regions grows steeply with p.
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Its matrix in the basis of the marked states has the form
Hij ¼ δijϵi þ ncðEð0Þ; dijÞ, where we neglect small non-
important corrections (see Appendix C). Using the expres-
sion for the coupling coefficient (33) given in Appendix B,
[Eqs. (B23) and (B24)], we have

Hij ¼ δijϵj þ ð1 − δijÞVij

ffiffiffi
2

p
sinϕðdijÞ: ð41Þ

Here, ϕðdÞ≡ ϕðEð0Þ; dÞ is a WKB phase shown in Fig. 5
that describes the oscillation of the matrix elements with
the Hamming distance. Its explicit form is given in
Appendix B, Eq. (B11), and also above in Eq. (35)
for the case of large transverse fields. The amplitude Vij

equals

Vij ≡ VðdijÞ; VðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðd=nÞ

p n5=4e−nθðB⊥ÞffiffiffiffiffiffiðndÞ
p ; ð42Þ

where i ≠ j and the coefficient AðρÞ equals [cf. Eq. (B24)]

AðρÞ ¼
ffiffiffiffiffi
π

32

r
e−B⊥arccothB⊥

ðB2⊥ − 1ÞυðρÞsin4½ϕðn=2Þ� ; ð43Þ

υðρÞ ¼
�
1 −

ð1 − 2ρÞ2
1 − B−2⊥

�
1=2

: ð44Þ

It is independent of n apart from the phase ϕðn=2Þ, whose
explicit form is

ϕðn=2Þ ¼ π

4
½nð1 − B−1⊥ Þ − B⊥�: ð45Þ

The function θðB⊥Þ is given in Eq. (34). Expanding
Eq. (34) in the limit B⊥ ≫ 1,

θ ≃
1

4B2⊥
þ 1

24B4⊥
þ 1

60B6⊥
þ � � � : ð46Þ

In that limit, θ ≪ 1. We note that, even for modest values of
the transverse field, e.g., B⊥ ≃ 1.46 (corresponding to that
in Fig. 4), the first term provides a good estimate to the
value of θ ≃ 0.13 (error 9%). We refer to H in Eq. (41) as
the IB Hamiltonian.
The form of the IB Hamiltonian (41) applies only to the

region of oscillatory behavior dij ∈ ½n=2 −m0; n=2þm0�
of the coupling coefficients cijðEÞ with Hamming distance
dij, where m0 is given in Eq. (32). This above condition for
dij is always satisfied in a typical row of the matrix dij for
the values ofM considered in this paper [see the discussion
in Appendix G and Eq. (G32)].

VI. STATISTICAL ENSEMBLE
OF THE IMPURITY

BAND HAMILTONIANS

Properties of the eigenstates and eigenvalues
[Eq. (40)] of the IB Hamiltonian H [Eq. (41)] determine
the population transfer within the impurity band and are,
thus, of central interest for us in this study. They depend
on the statistical ensemble of IB Hamiltonians. In the
model considered in this paper, diagonal elements ϵj of
H are selected at random, independently from each
other and from the choice of the corresponding marked
states jzji. In the present discussion, we assume that the
PDF pðϵÞ of ϵj is exponential bounded with the width
W. The results do not depend on the particular form of
pðϵÞ. For the sake of specificity in calculations, we use
the window function form

pðϵÞ ¼ θðW=2 − jϵjÞ; ð47Þ

where θðxÞ is a Heaviside theta function. For the
physical effects discussed in this paper to take place,
the width W needs to scale down exponentially with n:

lim
n→∞

logðW1=nÞ ¼ Oðn0Þ: ð48Þ

A. Off-diagonal matrix elements

For fixed energies ϵj, the matrix of the IB
Hamiltonian Hij is entirely determined by the symmet-
ric matrix of Hamming distances dij between the bit
strings corresponding to the marked states. The set
of M bit strings is randomly sampled from the full
set of all possible 2n bit strings f0; 1gn without
replacement; see Appendix D. Elements of the matrix
dij above or below the main diagonal are considered
independent from each other and taken from the
binomial distribution pd:

FIG. 8. Plot of the maximum value of the transverse field
at midresonance point Bmax⊥ as a function of n. We define
Bmax⊥ ¼ ðB⊥p þ B⊥pþ1Þ=2, where B⊥;p ≃ n=ðn − 2pÞ satisfies
the equation Eð0Þ ¼ −B⊥;kðn − 2pÞ and the integer p is equal
to its maximum possible value p ¼ pmax for which the weight
factor Q ¼ QððB⊥p þ B⊥pþ1Þ=2Þ ≥ 0.98.
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pd ¼
1

Z
2−n

�
n
d

�
; Z ¼

Xn
d¼1

2−n
�
n
d

�
; ð49Þ

under condition 1 ≪ M ≪ 2n=2. Then, for a given row
of the matrix M ×M of Hamming distances dij, the

numbers of elements MðdÞ
j with dij ¼ d are samples

from the multinomial distribution with mean values

hMðdÞ
j i ¼ Mpd (see Fig. 9). According to Eqs. (41)

and (33), the statistical ensemble of IB Hamiltonians
(41) corresponds to that of symmetric random matrices
whose associated graphs are fully connected and matrix
elements are statistically independent.
As seen below, the spectral properties of H that are

relevant for our study are determined by V2
ij and not by the

oscillatory factor in Eq. (41). Therefore, we are interested in
the PDF of V2

ij:

PðV2
ijÞ ¼

Xn
d¼1

pdδ½V2ðdÞ − V2
ij�; ð50Þ

where i ≠ j.

1. Typical and extreme values of the off-diagonal
matrix elements Vij

For a randomly chosen row of the matrix of Hamming
distances dij, the most probable value (mean) of its
elements equals n=2. According to Eq. (42), the off-
diagonal matrix elements Vij decrease rapidly with the
Hamming distance dij, reaching the minimum value at
dij ≃ n=2. Therefore, a typical minimum value of the
matrix elements Vij corresponds to a typical value overall.
We estimate it using Eq. (42) and Stirling’s approximation

Vtyp ¼ Vðn=2Þ ≃
�
πA2

2

�
1=4

n22−n=2e−nθ; ð51Þ

where coefficientA ¼ AðEð0Þ; 1=2Þ [Eq. (43)] is essentially n
independent between the resonances and θ is given in
Eq. (34). The matrix elements Vij that scale with n as the
typical value inEq. (51) correspond to jn=2 − dijj ¼ Oð ffiffiffi

n
p Þ.

We note that in Fig. 9 the plot points do not reach the
boundaries of the interval d ¼ 0; n. In the matrix of
Hamming distances dij, the typical smallest off-diagonal
element in a randomly chosen row can be estimated as
follows:Mpdmin ¼ 1, where pd is binomial distribution (49):

min
j≠i;1≤j≤M

dij ∼ dmin; M2−n
�

n
dmin

�
¼ 1: ð52Þ

Using Stirling’s approximation for factorials in the limit
n ≫ 1, it is easy to show that the minimum Hamming
distance in a row is extensive for M ¼ 2μn; μ < 1.

The typical largest magnitude off-diagonal matrix
element in a randomly chosen row of Vij is equal to
VðdminÞ. Using Stirling’s approximation in Eq. (42), we get

max
j≠i;1≤j≤M

jVijj ∼M1=2V typ: ð53Þ

Using Eq. (51), one can see that the maximum off-diagonal
matrix element in a randomly chosen row is still exponen-
tially small in n.
Similarly, one can estimate the typical value of the

absolute minimum dabs min of a Hamming distance dij
between a pair of marked states. This distance remains
extensive for μ < 1;M ¼ 2μn. This distance corresponds to
the overall largest in magnitude element of the matrix Vij:

max
1≤i<j≤M

jVijj ∼MV typ: ð54Þ

Using Eq. (51), the largest element is exponentially small in
n provided that μ < 1=2, which corresponds to the con-
dition of statistical independence of the elements of Vij.
A tight bound for the maximum eigenvalues of H can be
obtained using the Gerschgorin circle theorem [58]; see
Appendix E.

B. Heavy tails

It can be shown that the variance of Hij is not a good
statistical characteristic of its PDF and is dominated by
the extremely rare atypical instances of the ensemble (see
details in Appendix F). We observe that the relationship

FIG. 9. Red points show the empirical probability distribution

MðdÞ
j vs d with MðdÞ

j ¼ P
M
j¼1 δðdij − dÞ. Here, dij is a matrix of

Hamming distances dij between the set of M randomly chosen
n-bit strings (marked states), and i is a randomly chosen marked
state. The distribution corresponds to M ¼ 107 and n ¼ 60.
Black stars connected by a black line show the samples md

from multinomial distribution with mean values hMðdÞ
j i ¼ Mpd,

where pd is binomial distribution (49).
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between the typical matrix element (51), maximum matrix
element in a randomly chosen row of Vij (53), and the
largest element of Vij overall (54) form a strong hierarchy
that is a characteristic of the ensemble of dense matrices
with broad nonexponential distribution of matrix elements
(Levy matrices) [33]. The form of the hierarchy [37]
suggests (up to a logarithmic factors) the following
asymptotic behavior at the tail of the PDF of the matrix
elements:

PDFðV2
ijÞ ∝ jVijj−2

for jVijj ≫ V typ.
We build on the above observation and obtain the explicit

form of the PDF of the matrix elements PðV2
ijÞ [Eq. (50)],

including its tails. In the asymptotic limit of large n ≫ 1,
we consider n to be a continuous variable (the validity
of this approximation is justified below). We replace the
summation over d in Eq. (50) by an integral and Kronecker
delta δðxÞ by Dirac delta

PðV2
ijÞ ≃

Z
n

0

pxδ½V2ðxÞ − V2
ij�dx: ð55Þ

This expression is obtained using the analytical continu-
ation of the binomial distribution pd [Eq. (49)] from the
integer domain d ∈ ð0; nÞ onto the interval of a real axis
x ∈ ð0; nÞ in terms of the Beta function and the resulting
identity

R
n
0 dxpx ¼ 1 (see Appendix G for details).

In what follows, we study the rescaled quantities

wij ¼
V2
ij

V2
typ

≡ V2ðdijÞ
V2
typ

; ð56Þ

where i ≠ j and V typ is given in Eq. (51). We apply
Stirling’s approximation for the binomial coefficient in
Eqs. (42) and (49) and obtain asymptotic expressions for
V2ðdÞ and pd, respectively. Plugging them into Eq. (55)
and taking the integral there, we can obtain the PDF

gðwijÞ ¼ V2
typPðV2

typwijÞ; ð57Þ

whose form is given in Appendix G, Eqs. (G14) and (G15).
The following assumption is applied throughout this

paper:

M ¼ 2μn; μ ≪ 1: ð58Þ

According to Eqs. (42), (52), and (G5), a typical largest
element in a randomly chosen row of the matrix wij is ∼M.
Therefore, based on Eq. (58), the following condition is
satisfied in a randomly chosen row of wij:

1

n
log2wij ≪ 1 ð1 ≤ wij ≲MÞ: ð59Þ

Under this condition, the PDF of wij takes a particularly
simple form, gðwÞ ≃ g∞ðwÞ:

g∞ðwÞ ¼
1

w2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π logw

p ; w ∈ ð1;∞Þ; ð60Þ

with normalization condition
R∞
1 g∞ðwÞdw ¼ 1. Details of

the derivation are given in Appendix G.
The above analysis assumes the scaling behavior (42) of

Vij with dij that requires jn=2 − dijj < m0 withm0 given in
Eq. (32). As shown in Appendix G, this condition is always
satisfied for a typical row of dij provided the constraint (58)
on the values of M.

C. PBLMs

The problem of population transfer is reduced to the
analysis of the described-above ensemble of real symmetric
M ×M matrices Hij of the down-folded IB Hamiltonian
(41). The matrices Hij form an ensemble of PBLMs, a
generalization of Levy matrices actively studied in the
literature (cf. e.g., Refs. [33–35,37]). Unlike Levy matrices,
PBLMs have a new control parameter: the ratio of typical
diagonal to off-diagonal matrix elements W=V typ that
controls the preferential basis (computation basis). This
distinction is analogous to that between the Gaussian
orthogonal ensemble and the Gaussian ensemble with
broken SUðNÞ symmetry, the RP model [51].
Recent studies of the RP ensemble [21] demonstrate two

localization transitions that occur with a varying parameter
that controls the relative weight of the diagonal and off-
diagonal matrix elements. One of them is the Anderson
transition from localized to the extended states that are
nonergodic and possess distinct multifractal features. These
states and the corresponding eigenvalues are organized in
minibands so that the states within the same miniband
mostly share the same support over basis states. The
spectral width of the minibands is polynomially small
(in M) compared to W. The second transition is from the
extended nonergodic states to the extended ergodic states
similar to the eigenstates of the Gaussian orthogonal
ensemble. We demonstrate analogous behavior in the IB
model and analyze the population transfer in the non-
ergodic regime.

VII. NUMERICAL SIMULATIONS: MINIBANDS
OF NONERGODIC DELOCALIZED STATES

In this section, we report an exact diagonalization
analysis of both the eigenvector statistics and the dynamical
eigenstate correlator. Instead of the sparse 2n × 2n

Hamiltonian Eq. (1), it is efficient to diagonalize the
dense M ×M matrices obtained by down-folding the
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Hamiltonian into the marked state subspace. This diago-
nalization allows access to systems of n ¼ 200 qubits,
reducing the finite size effects. The down-folded matrix
Hamiltonian ensemble is constructed as in Sec. VI:

Hii ¼ ϵi; Hij ¼ ncðEð0Þ; dijÞ; ð61Þ

where the diagonal elements ϵm are distributed uniformly
in the energy window ½−n −W=2;−nþW=2� and the
off-diagonal elements are constructed by sampling
Hamming distances between uniformly random bit strings
of length n and using Eq. (23) with E ¼ Eð0Þ determined
from Eqs. (36) and (37).
We introduce the scaling of the width of the distribution

of ϵm with the matrix size M:

W ¼ λMγ=2V typ; ð62Þ

where γ is a real non-negative parameter that controls
the scaling of the typical diagonal to off-diagonal matrix
element V typ given in Eq. (51) and λ is an auxiliary constant
of the order of one.

A. Eigenvector statistics

We define the inverse participation ratios (IPRs) Iq and
the entropy Hz as

Iq ¼
X
i

jhψβjiij2q; ð63Þ

Hz ¼ −
X
i

jhψβjiij2 ln jhψβjiij2; ð64Þ

respectively, where ψβ denotes an eigenstate with eigen-
value Eβ. IPR I2 is the second moment of the wave function
probability distribution jhψβjiij2 in the computational basis
(bit strings) jii. The entropy Hz characterizes the support
set of an eigenstate in the computational basis [59], i.e., the
subset of bit strings where the probabilities jhψβjiij2 are
concentrated.
Figure 10 shows the participation ratio I2 as a function

of the ratio of mean level spacing δϵ to the typical matrix
element V typ, a measure of the number of states in
resonance with a typical classical level ϵi. The regime
δϵ ≫ V typ corresponds to the localized phase, where the
eigenstates have significant weight on a small number
of bit strings that are close to each other in Hamming
distance. In this regime, I2 ∼ 1 and is system size inde-
pendent. In our model, marked states are separated by
Hamming distance d ≈ n=2þOð ffiffiffi

n
p Þ with a high proba-

bility, and, therefore, most localized states have sharp peaks
at exactly one bit string; hence, I2 ≈ 1. As the ratio δϵ=V typ

decreases, I2 becomes system size dependent. Figure 11
indicates that the combination I2M=3 ∼ 1 becomes system

size independent as the level spacing becomes smaller
than the typical matrix element, characteristic of the
delocalized regime, where the wave function amplitude
spreads over OðMÞ bit strings, jhψβjiij2 ∼ 1=M. The
saturation value of I2M ∼ 3 is consistent with approach
to Porter-Thomas distribution of the wave function ampli-
tudes. Both Figs. 10 and 11 show a wide intermediate
region between the localized and ergodic phases where
nonergodic dynamics is expected. This intermediate regime
becomes apparent in Fig. 12, where we introduce the
multifractal dimensions Dq and D1, which determine the
scaling of Iq and Hz with M, respectively:

ln IqðMÞ ¼ −Dqðq − 1Þ lnM þ cq; ð65Þ

HzðMÞ ¼ D1 lnM þ c1; ð66Þ

where cq is a q-dependent fitting parameter. The extracted
dimensions shown in Fig. 12 as a function of the parameter
γ vary continuously between Dq ¼ 1 in the ergodic phase
γ ≤ 1 and Dq ¼ 0 in the localized phase γ ≥ 2, with 1 <
γ < 2 corresponding to a nonergodic regime for q ¼ 1, 2.

B. Eigenstate overlap correlator
for nonergodic minibands

Population transfer dynamics in the nonergodic regime
can be characterized by the survival probability; see Sec. II.
The Fourier transform of the survival probability for a given
initial marked state i is given by

FIG. 10. The inverse participation ratio I2 ¼
P

i jhijψβij4 as a
function of the average classical (at a vanishing transverse field)
energy level spacing δϵ in units of the typical coupling V typ for
different numbers M of states in the impurity band. We see that
for δϵ=V typ ≥ 1 the eigenstates become localized and I2 → 1
independent ofM, indicative of eigenstates localized on single bit
string each.
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piðωÞ ¼ Re
Z

∞

0

dteiωtjhijψðtÞij2

¼ π
X
β;β0

jhijψβij2jhψβ0 jiij2δðEβ − Eβ0 − ωÞ: ð67Þ

Note that the limit ω → 0 gives the inverse participation
ratio of a given bit string in the basis of eigenstates:

pið0Þ ¼ π
X
β

jhijψβij4: ð68Þ

The average of piðωÞ over the initial state is related to the
overlap correlation function KðωÞ defined by [21]

KðωÞ≡ 1

M

X
i;β;β0

jhψβjiij2jhψβ0 jiij2δðEβ − Eβ0 − ωÞ

¼ 1

πM

X
i

piðωÞ: ð69Þ

The fractal dimension extracted from the scaling of Kð0Þ
with M is shown in Fig. 12, and it follows closely
those extracted from the IPR in the computational basis.

The collapse of the plots in Fig. 13 is achieved when the
frequency is rescaled by the characteristic energy:

Γε ¼ ΓtypMε; Γ ∝ V typM1−γ=2ðlogMÞ1=2; ð70Þ

FIG. 11. The rescaled inverse participation ratio I2M=3 as a
function of the rescaled impurity band width W=ðMV typÞ for
different numbers M of states in the impurity band. We see that
in the ergodic regime, W=ðMV typÞ ≤ 1, we have I2M=3 ¼ 1,
corresponding to the orthogonal Porter-Thomas distribution of
states in the impurity band. The inset shows the numerical
probability distribution of normalized probabilities Mp for an
eigenstate over computational states z in the ergodic regime in
black and the analytical orthogonal Porter-Thomas distribution
in red. Qualitative arguments in Sec. VIII suggest that in the
nonergodic delocalized regime I2M=3 ∝ ½W=ðMV typÞ�2. The
black line is proportional to ½W=ðMV typÞ�2, and we see that
I2M=3 aligns with this quantity as long as we do not enter the
localized regime δϵ=V typ ≥ 1; see Fig. 10.

FIG. 12. The multifractal dimensions D1 [defined in Eq. (66)]
and D2 [defined in Eq. (65)] as functions of γ for the ensemble
of IB Hamiltonians with the dispersion of classical energies
W ¼ λV typMγ=2, with λ ¼ 3.3. All the multifractal dimensionsDq
approach 1 in the ergodic regime (γ ¼ 1) and 0 in the localized
regime (γ ¼ 2). The difference between D1 and D2 is also likely
due to finite size effects. We also extract a scaling exponent from
the dynamical correlator [see Eqs. (68) and (69)]. The dot-dashed
line corresponds to the analytical value in the Rosenzweig-Porter
limit given by Eq. (72).

