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We show that frustrated quasidoublets without time-reversal symmetry can host highly unconventional
magnetic structures with continuously distributed order parameters even in a single-phase crystal. Our study
comprises a comprehensive thermodynamic and neutron diffraction investigation on the single crystal of
TmMgGaO4, which entails non-Kramers Tm3þ ions arranged on a geometrically perfect triangular lattice.
The crystal electric field randomness caused by the site-mixing disorder of the nonmagnetic Mg2þ and Ga3þ

ions merges two lowest-lying crystal electric field singlets of Tm3þ into a ground-state quasidoublet. Well
below Tc ∼ 0.7 K, a small fraction of the antiferromagnetically coupled Tm3þ Ising quasidoublets with
small inner gaps condense into two-dimensional up-up-down magnetic structures with continuously
distributed order parameters, and give rise to the columnar magnetic neutron reflections below
μ0Hc ∼ 2.6 T, with highly anisotropic correlation lengths, ξab ≥ 250a in the triangular plane and ξc <
c=12 between the planes. The remaining fraction of the Tm3þ ions remain nonmagnetic at 0 T and become
uniformly polarized by the applied longitudinal field at low temperatures. We argue that the similar model
can be generally applied to other compounds of non-Kramers rare-earth ions with correlated ground-state
quasidoublets.

DOI: 10.1103/PhysRevX.10.011007 Subject Areas: Condensed Matter Physics, Magnetism,
Strongly Correlated Materials

I. INTRODUCTION

Geometrical frustration can render the ground state(s)
(GS) of the correlated spin system macroscopically degen-
erate and completely disordered in the classical Ising case
[1–6] or trigger strong quantum fluctuations that prevent the
conventional symmetry breaking even down to ∼0 K in the
quantum case [7–15]. In most of the previously proposed
frustrated magnets, the (effective) S ¼ 1=2 dipole moments
of the ground-state doublets are protected either by time-
reversal symmetry in the case of Kramers ions with an odd

number of electrons per site [4,12–16] or by the local crystal
electric field (CEF) symmetry in the case of non-Kramers
ions with an even number of electrons per site [17–20]. In
non-Kramers ions without symmetry-protected doublets,
two close-lying singlets will typically occur [21], as in the
three-dimensional dipolar Ising ferromagnet LiTbF4
[22–24] and in the kagome magnet Pr3Ga5SiO14 [25].
However, geometrically frustrated non-Kramers magnets
with correlated GS quasidoublets are still rare to date. Here,
the complete site-mixingdisorder between twononmagnetic
ions with different valences significantly distributes the
energies of the two lowest-lying and nearly degenerate
CEF singlets. And the intersite spin interactions combined
with the single-ion terms and the randomness can lead to
exotic quantum phases at low temperatures, such as co-
operative paramagnetic and unusual ordered phases [26].
In the search for such a kind of material with the two-

dimensional triangular arrangement of the 4f ions, we
explored structural siblings ofYbMgGaO4,whichwe recently
characterized as a quantum spin liquid candidate with the
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experimental evidence for breaking and rearrangement of
uncorrelated or resonating valence bonds [27–29]. Despite the
disorder effect on the CEF and the putative quantum spin
liquid state [29–31] caused by the site-mixing disorder
between nonmagnetic Mg2þ and Ga3þ ions in
YbMgGaO4, the GS CEF doublet of the Kramers Yb3þ
ion always gives rise to the effective S ¼ 1=2 magnetic
moment atT ≪ ΔCEF=kB ∼ 460 K,whereΔCEF is the energy
gap to the first excited level [16]. However, the many-body
correlated physicsmaybe significantly changedwhenYb3þ is
replaced by the non-Kramers Tm3þ (4f12) ion on the
triangular lattice, as the time-reversal symmetry is no longer
preserved, and the previously symmetry-protected degeneracy
of the GS CEF doublet may get “lifted.” And thus exotic
quantum phases may emerge in the new frustrated magnet,
TmMgGaO4. Recently, single crystals of TmMgGaO4 were
successfully synthesized by Cevallos et al. [32], which
provides an opportunity to study its exotic correlated magnet-
ism experimentally.
In this paper, we report a thorough single-crystal inves-

tigation of the low-temperature magnetism of TmMgGaO4,
including heat capacity, Faraday force magnetization (sus-
ceptibility), magnetocaloric effect, and neutron diffraction
measurements, down to 30 mK. The Mg2þ=Ga3þ disorder
significantly distributes the energies of the two lowest-lying
CEF singlets, thus mixing them into a GS quasidoublet. At
low temperatures and in small longitudinal fields, a fraction
of the Tm3þ ions—those characterized by a small gap
between the two CEF singlets—give rise to the novel 2D
Ising up-up-down (uud) phase with the continuously
distributed order parameter, under the frustrated intersite
couplings on the triangular lattice. The remaining large
fraction with the large inner gaps remains nonmagnetic at
0 T and becomes uniformly polarized by the applied
longitudinal field. Using the random many-body-correlated
model of the GS quasidoublets, we can naturally interpret
most of the low-T magnetic properties. A similar model can
be generally applied to other non-Kramers rare-earth
magnets with correlated GS quasidoublets.

II. TECHNICAL DETAILS

High-quality single crystals (∼1 cm) of TmMgGaO4,
Tm0.04Lu0.96MgGaO4, and Yb0.04Lu0.96MgGaO4 were
grown by the floating zone technique (Appendix A)
[11,32]. The Faraday force magnetization [33], heat capac-
ity, and magnetocaloric effect (magnetic Grüneisen ratio)
[34,35] down to 30 mK were measured in a 3He-4He
dilution refrigerator (Appendix B). The neutron diffraction
experiments were carried out in the ab plane (L ¼ 0) and
along the c axis (L ≠ 0), on the CEA-CRG single-crystal
diffractometer D23 [36] of Institut Laue-Langevin (ILL) in
France and on the single-crystal diffractometer POLI [37]
of Heinz Maier-Leibnitz Zentrum (MLZ) in Germany,
respectively, down to 60 mK and up to 5 T. Using the

MATLAB codes, we performed CEF, exact diagonalization
(ED), and spin-wave calculations for a model spin
Hamiltonian. Then we simultaneously fit this model to
the temperature dependence of direct current (dc) suscep-
tibility and heat capacity measured at ∼0 T, as well as the
field dependence of magnetization at 40 mK, by minimiz-
ing the following function,

Rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N0

X
i

�
Xobs
i − Xcal

i

σobsi

�
2

s
; ð1Þ

where N0, Xobs
i , and σobsi are the number of the data points

and the observed value and its standard deviation, respec-
tively, whereas Xcal

i is the calculated value.

III. SINGLE-ION PHYSICS

Generally, the CEF of Tm3þ with the D3d point-group
symmetry of TmMgGaO4 splits the 13-degenerate GS of
the free Tm3þ ion with the total angular momentum J ¼ 6,
jmJi (mJ ¼ 0;�1;…;�J) into five singlets (3A1g þ 2A2g)
and four doublets (4Eg), according to the symmetry
analysis. In the following, we will further determine the
low-lying CEF states of Tm3þ in TmMgGaO4 by thermo-
dynamical measurements.
At ∼1.9 K, the effective spin-1=2 moments of Tm3þ can

be fully polarized above ∼8 T applied along the c axis [see
Fig. 1(a)]. Through a linear fit to this high-field magnetiza-
tion data, we obtain the fitted intercept that measures the
saturated effective spin-1=2 magnetic moment gk=2, where
gk ¼ 13.18ð1Þ, and the small slope that corresponds to the
VanVleck susceptibility, χVVk ¼ 0.003ð1Þ cm3=mol [10,11].
Along the ab plane the magnetization shows a linear field
dependence between 0 and 12Twith the nearly zero intercept
[see Fig. 1(a)], suggesting the strict Ising anisotropy of the
Tm3þ magnetic moments (Appendix C). Between ∼30 and
60K, themagnetic entropy of TmMgGaO4 is measured to be
constant, Sm ∼ R ln 2 permole [see Fig. 2(e)], confirming the
GS CEF (quasi)doublets, and thus the formation of the
effective Ising spin-1=2 moments of Tm3þ below 60 K
(Appendix C).
This Ising nature is rooted in the GS CEF quasidoublets

[38]. To better understand its nature, we first prepared the
highly diluted samples of TmxLu1−xMgGaO4 (x ¼ 0.04),
where no intersite interactions occur, and single-ion physics
of Tm3þ can be probed. The diluted YbxLu1−xMgGaO4

sample with the Yb3þ Kramers ion was also studied as
reference. In both cases, the dilution eliminates any intersite
magnetic couplings, as confirmed by the diminutively small

Curie-Weiss temperatures, θkwðx ¼ 0.04Þ ∼0.16θkwðx ¼ 1Þ
[see Fig. 1(a) for TmxLu1−xMgGaO4 and Ref. [10] for
YbxLu1−xMgGaO4]. The small Curie-Weiss temperature
is obtained by the fit to χk measured in the temperature
range where Sm ∼ R ln 2, and thus the CEF effect due to
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excitations to higher CEF levels is negligible, and we obtain

θkw ¼ −3ðJzz1 þ Jzz2 Þ=2 (see below) [11,39]. Therefore, the
magnetic ions should be almost homogeneously distributed
in both diluted samples, otherwise significant Curie-Weiss
temperatures should be expected. The difference between the
Kramers Yb3þ and non-Kramers Tm3þ cases is clearly seen
in Cm=T, where the signal of the diluted Yb3þ sample
diverges at low temperatures, whereas the diluted Tm3þ
sample reveals a finite zero-temperature value ofCm=T. This
finite value indicates a distribution of the energy splitting
between the two lowest-lying CEF singlets, jE1i and jE2i
[39]. This transforms two singlets into a quasidoublet and
gives rise to the Ising anisotropy [38,39]. A similar single-ion
scenario was recently reported for the Ising spin chain
compound PrTiNbO6 [39]. Here, we use the same approach
and model the distribution with a Lorentzian function
centered at Δ̄ ¼ hE2 − E1i and having the full width at half
maximum (FWHM) ω. The nonzero ω arises from the site
mixing of Mg2þ and Ga3þ that, with their different charges,
generates randomCEFon the rare-earth site. By fittingCm=T
of the diluted samples [Fig. 1(b)], we find Δ̄ ¼ 5.9 K and
ω ¼ 5.3 K for the Tm3þ compound to be compared with
Δ̄ ¼ 0 K andω ¼ 0.19 K for Yb3þ, where theGS doublet is

protected by time-reversal symmetry.Whereas this protection
does not occur in the case of Tm3þ, a robust GS quasidoublet
can still form, because ω is comparable to Δ̄.
Above 90 K, both the CEF randomness and intersite

couplings, with the energy scales of ∼10 K [see Figs. 1(a)
and 1(b), see also below], can be neglected, and the combined
CEF fit can be carried out for both magnetic susceptibilities
and heat capacity measured on the single crystal of
TmMgGaO4 [see Figs. 1(c) and 1(d)] (Appendix C).
Fitting thermodynamic data for Tm0.04Lu0.96MgGaO4 leads
to less accurate results, owing to the large error bar for the
specific heat at high temperatures. Moreover, above ∼90 K
the normalized susceptibilities for TmMgGaO4 and
Tm0.04Lu0.96MgGaO4 nearly match, suggesting that intersite
couplings play no significant role in this temperature range.
The average inner gap between the two lowest-lying CEF

singlets is fitted to be ðE2 − E1ÞCEF ¼ 6.3 K (Appendix C),
very similar to that in Tm0.04Lu0.96MgGaO4, Δ̄ ¼ 5.9 K
(see above).ΔCEF ∼ 450 K is also obtained for TmMgGaO4,
which is close to that of YbMgGaO4 [11,16]. At low
temperatures (T ≪ ΔCEF), the components of the pseudo-
spin-1=2 magnetic moment tensor are calculated as mα

ij ¼
μBgJhEijJαjEji (i, j ¼ 1, 2 andα ¼ x, y, z), where gJ ¼ 7=6
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FIG. 1. (a) Magnetization of TmMgGaO4 measured at 1.9 K in the fields parallel and perpendicular to the c axis. The colored lines
show the linear fits to the data above 8 T. Inset: Curie-Weiss fits to the susceptibilities of TmMgGaO4 and Tm0.04Lu0.96MgGaO4

measured at 0.1 T along the c axis. (b) Magnetic heat capacities (Cm) of TmMgGaO4, Tm0.04Lu0.96MgGaO4, YbMgGaO4, and
Yb0.04Lu0.96MgGaO4 at 0 T. The red and blue lines show, respectively, the fits to the data for Tm0.04Lu0.96MgGaO4 and
Yb0.04Lu0.96MgGaO4 with the Lorentzian distributions of E2 − E1. (c) Temperature dependence of susceptibilities measured in the
field of 0.05 T applied both parallel and perpendicular to the c axis. The inset shows the CEF levels from the combined CEF fit, with the
black and violet lines for the CEF doublets and singlets, respectively. The GS quasidoublet is shown by the dark violet line.
(d) Temperature dependence of the magnetic heat capacity measured at 0 T. The inset presents a sketch of the 2D three-sublattice
magnetic dipole structure with the green and red lines showing the triangular lattice and the magnetic unit cell, respectively. The lines
show the combined CEF fit to the magnetic data of TmMgGaO4 above 90 K in both (c) and (d). (e) Magnetic neutron diffraction of
TmMgGaO4 measured on D23 at 60 mK and 0 T in the ab plane (L ¼ 0). (f) L dependence of selected static structure factors measured
on POLI at 60 mK and 0 T. The magnetic structure factors are normalized by the magnetic form factor of Tm3þ.
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is the Landé g factor and Jα is the component of the total
angular momentum operator. We obtain the general form of
the tensor as

mx ¼ my ¼
�
0 0

0 0

�
; mz ¼ μB

2

�
0 G

G� 0

�
; ð2Þ

under the subspace of jE1i and jE2i, where jGj ¼ gCEFk ∼ gk
[see Fig. 1(a)]. The eigenstates of Eq. (2) are
jσ ¼ �i ¼ 1ffiffi