FIG. 13. We plot the rescaled overlap correlation function
KðωÞΓε vs ω=Γε, where Γε ¼ ΓtypMε and Γtyp ¼ 2Σ00

typ is the
typical miniband width and Σ00

typ ∝ V typM1−γ=2ðlogMÞ1=2
[Eq. (128)]. Different curves correspond to different values
of M and collapse well with ε ¼ 0.05. We use the ensemble
of IB Hamiltonians with a dispersion of classical energies
W ¼ λV typMγ=2, with γ ¼ 1.2 and λ ¼ 3.3.
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with a fitting parameter ε ≪ 1. The correlator KðωÞ is
constant for a range of energy differences ω < Γε and
decays quickly ∝ ω−2 as ω > Γε. This result can be
interpreted in terms of the formation of nonergodic mini-
bands of eigenstates that share support in the computation
basis: For an average bit string, there is a range of
eigenenergies Eβ within a width Γε around a bit-string-
dependent value ϵj where the eigenfunction overlaps with
zj are relatively large, whereas for a larger energy differ-
ence the correlation decays quickly below the value
corresponding to uncorrelated case KðωÞ < 1=M; i.e.,
the amplitudes repel each other. The relation between
the survival probability and eigenfunction overlap corre-
lator [Eq. (69)] suggests that the characteristic population
transfer is given by the inverse of the characteristic energy
scale of the miniband width Γε, the range of energy
eigenstates with a significant amplitude at the given bit
string. The auxiliary fitting parameter takes a small value of
ε ¼ 0.05, indicating only a small deviation from Γtyp most
likely due to finite size effects. In Appendix M, we show
the results of a direct simulation of dynamics of the model
in the course of the PT protocol and confirm the scaling of
the PT time.

C. Discussion of numerical results

The size of the matrix of marked states used in exact
diagonalization M ≤ 20 000 is a small fraction of the size
of the total Hilbert space Hamiltonian 2n × 2n with
n ¼ 200. For such a small sample, the distribution of
Hamming distances dij between marked states is domi-
nated by jdij − n=2j ∼Oð ffiffiffi

n
p Þ. In this regime, the square of

the off-diagonal matrix element (see Sec. IV) has an
approximately Gaussian dependence on dij [cf. Eqs. (42)
and (51)]:

H2
ij ≈ V2

typ exp

�
2

n

�
dij −

n
2

�
2
�
; ð71Þ

and the probability to find a pair of bit strings at a
smaller distance dij is strongly suppressed. The sign of
Hij rapidly fluctuates as a function of dij, resulting in a
negligible average hHijðdÞi ∼Oð2−nÞ. The distribution of
off-diagonal matrix elements in Eq. (71) is non-Gaussian
and, instead, has a heavy tail that cannot be fully charac-
terized by the variance alone; see Sec. VI B and
Appendix F, where we introduce the class of preferred
basis Levy matrices and derive the asymptotic form of the
distribution of matrix elements. For numerically accessible
matrix sizes M, we expect the deviation from the Gaussian
distribution in the observables to be very small.
The eigenstate statistics and the respective fractal dimen-

sions for the model Eq. (71) can be calculated using the
strong disorder perturbation theory. The calculation pro-
ceeds similarly to that in Ref. [21], resulting in

D1 ¼ D2 ¼ 2 − γ: ð72Þ

A comparison of the approximate Eq. (72) with numerical
results is shown in Fig. 12 as the dot-dashed line. It
appears that the D1 and D2 do not quite coincide with
each other nor with Eq. (72), which may be due to finite
size effects.
It is instructive to draw an analogy between character-

istics of the PBLMs and that of the RP model from random
matrix theory; see Refs. [21,51], and references therein,
where the matrix elements are given by a Gaussian random
variable with zero mean and variance for diagonal and all
off-diagonal matrix elements set hH2

iii¼1 and hH2
iji ∝ Mγ .

Transition points between localized, delocalized, and
nonergodic delocalized regimes as well as perturbative
expressions for fractal dimensions [Eq. (72)] are con-
sistent in the two models. The dynamical correlator also
shows similar behavior indicative of the formation of
minibands of nonergodic eigenstates with the leading
exponent 1 − γ=2 in the scaling of the population transfer
time with M coinciding in the two models. The prefactor
ðlogMÞ1=2, however, is affected by the heavy tail of the
distribution of the matrix elements and needs to be
calculated analytically. It is difficult to extract it accu-
rately from the numerical simulations due to the finite
size effects.

VIII. BORN APPROXIMATION FOR THE
TRANSITION RATES

In this section, we develop a simple picture relying
on the Fermi golden rule (FGR) to study the rates of
population transfer away from a given marked state to a set
of other marked states inside the same miniband. Assume
that the system is initially prepared at a randomly chosen
marked state jzji. The probability amplitude to remain in
the initial state jzji equals

ψðzj; tÞ ¼
X
β

ψ2
βðzjÞe−iEβt; ð73Þ

where jψðtÞi evolves with the IB Hamiltonian H (41) and
Hjψβi ¼ Eβjψβi. If the eigenstates dominantly coupled to
the marked state jzji are extended, then the amplitude
ψðzj; tÞ undergoes a decay in time.
Here, we calculate ψðzj; tÞ using a simple effective Fano-

Anderson model for the decay of a discrete state into a
continuum [60]. This model captures the Born approxi-
mation for the ensemble of Hamiltonians introduced in
Sec. VI. The model Hamiltonian H̃ is obtained from the IB
Hamiltonian H (41) by zeroing out all off-diagonal matrix
elements except those in the jth column and the jth row
connecting state jzji to the rest of the marked states. The
Hamiltonian H̃ has the form

VADIM N. SMELYANSKIY et al. PHYS. REV. X 10, 011017 (2020)

011017-18



H̃ ¼ ϵjjzjihzjj þ
X
m≠j

ðϵm − iηÞjzmihzmj

þ
X
m≠j

Hjmðjzjihzmj þ jzmihzjjÞ; ð74Þ

where the summation is over m ∈ ½1…M�, m ≠ j. We
consider the dynamics on a timescale when the population
of the state jzji decays into the other states and introduce a
small imaginary part −iη to their energies. It is assumed
to be much bigger than the typical energy spacing η ≫
δϵ ¼ W=M but smaller than the timescale on which the
decay takes place. We introduce the parameterization
similar to that in Sec. VII for the distribution of energies ϵj:

W ¼ λV typMγ=2; ð75Þ

where λ is a (redundant) number of the order of OðM0Þ.
The amplitude ψðt; zjÞ has a well-known form [60]:

ψðzj; tÞ ¼
Z

∞

−∞

dz
π

Σ00
j ðzÞ expð−iztÞ

½z − Σ0
jðzÞ − ϵj�2 þ ½Σ00

j ðzÞ�2
; ð76Þ

where we used a shorthand notation

ΣjðzÞ ¼ Σ0
jðzÞ − iΣ00

j ðzÞ ð77Þ

for real and imaginary parts of self-energy of the marked
state jzji,

ΣjðzÞ ¼
X
m≠j

H2
jm

z − ϵm þ iη
; ð78Þ

and we keep z real. Calculating the above integral to the
leading order in Hjm (j ≠ m), we get

ψðzj; tÞ ≃ exp

�
−iðϵj þ ΔϵjÞt −

1

2
Γjt

�
; ð79Þ

where

Δϵj ≃ Σ0
jðϵjÞ; Γj ≃ 2Σ00

j ðϵjÞ: ð80Þ

The quantity Γj above is the total decay rate of the state
jzji, which is twice the imaginary part of the self-energy Σ00

j.
The latter equals to the “width” of the level ϵj due to the
decay. Expressions (79) and (80) correspond to a well-
known Born approximation for the self-energy Σ00

j. Using
Eq. (78), we get

Σ00
j ¼ π

X
m∈½1…M�=j

H2
mjδðϵj − ϵm; ηÞ; ð81Þ

where we defined a function:

δðϵ; ηÞ≡ 1

π

η

ϵ2 þ η2
: ð82Þ

The matrix elements H2
mj [see Eqs. (41) and (42)] depend

only on the Hamming distance dmj. The dominant con-
tribution into the sum (81) comes from the transitions to
the states with jϵj − ϵmj≲ η. If the number of such states
is large, the sum can be replaced by the integral corre-
sponding to the approximation where the Lorentzian
δðϵj − ϵm; ηÞ ≈ hδðϵj − ϵm; ηÞi is replaced with its average
over realizations of ϵm. The average is independent of
η ≪ W, which, therefore, drops out from the PDF of the
transition rate Γ and the resulting level width Σ00 ¼ Γ=2.
This case corresponds to the leading-order Born approxi-
mation described in Sec. VIII A.
A more accurate treatment of δðϵj − ϵm; ηÞ as a random

variable results in the form of the PDF of Γ (and Σ00) being
explicitly dependent on η. The physical meaning of η is the
decay rate at the “children” sites ϵm, m ≠ j, which gives
rise to the width Σ00 or the energy level ϵj at the parent site.
In a large system, the statistics of the decay rate for children
and parents are expected to be the same. The crude
approximation that captures this effect is obtained by
substituting η with a typical value of Σ00. This approxima-
tion corresponds to self-consistent Born approximation
described in Sec. XI A 2. It gives rise to a more accurate
expression for the PDF of Σ00 (and Γ) whose shape is
rescaled compared to the leading-order Born. A systematic
analysis is given by the cavity method described in
Secs. X and XI.

A. Leading-order Born approximation

We can break down the decay rate Γj ¼ 2Σ00
j into a sum

over different decay channels:

Σ00
j ¼ π

Xn
d¼1

V2ðdÞ½1 − cos 2ϕðdÞ�ϱjηðdÞ; ð83Þ

where each term in the sum corresponds to the transition
rate from the initial state jzji into the subset of the marked
states on a given Hamming distance d from jzji (see

Fig. 14). The factor ϱjηðdÞ in Eq. (83) is a spectral density of
the marked states located at a distance d from the state jzji
within the window of energies η around ϵj:

ϱjηðdÞ ¼
X
m≠j

δðϵj − ϵm; ηÞΔðd − djmÞ; ð84Þ

where ΔðdÞ is a Kronecker delta and δðϵ; ηÞ is defined
in Eq. (82).

We denote as MðdÞ
j the number of marked states that

are separated by a Hamming distance d from the state jzji
[number of terms in the sum (84)]:
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MðdÞ
j ¼

X
m≠j

Δðd − djmÞ: ð85Þ

As discussed in Appendix D, the elements of the set

fMðdÞ
j gnd¼1 are sampled from the multinomial distribution

with mean values

hMðdÞ
j i ¼ Mpd; pd ≃ 2−n

�
n
d

�
; ð86Þ

where coefficient pd defined in Eq. (49) is the probability
that a randomly chosen state is located a Hamming distance
d ≠ 0 from jzji. The mean separation between the adjacent
energies ϵm in the sum (84) equals

W

MðdÞ
j

∼ δϵ
2n

ðndÞ
ðMðdÞ

j ≥ 1Þ; ð87Þ

where δϵ ¼ W=M is the mean spacing between the marked
state energies. A substantial contribution to the sum in
Eq. (84) comes from the terms corresponding to the
marked states whose energy levels ϵj lie within the width
η from the energy ϵm; i.e., they satisfy the resonant
condition jϵj − ϵmj≲ η as shown in Fig. 14.
The contribution to a sum from each resonance is ∼1=η

and the number of the resonances in a given decay channel

is Ωd ∼MðdÞ
j η=W (cf. Fig. 14). It is shown in Appendix J

that the dominant contribution to the typical values of Σ00
j

[Eq. (83)] comes from the values of d that correspond to
Ωd ≫ 1. For them, the function δðϵj − ϵm; ηÞ in Eq. (84)
changes weakly between the adjacent values of ϵm, and in
the leading-order Born approximation we estimate the sum
overm in Eq. (84) by replacing it with an integral. Then, the
spectral density can be estimated as

ϱjηðdÞ ≃MðdÞ
j pðϵjÞ; ð88Þ

where we require

δϵ ≪ η ≪ W; ð89Þ

and pðϵÞ is the PDF of the marked state energies ϵ with the
width W [see Eq. (47)].
We plug Eq. (88) into the expression (83), obtaining the

following relation:

Σ00
j ¼ πpðϵjÞ

Xn
d¼1

MðdÞ
j V2ðdÞ½1 − cos 2ϕðdÞ�; ð90Þ

where the sum is dominated by values of d corresponding

to large values MðdÞ
j ≫ 1 (see Appendix J). The steep

exponential decrease with d of the matrix element V2ðdÞ ∝
1=ðndÞ [Eq. (42)] is canceled by equally steep growth with d
of the average number of states in the d channel hMðdÞ

j i ∝
ðndÞ [Eq. (86)]. As a result, the binomial factors cancels out,

and the average quantity hMðdÞ
j iV2ðdÞ changes only by

Oðn−1Þ when d changes by 1.
The term involving cos 2ϕðdÞ above oscillates around 0

on the scale d ∼ 1 [cf. Eq. (35)]. Therefore, the contribu-

tions to the sum from the terms ∝ hMðdÞ
j i cos 2ϕðdÞ

average out. In what follows, we neglect the cross-

product of fluctuational and oscillatory parts ðMðdÞ
j −

hMðdÞ
j iÞ cos 2ϕðdÞ and drop the second term in the rhs of

Eq. (90) that contains cos 2ϕðdÞ.
Essentially, the above approximation corresponds to

replacing the oscillatory part in the expression for the
off-diagonal matrix elements Hij≠i ¼ VðdijÞ

ffiffiffi
2

p
sinϕðdijÞ

[Eq. (41)] as follows:

Hij → VðdijÞβij; βij ¼ �1; i < j; ð91Þ

where βij are instances of a dichotomous random variable
that takes values of �1 with probability 1=2. This approxi-
mate model of the ensemble ofHij is also used in the cavity
method calculation in Sec. XI.

FIG. 14. Cartoon of the energies of the marked states ϵm within
the impurity band. Energy levels are shown with solid black lines
forming groups arranged vertically. All states jzmi within one
group lie at the same Hamming distance djm ¼ d from a given
state jzji with d increasing from right to left. The energy level ϵj
is depicted at the right side of the figure with a thick black line.
Arrows depict the transitions away from the initial state jψð0Þi ¼
jzji into the marked states jzmi whose energy levels lie inside the
miniband of the width Γj centered at ϵj; i.e., they satisfy the
condition jϵj − ϵmj ≲ Γj. The miniband width is indicated with
the gray shading area. Arrows of the same color depict transitions
within one decay channel, connecting the state jzji to the states a
Hamming distance d away from it. Smaller values of d corre-
spond to bigger typical level spacings δϵdj [Eq. (87)] and
fewer states in a miniband Ωd [Eq. (98)] within the decay
channel given by d.
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Using the expression (47) for pðϵÞ and also Eqs. (56),
(42), and (51), we obtain the relation between the PDFs of
the random variables

Σ00¼d Σ00�sM; Σ00� ¼ π
V2
typ

W=M
; ð92Þ

sM ¼ 1

M

XM
m¼1

wm: ð93Þ

Here, wm are random variables independently sampled
from the probability distribution g∞ðwÞ given in Eq. (60).
The level widths Σ00

j of individual marked states for
1 ≤ j ≤ M are samples of the random variable Σ00.
In Eq. (92), we introduce the characteristic value of the

level width Σ00� . This equation relates the PDF of Σ00 (or the
decay rate Γ ¼ 2Σ00) to that of ϵ and MsM. We note that
the resulting expression for the level width Σ00 of a marked
state formally corresponds to that given by the FGR for the
decay of the discrete level into the continuum [60]. The
energies of the marked states ϵm into which a given marked
state jzji decays form a miniband of the width Σ00

j . The
decay occurs simultaneously in many channels correspond-
ing to different Hamming distances between the initial
marked state and the states of the miniband.
The heavy-tailed PDF of the random variable sM is

studied in detail in Appendix I. Using the generalized
central limit theorem (GCLT) for the sums of a large
number of identical heavy-tailed random variables [33,53],
it can be represented in the form

sM ¼d σMxþ bM; ð94Þ

where x obeys a so-called Levy alpha-stable distribution
L1;1
1 ðxÞ [33] defined in Appendix I, Eq. (I8), and shown in

Fig. 15. The scaling factor and shift are

σM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

4 logM

r
; ð95Þ

bM ≃ σ−1M −
2

π
σM logðσ−1M Þ þ 2

π
ð1 − γEulerÞσM; ð96Þ

respectively (γEuler ≃ 0.577 is the Euler constant). They
display very weak logarithmic dependence on M as com-
pared with the main factor ∝ V2

typ=δϵ in Eq. (92). The width
of the PDF of sM is shrunk by a factor of ðlogMÞ1=2 ≫ 1,
and the location of its maximum is increased by a factor of
ðlogMÞ1=2 ≫ 1 compared to L1;1

1 ðxÞ.
The PDF of sM has a polynomial tail. Therefore, decay

rates of marked states Γj ¼ 2Σ00
j can take range values that

are much bigger than their typical values 2Σ00� [Eq. (92)], up
toM times bigger in the sample of sizeM. These atypically
large decay rates correspond to rare clusters of marked

states that are located anomalously close to each other.
When clusters are formed byOð1Þ states, the above picture
of the decay fails.

IX. NUMBEROF STATES INAMINIBANDWITHIN
BORN APPROXIMATION

Using the expression (92) for the miniband width, we
can estimate the number of marked states Ω in a miniband
corresponding to a given state jzji. As before, we divide
the states into groups of sizes Ωd, each corresponding to
the transitions away from jzji with a fixed number of
flipped bits d. The level width can be written in the form
Σ00
j ¼

P
M
d¼1 Σ00

j;d, where Σ00
j;d is the partial level width due to

the transitions with flipping d bits. Then, using Eq. (90) and
making use of the expression (86) for the average values of

MðdÞ
j , we obtain

Σ00
j;d ≃ π

V2
typ

δϵ

1ffiffiffiffiffiffiffiffiffiffiffi
πn=2

p MðdÞ
j

hMðdÞ
j i

: ð97Þ

The quantity MðdÞ
j =hMðdÞ

j i ∼ 1 in Eq. (97), which results in
the interesting phenomenon due to cancellation mentioned
in the previous section: While the typical number of
marked states in a decay channel varies very steeply
with d, typical values of partial decay rates Σ00

j;d in different
channels do not.

FIG. 15. The black solid line shows the plot of the Levy alpha-
stable distribution LC;β

α ðxÞ [33] with tail index α ¼ 1, asymmetry
parameter β ¼ 1, and unit scale parameter C ¼ 1. The inset
shows asymptotic behavior of the distribution at large positive x.
At −x ≫ 1, the function decays steeply as a double exponential,
logL1;1

1 ðxÞ ∝ − exp½−ðπ=2Þx�. The blue line shows the Cauchy
distribution L1;0

1 ðxÞ ¼ f1=½πð1þ x2Þ�g. We follow here the
definition introduced in Ref. [33] and used in subsequent papers
on Levi matrices in the physics literature. In the mathematical
literature [61,62], a different definition is usually used, corre-
sponding to fðx; α; β; C1=α; 0Þ ¼ LC;β

α ðxÞ.
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The estimate for the typical number of states in the
miniband at the distance d from jzji is Ωd ∼ Σ00

j;d=δϵ
d
j :

Ωd ∼Ωpd; Ω ∼
Σ00
j

δϵ
∼
�
V typ

δϵ

�
2

; ð98Þ

where pd ¼ 2−nðndÞ and Ω is the total number of states in
the miniband.

One can also write the partial decay rate as ΓðdÞ
j ∼

VðdÞΩd, where the product VðdÞΩd does not depend on
d (except from the prefactor). Of course, the analysis based
on the decay rate does not apply for the transition to the
channels with very few states. The condition Ωd ≃ 1 leads

to ΓðdÞ
j ∼ VðdÞ for d ¼ dresmin corresponding to the typical

Hamming distance from jzji to the nearest marked state in a
miniband where the condition VðdÞ ≃ δϵdj is satisfied [see
Eq. (J1) in Appendix J].
The above estimate gives the correct timescale

∼1=VðdresminÞ over which the two states become hybridized.
We note, however, that the total number of channels is

n − 2dresmin ¼ OðnÞ. As all ΓðdÞ
j are nearly the same, each

channel contributes a small fraction Oð1=nÞ to the total
rate. Therefore, VðdresminÞ ∼ Γj=n, and marked state jzji
decays into the large number of marked states within a
miniband before it has a chance to hybridize with the
nearest one at a distance dresmin. This property is markedly
different from the situation at a finite dimension [15].
Using the scaling ansatz (75), we estimate the mean

separation between the energies of marked states as

δϵ ¼ W
M

¼ λV typMγ=2−1: ð99Þ

Using Eqs. (92) and (98), we obtain the estimates for
typical values of the decay rates and number of marked
states in a miniband:

Γ ¼ 2Σ00 ∼ V typM1−γ=2; Ω ∼M2−γ: ð100Þ

We immediately observe that in the range of γ > 2 the
number of marked states in a miniband vanishes. It
corresponds to a localized phase, consistent with the fact
that typical energy spacing δ becomes greater than the
typical tunneling matrix element V typ connecting the states.
The number of states in a miniband Ω cannot be greater
than the total number of states M in the IB. The expression
above does not apply for γ ≤ 1. This regime corresponds to
the ergodic phase.
In the region 2 > γ > 1, the separation between adjacent

eigenvalues of H is of the same order as δϵ. The typical
number of marked states in a miniband Ω corresponds to
the typical number of nonergodic delocalized eigenstates of
H that form the miniband:

W ≫ Γ ≫ δϵ ¼ W
M

: ð101Þ

The number of states in a miniband scales as a fractional
power of M less than one. This result is a hallmark of the
nonergodic delocalized phase.

X. CAVITY METHOD: SUMMARY OF THE
PREVIOUS RESULTS

The cavity method has been actively used to study
Anderson localization in Levy matrices in the past several
decades [33–37,52,63] starting from the seminal work in
Ref. [33]. In the present work, we use the cavity method to
study the properties of minibands of delocalized nonergodic
states that were previously discovered in the studies of the
Rosenzweig-Porter [21,36] and regular random graph
[22,49] models. Initial studies suggest the existence of the
mixed region with localized but nonergodic states [33].
However, recent numerical studies based on exact diago-
nalization using a very large number of samples establish
that initially a large crossover region between localized and
extended states collapses in the limit of increasing matrix
sizes [35]. Multifractal properties of eigenstates in the
localized phase and at criticality are studied in Ref. [37]
using the strong disorder perturbation theory.
Numerical solutions of cavity equations to study locali-

zation transition in Levi matrices with power-law distribu-

tions PðH2
ijÞ∝1=H2ðαþ1Þ

ij are obtained using the population
dynamics algorithm [34] utilizing the approach developed
in Ref. [63]. An alternative approach is based on the
integral equation for the PDF of the diagonal elements of
the resolvent [33,52]. It is obtained in the limit where the
imaginary part of the self-energy is vanishingly small
[33,35,52] (with the limit of an infinite matrix size taken
first). This approach allows one to derive analytically the
global density of states [33,52] and the mobility edge E�ðαÞ
which gives the α dependence of the energy E� separating
extended and localized eigenvalues of H [35].
The cavity method proceeds as follows. First, we

generate a random M ×M matrix Hij (41) from the
ensemble described in Sec. VI. Then, we add a new row
(and a symmetric column) of independent numbers iden-
tically distributed as those in the old matrix Hij. This
process is done by generating a random energy ϵ0 from the
distribution ð1=WÞpAðϵ=WÞ and then generating a random
bit string z0, computing the array of Hamming distances dj0
between z0 and zj and the corresponding matrix elements
Hj0 ¼ H0j for integer j ∈ ½1;M�. As a result, we obtain a
new ðM þ 1Þ × ðM þ 1Þ matrix Hþ1, where þ1 empha-
sizes that it has one more row and one more column thanH.
We number elements of the new matrix by indices running
over the range ½0;M�, where the index 0 corresponds to the
added marked state jz0i. The cavity equations have the
form [33,52]
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Σþ1
0 ðzÞ ¼

XM
m¼1

H2
0mGmmðzÞ;

where

GmmðzÞ ¼ ðz − ϵm − ΣmÞ−1:

It does not involve the nondiagonal matrix elements of
the Green’s function Gmm0 ðzÞ when statistical average
hH0mi ¼ 0, which is effectively our case as well
[see Eq. (F1)].
The main assumption of the cavity method is that in the

limit M → ∞ the difference between the PDFs of Σþ1
0 ðzÞ

and Σ0ðzÞ disappears. This disappearance results in self-
consistent equations for the self-energy. Following
Ref. [32], we add small imaginary parts to the diagonal
matrix elements Hmm ¼ ϵm − iη. It is a small “fictitious”
quantity that is still assumed to be much bigger than the
marked state energy spacing η ≫ W=M. Results are not
expected to depend on the value of η, provided its scaling
with M is chosen appropriately, as discussed below. We
separate the real and imaginary parts of the self-energy,
ΣmðzÞ ¼ Σ0

mðzÞ − iΣ00
mðzÞ [cf. Eq. (77)], obtaining

Σ0
0¼d π

XM
m¼1

H2
0mδðΣ00

m þ η; z − ϵm − Σ0
mÞ; ð102aÞ

Σ00
0¼d π

XM
m¼1

H2
0mδðz − ϵm − Σ0

m;Σ00
m þ ηÞ; ð102bÞ

where the function δðx; yÞ≡ ð1=πÞ½y=ðx2 þ y2Þ� is already
introduced in Eq. (82).
The self-consistent Eqs. (102) were derived by Abou-

Chacra, Anderson, and Thouless [32] for matrices on
Bethe lattices and by Cizeau and Bouchaud for Levy
matrices [33]. The solution of these equations was found
only in the case when they can be linearized in Σ00

m
[32,33,35], giving the location of mobility edge E�ðαÞ as
a function of the power α in the tail of the PDF of the matrix

elements PðH2
ijÞ ∝ 1=H2ðαþ1Þ

ij . Here, we provide a full
solution of the nonlinear equations.
We solve the self-consistent equations (102) under the

assumption that pairs of variables ðΣ0
m;Σ00

mÞ for each state
m ∈ ½0;M� are taken from the same PDF PðΣ0;Σ00; zÞ
defined over the domain x ∈ ð−∞;∞Þ, y ∈ ½0;∞Þ. In
what follows, for brevity, we omit the explicit dependence
on the parameter z. Following Ref. [32], we introduce the
characteristic function F ðk1; k2Þ of the PDF PðΣ0;Σ00Þ:

F ðk1; k2Þ ¼
Z

∞

−∞
dΣ0

Z
∞

0

dΣ00PðΣ0;Σ00Þeik1Σ0þik2Σ00
;

that satisfies the equation F ηðk1; k2Þ ¼ GM
η ðk1; k2Þ, where

Gðk1; k2Þ ¼ heifk1δðηþΣ00;z−ϵ−Σ0Þþifk2δðz−ϵ−Σ0;ηþΣ00Þi:

Here, f ¼ H2
0m and the average is performed with the joint

PDF PðΣ0;Σ00Þð1=WÞpAðϵ=WÞdfPðfÞ. The above relation
between F ðk1; k2Þ and Gðk1; k2Þ is actually an equation for
the PDF PðΣ0;Σ00Þ, because both G and F depend on P.

XI. SOLUTION OF CAVITY EQUATIONS IN
NONERGODIC DELOCALIZED PHASE

A. Analysis of the imaginary part of self-energy

We note that the exponent in the integrand of the above
expression for G depends on Σ0 and ϵ − z only via their
combination Σ0 þ ϵ − z. In the nonergodic delocalized
phase, the typical width of the PDF of Σ0 is much more
narrow than the width W of pðϵÞ [Eq. (47)]. We also
consider small values of jzj ≪ W. Therefore, in the first
approximation we neglect Σ0 and z compared to ϵ. Then,
Gðk1; k2Þ depends only on the marginalized PDF

PðΣ00Þ ¼
Z

∞

−∞
dΣ0PðΣ0;Σ00Þ: ð103Þ

Once this PDF is obtained, the PDF PðΣ0;Σ00Þ can be
analyzed from its characteristic functionF ð0; k2Þ. Inverting
it, we obtain the self-consistent equation for PðΣ00Þ in the
limit M → ∞:

PðΣ00Þ ¼ 1

2π

Z
∞

−∞
dkeMθðkÞ−ikΣ00

;

θðkÞ ¼
Z

∞

0

dfdΣ00dhPðfÞPðΣ00ÞpηþΣ00 ðhÞðeikfh − 1Þ:

ð104Þ

Here, θðkÞ ¼ 1 − Gηð0; kÞ and the domain of integration for
all variables is ½0;∞Þ. The function pηþYðhÞ above is a
conditional PDF of a random variable

h ¼ δðϵ; ηþ YÞ

with Y fixed and δðx; yÞ given in Eq. (82). The explicit form
of the PDF pηþYðhÞ is obtained in Appendix K, Eqs. (K6)
and (K8).
To achieve further progress, we use the approximation

(91) and drop oscillatory factors in the off-diagonal matrix
elements H0m. Then, we have for the PDF PðfÞ ¼
g∞ðf=V2

typÞ=V2
typ [Eq. (60)], and in what follows we use

the rescaled variable w ¼ f=V2
typ for the squared matrix

elements, in accordance with Eq. (56). Instead of the
variable h in Eq. (104), we use the rescaled variable

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðηþ Σ00Þ

p
; ð105Þ

that obeys the distribution
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pηþΣ00 ðyÞ ¼ 2ðηþ Σ00Þ
W

1

y2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p ð106Þ

[see details in Appendix K, Eq. (K19)]. Then, θðkÞ takes
the form

θðkÞ ¼
Z

∞

0

dΣ00PðΣ00ÞϕΣ00þη

�
kV2

typ

Σ00 þ η

�
: ð107Þ

Here, ϕYðuÞ is a characteristic function

ϕYðuÞ ¼
Z

∞

0

dxgYðxÞðeiux − 1Þ ð108Þ

of the PDF gYðxÞ of the random variable x ¼ wy2, where w
obeys g∞ðwÞ and y obeys pYðyÞ [Eq. (106)]. A detailed
study of gYðxÞ is given in Appendix L. The PDF gYðxÞ
depends on Y via the ratio Y=W, and its plot is shown in
Fig. 16. It goes over into g∞ðyÞ for Y → ∞.
We now make a key observation: In the limit of large

x ≫ 1 and for W ≫ Y, the following relations hold for the
PDF ϕYðuÞ and its characteristic function [see the corre-
sponding Eqs. (L26) and (L10) in Appendix L]:

gYðxÞ ≃
πY
W

g∞ðxÞ; ϕYðuÞ ≃
πY
W

ϕ∞ðuÞ: ð109Þ

The reason for this result can be explained as follows.
For large deviations of x ¼ wY2=ðϵ2 þ Y2Þ, the conditional
PDF pðϵjxÞ of the marked state energy ϵ is narrowly peaked
in the range of values jϵj ∼ Y. In contrast, typical energy
values are much bigger: ϵ ∼W. This narrowing of the

conditional PDF pðϵjxÞ gives rise to a small factor πY=W in
the rhs of Eq. (109).
We observe that limk→∞ θðkÞ ¼ 0 and for M → ∞ the

integral in Eq. (104) is dominated by jkj ≪ 1. We make an
assumption (whose validity becomes obvious below) that
for small enough k the integral in Eq. (107) is dominated
by values of Σ00 such that kV2

typ=ðΣ00 þ ηÞ ≪ 1. Therefore,
we use in Eq. (107) the approximate expression for
the characteristic function ϕΣ00þη given by Eq. (109). We
rescale Σ00 with the typical value of the imaginary part of
the self-energy of marked states Σ00� [Eq. (92)] obtained in
the FGR-based calculation in Sec. VIII. Making a change
of variables

Σ00 ¼ Σ00�s; PðΣ00Þ ¼ 1

Σ00�
ρðsÞ; ð110Þ

we rewrite the self-consistent equation (104) in the
limit x ≫ 1, W ≫ Y for the rescaled PDF ρðsÞ in the
following form:

ρðsÞ ¼ 1

2π

Z
∞

−∞
due−iusþΦðu;ΩÞ; ð111Þ

Φðu;ΩÞ ¼
Z

∞

−∞
dνρðν − βηÞΩνϕ∞

�
q
Ων

�
;

βη ¼
η

Σ00�
; ð112Þ

and

Ω ¼ πΣ00�
δϵ

¼
�
πV typ

W=M

�
2

: ð113Þ

Σ00� and V typ are defined in Eqs. (92) and (51), respectively.
We observe that Ω corresponds to the typical number of
marked states in the miniband that we estimate in Sec. VIII
using the Born approximation.
Assuming Ω ≫ 1 (delocalized phase), we expand

Ωνϕ∞½q=ðΩνÞ� in inverse powers of logΩ using the
asymptotic form of the characteristic function ϕ∞ðuÞ at
the small argument studied in Appendix H, Eqs. (H13) and
(H14). Truncating the expansion at terms ∼ðlogMÞ−1=2,
we get

ΩReϕ∞

�
q
Ω

�
≃ −

πjqj
2

ffiffiffiffiffiffiffiffiffiffiffi
logΩ

p ;

ΩImϕ∞

�
q
Ω

�
≃ 2q

�
logΩ
π

�
1=2

þ q
1 − C − log jqj
ðπ logΩÞ1=2 ;

ð114Þ

where C ≈ 0.577 is the Euler constant. It is clear from com-
paring individual terms in Eq. (114) with the exponential in

FIG. 16. Plot of the PDF gYðxÞ of the random variable
x ¼ fðwY2Þ=½ðz − ϵÞ2 þ Y2�g, where random variables ϵ and w
obey distributions W−1pAðϵ=WÞ and g∞ðwÞ, respectively, and
W=ð2YÞ ¼ ffiffiffiffiffi

30
p

. A detailed discussion of gYðxÞ is given in
Appendix L [see Eq. (L7)]. Its maximum is located at
x ∼ ðY=WÞ2. The singularity at x ¼ 1 corresponds to ϵ ¼ z.
For large values of x≫1, the conditional PDF of fY2=½ðz−ϵÞ2þ
X2�g is narrowly peaked around its mean value πY=W with
jϵ − zj ∼ Y, giving rise to the relation in Eq. (109).
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Eq. (111) that q ¼ Oð ffiffiffiffiffiffiffiffiffiffiffi
logΩ

p Þ. This result justifies the
order of truncation [see details in Appendix I, Eq. (I5)].
We make a change of variables in the integral in

Eq. (111), q ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logΩ=π

p
t, and obtain

ρðsÞ ¼ σ−1Ω L1;1
1 ½ðs − μΩÞ=σΩ�; ð115Þ

where the quantity μΩ satisfies the equation

μΩ ¼ bΩ þ 2σΩ
π

Z
∞

−∞
dsρðsÞ log jsþ βηj: ð116Þ

Above L1;1
1 ðxÞ is the Levy distribution [33] defined in

Appendix I, Eq. (I8), and shown in Fig. 15. Coefficients
σΩ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π=ð4 logΩÞp
and bΩ ≃ 1=σΩ are given in Eqs. (95)

and (96), where the parameter M needs to be replaced
by Ω.
We plug the above expression for ρðsÞ into Eq. (116) and

express μΩ in terms of a new variable x:

μΩ ≡ bΩ −
2σΩ
π

log σ−1Ω þ σΩx: ð117Þ

Then, this variable satisfies the following equation:

x ¼ 2

π

Z
∞

−∞
dsL1;1

1 ðsÞ log jsþ xþ ζΩj; ð118Þ

that involves a scale-free Levy distribution and a single
parameter ζΩ:

ζΩ ¼ bΩ
σΩ

−
2

π
log

�
1

σΩ

�
þ 1

σΩ

η

Σ00�
; ð119Þ

where we use an explicit form of βη [Eq. (112)]. We note
that the self-consistent equation for the function ρðsÞ is now
reduced to the simple transcendental equation (118).
Using the explicit form of σΩ and bΩ [Eqs. (95) and

(96)], one can see that ζΩ is large compared to unity in the
delocalized phase: ζΩ ≃ σ−2Ω ∼ logΩ ≫ 1. With this prop-
erty, the equation for x (118) can be solved by iteration
using the asymptotic expansion of the Levy distribution at
large arguments: L1;1

1 ðνÞ ≃ ð2=πÞν−2 (ν ≫ 1). To leading
order,

x ≃
2

π
log ζΩ þO

�
log ζΩ
ζΩ

�
: ð120Þ

Then, using Eq. (117), the expression for μΩ is

μΩ ≃
1

σΩ
þ 2σΩ

π
log

�
1þ ησΩ

Σ00�

�
þ 2σΩð1 − γEulerÞ

π
; ð121Þ

where we neglect terms ∼σ3Ω logΩ that are much
smaller than the width σΩ of the distribution ρðsÞ ¼
σ−1Ω L1;1

1 ½ðs − μΩÞ=σΩ�.
We note that the dependence of μΩ [Eq. (121)] on the

initial (fictitious) level broadening η disappears when
the latter is chosen to be much smaller than the miniband
width [22,36,49] W=M ≪ η ≪ Σ00�σΩ. Using Eqs. (92)
and (75), the scaling behavior of η with M in the non-
ergodic delocalized regime must satisfy the condition

η ¼ Mκ; jκj < 1 −
γ

2
; γ ∈ ð1; 2Þ: ð122Þ

Finally, the expression for the distribution function of the
imaginary part of the self-energy has the form

PðΣ00Þ ¼ 1

C
L1;1
1

�
Σ00 − Σ00

typ

C

�
; ð123Þ

Σ00
typ ¼ μΩΣ00�; C ¼ σΩΣ00�: ð124Þ

Here, Σ00
typ is a shift of the distribution and C its scale

parameter (characteristic width). Also,

μΩ ≃
1

σΩ
þ 2σΩð1 − γEulerÞ

π
; ð125Þ

σΩ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

4 logΩ

r
: ð126Þ

Using the scaling ansatz (75) for the widthW of the IB in
terms of M, the typical number of states in a miniband
(number of resonances) equals

Ω ¼
�
π

λ

�
2

M2−γ: ð127Þ

Using the same scaling ansatz (75) and the expressions
for σΩ [Eq. (95)] and μΩ [Eq. (125)], we obtain

Σ00
typ ≃

2π1=2

λ
V typM1−γ=2ðlogΩÞ1=2; ð128Þ

C ≃
π3=2

2λ
V typM1−γ=2ðlogΩÞ−1=2: ð129Þ

Here, V typ ∼ n1=22−n=2e−n=ð4B2⊥Þ is given in Eq. (51). The
shift Σ00

typ corresponds to the typical value of Σ00. One can
see from the above that it is logΩ ∼ logM ≫ 1 times
bigger than the distribution width. We note in passing that
the distribution of Σ00 determines that of the miniband width
Γ ¼ 2Σ00 [Eq. (100)].
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1. Comparison between the cavity method and
leading-order Born approximation

It is instructive to compare the above distribution
of Σ00 obtained using the cavity method with that obtained
within the Born approximation (92)–(96). In both cases,
the distribution of Σ00 is given by the appropriately
rescaled and shifted Levy alpha-stable distribution
L1;1
1 ðxÞ. In both cases, the scale parameter C (characteristic

width) of the distribution has the form C ¼ σSΣ00� with
σS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð4 log SÞp

. In the case of the Born approximation
S ¼ M, corresponding to the total number of marked states,
and in the case of cavity method S ¼ Ω ≪ M, correspond-
ing to the (much smaller) number of states in the miniband.
Using Eq. (127), we estimate

σM
σΩ

¼
ffiffiffiffiffiffiffiffiffiffi
2 − γ

p
< 1 ðW ¼ λMγ=2Þ: ð130Þ

Therefore, the Born approximation underestimates the
width of the distribution of Σ00. The ratio (130) is especially
pronounced near the localization transition γ ¼ 2. The
value of σ−1Ω shrinks to zero at the transition, while that
of σM does not depend on the closeness to the transi-
tion point.
We note, however, that factors σΩ and σM depend on M

only logarithmically. At the same time, the leading-
order (power-law) dependence of the rescaling coefficient
on M is given by the factor Σ00� ∝ M1−γ=2 and is identical
in the cavity method and the Born-approximation-based
expressions.
The situation is similar with the shift parameter Σ00

typ in
the Levy distribution of Σ00 corresponding its typical value
Σ00
typ ≃ Σ00�=σS with S ¼ M (Born approximation) and S ¼ Ω

(cavity method). The leading-order dependence of the shift
on M is the same in both cases and is given by Σ00�. In both
cases, the shift is greater than the rescaling coefficient by a
factor of ∼ logM. However, the Born approximation over-
estimates the shift by a factor of ð2 − γÞ−1=2.