2
p ½ðG=jGjÞjE1i � jE2i�, with the Ising eigen-

moments mx ¼ my ¼ 0 and mz ∼�μBgk=2. Therefore, in
the dipole approximation both jE1i and jE2i are non-
magnetic, but their linear superposition jσ ¼ �i becomes
magnetic. Under the subspace of jσ ¼ �i, we get

jE1i ¼
1ffiffiffi
2

p jGj
G

ðjσ ¼ þi þ jσ ¼ −iÞ;

jE2i ¼
1ffiffiffi
2

p ðjσ ¼ þi − jσ ¼ −iÞ: ð3Þ

Therefore, by resetting ðE2 þ E1Þ=2 ¼ 0 K, the low-T
single-ion CEF term should be taken into account in the
effective spin-1=2 Hamiltonian (see below),

Hsingle-ion ¼
Δ
2
ðjE2ihE2j − jE1ihE1jÞ ¼ −ΔSxi ; ð4Þ

with the random inner gap Δ ¼ E2 − E1. Note that Δ < 0
reverses the two lowest-lying singlets. Different local
environments at the Tm3þ sites, with different distributions
of Mg2þ=Ga3þ, give rise to the different CEF parameters,
thus leading to different values of Δ as well as gk [16].
Equation (4) introduces a transversemagnetic field term into
the spin Hamiltonian [26,40].

IV. EFFECTIVE SPIN-1=2 HAMILTONIAN

At ∼60 mK, Sm of TmMgGaO4 is measured to be
nearly zero [see Fig. 2(e)], suggesting that the system
approaches its ground state. Coherent columnar magnetic
reflections are indeed clearly observed by single-crystal
neutron diffraction [see Fig. 1(e)], with the fractional
Miller indexes H ¼ ðn1 − n2=3Þ and K ¼ ðn1 þ 2n2=3Þ,
where n1 and n2 are integers. The measured structural
factors of these magnetic reflections are nearly indepen-
dent on the third Miller index L, at least from L ¼ −1.5
to 7 [Fig. 1(f), and see Appendix D for the linear plot].
We obtain a negligible interlayer correlation, ξc ∼ 2π=
FWHML < c=12, where FWHML > 12ð2π=cÞ is the
broadening of the magnetic reflections along L [41,42].
Conversely, the crystal structure of TmMgGaO4 is
three dimensional, and the series of nuclear reflections
are clearly observed with the integer Miller indexes [see
Fig. 1(f)], such as ð2; 2; LÞ, where L ¼ 0; 3; 6;…,
ð2; 1; LÞ, where L ¼ 1; 4;…, ð2; 0; LÞ, where

L ¼ −1; 2; 5;…, and so on. Neutrons have a magnetic
moment that is sensitive to the Tm3þ dipole moments
only. Therefore, our data directly evidence that an
ideal 2D three-sublattice magnetic component of the
dipole moments [see Fig. 1(d)] forms in the 3D crystal
structure of TmMgGaO4 below 0.7 K and 2.6 T (see
below), but the interlayer spin-spin correlations are
negligible. A similar conclusion has been derived in
Ref. [43] based on the time-of-flight inelastic neutron
scattering (INS) data. To the best of our knowledge,
experimental examples of ideal 2D magnetic structures in
a real 3D material are highly rare to date, as the interlayer
magnetic interactions are always present. The negligible
interlayer couplings or correlations are likely caused by
the extremely large interlayer distance of c=3 ∼ 8.4 Å in
TmMgGaO4 [32].
We cannot assign unique values or detailed distributions

(in the case of randomness) of hSz1i, hSz2i, hSz3i, only based
on the conventional magnetic structure refinement, because
any three-sublattice structure illustrated in the inset of
Fig. 1(d) with arbitrary hSz1i ≠ hSz2i ≠ hSz3i gives the addi-
tional magnetic reflections sharing the equal structure
factor, except for small differences [see Fig. 1(f)] caused
by the sample shape, crystal extinction, and similar effects
[44]. Here, hSzi i ¼ hGSjSzi jGSi and jGSi is the GS of the
effective spin-1=2 system at ∼0 K, which is applicable to
the following ED calculations. The neutron diffraction data
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do not contain enough information for the refinement of the
2D magnetic structure.
To explore the 2D correlated magnetism of TmMgGaO4,

as well as the detailed GS magnetic structures, one has to
turn to the following disordered effective spin-1=2
Hamiltonian on the triangular lattice, with the longitudinal
field of Hk applied along the c axis,

H ¼ −Δ
X
i

Sxi þ Jzz1
X
hiji

SziS
z
j þ Jzz2

X
⟪ij0⟫

SziS
z
j0

− μ0HkμBgk
X
i

Szi : ð5Þ

Different from the 2D Ising Hamiltonian reported in
Ref. [26], we should further consider the second-neighbor
interaction in Eq. (5), owing to the large observed g factor,
gk ¼ 13.18. In the limit of the magnetic dipole-dipole
interaction, the average second-neighbor coupling is esti-
mated to be non-negligible, Jzz2 ∼ μ0g2kμ

2
B=ð4πr3NNNÞ

∼0.53 K, where rNNN ¼ ffiffiffi
3

p
a ¼ 5.9 Å. The dipolar inter-

action is relatively long-ranged, and interactions beyond
second neighbors can also be envisaged. However, the
presence of these further-neighbor interaction terms sig-
nificantly complicates the calculation and the modeling. In
all of the existing references on TmMgGaO4, other groups
also restrict themselves to the second-neighbor interaction
[3,43,45]. Even if the couplings beyond second neighbors
are non-negligible, we do not see strong reasons to include
them into the effective spin Hamiltonian, in contrast to
other perturbations, such as the randomness of the CEF
gap (energy scale ∼8 K). And the present model of
TmMgGaO4 with only the first- and second-neighbor
interactions should be just effective. The real situation
may be more complicated, but we seek to explain the bulk
of experimental observations within the minimum model
that captures the essential physics.
Between 30 and 60 K, Sm is a constant of R ln 2 [see

Fig. 2(e)], both the CEF excitations to higher levels and the
intersite spin-spin correlations have marginal effect [39],
and the mean-field approximation of the effective spin-1=2

system, χk ¼ Ck/(T − θkw), is applicable. Here, Ck ¼
NAμ0μ

2
eff=kB is the Curie constant, and the Curie-Weiss

temperature of θkw ¼ −3ðJzz1 þ Jzz2 Þ=2 reflects the intersite
magnetic couplings on the triangular lattice along the c axis
(in the spin space) [11]. Through the Curie-Weiss fit to the
susceptibility measured along the c axis between 30 and
60 K, we obtain an effective moment of μeff ¼ gkμB=2 ¼
6.5ð1ÞμB and θkw ¼ −16.44ð3Þ K. And we further get

Jzz1 þ Jzz2 ∼ −2θkw=3 ∼ 10 K. In the above Curie-Weiss fit,
we neglected the small Van Vleck susceptibility (the CEF
effect to the susceptibility), χVVk < 0.2%χk at T ≤ 60 K [see

Fig. 1(c)]. As gk ∼ 2JgJ, jmJ ¼ �Ji dominate the GS CEF

quasidoublet, and thus the non-Ising intersite coupling terms
should be neglected in TmMgGaO4 [19,20].