2. Comparison between the cavity method and
self-consistent Born approximation

The leading-order Born approximation recovers the
typical shift Σ00

typ and the scale parameter C of the
distribution of Σ00 with exponential accuracy in logM.
However, it gives an incorrect dependence of the prefactor
on logM in these coefficients. The main approximation in
Sec. VIII A is to assume that the sum in the expression for
the spectral density ρjηðdÞ [Eq. (84)] can be replaced by an
integral. We revisit the decay rate equation (81) using the
statistical ensemble (91):

Σ00 ¼ V2
typ

η

XM
m¼1

xm; xm ¼ wmη
2

ϵ2m þ η2
: ð131Þ

Here in the lhs, we omit the subscript in Σ00
j and make

the rescaling VðdjmÞ2 ¼ V2
typwm. Random variables xm are

sampled from the distribution gηðxÞ given in Eq. (109) and
plotted in Fig. 16. Using the GCLT for the sum in Eq. (131),
one can obtain the PDF of Σ00. The details are given in
Appendix L, and here we provide the result:

Σ00¼d Σ̃00
typ þ xC; Σ̃00

typ ¼ bΩη
Σ00�; C ¼ σΩη

Σ00�: ð132Þ

Here, x is a random variable that obeys Levy distribution
L1;1
1 ðxÞ, coefficient σΩ is given in Eq. (126), and bΩ is given

in Eq. (96), where one should replaceM with the number of
marked states in a miniband of width η:

Ωη ¼
πη

δϵ
: ð133Þ

Unlike the discussion in the cavity method, the statistics
of Σ00 explicitly depends on η. We make a self-consistent
assumption and set η equal to the characteristic width of the
miniband:

η ¼ Σ00� ⇒ Ωη ¼
πΣ00�
δϵ

: ð134Þ

We conclude that the typical number of states in a miniband
Ωη ¼ Ω given by the self-consistent Born approximation is
the same as that given by the cavity method [Eqs. (113)].
Therefore, using Eq. (132), one can see that the width C
of the distribution of Σ00 is also the same in both methods.
The difference between the typical values of Σ00 in the two
methods is

Σ00
typ − Σ̃00

typ ¼
2

π
C log σ−1Ω ≪ Σ00

typ:

This error is much smaller than in the case discussed in
Sec. XI A 1 [cf. Eq. (130)], where the self-consistent
condition is not used. However, it exceeds the distribution
width C for sufficiently large M ≫ 1, because in the
nonergodic delocalized phase log σ−1Ω ∼ log logM.

B. Real part of self-energy

In this section, we find the marginalized probability
distribution of real parts of the self-energy:

PðΣ0Þ ¼
Z

∞

0

dΣ00PðΣ0;Σ00Þ: ð135Þ

We consider the first equation in Eq. (102). Following
the arguments provided in Sec. XI A, we neglect the terms
z − Σ0

m in the rhs of the equation and drop the oscillatory
factors in H0m using the probability distribution PðfÞ ¼
g∞ðf=V2

typÞ=V2
typ [Eq. (60)] instead. Then, Eq. (102) takes

the form
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Σ0¼d
XM
m¼1

rm: ð136Þ

Here, rm are instances of a random variable R such that

r ¼ f
ϵ

ϵ2 þ ðΣ00Þ2 ; ð137Þ

where ϵ, f, and Σ00 are random variables independently
sampled from the distributions pðϵÞ, PðfÞ, and PðΣ00Þ,
respectively. Using the GCLT, in the asymptotic limit of
M → ∞ the sum in Eq. (136) is determined by the tail of
the probability distribution of r at jrj → ∞. This analysis is
very similar to the one already discussed in Secs. VIII
and XI A and in Appendix I. Here, we omit details of the
calculations and simply provide the result. The tail of the
PDF of r in the limit jrj → ∞ has the form

ρ ¼ r
2Σ00�=ðπMÞ ; PDFðρÞ ≃ 1

ρ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
logðρÞ
π

r
ð138Þ

(ρ ≫ 1). The distribution function PðΣ0Þ of the sum in
Eq. (136) is the Cauchy distribution

PðΣ0Þ ¼ 1

π

Σ0
typ

ðΣ0
typÞ2 þ ðΣ0Þ2 ; Σ0

typ ¼
Σ00�
σM

: ð139Þ

Here, the expression for σM ∼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
logM

p
is given in

Eq. (95). The Cauchy distribution has a form very similar
to the stable distribution L1;1

1 ðxÞ that describes the fluctua-
tions of the Σ00 [Eq. (123)] up to the shift and rescaling
coefficients. Both distributions are displayed in Fig. 15.
The tail of the Cauchy distribution differs from that of
L1;1
1 ðxÞ by a factor of 2. Unlike that of Σ00, the distribution

of Σ0 is symmetric for impurity states with energies near the
center of the band. The typical value of Σ0 is greater than
that of Σ00 by a constant factor

Σ0
typ

Σ00
typ

¼ 1ffiffiffiffiffiffiffiffiffiffi
2 − γ

p ðW ¼ λMγ=2Þ: ð140Þ

The width of the distribution of Σ0 is the same as its
typical value, while the width C of the distribution of Σ00 is
smaller by a factor of ∼1= logM [cf. Eqs. (128) and (129)].
These relations between the distributions of Σ0 and Σ00 have
implications for the complexity of the population transfer
as discussed below. We also note that the real and
imaginary parts of the self-energy of a given marked state
are correlated with each other, because, according to
Eqs. (102a) and (102b), the values of Σ0

j and Σ00
j depend

on the same set of parameters (Hjm, ϵm, etc). In this work,
we do not study their correlations.

C. Dynamic correlations

For states close to the center of the band of marked states,
the typical value of the miniband width can be connected
to the average of the dynamical correlator, with the delta
function regularized by a finite scale η;Σ00

typ ≫ η ≫ δϵ,
δðxÞ → δηðxÞ≡ ð1=πÞ½η=ðx2 þ η2Þ�,

1

Σ00
typ þ η

¼ 1

π

Z
∞

−∞
dω

η

η2 þ ω2
pðωÞ; ð141Þ

which can be inverted to obtain

pðωÞ ≈
" 1

Σ00
typ
; ω ≤ ωTh;

1
Σ00
typ
ðωTh
jωj Þ2; ω > ωTh;

ð142Þ

where we introduce the Thouless energy

ωTh ¼
1

2
πΣ00

typ: ð143Þ

The typical value of the miniband width is obtained in
Eq. (128). From the comparison of the respective Fig. 12,
we conclude that the scaling of the typical population
transfer time 1=ωTh and the scaling of the value of the
dynamical correlator KðωÞ are consistent in numerical and
analytical calculations, subject only to a small correction in
the scaling exponent ε ¼ 0.05.

XII. COMPLEXITY OF THE POPULATION
TRANSFER PROTOCOL

After the system is prepared at a given marked state jzji
at t ¼ 0, the probability for the population to be transferred
to other marked states is 1 − ψ2ðzj; tÞ. At the initial stage,
the survival probability decays exponentially [Eq. (79)]
with the mean decay time 1=Γj ¼ 1=ð2Σ00

j Þ.
The initial marked state decays into the eigenstates jψβi

of the IB HamiltonianH with typical energies Eβ inside the
narrow interval corresponding to the miniband associated
with jzji. It has a width Σ00

j and is centered aroundHjj ¼ ϵj.
Typical classical energies ϵ of the bit strings measured at
the end of PT protocol obey the probability distribution
Pðϵ − ϵj − Σ0

jÞ with P given in Eq. (139). The success of
the PT protocol is to find a bit string distinct from zj at a
time t with energy inside that window ΔEcl around ϵj. The
expected time to succeed in the PT equals

tjPT ¼ 1

2Σ00
jpΔE

; pΔE ¼
Z

ΔEcl

0

P
�
ϵ − Σ0

j −
ΔEcl

2

�
dϵ:

Here, pΔE is the probability of detecting a bit string inside
the target window ΔEcl under the condition that the initial
state has decayed. Let us assume that the PT window is as
wide as the typical miniband width, ΔEcl ¼ Σ00

typ. In this
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case, pmb differs from 1 only by a constant factor that does
not depend on M [cf. Eq. (140)]. Therefore, we detect the
bit string inside the PT window with a finite probability as
long as we wait long enough for the transition away from
the initial marked state to occur. Because the initial state
jzji is picked at random, we can estimate the typical time to
success of PT tPT ∼ 1=Σ00

typ corresponding to the inverse
typical width of the miniband. All of the states in a
miniband are populated at (roughly) the same time tPT,
because the transition rate to a subset of states on a distance
d away from jzji depends on d very weakly [see Eq. (97)
and the related discussion in Sec. IX].
From a computational perspective, it is of interest to

characterize the PT by the relation between the typical
success time of PT tPT and the number of states Ω over
which the population is spread during the PT:

tPT ∼
1

V typ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω logΩ

p ∼
�

2n

nΩ logΩ

�
1=2

e2θn; ð144Þ

where we setΔEcl ∼ Σ00� (see the discussion above). We note
that the time tG for the Grover algorithm for an unstructured
quantum search to find Ω items in a database of the size 2n

is tG ∼ ð2n=ΩÞ1=2. PT time tPT scales worse than Grover
time tG by an additional exponential factor e2θn ≃ e½n=ð2B2⊥Þ�
[Eq. (46)]. The scaling exponent 2θ can be made arbitrarily
small at large transverse fields 1 ≪ B⊥ ¼ Oðn0Þ.
One can expect that the distributions of eigenvalues and

eigenvectors inside the miniband are very similar to those
in the ergodic case, albeit with the appropriately rescaled
effective dimension Ω of the Hilbert space [21]. For
example, the energy spectrum of the minibands in the
nonergodic delocalized phase of the RP model corresponds
to the Gaussian orthogonal ensemble. There, according to
the semicircle law [64], the typical spectral width of the
miniband (approximately 1=tPT) is proportional to the
square root of the number of states Ω in it. Therefore,
the Grover scaling (144) for the PT is consistent with
the semicircle law in the Gaussian random matrix models
that allow for a nonergodic delocalized phase such as the
RP model.
However, in the case of Levy matrices, the distribution

of eigenvalues has polynomial tails [33], their spectrum is
not bounded, and the semicircle law does not apply. As
mentioned above, this situation leads to a broad distribution
of PT rates. There exist statistically significant clusters of
states of a relatively small size that are populated faster than
the typical case, because the corresponding classical bit
strings are located closer to each in Hamming distance
than the typical interstate separation. At first glance, this
tendency is counter to the Grover scaling (144). We note,
however, that fluctuations of Σ0 and Σ00 are correlated with
each other. Faster decay of a marked state also corresponds
to a bigger self-energy shift, which reduces the likelihood

of finding a marked state with its energy inside the target
window ΔEcl ∼ Σ00�.
However, the Grover scaling still survives in a typical

case corresponding to the PT away from a randomly
selected bit string. For Levy matrices [33], it reflects the
fact that the typical width Σ00

typ of the curve of the global
density of states along the energy axis must scale as a
square root of the corresponding typical number of states
(area under the curve).

XIII. COMPARISON WITH THE ANALOG
GROVER SEARCH

A. Grover search starting from
a fully symmetrized state

So far, we have studied the PT protocol with the
Hamiltonian (1) H ¼ HD þHcl that starts from a given
marked state of an IB model Hcl (3) and aims at finding a
different marked state inside a given window of energies
using a transverse-field Hamiltonian HD ¼ −B⊥

P
n
m¼1 σ

x
m

(1) as a driver.
We consider here a different protocol inspired by the

Hamiltonian version of the Grover algorithm proposed in
Ref. [46]. The new protocol finds marked states in the IB
model Hcl starting from the ground state of HD, which is a
fully symmetric state jSi ¼ 2−n=2

P
n
j¼1 jzi in a computa-

tional basis. This protocol can be implemented by adjusting
the value of transverse field B⊥ ≈ 1 so that the ground-state
energy of the driver is set near the center of the IB. Then,
we can replace the full driver with the projector on its
ground state: HD → −nB⊥jSihSj. The quantum evolution
is guided by the Hamiltonian:

HG ¼ −nB⊥jSihSj þ
XM
j¼1

EðzjÞjzjihzjj: ð145Þ

With the initial condition, jψð0Þi ¼ jSi. In the case where
all impurity energies are equal to each other, fEðzjÞ ¼
−ngMj¼1 and B⊥ ¼ 1, the Hamiltonian HG is a generaliza-
tion of the analog version of a Grover search [46] for the
case of M target states. The system performs Rabi oscil-
lations between the initial state jSi and the state which is
an equal superposition of all marked (solution) states. The
time to solution is the half-period of the oscillations, the
“Grover time” tG:

tG ¼ π

2nB⊥

ffiffiffiffiffi
2n

M

r
: ð146Þ

Hamiltonian versions of a Grover search with a transverse-
field driver whose ground state is tuned at resonance with
that of the solution state are considered in Refs. [65,66].
The robustness of the Grover algorithms to phase noise

was considered previously in the case of a single marked
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state [67,68]. Here, we investigate the role of systematic
phase errors in quantum oracle for the case of multiple
solutions by assuming that marked state energies take
distinct values EðzjÞ ¼ −nþ ϵj randomly distributed over
some narrow range W. We also investigate the systematic
error in the Grover diffusion operator [1]. In the
Hamiltonian formulation [46], this error corresponds to
the deviation from unity of the parameter B⊥ that controls
the weight of the driver in Eq. (146). We define

B⊥ ¼ 1 −
ϵ0
n
; ð147Þ

where ϵ0 is the driver error.
We denote the computational basis states as jji≡ jzji

with j ∈ ½1; N�, N ¼ 2n, and assume that marked states
correspond to the range j ∈ ½1;M�. We also introduce the
state j0i ¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N −M
p ÞPN

j¼Mþ1 jji that is orthogonal to
all the marked states. The subset of basis vectors S ¼
fjjigMj¼0 spans the M þ 1-dimensional subspace with the
remaining set S⊥ of basis vectors spanning the orthogonal
N −M − 1-dimensional subspace. One can show that HG
does not have matrix elements that couple S with S⊥.
Assuming that N ≫ M, one can consider the decay of

the state j0i instead of the state jSi. We use Eq. (147) and
omit constant terms and small corrections OðM=NÞ in HG.
The nonzero matrix elements Hij

G ¼ hijHGjji in this sub-
space S have the form

Hjj
G ¼ ϵj; Hj0

G ¼ −ð1 − δj0ÞV; V ¼ n2−n=2; ð148Þ

where j ∈ ½0;M� and Hj0
G ¼ H0j

G . On a timescale t ≪
1=δϵ ¼ M=W much smaller than the inverse spacing of
the energies ϵj, the quantum evolution with initial condition
jψð0Þi ¼ j0i corresponds to the decay of the discrete state
with energy ϵ0 into the continuum [60] with the finite
spectral width W [69]. It is a similar problem to that
discussed in Sec. VIII.

1. Sensitivity to systematic oracle phase error

We first consider the case of relatively large oracle errors
(wide energy band W)

V
ffiffiffiffiffi
M

p
≪ W ≪ VM ð149Þ

and modest driver errors

ϵ0 ¼ nð1 − B⊥Þ≲W: ð150Þ

In this case, following the results of Sec. VIII on the
solution of the Fano-Anderson model [69], we obtain an
exponential decay of the initial amplitude [cf. Eq. (79)]

ψ0ðtÞ ≃ exp ½−Σ00
0t − iϵ0t − iΣ0

0ðϵ0 þ i0þÞt�; ð151Þ

where Σ0ðzÞ ¼ Σ0
0ðzÞ þ iΣ00

0ðzÞ is a self-energy and

Σ0ðzÞ ¼ V2
XM
m¼1

1

z − ϵm
; Σ00

0 ≡ 1

2
Γ0 ¼

πV2

W=M
: ð152Þ

The state j0i undergoes an exponential decay with the
rate Γ0 ¼ 2Σ00

0 . After the characteristic time tPT ∼ 1=Γ0, the
population is transferred into a subset of the marked states
with energies inside the window jϵj − ϵ0j ≃ Σ00

0 ≪ W.
The number of marked states (solutions) to which

the population is transferred is Ω ∼ Σ00
0=δϵ. The relation

between tPT and Ω is

tPT ∼
1

V
ffiffiffiffi
Ω

p ; Ω ∼
�

V
W=M

�
2

; ð153Þ

the same as in the Grover algorithm (146). It also recovers
the scaling with Ω and n, up to a factor exp½−n=ð2B⊥2Þ�,
for the time of PT considered in the rest of this paper that
uses a transverse field as a driver and starts from any
marked state instead of a fully symmetric state.
To characterize the effect of oracle errors, we introduce

the scaling ansatz for the marked states bandwidth W ∼
2−n=2Mγ=2 similar to that in Eq. (75). We observe that the
number Ω of solution states populated over the time tPT
cannot be greater than M by construction. For W ≲ V

ffiffiffiffiffi
M

p
(or γ < 1), the value of Ω ≃M and the scaling of the
transfer time tPT with M are the same as tG in the ideal
Grover algorithm (146). In the region given by Eq. (149)
(or 2 > γ > 1), the algorithm performance is degraded,
because Ω ≪ M. For W ≫ VM (or γ > 2), the algorithm
fails to find even one solution.

2. Sensitivity to the systematic driver error

We now consider the sensitivity of the algorithm to
an error in the weight of the driver Hamiltonian, i.e., to
the nonzero value of the parameter e0 ¼ nð1 − B⊥Þ
[Eq. (147)]. We assume that ϵ0 ≫ W while the spread of
the marked state energies the condition (149), so that,
absent driver errors, the PT time follows a Grover-like
scaling law [Eq. (153)].
In this case, the state j0i is coupled nonresonantly to a

continuum with a narrow bandwidth. The expression for
the population transfer to the marked states can be obtained
from the time-dependent perturbation theory in the param-
eter ϵ0=W:

XM
m¼1

jψmðtÞj2 ¼
2MV2

ϵ20

�
1 − cosðϵ0tÞ

sinðWt=2Þ
Wt=2

�
:

Maximum transfer occurs at the time t0 ¼ π=ϵ0 with the
total transferred probability p0 ¼ 4MV2=ϵ20. The typical
time tPT ≃ t0=p0 to achieve the successful population
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transfer to marked states involves repeating the experiment
1=p0 times:

tPT ¼ 1

Γ0

π2ϵ0
W

; ð154Þ

where Γ0 is given in Eq. (152) and the first multiple in the
rhs gives the typical transfer time in the absence of driver
errors. The latter leads to an increase of the transfer time by
a large factor of ϵ0=W.
For the maximum possible bandwidthW when nearly all

states are populated, W ∼ Γ0 ∼ V
ffiffiffiffiffi
M

p
, the time of popula-

tion transfer [Eq. (154)] is

tPT ∼ tGðtGϵ0Þ ðϵ0 ≫ t−1G ∼ V
ffiffiffiffiffi
M

p
Þ: ð155Þ

As expected, when the driver error exceeds inverse
Grover time 1=tG, the performance of analog Grover
algorithms (145) degrades relative to tG. This degradation
is a direct consequence of the fact that the quantum
evolution begins from a fully symmetric state which is a
ground state of the driver Hamiltonian whose energy is
tuned at resonance with the marked states. In this case, the
transverse-field Hamiltonian driver effectively corre-
sponds to the projector (145). Because the ground state
is not degenerate, the resonance region is exponentially
narrow (∼2−n=2

ffiffiffiffiffi
M

p
), which results in the exponential

sensitivity of the Grover algorithm performance to the
value of the driver weight. This critical behavior is
studied in the work on quantum spatial search [70] for
the case of one marked state.
In contrast, in the PT protocol considered earlier in this

paper, there is no need to fine-tune the value of B⊥ other
than making it large, B⊥ ≫ 1, which happens because the
effective coupling between the marked states described
by the down-folded Hamiltonian H (41) is not due to any
one particular eigenstate of the driver (such as the state
jSi for the Grover case). Instead, this coupling is formed
due to an exponentially large (in n) number of nonreso-
nant, virtual transitions between the marked states and
highly exited states of the transverse-field Hamiltonian
HD. This coupling results in a significant improvement in
robustness for the proposed PT relative to the analog
Grover algorithm.

B. Grover search starting from a marked state

We now consider an implementation of the analog
Grover search that starts from the marked state similar
to the PT protocol considered in previous sections. The
transition amplitude UijðtÞ ¼ hij expð−iHGtÞjji between
the two marked states can be written in the form

UjiðtÞ ¼
X
λ

e−iλtψλðiÞψλðjÞ: ð156Þ

Here, ψλðjÞ ¼ hjjψλi are amplitudes of the eigenstates
of HG in the M þ 1-dimensional subspace, and λ are the
corresponding eigenvalues that obey the equation

λ ¼ ϵ0 þ
XM
j¼1

V2

λ − ϵj
; ψλðjÞ ¼

V
λ − ϵj

1ffiffiffiffiffi
Zλ

p : ð157Þ

Here,

ZðλÞ ¼ 1þ
XM
m¼0

V2

ðλ − ϵmÞ2
: ð158Þ

Instead of providing a detailed analysis of the above
solution, we provide an order of magnitude estimate to
extract the relevant scaling behavior. We again assume
that the spread of the marked state energies, W ¼ t−1G ¼
OðV ffiffiffiffiffi

M
p Þ, corresponds to the inverse of the Grover time tG

needed to find any one of the solutions with equal
probability. The typical separation between the adjacent
values of ϵj is δϵ ¼ W=M ∼ V=

ffiffiffiffiffi
M

p
.

It follows from Eq. (157) that in the ordered array
obtained by combining together the sets of energies fϵjgMj¼0

and eigenvalues fλmgMm¼0 their values appear alternatively
and sequentially, e.g., ϵj−1 < λj < ϵj < λjþ1. The typical
separation between the adjacent elements in the array is
jλj − ϵjj ∼ δϵ. We observe that for a given value of λ the
sum in the expression for ZðλÞ [Eq. (158)] is dominated by
the small, Oð1Þ, number of terms with jϵm − λj ∼ δϵ, each
term of the order of M. Indeed, there are OðMÞ remaining
terms corresponding to jϵm − λj ∼W. The magnitude of
those terms is V2=W2 ∼ 1=M, and their aggregated con-
tribution to the sum is Oð1Þ. Therefore, we can estimate
ZðλÞ ¼ OðMÞ, and for the amplitudes we have

ψλðmÞ ∼ V
λ − ϵm

1ffiffiffiffiffi
M

p ; m ¼ i; j: ð159Þ

For a given initial state jii at time t, we pick the final state
jji within the energy window ϵi − ϵj ∼ Δ ¼ 1=t around ϵi.
The sum in the expression (156) for the transition ampli-
tude UjiðtÞ is dominated by the number of terms Ω ¼
Δ=δϵ ∼ Δ

ffiffiffiffiffi
M

p
=V corresponding to the eigenvalues λ inside

the same window of energies. For those terms λ − ϵi; ϵj −
λ ∼ Δ giving the estimate for the amplitudes ψλðiÞ;ψλðjÞ ∼
1=Ω [cf. Eq. (159)]. The magnitude of the sum in Eq. (156)
can be estimated as jUijðtÞj ∼ΩjψλðiÞψλðjÞj ∼ 1=Ω. On
the other hand, because ordered values of λ and ϵm alternate
in sequence, the probability jUijðtÞj2 is distributed over Ω
marked states and jUijðtÞj ∼Ω−1=2. By equating the above
two estimates for jUijðtÞj, we immediately obtain Ω ∼ 1

and, therefore,
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Δ ¼ 1

t
∼ δϵ ∼

Vffiffiffiffiffi
M

p : ð160Þ

In the case when there are only a few marked states
(M ∼ 1 and W ∼ V), the probability is initially localized
on a given marked state jii, and then it spreads over to
other states separated in energy by V during the time
tG ∼ 1=V ∼ 2n=2. In this case, the algorithm time scales
with n identically to that of the analog Grover search that
starts at the fully symmetric state jSi. Similar performance
is achieved by the PT protocol using transverse field
B⊥ ≫ 1 and discussed in previous sections.
The difference from an analog Grover search starting at

jSi from the above PT protocol using a transverse field
becomes dramatic for a large number of marked states
M ≫ 1. Both an analog Grover search and the PT protocol
benefit from the increase in M: The algorithmic time
shrinks ∝ 1=

ffiffiffiffiffi
M

p
, and the number of marked (solution)

states Ω in the number of states in the final superposition
increases with M.
In contrast, the quantum search with HG starting form

the marked state jii does not create massive superpositions
of solution states when M increases. Instead, it involves
a very few other states that are adjacent in energy,
jϵj − ϵij ∼ V=

ffiffiffiffiffi
M

p
. The time of the algorithm increases

with M [Eq. (160)]. This increase happens because, unlike
the Hamiltonian H with a transverse field [Eq. (1)], the
Hamiltonian HG is integrable. The wave function remains
localized near the initial marked state.

XIV. CONCLUSION

In this paper, we developed the first well-controlled
theoretical description of the eigenstate structure and
quantum dynamics in the NEE phase in a quantum spin
glass. The distinctive feature of a NEE in quantum spin
glass is that the eigenstates are formed by coherent super-
positions of a large number of local minima separated by
extensive Hamming distances. The local minima are con-
nected by quantum tunneling matrix elements correspond-
ing to a sum over a large number of virtual under the barrier
trajectories. Calculating such matrix elements is challeng-
ing, because contributions from different trajectories inter-
fere with each other; technically, this interference means
that looped paths have to be included in the perturbation
theory expansion, making it difficult to work with.
Moreover, perturbation expansion diverges in the delocal-
ized phase. In this paper, we overcome these difficulties by
developing an asymptotically exact WKB description of
the tunneling matrix elements and, subsequently, a well-
controlled cavity equation approach to describe delocalized
nonergodic states.
We develop this approach considering the IB model with

a “bimodal” energy function: EðzÞ ¼ 0 for all states except
for M “marked” states jzji picked at random with energies

forming a narrow band of the width W separated by a
large gap OðnÞ from the rest of the states. At a zero
transverse field, this classical model demonstrates the
frozen (replica symmetric) spin-glass phase characterized
by Edwards-Anderson order parameter qEA ¼ 1 below
the transition temperature βf ¼ ln 2 − ð1=nÞ lnM. The
well-controlled theory of the statistics of matrix elements
allows us to uncover asymptotic orthogonality between
the subspace of marked states and the rest of the Hilbert
space, a qualitatively new feature of the spectrum that
cannot be obtained by the leading-order perturbation
theory in a transverse field. As a result, the subspace
of marked states can be described with an effective down-
foldedM ×M HamiltonianH that is dense in the space of
the marked states jzji. Its off-diagonal matrix elements
Hij ¼ VðdijÞ cosϕðdijÞ depend only on the Hamming
distance d and are obtained using the WKB method. The
distribution of matrix elements Hij has a heavy tail
decaying as a cubic power for VðdÞ ≫ V typ. This tail is
a remarkable result of the competition between the very
steep decay of the off-diagonal tunneling matrix element
with the Hamming distance d and the steep increase in
the number of marked states Md ∝ ðndÞ at distance d. We
emphasize that such a polynomial tail in the distribution
of matrix elements is possible only either in an infinite
dimension or in the presence of long-range interactions
(e.g., dipolar glass).
The dispersion of the diagonal elements Hjj ¼ EðzjÞ is

expected to be large: W ∼ V typMγ=2 ≫ V typ with γ ∈ ½1; 2�.
Therefore, we callHij a preferred basis Levimatrix (PBLM),
a generalization of the Levi matrix from the random matrix
theory. We demonstrate two localization transitions in the
PBLM ensemble whose locations are determined by the
strong hierarchy of elements of the PBLMHij. In the range
1 < γ < 2, there exist minibands of nonergodic delocalized
eigenstates ofH. Their width is proportional to 1=tPT ≪ W.
Each miniband associated with a support set S over the
marked states. If γ > 2, then W exceeds the largest matrix
element ofHij and the support set is empty—all eigenstates
are localized. If γ < 1, then W is smaller than the typical
largest element in a row ofHij and the support set extends to
all marked states—all eigenstates are “ergodic” within the
subspace of marked states.
We find the distribution of the miniband width Γ

analytically by solving the nonlinear cavity equations for
an ensemble of PBLMs. Unlike previous analyses focused
on linearized cavity equations near the Anderson transition,
we find the solution of the fully nonlinear cavity equations
in the nonergodic delocalized phase. The distribution of
miniband widths Γ obeys the alpha-stable Levi law with
tail index 1. The typical value of Γ and its characteristic
variance exceeds the typical matrix element of H by a
factor of Ω1=2, where Ω ¼ ðMV typ=WÞ2 is the size of the
support set in a typical miniband.
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The novel features of the quantum spin-glass dynamics
described in this paper have important implications for
quantum search and optimization algorithms. Specifically,
coherent multiqubit tunneling gives rise to minibands of
nonergodic delocalized quantum states which provide a
coherent pathway for PT between computational states
with close energies in a spin-glass energy landscape.
Dynamics in the NEE regime cannot be efficiently simu-
lated by QMC, in contrast to sequential tunneling often
arising in quantum annealing algorithms.
We define a computational primitive with the objective to

find bit strings zj ≠ zi inside some narrow energy window
ΔEcl around the energy of the initial bit string zi. The
problem is hard for sufficiently low starting energy EðziÞ in
the region proliferated by deep local minima that are
separated by large Hamming distances. This landscape is
similar to that in an analog Grover search [46,65] with
multiple target states and a distribution of oracle values for
the targets. The best-known classical algorithm for finding
another marked state has cost Oð2n=MÞ.
We propose to solve this problem using the following

quantum PT protocol: Prepare the system in a computa-
tional state jzji with classical energy EðzjÞ and then evolve
it with the transverse-field quantum spin Hamiltonian.
Classical energies EðzÞ are encoded in the problem
Hamiltonian diagonal in the basis of states jzi similar to
quantum annealing (QA) approaches [2–4]. A key differ-
ence from QA or analog quantum search Hamiltonians
[46,70] is that the transverse field is kept constant through-
out the algorithm and is not fine-tuned to any particular
value. At the final moment of PT, we projectively measure
in the computational basis and check if the outcome z is a
“solution,” i.e., z ≠ zj, and the energy EðzÞ is inside the
window ΔEcl.
We demonstrate that for the IB model quantum PT finds

another state within a target window of energies Ω in time
tPT ∝ 2n=2Ω−1=2 exp½n=ð2B2⊥Þ�. The scaling exponent of tPT
with n differs from that in Grover’s algorithm by a factor
of ∝ B−2⊥ , which can be made small with large transverse
fields n ≫ B2⊥ ≫ 1.
Crucial distinctions between this case and the

Hamiltonian in the analog version of Grover’s algorithm
[46] for the case of multiple target states are the non-
integrability of our model and the delocalized nature of
the eigenstates within the energy band W. Furthermore,
the analog Grover’s algorithm for multiple targets is
exponentially sensitive in n to the weight of the driver
Hamiltonian and cannot be initialized with a computational
basis state.
The model (1) considered in this paper belongs to the

class of n-local infinite range spin glasses similar to
the quantum random energy model in a transverse field
[71]. However, the key feature of our analysis—transport
via a miniband of nonergodic delocalized states at the
tail of the density of states dominated by deep local

minima—is ubiquitous to a broad class of quantum spin-
glass models (1), such as transverse-field Sherrington
Kirkpatrick, p-spin model [39], K satisfiability, etc.
In the above models, one can identify two distinct energy

scales. The second scale is the typical width of nonergodic
minibands, Γ ∼ V2ρ, determined by typical values of matrix
element V between low-energy states and the density of
low-energy states ρ. The delocalized low-energy states
satisfying Vρ > 1 form minibands that are nonergodic,
i.e., are characterized by an exponentially small width and,
therefore, an exponentially small fraction of density of
states contributing to a single miniband V2ρ ∼ expð−φnÞ
with an exponent 0 < ϕ < 1. The tunneling transitions
between the states inside the miniband require a large
number of spin flips, and, therefore, Eflip ≫ Γ. Starting
from the initial state jzii inside the strip of energies ΔEcl,
the quantum evolution is confined within the corresponding
miniband. The quantum PT can be described by an
effective down-folded Hamiltonian Hij defined over a
subset of computational basis states whose classical ener-
gies lie within the energy strip ΔEcl at the tail of the density
of states. We also note that analytical [72] and numerical
[73] analyses of nonergodic delocalized states in random
energy model have been recently reported.
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APPENDIX A: MATRIX ELEMENTS OF THE
DOWN-FOLDED HAMILTONIAN AND
THE NORMALIZATION CONDITION

FOR ITS EIGENVECTORS

We introduce eigenstates jxi of the transverse-field
(driver) Hamiltonian

HD ¼ −B⊥
Xn
j¼0

σxj ¼
X

x∈f0;1gn
Hx

Djxihxj: ðA1Þ
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Here,

jxi ¼ jx1i ⊗ � � � ⊗ jxni; ðA2Þ

where jxki is the state of the kth qubit such that σxjxki ¼
ð1 − 2xkÞjxki and x bits take values xk ¼ 0, 1. Also,

Hx
D ¼ −B⊥ðn − 2hxÞ; hx ¼

Xn
k¼1

xk; ðA3Þ

where hx is a Hamming weight of the bit string x and
−B⊥ðn − 2hÞ and h ∈ ð0; nÞ are eigenvalues of HD.
We expand the eigenstates jψi of the system Hamiltonian

H (1) into the basis of the eigenstates jxi:

jψi ¼
X

x∈f0;1gn
ΨðxÞjxi: ðA4Þ

We write the Schrödinger equation Hjψi ¼ Ejψi in the
form

HDjψi þ
XM
j¼1

EðzjÞjzjiψðzjÞ ¼ Ejψi; ðA5Þ

where ψðzjÞ ¼ hzjjψi. Then, we multiply it from the left by
hxj and obtain ΨðxÞ in terms of ψðzjÞ:

ΨðxÞ ¼
P

M
j¼1 EðzjÞυx;jψðzjÞ

E −Hx
D

: ðA6Þ

In Eq. (A6), the coefficients υx;j ¼ hxjzji equal

υx;j ¼ 2−n=2ð−1Þx·zj ; x · zj ≡
Xn
k¼1

xkzkj ; ðA7Þ

and zkj ¼ 0, 1.
We now multiply Eq. (A5) from the left by hzjj, where

j ∈ ð1;MÞ enumerates marked states, and obtainX
x∈f0;1gn

Hx
DΨðxÞυx;j ¼ ½E − EðzjÞ�hzjjψi: ðA8Þ

Plugging here the expression for ΨðxÞ [Eq. (A6)] into the
matrix eigenvalue problem [Eq. (A5)], we obtain

EðziÞψðziÞ −
XM
j¼1

EðzjÞcijðEÞψðzjÞ ¼ EψðziÞ; ðA9Þ

where

cijðEÞ ¼
X

x∈f0;1gn
υx;iυx;j

Hx
D

E −Hx
D
: ðA10Þ

BecauseHx
D depends on a bit string x only via its Hamming

weight
P

n
j¼1 x

j, one can perform the partial summation in
Eq. (A10) to get

cijðEÞ≡ cðE; jzi − zjjÞ; jzi − zjj ¼
Xn
k¼1

jzki − zkj j;

ðA11Þ

where the function cðE; dÞ has the form

cðE; dÞ ¼
Xn−d
k¼0

Xd
l¼0

�
n
k

��
n − d
l

� ð−1Þl2−n
1þ E

B⊥ðn−2k−2lÞ
: ðA12Þ

Above, jzi − zjj denotes the Hamming distance between
the bit strings zi and zj. We introduce the rescaling

ψðziÞ ¼
Aiffiffiffiffiffiffiffiffiffiffi
EðziÞ

p ; i ∈ ½1…M�: ðA13Þ

Then, Eq. (A9) can be written in the form

XM
j¼1

HijðEÞAj ¼ EAi; ðA14Þ

where Hij is a symmetric M ×M matrix

HijðEÞ ¼ δkjEðziÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðziÞEðzjÞ

q
cðE; dijÞ; ðA15Þ

indices k, j ¼ 1: M, and δkj is the Kronecker delta. This
nonlinear eigenproblem is given in the main text [Eq. (18)].
We note that the projections of the eigenvectors of H

onto the marked state subspace are not, in general,
normalized, nor are they orthogonal. Let us consider the
eigenstate jψβi and the corresponding eigenvalue Eβ of H.
We calculate the corresponding amplitude ΨβðxÞ using
Eq. (A6) and plug it into the normalization conditionX

x∈f0;1gn
Ψ2

βðxÞ ¼ 1; ðA16Þ

obtaining after partial summation

XM
i;j¼1

EiEjrðEβ; dijÞψβðziÞψβðzjÞ ¼ 1; ðA17Þ

where the coefficient rðE; dÞ equals

rðE; dÞ ¼ 2−n
Xn−d
k¼0

Xd
l¼0

ð−1ÞkðdkÞðn−dl Þ
B⊥½n − 2ðkþ lÞ þ E�2 : ðA18Þ

It can be written in the form
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rðE; dÞ ¼ ∂
∂E

�
cðE; dÞ − δd;0

E

�
; ðA19Þ

where δd;0 is the Kronecker delta. We use Eq. (A15) and
write

rðE; dijÞ ¼
1ffiffiffiffiffiffiffiffiffi
EiEj

p ∂HijðEÞ
∂E : ðA20Þ

We now define the coefficients QijðEÞ such that

1

QijðEÞ
¼ EiEjrðE; dijÞ ¼

ffiffiffiffiffiffiffiffiffi
EiEj

q ∂HijðEÞ
∂E : ðA21Þ

Then, Eq. (A17) takes the form

X
i;j

1

QijðEÞ
ψβðziÞψβðzjÞ ¼ 1: ðA22Þ

The above equations (A21) and (A22) correspond to
Eqs. (21) and (22) of the main text.