V. FITS TO THERMODYNAMIC DATA

Since only the three-sublattice magnetic structure is
observed by neutron diffraction belowTc ∼ 0.7 Kandbelow
μ0Hc ∼ 2.6 T, we carry out ED calculations using the 9-site
and 12-site clusters with different periodic boundary con-
ditions (PBC). No significant finite-size effects have been
observed (Appendix E). We use five different models. In
model no. 1, we fix the parameters, Δ ¼ 9.01 K,
Jzz1 ¼ 6.61 K, Jzz2 ¼ 0.30 K, and gk ¼ 12.11, reported in
Ref. [43] without any distribution, and get Rp ¼ 147. In
model no. 2, we refine the above four parameters, and obtain
Δ ¼ 5.71ð6Þ K, Jzz1 ¼ 10.9ð1Þ K, Jzz2 ¼ 1.11ð2Þ K,
gk ¼ 13.6ð1Þ, and get the least-Rp ¼ 61.7 [46]. In models
no. 3 and no. 4, we further induce the Gaussian and
Lorentzian distributions to Δ, gk, Jzz1 , Jzz2 , respectively,
due to the Mg=Ga site-mixing disorder. Each local chemical
environment of Tm3þ has a definiteΔ, and thus a definite gk
[16]. Moreover, the intersite couplings should also be
distributed around their average values due to the CEF
randomness, via both f-p virtual electron hopping processes
[19,20,47] and magnetic dipole-dipole interactions (∝ g2k).
Indeed, models 3 and 4 fit the thermodynamic data much
better, with much smaller least-Rp ¼ 20.5 and 17.8, respec-
tively. Model no. 3 gives Δ̄ ¼ 5.66ð6Þ K [FWHM ¼
12.8ð2Þ K], Jzz1 ¼ 8.57ð8Þ K [FWHM ¼ 1.13ð2Þ K],
Jzz2 ¼ 2.36ð3Þ K [FWHM ¼ 2.19ð4Þ K], and gk ¼
13.0ð1Þ [FWHM ¼ 0.93ð1Þ]. And model no. 4 gives Δ̄ ¼
5.57ð6Þ K [FWHM ¼ 8.3ð1Þ K], Jzz1 ¼ 8.48ð8Þ K
[FWHM ¼ 0.500ð6Þ K], Jzz2 ¼ 2.41ð3Þ K [FWHM ¼
2.00ð4Þ K], and ḡk ¼ 13.0ð1Þ [FWHM ¼ 0.74ð1Þ].
Finally, we also try to fit the thermodynamic data without
any intersite couplings (Jzz1 ¼ Jzz2 ¼ 0, in the no. 0 model),
but the quality of the fit is very low with a large least-
Rp ¼ 197 (see Fig. 2). Moreover, the four fitted parameters,
Δ̄ ¼ 10.5ð1Þ K [FWHM ¼ 13.1ð2Þ K] and gk ¼ 7.1ð1Þ
[FWHM ¼ 11ð1Þ, 0 ≤ gk ≤ 14], are inconsistent with the
aforementioned values. Since only the single-ion terms are
considered, the finite-size effects are completely excluded in
this case. Therefore, we conclude that the low-T physics of
TmMgGaO4 goes well beyond single-ion CEF effects, and
the antiferromagnetic intersite couplings (Jzz1 and Jzz2 ) are
critically important.
Besides the too large observed Rp (see Fig. 2), model

no. 1 [43] cannot well explain the measured magnetic
properties of TmMgGaO4 for the following reasons. First,

the mean-field approximation, Jzz1 þ Jzz2 ∼ −2θkw=3, must
be fulfilled at high temperatures (30 ≤ T ≤ 60 K). The
least-Rp fitted results of models 2, 3, and 4 obey the above
relationship very well. In contrast, model 1 gives
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Jzz1 þ Jzz2 ¼ 6.9 K, much smaller than the reported value of
−2θw=3 ¼ 12.7 K measured at 1 T in Ref. [43], where this
model was used. Second, the refined values of Δ̄ obtained
from models 2, 3, and 4 are much closer to 5.9 K measured
on Tm0.04Lu0.96MgGaO4 [Fig. 1(b)] than to Δ ¼ 9.01 K
reported in Ref. [43]. Third, model no. 1 essentially fails to
reproduce the anomalies of the magnetization around μ0Hc
measured at low temperatures [see Fig. 2(c)]. Fourth,models
no. 1 and no. 2 without randomness completely miss the
intensity increase of themagnetic reflections around μ0Hk ∼
1.5 Tmeasured at 60mK [see Fig. 2(d)]. In contrast, models
no. 3 and no. 4 largely reproduce the above field dependence
[see Fig. 2(d)]. Therefore, the randomness caused by the
Mg=Ga site mixing is an important ingredient to fully under-
stand the novel low-T correlated magnetism of TmMgGaO4.
As the temperature increases, the zero-field integral

intensities of the magnetic reflections gradually vanish at
Tc ¼ 0.70ð5Þ K, with showing a critical behavior (see
Appendix D). However, we did not observe any sharp peaks
or anomalies in the temperature dependence of the magnetic
susceptibility [Fig. 2(a)] and heat capacity [Fig. 2(b)],
suggesting a short-range magnetic transition at Tc in 0 T
(see below). Therefore, we do not exclude from the fit any
T-dependent data around Tc. And the deviation between the
experimental data and least-Rp no. 3 (no. 4) calculation is

relatively large only inCm around Tc [see Fig. 2(b)]. Except
for this deviation, models 3 and 4 reproduce the entire field
dependence of the magnetization measured at 40 mK [see
Fig. 2(c)], as well as the temperature dependence of the
susceptibility [see Fig. 2(a)]. Moreover, the entire magnetic
entropy curve can be roughly reproduced by our models 3
and 4 below 50 K [see Fig. 2(e)].

VI. PARTIAL UP-UP-DOWN ORDER

In TmMgGaO4, the local chemical environments at the
Tm3þ sites lead to a distribution of the inner gap of the GS
CEF quasidoublet, with a probability density function
PðΔÞ [see Fig. 3(e), for example]. At low temperatures,
a large fraction of the Tm3þ ions with the large inner gaps
(jΔj > δ) form the nonmagnetic component at μ0Hk ¼ 0 T,
become uniformly polarized at μ0Hk > 0 T [see Fig. 3(d),
for example], and thus cannot contribute to the magnetic
reflections with fractional H and K.
On the other hand, the small fraction of the Tm3þ ions

with jΔj ≤ δ contribute to the uud three-sublattice compo-
nent [see Figs. 3(a)–3(c) for example]. Here, we define the
order parameter for this phase as ð1=NÞPi jhSzi i−
ð1=NÞPihSzi ij, where N is the number of the triangular
sites. The order parameter is strongly dependent on Δ and,

FIG. 3. 2D continuous uud order in TmMgGaO4 calculated by the least-Rp optimized model no. 4 under an external longitudinal field,
μ0Hk ¼ 1.5 T. The 9-site cluster with PBC is used in the ED calculation. The calculated (Ising) magnetic dipole structures at selected
values of Δ ¼ E2 − E1 are shown in (a)–(d), respectively, with the numbers standing for the order parameter of the uud phase, as
described in the text. (e) Lorentzian probability distribution of Δ, PðΔÞ. A fraction (∼11%) of Tm3þ ions within the range of 2δ (marked
in red) give rise to the uud phase with the continuous distribution of the order parameter [see (a)–(c), for example], while the remaining
large fraction marked by gray results in the uniform polarization of the spin system [see (d), for example]. (f) Field dependence of δ,
δðHkÞ, calculated using the same Hamiltonian parameters of the fitted model no. 4 (9-site ED) on the 9-site (black line) and 12-site (olive
line) clusters with PBC.
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therefore, continuously distributed. It takes the maximum
of 4=9 at Δ ¼ 0 K, and gradually vanishes at the bounda-
ries, jΔj ∼ δ (see Fig. 3). Here, δðHkÞ is strongly dependent
on the applied longitudinal magnetic field [see Fig. 3(f)]. It
takes the maximum of ∼2 K at μ0Hk ∼ 1.5 T, which
naturally explains the strongest magnetic neutron reflec-
tions observed at 60 mK and 1.5 T [Fig. 2(d)]. The
maximum distributed probability that gives rise to the
uud order is only about 11% observed at μ0Hk ∼ 1.5 T.
Compared to the nuclear reflections, the magnetic ones
with fractional H and K have much lower scattering
intensities [see Fig. 1(f)], which confirms the formation
of only a small fraction of the uud order in TmMgGaO4 at
low temperatures. Quantitatively, the fully uud-ordered
phase should give magnetic reflections with the intensity
of ∼11 000 (see Appendix E) at jQj ¼ 3.5276π=a, which is
obviously larger than the average value of ∼1900measured
at 1.5 T (see Appendix D). Therefore, the fraction of the
uud compound can be estimated to be ∼1900=11 000∼
18%, which is slightly larger than the above value of ∼11%
obtained from the thermodynamic data. In this case, the
fraction should be in a range of ∼11% − 20% at 1.5 T.
The above calculations are based on the hypothesis that

local symmetries are preserved and the same values of Δ
occur within each cluster. However, the real situation in
TmMgGaO4 is much more complicated. Therefore, we also
performcalculations in thepresenceof thespatiallyrandomly
distributed inner gap Δ. The average value of Δ, Δ̄, is
comparable to its FWHM, according to the magnetic heat
capacity measured on the highly diluted sample of
Tm0.04Lu0.96MgGaO4 (see above). For simplicity, we
assume that 1,2,3,2,1 pseudospins feature Δ ¼ 0; 0.5Δ̄; Δ̄;
1.5Δ̄; 2Δ̄, respectively, in order to mimic the Lorentzian
distribution. These pseudospins are randomly arranged on
the 9-site cluster by MATLAB [see Fig. 4(a)]. Considering the
possible size effect, we also performed theEDcalculation on
the 12-site cluster with PBC. Similarly, we assume that
1,3,4,3,1 pseudospins feature Δ¼0;0.5Δ̄;Δ̄;1.5Δ̄;2Δ̄,
respectively. The 12 pseudospins are randomly arranged in
the cluster [see Fig. 4(b)].
The calculations with the randomness inside the cluster

largely confirm the main conclusions drawn from the
previous calculations where local symmetries were kept.
The local order parameter shows a pronounced variation
(see Fig. 4). Around the pseudospin with the smaller inner
gap, the local order parameter is much larger than that
around the pseudospin with the larger inner gap. Moreover,
the uud and uniformly polarized components appear in
different parts of the cluster depending on the local value of
Δ [see Fig. 4(b)]. These effects become even more obvious
on larger clusters, but do not differ qualitatively from the
results for the “homogeneous” clusters with the same value
of Δ. Therefore, even the model without internal random-
ness within the cluster should capture the essential physics
of TmMgGaO4.

VII. PHASE DIAGRAM AND DISCUSSION

Around the critical points, such as T ¼ Tc at 0 T and
Hk ¼ Hc at the low temperatures, the integral intensities of
the magnetic reflections just completely disappear (see
Appendix D). The correlation length in the ab plane (ξab)
can be estimated from the intrinsic broadening of the
magnetic reflections along H and K. Unlike the conven-
tional long-range magnetic transition where the magnetic
Bragg peaks keep coherent at all temperature below Tc
[41], TmMgGaO4 shows diffuse magnetic Bragg peaks
with short correlation lengths, ξab ∼ 200 Å around Tc and
Hc [see Figs. 5(a) and 5(b)], well consistent with the
absence of the sharp λ peaks in the temperature dependence
of the magnetic heat capacity at Tc. At the phase space well
below the above critical points the magnetic Bragg peaks
become sharp with (quasi)long correlation lengths of
≥ 1000 Å, which is more than 2 orders of magnitude
larger than the lattice constant of the triangular lattice,
a ¼ 3.4097 Å. Moreover, the longitudinal magnetic field

(a)

(b)

9-site ED
with PBC

12-site ED
with PBC

FIG. 4. Calculated ground state in the presence of the inho-
mogeneous randomness using the (a) 9-site and (b) 12-site
clusters with different PBC, under μ0Hk ¼ 1.5 T. The fitted
parameters of model no. 2 (Δ̄ ¼ 5.71 K, Jzz1 ¼ 10.9 K,
Jzz2 ¼ 1.11 K, and gk ¼ 13.6) are used. The black number in
the circle is the inner gap of each pseudospin (the multiple of Δ̄),
and the red and blue numbers are the spin-up and spin-down static
dipole moments,hSzi i. The numbers in the triangles display the
local order parameter calculated for the three spins at the corners
of the respective triangle. The green lines depict the triangular
lattice.
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applied up to ∼1.5 T along the c axis gradually shifts the
critical point to a higher temperature, and the peak of the
magnetic heat capacity becomes sharper and sharper [see
Cm=T data in Fig. 8(b) of Appendix B]. These observations
are in contradiction to the formation of the conventional
short-range spin glass GS [29,48,49].
To obtain the detailed low-T phase diagram for