APPENDIX B: DETAILS OF THE WKB
ANALYSIS OF THE COUPLING COEFFICIENTS

In the main text, we express the coupling coefficient
cðE; dÞ in terms of the off-diagonal matrix elements of
the resolvent (12) of the transverse-field Hamiltonian HD
between the states that belong to a maximum total spin
subspace S ¼ n=2. The results are given in the expressions
(29) and (30) from the main text repeated below for
convenience:

cðE; dÞ ¼ δd;0 −
EffiffiffiffiffiffiðndÞ

p Gðn=2Þ−d;ðn=2ÞðEÞ: ðB1Þ

Here, the resolvent Gðn=2Þ−d;ðn=2ÞðEÞ obeys the inhomo-
geneous equation

δm;ðn=2Þ þ
X
s¼�1

uðm − s=2ÞGmþs;ðn=2Þ ¼ EGm;ðn=2Þ; ðB2Þ

uðmÞ ¼ −B⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 −m2

p
; L ¼ nþ 1

2
: ðB3Þ

We solve the above equations for the case where the
energy E of the resolvent is not far from the center of the
impurity band:

E ¼ −nþ Δ; Δ ¼ Oðn0Þ: ðB4Þ

The WKB solution to Eq. (B2) is sought in the exponential
form

Gm;ðn=2Þ ∝ exp

�
i
Z

m
dkpðkÞ

�
: ðB5Þ

It is assumed that
R
m
0 dkpðkÞ ¼ OðnÞ and jpðkÞj ¼ Oðn0Þ

so that Gm;ðn=2Þ is varying steeply with m changing by 1.
However, jp0ðmÞj ¼ Oð1=nÞ, and pðmÞ is varying very
slowly withm due to the similar property of the coefficients
uðmÞ=L in Eq. (B2). This property is at the root of the
WKB approximation [57]. The quantity p corresponds
to the “momentum” of the effective mechanical system
with coordinate m, energy E, and Hamiltonian function
uðmÞ cosp. The function p ¼ pðE;mÞ is obtained from the
equation

uðmÞ cosp ¼ E: ðB6Þ

This equation also defines the curve on the ðm;EÞ plane
with p ¼ 0 shown in Fig. 3. Points on that curve are turning
points of the classical motion with energy E.
For not too small transverse fields

B⊥ >
2L
jEj ≃ 1; ðB7Þ

Eq. (B6) has two types of WKB solution that correspond
to real or imaginary momentum pðmÞ depending on the
value of m relative to the turning points m ¼ �m0ðEÞ
given below [74]:

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 −

�
E

2B⊥

�
2

s
: ðB8Þ

In the region

n=2þm0 > d > n=2 −m0; ðB9Þ

the amplitude Gðn=2Þ−d;ðn=2Þ [Eq. (B5)] is rapidly oscillating
with d and can be written in the form

Gðn=2Þ−d;ðn=2Þ ¼ −CðEÞ sinϕðE; dÞ
½m2

0ðEÞ − ðn=2 − dÞ2�1=4 ; ðB10Þ

where

ϕðE; dÞ ¼
Z

m0

n=2−d
dk arcsin

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 − k2

L2 − k2

s 1
CA −

π

4
ðB11Þ

is a phase of the WKB solution and CðEÞ is the constant of
integration that is discussed below.
On the other hand, in the two regions

d ∈ ½0; n=2 −m0� ∪ ½n=2þm0; n�; ðB12Þ
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the resolvent Gðn=2Þ−d;ðn=2Þ is decreasing exponentially with
d. For example, in the left region,

Gðn=2Þ−d;ðn=2Þ ¼
CðEÞ
2

ejImϕðE;dÞj

½ðn=2 − dÞ2 −m2
0ðEÞ�1=4

: ðB13Þ

We omit here for brevity the expression in the right
region [Eq. (B12)].

1. Determination of the integration constant
in WKB solution

Within the WKB approach, the integration constant CðEÞ
can be obtained by matching the exponential asymptotic
(B13) with the solution obtained near the boundary of the
interval d ¼ 0. However, as discussed in Sec. VI B of the
main text, for the relevant range of the model parameters,
the properties of the typical sample in the ensemble of the
IB Hamiltonians H depend only on Gðn=2Þ−d;ðn=2Þ in the
region of its oscillatory behavior [Eq. (B9)] away from
the boundaries of the interval d ¼ 0; n. To avoid the
analysis in the region of no consequence for us, we
determine CðEÞ by equating the above WKB asymptotic
for Gðn=2Þ−d;ðn=2Þ at the center of the interval d ¼ n=2 with
an expression for G0;ðn=2Þ at that point obtained in a
different way.
Using Eq. (23), we write cðE; n=2Þ in the integral form

c

�
E;

n
2

�
¼ iE

2nB⊥

Z
∞

0

dτð1 − e4iτÞn=2eiðE=B⊥−nþioÞτ

(o → þ0). The integral can be expressed in terms of the
Gamma function ΓðxÞ. In the region of not too small
transverse fields [Eq. (B7)], it has the form

c

�
E;

n
2

�
¼ 21−nπaða2 − 1Þ−1Γðn

2
Þ

sinðπða−1Þn
4a ÞΓððaþ1Þn

4a ÞΓðða−1Þn
4a Þ

; ðB14Þ

where

a ¼ −
nB⊥
E

> 1: ðB15Þ

Using the Sterling formulas for the Gamma function, we
obtain in the limit n ≫ 1, a ¼ Oðn0Þ,

c

�
E;

n
2

�
¼

ffiffiffiffiffiffi
nπ

p

2a sinðπða−1Þn
4a Þ

2−n=2e−nθðaÞ; ðB16Þ

θðaÞ ¼ 2arc tan hð1aÞ þ a ln ð1 − a−2Þ
4a

: ðB17Þ

For large transverse fields, a ≫ 1, and we have θ ≃ a2=4.
Using Eq. (B1), we obtain the asymptotic of the Green

function at the zone center:

G0;ðn=2ÞðEÞ ¼
�

π

8n3

�
1=4 exp½−nθðaÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2⊥ − 1
p

sinϕðn=2; EÞ : ðB18Þ

Here, we use the equality for the phase WKB ϕðE; n=2Þ
[Eq. (B11)] at the zone center:

ϕðE; n=2Þ ¼ π
ða − 1Þn

4a
: ðB19Þ

On the other hand, from the WKB expression (B10), we get

G0;n
2
¼ −CðEÞ

�
2

n

�
1=2 sinϕðE; n=2Þ

ð1 − B−2⊥ Þ1=4 : ðB20Þ

By comparing Eqs. (B18) and (B20), we finally obtain the
constant of integration CðEÞ:

CðEÞ ¼ −
π1=4

32nB2⊥ðB2⊥ − 1Þ1=4
exp½−nθðaÞ�

½sinϕðE; n=2Þ�2 : ðB21Þ

One can use Eq. (B21) in Eqs. (B10) and (29) to obtain
the expression for cðE; dÞ in the region (B9). Before
providing the result, we observe that for energies E not
too far from the impurity band center [cf. Eq. (B4)] the
expression for nθðaÞ can be expanded in powers of 1=n:

nθðaÞ ≃ nθðB⊥Þ −
Eþ n
2B⊥

arccothB⊥ þOðn−1Þ; ðB22Þ

where Eþ n≡ Δ ¼ Oðn0Þ.
Finally, the expression for the coupling coefficient has

the form

cðE; dÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðE; d=nÞ

p n
1
4e−nθðB⊥ÞffiffiffiffiffiffiðndÞ
p ×

ffiffiffi
2

p
sinϕðE; dÞ;

ðB23Þ

where theWKB phase ϕðE; dÞ is given in Eq. (B11) and the
coefficient AðE; ρÞ equals

AðE; ρÞ ¼
ffiffiffiffiffi
π

32

r
e½ðEþnÞ=B⊥�arccothB⊥

ðB2⊥ − 1ÞυðρÞsin4½ϕðE; n=2Þ� ; ðB24Þ

υðρÞ ¼
�
1 −

ð1 − 2ρÞ2
1 − B−2⊥

�
1=2

: ðB25Þ

It is related to AðρÞ in Eq. (43) of the main text as follows:
AðρÞ ¼ AðEð0Þ; ρÞ. The phase ϕðE; n=2Þ in Eq. (B24) has
an explicit form:

ϕðE; n=2Þ ¼ π

4

�
nð1 − B−1⊥ Þ þ nþ E

B⊥

�
: ðB26Þ

NONERGODIC DELOCALIZED STATES FOR EFFICIENT … PHYS. REV. X 10, 011017 (2020)

011017-35



2. Limit of large transverse fields B⊥ ≫ 1

In the limit of large transverse fields, the tuning pointm0

[Eq. (B8)] is very close to the boundary of the interval
m ¼ L so that one has a small parameter

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L −m0

L

r
¼ 1ffiffiffi

8
p jEj

LB⊥
≪ 1: ðB27Þ

In this case, the expression for the WKB phase takes a
simple form:

ϕðE; dÞ ¼ πd
2

−
πn
4

χðE; d=nÞ
B⊥

;

χðE; ρÞ ¼
�
1 −

Δ
n

��
1 −

2

π
tan−1

1 − 2ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − 2ρÞ2

p �
;

ðB28Þ

where Δ ¼ Eþ n ¼ Oðn0Þ and values of d are not too
close to the interval boundaries:

n − d; d ≫ L −m0 ∼
n
B2⊥

: ðB29Þ

We note that for large transverse fields B⊥ ≫ 1 the phase is
a sum of the two terms. The first term changes rapidly with
d with the slope π=2, and the second term changes very
little [by an amount Oðn−1Þ] when d is changed by 1.
We note that, unlike the study of the WKB eigenfunc-

tions where one has to select the WKB solution that decays
into the classically forbidden region (B12), the Green
function Gn=2−d;n=2ðEÞ corresponds to the solution that
increases exponentially with m ¼ n=2 − d > m0. Using
the oscillating [Eq. (B10)] and exponentially growing
[Eq. (B13)] WKB solutions, one can obtain the coefficient
cðE; dÞ from the relation (29). This coefficient provides an
asymptotic WKB form of cðE; dÞ almost everywhere on
the interval d ∈ ½0; n� except for the small vicinities of the
turning points, jn=2 −m0ðEÞ − dj ¼ Oðn0Þ, and end
points, n − d; d ¼ Oðn0Þ. In Fig. 4, we plot the comparison
between the coefficients cðE; dÞ computed based on the
exact expression (23) and the results of asymptotic WKB
analysis using Eqs. (B10) and (B13).

APPENDIX C: LINEARIZATION OF THE
DOWN-FOLDED HAMILTONIAN NEAR THE

CENTER OF THE IMPURITY BAND

We divide the Hamiltonian HðEÞ for a given E on two
parts, accordingly:

HijðEÞ ¼ Hð0Þ
ij ðEÞ þHð1Þ

ij ðEÞ; ðC1Þ

where we define

Hð0Þ
ij ðEÞ ¼ n½cðE; 0Þ − 1�δij; ðC2Þ

Hð1Þ
ij ðEÞ ¼ δij½1 − cðE; 0Þ�ϵi þ ncðE; dijÞð1 − δijÞ: ðC3Þ

We write similar expansions for energies and amplitudes:

E ≈ Eð0Þ þ Eð1Þ; ψðzjÞ ≈ ψ ð0ÞðzjÞ þ ψ ð1ÞðzjÞ; ðC4Þ

and get

HðEÞ ≈ Hð0ÞðEð0ÞÞ þ ∂Hð0ÞðEð0ÞÞ
∂E Eð1Þ þHð1ÞðEð0ÞÞ;

where the parts of the Hamiltonian Hð0;1Þ are given above.
We plug the above expansions into the system of equa-
tions (17)

P
M
j¼1HijðEÞAj ¼ EAi and use Eq. (A13) to

express Að0Þ
j ¼ n1=2ψ ð0ÞðzjÞ. Equating terms of the same

order in ϵj and cðE; dijÞ; i ≠ j, we obtain the equation for
eigenstates and eigenvalues in the zeroth order:

n½cðEð0Þ; 0Þ − 1�ψ ð0ÞðzjÞ ¼ Eð0Þψ ð0ÞðzjÞ; ðC5Þ

j ∈ ½1…M�, and in the first order:

aϵiψ ð0ÞðzjÞ þ b
XM
j≠i¼1

ncðEð0Þ; dijÞψ ð0ÞðzjÞ

¼ Eð1Þψ ð0ÞðzjÞ: ðC6Þ

The above index j enumerates marked states. Also, the
coefficients a and b equal

a ¼ b½1 − cðEð0Þ; 0Þ�; b−1 ¼ 1 − n
∂cðEð0Þ; 0Þ

∂E : ðC7Þ

Similarly to the above, we find from Eqs. (21) and (22)
the zeroth-order approximation to the total probabilistic
weight of an eigenfunction jψi over the marked state

subspace Qð0Þ
jk ¼ δjkQ, where

Qð0Þ
jk ¼ δjkQ;

1

Q
¼ n2

∂
∂E

�
cðE; 0Þ − 1

E

�
E¼Eð0Þ

: ðC8Þ

1. Zeroth order of the perturbation theory

Equation (C5) admits the solution corresponding to the
M-fold degenerate energy level that originates from the
band of the marked states, Eð0Þ → −n in the limit of
B⊥ → 0. The corresponding M eigenstates ψβðzjÞ
(β ∈ ½1…M�) have support over the part of computational
basis corresponding to marked states: ψβ

zj ≠ 0; j ∈ ð1;MÞ.
Using cðE; 0Þ from Eq. (C16), the explicit form of Eq. (C5)
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for the eigenvalue in the zeroth order is given in the main
text [Eqs. (36) and (37)], which we repeat here for
convenience:

Eð0Þ ¼ −n − Δ0; ðC9Þ

Δ0 ¼ n2−n
Xn
d¼0

�
n
d

�
B⊥ðn − 2dÞ

nþ Δ0 − B⊥ðn − 2dÞ : ðC10Þ

Here, Δ0 is the root of the above transcendental equation
that satisfies the condition limB⊥→0Δ0 ¼ 0. In general, the
sum (37) is dominated by the region of values of d such that
jd − n=2j ¼ Oðn1=2Þ. We obtain Δ0 in the form of a series
expansion in powers of n−1:

Δ0 ≃ −B2⊥ −
B4⊥
n

þOðn−2Þ: ðC11Þ

Similarly, using cðE; 0Þ from Eq. (23) in Eq. (C8) for the
zeroth-order total weight over the marked state subspace,
we obtain

XM
k¼1

jψ ð0Þ
zk j2 ¼ Q;

1

Q
¼ 1

2n

Xn
d¼0

�
n
d

�
1

½B⊥ðn − 2dÞ − n − Δ0�2
: ðC12Þ

Using Eq. (38) and employing similar approximations to
that from the above, we get an asymptotical expression in
the large n limit:

Q ≃ 1 −
B2⊥
n

−
3B4⊥
n2

þOðn−3Þ: ðC13Þ

We recall that in our study n is asymptotically large and
we always assume that the transverse field B⊥ ¼ Oðn0Þ
(but can be parametrically large, B⊥ ≫ 1).
The denominator in Eqs. (C10) and (C12) corresponding

to d ¼ m becomes zero at “resonant” transverse-field
value B⊥ ¼ B⊥m where d ¼ m denominator in the right
hand side of Eq. (C10) vanishes. In the range of B⊥ under
consideration, n=2 −m ≫ n1=2.
Near the mth resonance, the term with d ¼ m in the sum

(37) becomes anomalously large due to a small denomi-
nator despite the factor pm being very small. We keep
this term (37) along with the terms corresponding to
jn=2 − dj ∼ n1=2 and obtain

Δ0 ≃
δB
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2B
4
þ n2pm

r
; ðC14Þ

where we introduce a rescaled transverse-field difference
from its value at resonance:

δB ¼ n
B⊥ − B⊥m

Bð0Þ
⊥m

; ðC15Þ

where Bð0Þ
⊥m ¼ n=ðn − 2mÞ.

Clearly, in the resonance region δB ∼ np1=2
m and

jB⊥−B⊥mj∼ΔB⊥m, where ΔB⊥m∼2−n=2ðnmÞBð0Þ
⊥m. There,

the weight factor Q is decreasing dramatically (cf. Fig. 7),
and the above perturbation theory breaks down. The width
of the resonant regions ΔB⊥m remains exponentially small
in n for n=2 −m ≫ n1=2.
In this study, we focus only on the off-resonance case,

assuming the condition

ΔB⊥m ≪ jB⊥m − B⊥j ∼ jB⊥mþ1 − B⊥j ¼ OðB⊥Þ:

2. First order of the perturbation theory

The first-order equation (C6) determines the correct
zeroth-order eigenstates fψβðzjÞgMβ¼1 and removes the
degeneracy of the energy levels. To evaluate the coeffi-
cients a and b in Eq. (C6), we calculate cðE; 0Þ away from
resonance using the same approach as that in the evaluation
of the sum in Eq. (37):

cðE; 0Þ ≃ −
nB2⊥
E2

þO
�
n2B4⊥
E4

�
: ðC16Þ

The coefficients a; b ≃ 1þOðB2⊥=nÞ and in what follows
are replaced by unity. Then, Eq. (C6) corresponds to the
effective Hamiltonian H with the matrix elements Hii ¼ ϵi
and Hij≠i ¼ ncðEð0Þ; dijÞ, where coupling coefficients c
are given in Eq. (33). Using Eqs. (36) and (37) for zeroth-
order energy Eð0Þ, the matrix Hij can be written in the
form (41).

APPENDIX D: STATISTICAL INDEPENDENCE
OF MATRIX ELEMENTS

In this paper, the IB Hamiltonian Hij is determined by
the symmetric matrix of Hamming distances dij between
the bit strings corresponding to the marked states sampled
without replacement from the set of all possible 2n bit
strings. Instead of this ensemble, one can consider a
different one, where each of the M bit strings is sampled
with replacement from the full set f0; 1gn. In this ensemble,
Hamming distances dij for distinct pairs i, j are statistically
independent, allowing for much simpler statistical averag-
ing. Indeed, for a given row i of the matrix dij, the joint
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probability distribution of the two distinct off-diagonal
matrix elements can be estimated as

pdij1 ;dij2
− pdij1

pdij2
∝

1

2n
Δðdij1 − dij2Þpdij1

: ðD1Þ

Here, ΔðdÞ denotes the Kronecker delta, j1 ≠ j2 ≠ i,
and pd as before corresponds to the modified binomial
distribution:

pd ¼
1

Z
2−n

�
n
d

�
; Z ¼

Xn
d¼1

2−n
�
n
d

�
ðD2Þ

(also,
P

n
d1;d2¼1 pd1;d2 ¼ 1). One can see that the statistical

correlation between a pair of Hamming distances dij1 ; dij2
is exponentially small (in n) and can be neglected.
Such an ensemble allows for multiple copies of the

same bit string to be sampled. However, this effect is not
statistically significant for modest values of M:

1 ≪ M ≪ 2n=2: ðD3Þ

This result can be seen by comparing the number of ways
to perform unordered sampling of M elements from the
group of 2n elements with and without replacement. Using
Stirling’s formula, we write the former number as

�
2n þM − 1

M

�
≃
�
2n

M

�
exp

�
M2

2n

�
ð1þ εÞ; ðD4Þ

where the latter number is given by ð2nMÞ with
ε ∼M2−3n=4 ≪ 1. It is clear that when condition (D3) is
satisfied the two ensembles are statistically equivalent,
because repetitions can be neglected.

APPENDIX E: BOUND ON THE LARGEST
EIGENVALUE OF Vij FROM GERSCHGORIN

CIRCLE THEOREM

One can use the above estimates of the typical largest
matrix elements of the matrix Vij to consider the bounds on
its eigenvalues given by the Gerschgorin circle theorem
[58]. For the case of real eigenvalues, the theorem states
that every eigenvalue lies within at least one of the intervals
½Vii − Ri;Vii þ Ri�, where i ∈ ½1…M� and Ri ¼

P
j≠i jVijj

is a sum of absolute values of the off-diagonal elements in
the ith row. For a randomly chosen row, the value of Ri can
be estimated as follows:

Ri ≃M
Xn
d¼1

pdjVðdÞj; ðE1Þ

where pd is defined in Eq. (49). From Eq. (42), one can see
that the above sum is dominated by the terms satisfying
jn=2 − dj ≪ n. Using Stirling’s approximation, we get

Ri ∼M2−n=2e−nθ. For typical diagonal matrix elements,
jViij ¼ jϵij≲W. Therefore, from the Gerschgorin theorem,

we conclude the eigenvalues Eð1Þ
β ofH satisfy the following

bound:

jEð1Þ
β j ≤ max fW;M2−n=2e−nθg: ðE2Þ

One can see that the Gerschgorin bound in our case
precisely corresponds to the typical maximum element
in the matrix Hij.