TmMgGaO4, we further measured temperature dependence
of the magnetic heat capacity (Cm) at different magnetic
fields, as well as the field dependence of Cm, the first
derivative of magnetization (dMk=dHk), and magnetic
Grüneisen ratio (Γm) (see Fig. 8 in Appendix B). The
phase diagram is shown in Fig. 5(c). Above Tc ¼
0.70ð5Þ K [see Fig. 12(e) in Appendix D], no magnetic
neutron reflections with fractional H and K are observed,
suggesting the paramagnetic phase with a large frustration

factor, jθkwj=Tc ∼ 23. At low temperatures, the spin system
of TmMgGaO4 is fully polarized by high longitudinal
fields, along with a very weak Van Vleck susceptibility
caused by excitations to higher-lying CEF levels. As the
applied field decreases, both dMk=dHk and Γm show a
broad hump at ∼3.5 T, indicating a crossover from the fully
polarized phase to the uniformly partially polarized phase.
No magnetic neutron reflections are observed above

μ0Hc ¼ 2.61ð2Þ T [see Fig. 12(f) in Appendix D], and
both the optimized models no. 3 and no. 4 indeed produce
δ ¼ 0 K above ∼3 T, such that the uud order vanishes.
At μ0Hc, the emergence of the additional magnetic

reflections clearly indicates the field-induced magnetic tran-
sition along with δ > 0 K, confirmed by the relatively
narrowed peak observed in the field dependence of
dMk=dHk, Γm, and Cm. Narrowed peaks are observed at
∼1 K in the temperature dependence of Cm=T at applied
fields below μ0Hc, consistentwith the phase transition toward
the (quasi-)long-range uud order. At μ0Hk ∼ 1.5 T, the
measured Cm=T peak becomes sharpest and λ shape at
1.61(7) K, and the magnetic neutron reflections take the
maximum intensities with long-range correlations
[ξab ∼ 4000 Å, see Fig. 5(b)] at 60 mK, which can be well
interpreted by models 3 and 4 with the maximum δðHkÞ [see
Figs. 2(d) and 3(f)]. As μ0Hk further decreases, a broad peak
is observed in the field dependenceofdMk=dHk,Γm, andCm,
at ∼0.3 T, possibly suggesting some very delicate transition
or crossover from the long-range (ξab ∼ 4000 Å) to quasi-
long-range (ξab ∼ 1000 Å) orders along with the decrease of
δðHkÞ. The above information of the correlation length is also
roughly marked in the phase diagram [Fig. 5(c)].
Despite the success of models 3 and 4 in simultaneously

reproducing the low-energy thermodynamic properties and
magnetic order probed by neutron diffraction, we empha-
size that a more sophisticated model would be required to
describe all experimental data, including the spin-wave
excitations reported in Ref. [43]. First, the asymmetry of
the peak is clearly observed in the field dependence of the
structure factor on the magnetic reflection measured at
60 mK [see Fig. 2(d)]. There is still about 30% of the
maximum intensity (at 1.5 T) observed at 0 T, and the
structure factor quickly disappears at μ0Hc ¼ 2.61ð2Þ T. In
contrast, both models 3 and 4 give the symmetric peak
profile centered at ∼1.5 T [see Fig. 2(d)]. Second, the
calculated INS excitations using models 3 and 4 indeed get
broader, but may still deviate from the reported spin-wave
result [43] (see Appendix E). The asymmetric distribution
functions of Δ, gk, Jzz1 , and Jzz2 by considering the detailed
Mg/Ga arrangements, as well as the inherent correlations
among these Hamiltonian parameters, would be required to
reach a consistent interpretation for all observations.
A similar effective spin-1=2 Ising Hamilitonian with a

continuous distribution of the microscopic parameters can
be applied to other non-Kramers rare-earth magnets with
correlated GS quasidoublets, such as the Pr3þ effective
spin-1=2 chain compound, PrTiNbO6, with the similar site-
mixing disorder between nonmagnetic Ti4þ and Nb5þ ions
[39]. Therefore, the correlated magnetism of the GS
quasidoublets should be general as well in condensed
matter physics, as the structural disorder is usually inevi-
table in a real material. Our present work paves the way to
understanding this kind of novel many-body physics.

FIG. 5. (a) Temperature and (b) magnetic field dependence of
the intrinsic reflection width (blue) ωL, as well as the in-plane
correlation length (red) ξab, extracted from the magnetic reflec-
tion ð2

3
;− 1

3
; 0Þ measured on TmMgGaO4 at 0 T and 60 mK,

respectively. (c) Phase diagram of TmMgGaO4 extracted from
the neutron diffraction, heat capacity, magnetization, susceptibil-
ity, and magnetocaloric effect measurements. Long-range
order (LRO, ξab ≥ 2000 Å), quasi-long-range order (QLRO,
ξab ∼ 1000 Å), and short-range order (SRO, ξab ≤ 600 Å) re-
gions are marked roughly according to the magnetic neutron
diffraction and heat capacity data.
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VIII. CONCLUSIONS

We performed an extensive single-crystal study on the
2D frustrated magnetism of TmMgGaO4, with the perfect
triangular lattice of non-Kramers rare-earth Tm3þ ions. The
distribution of two nearly degenerate GS CEF singlets
(quasidoublet) caused by the Mg=Ga disorder is clearly
evidenced by the magnetic heat capacity of highly diluted
Tm0.04Lu0.94MgGaO4 with the negligible intersite cou-
plings, as well as the combined CEF fits to the high-T
thermodynamic data of TmMgGaO4. At low temperatures,
the effective spin-1=2 Hamiltonian of the correlated qua-
sidoublets is experimentally determined. It gives rise to the
small fraction of the 2D uud phase of the Ising magnetic
dipoles with small inner gaps (jΔj ≤ δ), as well as the main
nonmagnetic phase at 0 T with large inner gaps (jΔj > δ),
which become uniformly polarized at a finite longitudinal
applied field of Hk. Our correlated quasidoublet model
naturally explains the strongest magnetic reflections
observed at μ0Hk ∼ 1.5 T, as well as the vanishing intensity
with increasing or decreasing Hk. The similar effective
spin-1=2 model with a distribution of the microscopic
parameters should be applied to other non-Kramers rare-
earth magnets with the disorder-induced GS CEF
quasidoublets.
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APPENDIX A: SAMPLE SYNTHESIS AND
CHARACTERIZATION ABOVE 1.8 K

Large and transparent single crystals (∼1 cm)
of TmMgGaO4, Tm0.04Lu0.96MgGaO4, and
Yb0.04Lu0.96MgGaO4 (see Fig. 6) were grown in a high-
temperature optical floating zone furnace (FZ-T-10000-
H-VI-VPM-PC, Crystal Systems Corp.), using 53.0%,

60.7%, and 60.9% of the full power of the four lamps
(the full power is 1.5 kW for each lamp), respectively
[11,32,39]. The single crystals were oriented by Laue x-ray
diffraction, and were cut consequently by a line cutter
along the crystallographic ab plane. The cut planes were
cross-checked by both Laue (see Fig. 6) and conventional
x-ray diffraction (see Fig. 6). The high quality of the crystal
was confirmed by the narrow reflection peaks, 2ΔΘ ¼
0.047° − 0.065° (FWHM). The unindexed broad hump at
∼31.74° possibly comes from the tape used for measuring
the Tm0.04Lu0.96MgGaO4 crystal. Because we fixed the
surface of the crystal on a piece of tape, broad humps with
the width of ∼0.3° may be sometimes detected. No such

FIG. 6. (a) X-ray diffraction for the TmMgGaO4 single crystal
on the ab plane. The inset presents an enlargement of the
strongest Bragg peak (009), where the angle (2Θ) difference
between the nearest-neighbor data points is 0.01°. (b) Single
crystals of TmMgGaO4 cut along the ab plane. (c) Laue x-ray
diffraction pattern of TmMgGaO4 on the ab plane. (d) X-ray
diffraction for the Tm0.04Lu0.96MgGaO4 single crystal on the ab
plane. The inset presents an enlarged plot of the strongest
Bragg peak (009). (e) Single crystals of Tm0.04Lu0.96MgGaO4

cut along the ab plane. (f) Laue x-ray diffraction pattern of
Tm0.04Lu0.96MgGaO4 on the ab plane. (g) X-ray diffraction for
the Yb0.04Lu0.96MgGaO4 single crystal on the ab plane. The inset
presents an enlargement of the strongest Bragg peak (009).
(h) Single crystals of Yb0.04Lu0.96MgGaO4 cut along the ab
plane. (i) Laue x-ray diffraction pattern of Yb0.04Lu0.96MgGaO4

on the ab plane.
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features are observed on the single crystals of TmMgGaO4

and Yb0.04Lu0.96MgGaO4 [see Fig. 7(a)].
No significant impurity phase of the TmMgGaO4 sample

was observed by the single-crystal x-ray and neutron
diffraction, consistent with the previously reported work
[32]. These single-crystal samples are well transparent, and
thus we have full confidence in the absence of any impurity
phases, also from a visual inspection of the crystals with a
microscope. We also show the x-ray diffraction data
measured on the TmMgGaO4 powder in Fig. 7(a), con-
firming no obvious impurity phase.
The dc magnetization (1.8 ≤ T ≤ 400 K and 0 ≤

μ0H ≤ 7 T) was measured by a magnetic property meas-
urement system (MPMS, Quantum Design) using single
crystals of ∼100 mg. The dc magnetization up to 14 Twas
measured by a vibrating sample magnetometer in a physical
property measurement system (PPMS, Quantum Design).
The heat capacity (1.8 ≤ T ≤ 400 K and 0 ≤ μ0H ≤ 12 T)
was measured using single crystals of ∼10 mg in a PPMS.
N-grease was used to facilitate thermal contact between the
sample and the puck below 210 K, while H-grease was used
above 200 K. The sample coupling was better than 99%.
The contributions of the grease and puck under different

external fields were measured independently and subtracted
from the data. It is very difficult to precisely measure the
magnetic heat capacity of Tm0.04Lu0.96MgGaO4 and
Yb0.04Lu0.96MgGaO4 above 10 K, due to the high dilution
of the magnetic ions and the inevitable thermal disturbance.
The ac susceptibility (1.8 ≤ T ≤ 30 K and 0 T) was

measured by the MPMS using a single crystal of
TmMgGaO4 with a mass of ∼100 mg [see Fig. 7(b)],
and no obvious frequency dependence was observed from
7.57 to 757 Hz down to 1.8 K.

APPENDIX B: MILLIKELVIN
MEASUREMENTS BELOW 2 K

The total heat capacity (Cp) of the TmMgGaO4,
LuMgGaO4, Tm0.04Lu0.96MgGaO4, and
Yb0.04Lu0.96MgGaO4 single crystals was measured by a
homebuilt setup in a 3He-4He dilution refrigerator between
0.1 and 2.0 K at magnetic fields up to 5 T applied along
the c axis. In contrast to the commercial PPMS, both the
thermal link and thermometer are directly attached to the
upper surface of the single-crystal sample with the well-
polished bottom surface, which is attached to the upper
surface of the platform using grease. The heater is mounted
on the bottom surface of the platform [39]. The two-τ
model [39] is applicable in most cases. No signatures of the
poor thermal contact between the sample and holder were
observed.
In Fig. 7(c), we show a typical zero-field relaxation curve

and its fit with the two-τ model. In applied magnetic fields,
the data may deviate from the two-τ model at short times
even at higher temperatures [as in Fig. 7(d)], similar to our
previous report on the spin-chain compound PrTiNbO6

[39]. This slight deviation may be caused by the thermal
decoupling between the phonon (lattice) and electronic or
nuclear subsystems [51]. Similar to this previous work [39],
we chose to exclude the heat capacity data with the adjusted
R2 smaller than 0.9995.
The magnetic heat capacity (Cm) of TmMgGaO4 was

obtained by subtracting Cp of LuMgGaO4 from Cp of
TmMgGaO4 [see Fig. 8(a)]. We fitted the 0, 0.2, and 0.5 T
heat capacities using the function Cnð169Δ=TÞþ
A expð−Δ=TÞ, from the lowest temperature up to the
temperature of the minimum in Cm=T [see Fig. 8(b)].
Here Cnð169Δ=TÞ is the nuclear heat capacity expressed
by a two-level model, 169Δ and Δ are the nuclear and
electronic spin gaps, respectively, and A is a prefactor [39].
The dc magnetization (Mk) of TmMgGaO4 between

0.024 and 2.0 K at magnetic fields up to 8 T applied along
the c axis was measured by a high-resolution capa-
citive Faraday force magnetometer in a 3He-4He dilution
refrigerator [33] [see Fig. 8(c) for dMk=dHk]. The mag-
netic Grüneisen ratio or magnetocaloric effect, Γm ¼
ðdT=dHÞ=ðμ0TÞ ¼ −ðdMk=dTÞ=Cp, was measured by
the alternating field technique (ν ¼ 0.02 and 0.04 Hz) in

FIG. 7. (a) Powder x-ray diffraction measured on the poly-
crystalline sample of TmMgGaO4 at 300 K. The black bars show
the reflections calculated with the crystal structure data reported
by Cevallos et al. [32]. The inset shows the strongest Bragg peaks
(0,0,9) measured on the single crystals of TmMgGaO4,
Tm0.04Lu0.96MgGaO4, and Yb0.04Lu0.96MgGaO4, respectively.
(b) Temperature dependence of the ac susceptibility (the real
part) measured on the single crystal of TmMgGaO4 down to
1.8 K. Thermal relaxation data of TmMgGaO4 single crystal
measured (c) at 0 T at ∼0.1 K, (d) at 0.5 T at ∼0.2 K, with the
lines representing the least-squares fits using the two-τ model
[39]. For the definition of adj. R2, see Ref. [50].
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a 3He-4He dilution refrigerator [34,35] [see Fig. 8(d)]. Field
dependence of the heat capacity was also measured at 0.3 K
[see Fig. 8(e)], where both the nuclear and lattice con-
tributions are negligible. The peak positions correspond to
the magnetic field induced transitions or crossovers
(see Fig. 8).