APPENDIX F: MEAN VALUE AND STANDARD
DEVIATION OF THE OFF-DIAGONAL

MATRIX ELEMENTS Hij

The mean value of the off-diagonal matrix element

hHiji ¼ n
Xn
d¼0

pdcðE; dÞ ≃
n
2n

B⊥
B⊥ − 1

ðF1Þ

is much smaller than its standard deviation

hðHij − hHijiÞ2i1=2 ≃ B⊥
ffiffiffiffiffi
n
2n

r
: ðF2Þ

This difference is related to the symmetry pd ¼ pn−d and
a rapid oscillation of cðEð0Þ; dÞ with d [cf. Eqs. (33)
and (B11) and Fig. 4].
We note from Eqs. (51) and (F2) that the standard

deviation is exponentially larger than the typical value:

hðHij − hHijiÞ2i1=2 ∼ V typenθ:

This difference can be understood by looking at the values
of dij that dominate the variance of Hij. We write

hðHijÞ2i ¼ n2
Xn
d¼0

c2ðEð0Þ; dÞpd: ðF3Þ

It follows from Eqs. (33) and (49) that for d ∈ ðn=2 −m0;
n=2þm0Þ the coefficient c2ðE; dÞ ∝ 1=ðndÞ decreases
exponentially with d, while the distribution pd ∝ ðndÞ
increases exponentially with d. The binomial factors cancel
out, and the expression under the summation in Eq. (F3)
contains a very slowly varying with d (nonoscillatory) part.
However, for d ∈ ð0; n=2 −m0Þ, the coefficient cðE; dÞ
grows exponentially faster than 1=ðndÞ with decreasing d
[see Eqs. (B13) and (29)]. Therefore, the variance (F3) is
dominated by nonextensive values of d ¼ Oðn0Þ that
are much smaller than the smallest Hamming distance
dmin ¼ OðnÞ [Eq. (52)] in a randomly chosen row of dij.
Therefore, the variance of Hij is not a good statistical
characteristic of the PDF of Hij. It is dominated by the
extremely rare atypical instances of the ensemble.
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APPENDIX G: PDF OF THE SQUARED
OFF-DIAGONAL MATRIX ELEMENTS OF

IMPURITY BAND HAMILTONIAN

In this section, we provide the details of the derivation of
the PDF for the nonoscillatory parts of the (squared) off-
diagonal matrix elements V2

ij of the IB Hamiltonian. As
discussed in the main text, in the asymptotical limit of
large n ≫ 1, one can make an approximation that n is a
continuous variable, and we replace the summation over d
in Eq. (50) by an integral and Kronecker delta δðxÞ by a
Dirac delta. This results in Eq. (55), displayed below for
convenience:

PðV2
ijÞ ¼

Z
n

0

pxδ½V2ðxÞ − V2
ij�dx: ðG1Þ

It is discussed in the main text (see also below) that the
condition for this validity of this approximation is

1

n
log2 M ≪ 1: ðG2Þ

It corresponds to the number of marked statesM that is not
very large. For example, it can still scale exponentially with
n so that M ¼ 2μn, μ ¼ Oðn0Þ, but the coefficient μ in the
exponent needs to be small, μ ≪ 1.
The expression (G1) is obtained using the analytical

continuation px of the binomial distribution pd [Eq. (49)]
from the integer domain d ∈ ½0; n� onto the interval of a real
axis x ∈ ½0; n� in terms of the Beta function Bðx; yÞ:

px ¼ 2−n
�
n
x

�
¼ 2−n

ðnþ 1ÞBðxþ 1; nþ 1 − xÞ ðG3Þ

and the resulting identity

Z
n

0

dxpx ¼ 1: ðG4Þ

In what follows, we study the rescaled quantities

wij ≡ V2
ij

V2
typ

¼
�

2

πn

�
1=2 1

pdij

; ðG5Þ

where i ≠ j, V typ is given in Eq. (51), and pd ¼ 2−nðndÞ.
Using Stirling’s approximation in the binomial coefficient

px ≡ pBðx=nÞ; pBðρÞ ¼
e−nAðρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πnρð1 − ρÞp ; ðG6aÞ

AðρÞ ¼ ρ log ρþ ð1 − ρÞ logð1 − ρÞ þ log 2; ðG6bÞ

we get from Eq. (42) for Vij ¼ VðdijÞ

wðρÞ≡ V2ðnρÞ
V2
typ

≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρð1 − ρÞp
υðρÞ enAðρÞ; ðG7Þ

where υðρÞ is given in Eq. (44). Equation (G5) takes the
form

wij ¼ wðdij=nÞ: ðG8Þ

Then, the expression for the PDF for wij,

gðwijÞ ¼ V2
typPðV2

typwijÞ; ðG9Þ

can be written in the form [cf. Eq. (G1)]

gðwÞ ¼ 2n
Z

1=2

0

pBðρÞδ½w − wðρÞ�dρ: ðG10Þ

We note that the domain of gðwÞ is bounded from below by
w ¼ 1 and from above by w ¼ Oð2nÞ. Taking the integral
in Eq. (G10), we get

gðwÞ ¼ 2n
pBðρwÞ

j dwðρÞdρ j
ρ¼ρw

; ðG11Þ

where the rescaled Hamming distance ρw is a root of the
transcendental equation

wðρwÞ ¼ w: ðG12Þ

In the leading order in n ≫ 1, this equation gives

AðρwÞ ¼
1

n
logw; ðG13Þ

where AðρÞ is given in Eq. (G6b). Also using Eqs. (G6)
and (G7) in Eq. (G11), we get

gðwÞ ¼ 1

w2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
πlðwÞp ; ðG14Þ

where

lðwÞ ¼ n
8
υ2ðρwÞj logðρ−1w − 1Þj2: ðG15Þ

Here, the dependence of lðwÞ on w is shown in Fig. 17. In
the entire range, the dependence is logarithmically slow.
We note that Eq. (G13) is a valid approximation to

Eq. (G12) for ρ − ρ0 ≫ 1=n, where ρ0 is a zero of υðρÞ:

υðρ0Þ ¼ 0; ρ0 ¼
1

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B−2⊥

p : ðG16Þ

It corresponds to Hamming distance nρ0 ¼ n=2 −m0

[Eq. (32)], which lies at the boundary of the interval (B9)
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where the WKB solution (33) and (42) applies (see the
discussion in Sec. IV). It is assumed that nρ0 is smaller than
the typical smallest Hamming distance dmin in a randomly
selected row:

dmin − nρ0 ≫ 1: ðG17Þ

Using the asymptotic expression (G6) for the binomial
distribution in Eqs. (52), we get the equation for dmin in
the form

Aðdmin=nÞ ¼
1

n
logM: ðG18Þ

The function AðρÞ is decreasing with ρ for ρð0; 1=2Þ.
Therefore, Eq. (G17) leads to the condition Aðρ0Þ−
Aðdmin=nÞ ≫ 1=n, or

Aðρ0Þ −
1

n
logM ≫

1

n
: ðG19Þ

Using explicit forms of AðρÞ and ρ0, we get in the limit
of B⊥ ≫ 1

log 2 −
1

n
logM >

2 logB⊥ þ 2 log 2þ 1

4B2⊥
þ ε

0 < ε ¼ OðB−4⊥ Þ: ðG20Þ

This equation is the condition for Eq. (G17). Clearly, it
corresponds to a much weaker constraint on the values
of M than the condition ð1=nÞ logM < 1

2
log 2 provided by

the requirement of a statistical independence of matrix
elements of Vij [cf. Eq. (D3)].

1. Case of (1=n)log2M ≪ 1

The rescaled Hamming distance ρw depends on w via the
logarithmic factor α ¼ ð1=nÞlog2w. This dependence is
shown in the inset in Fig. 17. In this section, we consider

α ¼ 1

n
log2 w ≪ 1: ðG21Þ

Then, we get

pBðρÞ ≃
�

2

πn

�
1=2

e−nAðρÞ;

AðρÞ ≃ 2

�
1

2
− ρ

�
2

: ðG22Þ

Then, using Eq. (G13), we get

ρw ≃
1

2
−
�
α

2

�
1=2

; ðG23Þ

lðwÞ ≃ logw; ðG24Þ

and, finally,

gðwÞ ≃ g∞ðwÞ ¼
1

w2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π logw

p : ðG25Þ

The subscript here indicates that, unlike gðwÞ, the PDF
g∞ðwÞ has the upper boundary of its domain equal to
infinity. It is of interest to calculate for a given w the
magnitude of the relative changes of V2ðdÞ and of the
binomial coefficient pd when the Hamming distance is
chaining by 1 (and ρw is changing by 1=n). We define as in
Eqs. (G8) and (G7) w ¼ V2ðdÞ=V2

typ and obtain

V2ðdþ 1Þ − V2ðdÞ
V2ðdÞ ≃

pdþ1 − pd

pd
ðG26Þ

≃4
�
1

2
− ρw

�
¼

ffiffiffiffiffiffi
8α

p
≪ 1: ðG27Þ

Here, we use Eqs. (G23) and (G21). The above inequality
justifies using the continues approximation (G1) in
Eq. (50).
In a randomly chosen row of wij, the PDF that the largest

element equals w is

FIG. 17. The solid line shows the dependence of lðwÞ on α ¼
ð1=nÞlog2w from Eq. (G15). The dashed line shows the tangent to
the solid curve at the point α ¼ 0 (w ¼ 1). This line corresponds
to lðwÞ ≃ ffiffiffiffiffiffiffiffiffiffiffi

logw
p

, in accordance with Eq. (G24). The inset shows
the dependence of the root ρw of Eq. (G12) on α ¼ log2 w1=n.
Small α ≪ 1 corresponds to Hamming distances ρw ≈ 1=2. Near
that point, the dependence of ρw on α follows Eq. (G23).
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PDFðmax
m

wm ¼ wÞ ≃Me−Mw logw

w logw
; M ≫ 1: ðG28Þ

The typical largest element in a row max1<j<iwij ∼M in
agreement with the results obtained earlier; cf. Eqs. (42),
(52), and (G5). Therefore, in order to ensure that α ≪ 1
for all matrix elements in a typical row of wij, we require
that log2M ≪ n:

1 ≤ w≲M;
1

n
log2M ≪ 1: ðG29Þ

The typical value of the smallest element in a randomly
selected row of the rescaled matrix of Hamming distances
dij=n equals

ρmin ¼
dmin

n
¼ 1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log2 M
2n

r
: ðG30Þ

We note that in the case we consider,

n ≫ n=2 − dmin ¼ OðnÞ; ðG31Þ

minimum value dmin is close to n=2 but is still separated by
an extensive distance from it.
In this paper, we use the expression for the matrix

elements of the IB HamiltonianHij (41) that applies only in
the region jn=2 − dijj < m0, where m0 is given in Eq. (32).
The elements in a typical row of the matrix dij belong
to this region if the condition jn=2 − dminj < m0 is fulfilled.
Using Eq. (G30), we can rewrite this expression as an
inequality for M:

M < 2
n
2
ð1−B−2⊥ Þ: ðG32Þ

This inequality is satisfied under the condition (G29).

APPENDIX H: CHARACTERISTIC FUNCTION
OF THE PDF OF THE SQUARED

OFF-DIAGONAL MATRIX ELEMENTS OF
IMPURITY BAND HAMILTONIAN

Here, we compute the characteristic function of the PDF
g∞ðwÞ [Eq. (G25)] [also given in Eq. (60) of the main text].
It is defined as follows:

ϕ∞ðuÞ ¼
Z

∞

1

dwg∞ðwÞðeiuw − 1Þ: ðH1Þ

We are interested in the asymptotic limit of the above
expression at small juj ≪ 1. It is convenient to calculate
separately the real and imaginary parts of ϕ∞ðuÞ.

For the real part, we have

−
ffiffiffi
π

p
2

Re½ϕ∞ðuÞ� ¼
Z

∞

1

1

x2
ffiffiffiffiffiffiffiffiffiffi
log x

p sin2
�
ux
2

�
: ðH2Þ

Because ϕ∞ð−uÞ ¼ ϕ�
∞ðuÞ, we can assume that u > 0 and

break the interval of integration above in two parts:

x ∈ ½1; X=u� ∪ ½X=u;∞Þ; u ≪ X ≪ 1: ðH3Þ

We write

−
ffiffiffi
π

p
2

Re½ϕ∞ðuÞ� ¼ R1ðuÞ þ R2ðuÞ: ðH4Þ

Here,

R1ðuÞ ¼
Z

X=u

1

1

x2
ffiffiffiffiffiffiffiffiffiffi
log x

p sin2
�
ux
2

�
; ðH5Þ

R2ðuÞ ¼
Z

∞

X=u

1

x2
ffiffiffiffiffiffiffiffiffiffi
log x

p sin2
�
ux
2

�
: ðH6Þ

Using Eq. (H3), the asymptotic expansion of R1ðuÞ has
the form

R1ðuÞ ≃
uX

4½logð1=uÞ�1=2 þ
uX logð1=XÞ
8½logð1=uÞ�3=2 þ � � � : ðH7Þ

Also, after some tedious calculations, we obtain

R2ðuÞ ≃
u

½logð1=uÞ�1=2
�
π

4
−
X
4

�

þ u

2½logð1=uÞ�3=2
πðγEuler − 1Þ

4
; ðH8Þ

where

γEuler ≃ 0.577 ðH9Þ

is the Euler constant.
Similarly to the above, we also break the interval of

integration in the imaginary part of ϕ∞ðuÞ in two parts
given in Eq. (H3):

Im½ϕ∞ðuÞ� ¼ I1ðuÞ þ I2ðuÞ; ðH10Þ

where

I1ðuÞ ¼
Z

X=u

1

sin ux
x2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
π log x

p ; ðH11Þ

I2ðuÞ ¼
Z

∞

X=u

sin ux
x2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
π log x

p : ðH12Þ
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Expanding the integrand (H11) in u and using condition
(H3), we get

I1ðuÞ ≃
2u

ffiffiffiffiffiffiffiffiffiffiffi
log 1

juj
q

ffiffiffi
π

p −
u log 1

Xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π log 1

juj
q þO

�
u log2 X

log3=2 juj
�
:

Performing a similar asymptotic expansion in I2ðuÞ, we
obtain

I2ðuÞ ≃
uð1 − γEuler − logXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π log 1
juj

q þO
�
u log2 X

log3=2 u

�
:

Finally, we combine together Eqs. (H7) and (H8) into
Eq. (H4) to obtain the first two terms in the asymptotic
expansion of Re½ϕ∞ðuÞ� in powers of 1= log u ≪ 1:

Re½ϕ∞ðuÞ� ¼ −
juj ffiffiffi

π
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log juj−1

p �
1 −

1 − γEuler
2 log juj−1

�
: ðH13Þ

We also combine together the above expressions for I1 and
I2 to obtain a similar asymptotic expansion of Im½ϕ∞ðuÞ�:

Im½ϕ∞ðuÞ� ≃
2u

ffiffiffiffiffiffiffiffiffiffiffi
log 1

juj
q

ffiffiffi
π

p þ uð1 − γEulerÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π log 1

juj
q : ðH14Þ

Note that in both cases the terms involving X cancel out,
confirming the validity of the matching procedures.

APPENDIX I: GENERALIZED CENTRAL LIMIT
THEOREM FOR THE SUM OF M RANDOM

VARIABLES wm THAT OBEY THE
DISTRIBUTION g∞ðwÞ

In this section, we study the asymptotic PDF for the sum
of the independent identically distributed (IID) random
variables in Eq. (93) sampled from the probability distri-
bution (G25). We note that the variance of the random
variables does not exist. The PDFs with polynomial tails
at infinity are known as Pareto (heavy-tailed) distributions.
According to the GCLT, the PDF of the sum of M Pareto
variables forM → ∞ approaches its asymptotic form given
by the stable law [53]. This general property coincides with
the usual central limit theorem for the case when random
variables in a sum have finite variances. In this case, the
limiting PDF has a Gaussian form.
We note that the PDF given by Eq. (G25) is not strictly

polynomial atw → ∞ because of the additional logarithmic
factor. We derive the asymptotic form of the sum (93) of
random variables [Eq. (G25)] explicitly and compare with
the standard GCLT result without the logarithmic factor.
We are interested in the PDF of the random variable sM

such that [cf. Eqs. (60) and (93)]

sM ¼ 1

M

XM
i¼1

wi; g∞ðwÞ ¼
1

w2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π logw

p : ðI1Þ

Here, wi are IID random variables sampled from g∞ðwÞ,
and we are interested in the asymptotic limit M ≫ 1.
Using the convolution property of a sum of statistically

independent random variables, we get for the PDF of sM

PDFðsMÞ ¼
1

2π

Z
∞

−∞
dq½φ∞ðq=MÞ�Me−iqsM ; ðI2Þ

where

φ∞ðuÞ ¼ 1þ ϕ∞ðuÞ

and ϕ∞ðuÞ is given in Eq. (H1). The limit M ≫ 1
corresponds to juj ≪ 1. We note that

lim
u→0

ϕ∞ðuÞ ¼ 0: ðI3Þ

Taking into account that ϕðuÞ is small in the above limit,
we write

PDFðsMÞ ≃
1

2π

Z
∞

−∞
dq exp ½−iqsM þMϕ∞ðq=MÞ�: ðI4Þ

The quantity Mϕ∞ðq=MÞ can be expanded in inverse
powers of logM ≫ 1 using the asymptotic form of the
characteristic function at a small argument given in
Eqs. (H13) and (H14). The first few terms of expansion
have the form

MReϕ∞

�
q
M

�
≃ −

πjqj
2

ffiffiffiffiffiffiffiffiffiffiffiffi
logM

p þ
ffiffiffi
π

p jqjð1 − γEuler − log jqjÞ
4ðlogMÞ3=2 ;

MImϕ∞

�
q
M

�
≃ 2q

�
logM
π

�
1=2

þ q
1 − γEuler − log jqj

ðπ logMÞ1=2

þ q log jqjð1 − γEulerÞ
2

ffiffiffi
π

p ðlogMÞ3=2 ; ðI5Þ

where γEuler is the Euler constant.
It is clear from comparing individual terms in Eqs. (I5)

with the exponential in the integrand in Eq. (I4) that
q ¼ Oð ffiffiffiffiffiffiffiffiffiffiffiffi

logM
p Þ. Therefore, we can drop in Eqs. (I5) terms

O½1=ðlogMÞ3=2�. We make the change of variables in the
integral in Eq. (I4)

q ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
logM
π

r
t ðI6Þ

and obtain

PDFðsMÞ ¼
1

σM
L1;1
1

�
sM − bM

σM

�
; ðI7Þ
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L1;1
1 ðxÞ≡ 1

2π

Z
∞

−∞
dte−itx−jtj−½ð2iÞ=π�t log jtj: ðI8Þ

The function L1;1
1 ðxÞ above is a so-called Levy alpha-stable

distribution [33,61,62] shown in Fig. 15. The distribution is
defined by its characteristic function. Parameters bM and
σM in Eq. (I7) are typical values that characterize the shift
of the maximum of the PDFðsMÞ from the origin and its
overall scale, respectively. They are given in Eqs. (96)
and (95) of the main text, and we also provide them for
convenience below:

σM ¼ π

2

1

ðπ logMÞ1=2 ; ðI9Þ

bM ≃ σ−1M −
2

π
σM logðσ−1M Þ þ 2

π
ð1 − γEulerÞσM; ðI10Þ

where γEuler is the Euler constant.
It is instructive to compare the above expressions with

the result for the sum of random variables that obey a
standard Pareto distribution [i.e., without the logarithmic
factor present in g∞ðwÞ]:

s0M ¼ 1

M

XM
i¼1

wi; wi ∼ g0ðwÞ ¼ w−2: ðI11Þ

The PDF of s0M has the same form as the PDF of sM given
in Eq. (I7), but the expressions for the shift b0M and the
overall scale σ0M are different:

σ0M ¼ π

2
; b0M ¼ logM þ 1 − γEuler þ log

�
π

2

�
: ðI12Þ

One can see that

σ0M
σM

∼
b0M
bM

∼ ðlogMÞ1=2 ≫ 1: ðI13Þ

The rescaling factor ðlogMÞ1=2 between the PDFs of sM
and s0M can be explained by a similar logarithmic factor in
the ratio g0ðwÞ=g∞ðwÞ ∼ ðlogwÞ1=2, taking into account the
fact that typically w ∼M.

APPENDIX J: JUSTIFICATION OF REPLACING
SUM WITH INTEGRAL IN EQ. (84)

We note that the number of marked states Ωd in a
miniband [Eq. (98)] on a Hamming distance d from a given
marked state jzji decreases rapidly when d. There is a
typical minimum Hamming distance d ≃ dresmin such that

dresmin ¼ argminðΩdÞ ¼ Oð1Þ: ðJ1Þ

There will be no states in the miniband located at the
Hamming distances d from the state jzji that lie inside
the intervals d ∈ ½1; dresminÞ ∪ ðn − dresmin; n�. For those values
of d, we have ΓðdÞ

j ¼ 0. Using Eq. (G22), we get

dresmin ≃
n
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
2
log

2AΩ
πn2

r
; ðJ2Þ

where A ¼ AðEð0Þ; 1=2Þ [Eq. (43)].
On the one hand, we assume throughout this paper

that the number of marked states in a miniband Ω ≫ 1
is sufficiently large so that the number n − 2dresmin of
dominant terms in the sum (83) is much bigger than 1.
For example, using the scaling ansatz (75), we have Ω ∼
M2−γ [Eq. (100)]. Then, assuming that γ < 2 and
1 > ð1=nÞlog2M ¼ Oðn0Þ, we can see that the second
term in the rhs of Eq. (J2) is of the order of n and,
therefore, the number n − 2dresmin ¼ OðnÞ.
On the other hand, we note that the numberΩd [Eq. (98)]

of marked states in a miniband a Hamming distance d

from a given marked state jzji is large (MðdÞ
j > Ωd ≫ 1) for

almost all d, aside from Oðn0Þ values of d near the
boundaries of the interval d ∈ ½dresmin; n − dresmin�.
We recall that all terms in sum (83) are nearly equal to

each other, and, therefore, the relative contribution to Γj

from the boundary terms isOð1=nÞ and can be neglected in
leading-order estimates of the typical quantities. For d
away from the interval boundaries, the function δηðϵj − ϵmÞ
in Eq. (84) changes little between the adjacent values of ϵm
(by an amount of the order of 1=Ωd ≪ 1). This result
provides the justification for us to replace the sum over m
in (84) by an integral.

APPENDIX K: PDF OF THE RANDOM
VARIABLE h= fη=[(z− ϵ)2 + η2]g

Consider the PDF pηðh; zÞ introduced in Eq. (104):

pηðh; zÞ ¼
Z

∞

−∞

1

W
pAðϵ=WÞδ½h − δðz − ϵ; ηÞ�dϵ: ðK1Þ

Here, the function of two arguments δðx; yÞ is defined in
Eq. (82), and δ½x� is the Dirac delta function denoted here
with bold to distinguish from the above function. We also
use the relation (47) for the PDF of marked state energies.
Solving

h ¼ η

ðz − ϵÞ2 þ η2
; ðK2Þ

for ϵ we get

ϵ� ¼ z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηðh−1 − ηÞ

q
: ðK3Þ
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From here and from Eq. (K1), we get

pηðh; zÞ ¼
ffiffiffi
η

p
2h3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηh

p ½φþðh; zÞ þ φ−ðh; zÞ�; ðK4Þ

φ�ðh; zÞ ¼ W−1pA½z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1=h − ηÞ

p
�: ðK5Þ

For jzj ≪ W, we get pηðh; ηÞ ≃ pηðh; 0Þ:

pηðh; 0Þ ¼
ffiffiffi
η

p
h3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηh

p pA½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1=h − ηÞ

p
�: ðK6Þ

1. Uniform distribution

For the case of uniform distribution

pAðϵÞ ¼
1

W
θðW=2 − ϵÞ; ðK7Þ

where θðxÞ is the Heaviside theta function, we have

pηðh; 0Þ ¼
1

h3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η−1 − h

p : ðK8Þ

The domain of values of h is h ∈ ½hmin; hmax�, where

hmin ¼
1

ηð1þ K2
ηÞ
; hmax ¼

1

η
; ðK9Þ

Kη ≡ W
2η

; ðK10Þ

and the value of the PDF on the lower boundary is

pηðhminÞ ¼ η2
ð1þ K2

ηÞ2
Kη

: ðK11Þ

In the case of delocalized nonergodic states [Eq. (101)],

M ≫ Kη ≫ 1: ðK12Þ

The PDF pηðh; 0Þ≡ pηðhÞ is plotted in Fig. 18. The PDF
reaches the local maximum on the lower boundary hmin
corresponding to values of marked state energies ϵ ≃W
located at the edges of the IB. In the region h ∼ 1=η, the
probability density reaches very small values, pηðh;zÞ∼η2,
corresponding to the energies of marked states jϵ − zj ≃ η.
The maximum value of h ¼ 1=η corresponds to exact
resonance ϵ ¼ z. The PDF pηðh; 0Þ has an integrable
singularity at this point.
It is of interest to consider the PDF of the sum of random

variables hm over all marked states:

shM ¼ 1

M

XM
m¼1

hm; hm ¼ η

ðz − ϵmÞ2 þ η2
: ðK13Þ

In the nonergodic phase W ≫ η, the mean value of hm is
much smaller than its standard deviation:

hhmi ¼
P

σ¼�1arccotð 2η
W−2σzÞ

W
≃

π

W
; ðK14Þ

hh2mi ≃
π

2Wη
≫ hhmi2: ðK15Þ

Note that the mean is dominated by small marked state
energies ϵm ∼ η, while the standard deviation is dominated
by ϵm ∼W.
However, for sufficiently large M, the mean value of the

sum
P

M
m¼1 hm is much greater than its standard deviation

provided that δϵ ≪ η:

hshMi2 − hshMi2
hshMi2

≃
1

2π

δϵ

η
≪ 1: ðK16Þ

Therefore, in the delocalized phase

η ≫ δϵ ¼ W
M

; ðK17Þ

the sum
P

M
m¼1 hm is self-averaging.

It is convenient to introduce rescaled variables

ym ¼
ffiffiffiffiffiffiffiffi
hmη

p
: ðK18Þ

Their PDF has the form

pηðyÞ ¼
1

Kηy2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p : ðK19Þ

Boundaries of the domain of pηðyÞ are

ymin ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ K2
η

q ≤ y < ymax ¼ 1: ðK20Þ

FIG. 18. Plot of the PDF of pηðh; 0Þ≡ pηðhÞ given in Eq. (K6).
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APPENDIX L: PDF OF THE IMAGINARY PART
OF SELF-ENERGY IN SELF-CONSISTENT

BORN APPROXIMATION

In this section, we provide details of calculations of
the self-consistent Born approximation presented in
Sec. XI A 2 of the main text. We study the PDF of the sum

Σ00 ¼ V2
typ

XM
m¼1

wmη

ðz − ϵmÞ2 þ η2
; ðL1Þ

where wm ¼ V2ðd0mÞ=V2
typ [see Eqs. (G7) and (G8)] are

random variables sampled from the distribution g∞ðwÞ
[Eq. (60)] and marked state energies ϵm obey the distribu-
tion pAðϵ=WÞ=W [Eq. (47)]. The sum in Eq. (L1) can be
written in the form

Σ00 ¼ V2
typ

η

XM
m¼1

xm; xm ¼ wmy2m; ðL2Þ

where ym are random variables [Eq. (K18)] sampled from
the distribution pηðyÞ [Eq. (K19)]. For jzj ≪ W, random
variables xm obey the PDF gηðxÞ such that

gηðxÞ ¼
Z

1

ymin

dy
Z

∞

1

dwpηðyÞg∞ðwÞδðx − wy2Þ: ðL3Þ

Using Eqs. (K19) and (K20), one can show that [cf. also
Eq. (L7)]

lim
η→∞

gηðxÞ ¼ g∞ðxÞ: ðL4Þ

In order to calculate the PDF of the sum Σ00 [Eq. (L1)] in
the limit M → ∞, we use the GCLT following the same
approach as that in Appendix I. The PDF of the random
variable Σ00 equals

PDFðΣ00Þ ≃ 1

2π

Z
∞

−∞
dke−ikΣ

00þMϕηðkV2
typ=ηÞ; ðL5Þ

where ϕηðuÞ is the characteristic function of the PDF gηðxÞ
[Eq. (L7)]:

ϕηðuÞ ¼
Z

∞

½1=ð1þK2
ηÞ�
dxgηðxÞðeiux − 1Þ: ðL6Þ

1. PDF of individual terms in the sum

After some transformations, we get from Eq. (L3)

gηðxÞ ¼
1

x2Kη

ffiffiffiffiffiffi
2π

p

×
Z

minð1; ffiffi
x

p Þ

1=
ffiffiffiffiffiffiffiffiffi
1þK2

η

p dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − y2Þðlog x1=2 − log yÞ

p : ðL7Þ

The PDF is plotted in Fig. 16. Its maximum lies very close
to the left boundary of its domain x ∈ ½1=ð1þ K2

ηÞ;∞Þ. For
x ≪ 1, the PDF gηðxÞ depends on x in terms of the rescaled
parameter z ¼ xð1þ K2

ηÞ, whose PDF is

ḡηðzÞ ≃
erf

� ffiffiffiffiffiffiffiffiffiffiffiffi
1
2
log z

q 	
z3=2

ffiffiffi
2

p : ðL8Þ

The plot of ḡηðzÞ is given in Fig. 19, and its maximum
zmax ≃ 1.35. Typical values of xm ≃ zmax=K2

η ≪ 1 corre-
spond to wm ∼ 1 and to a broad PDF of marked state
energies, jz − ϵmj ∼W.
We are interested in the limits [cf. Eq. (K12)]

x ≫ 1; Kη ≫ 1: ðL9Þ

We note that log x ≫ j log yj in the denominator of Eq. (L7)
for all y except for the small interval

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

η

q ≤ y≲ 1

x
;

whose contribution to the integral is neglected. Expanding
the integrand in powers of ðlog xÞ−1=2, we get

gηðxÞ ≃
π

2Kη
g∞ðxÞ −

π log 2

2Kηπ
1=2x2 log

3
2 x

; ðL10Þ

where function g∞ðxÞ is defined in Eq. (60). We observe
from Eqs. (K10) and (K14) that ηhhmi ¼ ½π=ð2KηÞ�. Using
the expressions for g∞ [Eq. (60)] and hhi [Eq. (K14)], we
obtain under the condition (L9)

gηðxÞ ≃ ηhhig∞
�

x
ηhhi

�
; x ≫ 1: ðL11Þ

Given a large deviation of xm satisfying Eq. (L9), the
conditional PDF of ηhm is narrowly peaked around its

FIG. 19. Plot of ḡηðzÞ given in Eq. (L8) for Kη ¼
ffiffiffiffiffi
30

p
.
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mean value corresponding to jϵm − zj ∼ η. In contrast,
typical values of xm correspond to a much broader PDF
of ϵm ∼W. This correspondence gives rise to a small factor
π=2Kη ∼ η=W in the leading-order term in Eq. (L10).

2. Characteristic function of the PDF
of the elements in the sum

The relation between the characteristic functions ϕηðuÞ
and ϕ∞ðuÞ [Eq. (H1)] in the limit

juj ≪ 1 ðL12Þ

should be the same as the relation (L10) between the
corresponding PDFs gηðxÞ and g∞ðxÞ in the limit of large x
[Eq. (L9)]. Here, we establish this relation directly. We
break ϕηðuÞ in two parts

ϕηðuÞ ¼ ϕ1
ηðuÞ þ ϕ2

ηðuÞ; ðL13Þ

where

ϕ1
ηðuÞ ¼

Z
1

1=ð1þK2
ηÞ
dwgηðwÞðeiuw − 1Þ; ðL14Þ

ϕ2
ηðuÞ ¼

Z
∞

1

dwgηðwÞðeiuw − 1Þ: ðL15Þ

Expanding ϕ1
ηðuÞ in u, we get

ϕ1
ηðuÞ ≃

π

2Kη
iζ1u; ðL16Þ

where

ζ1 ¼
2

π3=2

Z
1

0

dx
x

Z ffiffi
x

p

0

dy
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − y2Þ logðx=y2Þ
p : ðL17Þ

To calculate ϕ2
ηðuÞ in the limit of small juj, we introduce

X ≫ 1 such that

juj ≪ Xjuj ≪ 1 ðL18Þ

and write

ϕ2
ηðuÞ ¼ ϕ2;−

η ðuÞ þ ϕ2;þ
η ðuÞ: ðL19Þ

Here,

ϕ2;−
η ðuÞ ¼

Z
X

1

dxgηðxÞðeiux − 1Þ; ðL20Þ

ϕ2;þ
η ðuÞ ¼

Z
∞

X
dxgηðxÞðeiux − 1Þ: ðL21Þ

We use Eq. (L18) and expand ϕ2;−
η ðuÞ in u:

ϕ2;−
η ðuÞ ≃ iu

Z
X

1

gηðxÞdx: ðL22Þ

To calculate the term ϕ2;þ
K ðuÞ, we use the approximation

(L10) and write

ϕ2;þ
η ðuÞ ¼ π

2Kη
ϕ∞ðuÞ − iu

π

2Kη

Z
X

1

g∞ðxÞxdx ðL23Þ

−
π log 2
2Kη

Z
∞

X
dx

eiux − 1ffiffiffi
π

p
x2ðlog xÞ3=2 ; ðL24Þ

where the characteristic function ϕ∞ is defined in Eq. (H1).
Combining ϕ2;�

η ðuÞ together and taking the limit
X → ∞, we get after some transformations

ϕ2
ηðuÞ ≃

π

2Kη
½ϕ∞ðuÞ − iζ2u�;

ζ2 ¼
�
32

π3

�
1=2

Z
1

0

dy
�
logð1=yÞ
1 − y2

�
1=2

: ðL25Þ

After some transformations, one can show that ζ1 ¼ ζ2.
Therefore, terms ∼u in ϕ1

ηðuÞ and ϕ2
ηðuÞ cancel each other.

Combining these two quantities together in Eq. (L13), we
finally get

ϕηðuÞ ≃
π

2Kη
ϕ∞ðuÞ þO

� juj
Kηj log uj3=2

�
: ðL26Þ

As expected, this relation corresponds to the relation (L10)
between the PDFs gk and g∞.

3. GCLT for the sum

We now revisit the expression (L5) for the PDF of the
variable Σ00 [Eq. (L1)]. In the limit M → ∞, the integral
over k in the rhs of Eq. (L5) is dominated by small values
of the argument in ϕηðkV2

typ=ηÞ. Then, using Eqs. (L26)
and (K10), we get after the change of a variable of
integration in Eq. (L5)

PDFðΣ00Þ ¼ 1

2πΣ00�

Z
∞

−∞
dqe−iqðΣ00=Σ00�ÞþΩηϕ∞ðq=ΩηÞ; ðL27Þ

where Σ00� [Eq. (92) [is the characteristic value of the
imaginary part of the self-energy of marked states obtained
in the FGR-based calculation in Sec. VIII, and the quantity
Ωη equals

Ωη ¼
πM
2Kη

¼ πη

δϵ
: ðL28Þ

It has a meaning of the typical number of marked states
within the nonergodic miniband of the width η [cf. Eq. (98)
and Fig. 14].
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We make a self-consistent assumption [cf. Eq. (134) in
the main text] and set

η ¼ Σ00�: ðL29Þ

Then, one can immediately see that

Ωη ¼ ΩΣ00� ¼ Ω; ðL30Þ

where Ω is the typical number of marked states in a
miniband defined in Eq. (113).
Comparing the expression (L27) with Eqs. (I4) and (L30),

we represent the random variable Σ00 in the form

Σ00¼d σΩΣ00�xþ bΩΣ00�; PDFðxÞ ¼ L1;1
1 ðxÞ: ðL31Þ

Here, random variable x obeys a Levy alpha-stable distri-
bution [Eq. (I8)] shown in Fig. 15. The quantities bΩ and σΩ
are given as

σΩ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

4 logΩ

r
; ðL32Þ

bΩ ≃ σ−1Ω −
2

π
σΩ logðσ−1Ω Þ þ 2

π
ð1 − γEulerÞσΩ: ðL33Þ

Their dependence on Ω is given in the main text [Eqs. (96)
and (95)], where we should replace M with Ω.

APPENDIX M: NUMERICAL SIMULATIONS

In this section, we provide details of the numerical
analysis of the ensemble of Hamiltonians introduced in
Sec. VI in addition to the results in Sec. VII.

1. Numerical justification of cavity equations

The application of the cavity method to the case of the
ensemble of dense matrices considered in this paper (see
Sec. VI) exploits the similarity between the local structure
of the adjacency graph of the HamiltonianH and the Bethe
lattice. The derivation of the cavity equations (102a)
and (102b) for the case of H outlined in Sec. X neglects
off-diagonal terms Y in comparison to diagonal X, which is
justified for graphs with an extensive number of neighbors
[33], where

X ¼ 1

M

X
j

H2
1jGjjðzÞ; ðM1Þ

Y ¼ 2

M

X
j≠k

H1jH1kGjkðzÞ; ðM2Þ

where Gij is the single-particle Green function correspond-
ing to the HamiltonianH at an energy near the center of the
band, introduced in Sec. X. It has been shown for Levy

matrices [33] that the ratio jY=Xj scales to zero with
growing matrix size M and, therefore, can be neglected.
This argument could be extended to PBLMs considered in
this paper. We confirm the validity of this approximation
numerically by analyzing the probability distribution of
the ratio jY=Xj as a function of the matrix size M. In
Figs. 20–22, the distribution of jY=Xj scales towards a high
weight at vanishing values of jY=Xj with growing M.

2. Numerical analysis of population transfer time

a. Population transfer time from
the dynamical correlator

In addition to Fig. 13 in Sec. VII of the main text, we
perform a similar collapse of the dynamical correlator

FIG. 20. Probability distribution of the ratio jY=Xj defined in
Eqs. (M1) and (M2) for γ ¼ 0.6.

FIG. 21. The same as in Fig. 20 but with γ ¼ 1.2.
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frequency dependence for different matrix sizes M for a
range of different values of γ. In Figs. 23–26, the character-
istic energy scale extracted from each set of plots using
this procedure Γε ¼ ΓtypMε corresponds to the typical
miniband width with the respective value of the parameter
γ. The fitting parameter in the scaling exponent ε is small for
all γ we consider and is consistent with the finite size effect.

b. Population transfer probability
as a function of time

In the main text, we analyze the complexity of the PT
protocol using the solution of the full nonlinear cavity
equations for the size of the typical miniband and estimate
the number of states in the miniband using the classical
value of the level spacingW=M. In this section, we analyze
the scaling of the population transfer time using exact

FIG. 23. KðωÞ rescaled with the characteristic energy Γε ¼
2Σ00

typMε where the typical miniband width is given by Eq. (128).
Here, γ ¼ 1 with fitting exponent ε ¼ −0.025.

FIG. 24. The same as in Fig. 23 but with γ ¼ 1.4 and fitting
exponent ε ¼ 0.04.

FIG. 25. The same as in Fig. 23 but with γ ¼ 1.8 and fitting
exponent ε ¼ −0.05.

FIG. 26. The same as in Fig. 23 but with γ ¼ 2 and fitting
exponent ε ¼ −0.055.

FIG. 22. The same as in Fig. 20 but for γ ¼ 1.6.
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numerical time evolution. We contrast the population
transfer time obtained from the characteristic energy scale
of the frequency dependence of the dynamical correlator in
Figs. 23–26 with the time dependence of the transfer
probability:

pðtÞ ¼ jhijψðtÞij2; ðM3Þ

where jii is the initial bit string and jψðtÞi is the wave
function resulting from the evolution with the impurity
band Hamiltonian in transverse field H (see Sec. VI) for a
time t, which is the quantity directly observed experimen-
tally. Note that in Fig. 27 the timescale at which the transfer

probability becomes of the order of one depends strongly
on the parameter γ, reflecting the fact that the characteristic
time is determined by the size of the many-body miniband
Γ rather than the typical off-diagonal matrix element V typ.
To verify this result, in Fig. 28 we rescale the unit of time
with the square root of the number of states in the minibandffiffiffiffi
Ω

p
, a good approximation for the scaling of the miniband;

see Sec. VIII for a qualitative discussion and Sec. XI for
rigorous results. We observe an approximate collapse of
the curves for different values of γ corroborating the PT
run-time scaling presented in the main text as well as the
estimate of the number of states in the miniband.
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