APPENDIX C: COMBINED CEF FIT FOR
TmMgGaO4

The Ising nature of the Tm3þ magnetic moments is
evidenced by the strongly anisotropic magnetization
(Fig. 9). With Hkc, the magnetization becomes linearly
field dependent above 8 T, with the intercept of gk=2, where
gk ∼ 13.18 [see Fig. 9(a)]. In contrast, the magnetization
measured in the field perpendicular to c remains very low
and corresponds to the nearly field-independent suscep-
tibility dM=dH [see Fig. 9(b)]. This susceptibility is mostly
of the Van Vleck origin, whereas for the non-Van Vleck
part we can put the upper limit of g⊥ < 0.18 and estimate
g⊥=gk < 1.4%, as the slight tilting of the sample by the
applied field of H⊥ is enough to account for the observed
weak non-Van Vleck part.
For H⊥c, we observed a non-Curie-Weiss temperature-

dependent behavior in χ⊥ between 30 and 60 K [Fig. 9(c)],
as expected in the presence of the dominant Van Vleck term.
The Curie-Weiss behavior of Tm0.04Lu0.96MgGaO4 with

a very small θkw (fitted below 60 K) extends up to ∼100 K

[Fig. 9(d)], which also confirms the low-T effective spin-

1=2 physics and the neglectable CEF effect on θkw between
30 and 60 K. The deviation from the Curie-Weiss law above
∼100 K should be caused by excitations to higher CEF
levels, and that is the CEF effect to the susceptibility
(see Fig. 10).
The strict Ising anisotropy is possibly related to the non-

Kramers nature of Tm3þ, according to the following CEF
analysis. At high temperatures, T ≫ (Δ̄ or Jzz1 þ Jzz2 )
∼10 K, the CEF randomness and intersite couplings can
be ignored, and the single-ion CEF excitations to higher
levels become dominant. Under zero applied field, the CEF
Hamiltonian that is invariant under the D3d point-group
symmetry of TmMgGaO4 is given by [16]

HCEF ¼ B0
2O

0
2 þ B0

4O
0
4 þ B3

4O
3
4

þ B0
6O

0
6 þ B3

6O
3
6 þ B6

6O
6
6; ðC1Þ

where Bm
n (n, m are integers and n ≥ m) are CEF

parameters that will be determined experimentally, and

FIG. 8. (a) Heat capacity of the TmMgGaO4 and LuMgGaO4

single crystals measured at 0 T. The inset presents an enlarged
plot of the low-T data with the black line showing the Debye heat-
capacity fit (ΘD ¼ 158 K). (b) Magnetic heat capacity of
TmMgGaO4 measured at selected fields. The phonon or lattice
contribution was subtracted by the heat capacity of the non-
magnetic LuMgGaO4. The observed upturns below ∼0.3 K are
fitted by considering the nuclear spin contributions. (c) Field
dependence of the susceptibility (dMk=dHk) with the red line
showing the three-peak Lorentzian fit. (d) Field dependence of
the magnetic Grüneisen ratio measured at 0.09, 0.2, 0.3, and 2 K.
(e) Field dependence of the heat capacity measured at 0.3 K.
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FIG. 9. Field dependence of (a) magnetization (M) and (b) sus-
ceptibility (dM=dH) of TmMgGaO4 measured in fields both
parallel and perpendicular to the c axis. The data were measured
in the same vibrating sample magnetometer PPMS using the
same single crystal of TmMgGaO4 (96.90 mg). The colored lines
in (a) represent the linear fits above 8 T. We stopped the M⊥
measurement at 12 T, as the force acting on the crystal may
become too large, thus breaking the crystal itself or the sample
holder [39]. (c) Temperature dependence of the susceptibility
measured in the field of 0.1 T applied perpendicular to the c axis.
The straight red line is a guide to the eye demonstrating that no
Curie-Weiss behavior is observed between 30 and 60 K [the
temperature range where the magnetic entropy in Fig. 2(e) shows
a plateau that indicates a paramagnetic regime not affected by
spin-spin correlations and CEF excitations to higher levels].
(d) Temperature dependence of the dc susceptibility measured on
the single crystal of Tm0.04Lu0.96MgGaO4 along the c axis. The
red line shows the Curie-Weiss fit to the data between 30 and
60 K.
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the Stevens operators Om
n are polynomial functions of the

components of the total angular momentum operators Jz,
Jþ, and J− (J� ¼ Jx � iJy). The eigenvalues and eigen-
vectors of Eq. (C1) are given by Ej and jEji (j ¼ 1–13),
respectively. Under an external magnetic field of H along
the x, y, or z direction (z is along the c axis and x is along
the a axis), the CEF Hamiltonian can be expressed as

Hα
CEF ¼ HCEF − μ0μBgJHJα; ðC2Þ

with α ¼ x, y, and z, respectively. The eigenvalues and
eigenvectors of Eq. (C2) are given by Eα

j and jj; αi,
respectively. The single-ion dc magnetic susceptibility
can be calculated by

χCEFα ¼
μBgJNA

P
13
j¼1 exp

�
−

Eα
j

kBT

�
hj; αjJαjj; αi

H
P

13
j¼1 exp

�
−

Eα
j

kBT

� ; ðC3Þ

and the single-ion magnetic heat capacity under 0 T can be
calculated by

CCEF
m ¼ NA

kBT2

∂2 ln
hP

13
j¼1 exp

�
− Ej

kBT

�i

∂ð 1
kBT

Þ2 : ðC4Þ

For TmMgGaO4, χCEFx ¼ χCEFy ¼ χCEF⊥ and χCEFz ¼ χCEFk
are the calculated CEF susceptibilities perpendicular and
parallel to the c axis, respectively. Through the combined
fit to the high-T magnetic susceptibilities and heat capacity
measured above 90 K [see Figs. 1(c) and 1(d)], all of the six

CEF parameters (median values), Bm
n , can be determined

experimentally (see Table I). All of the 13 eigenvalues (the
relative values) and eigenvectors of Eq. (C1) are then
obtained (see Table II). The resulting GS g tensor naturally
features the strict Ising anisotropy, gCEF⊥ ¼ 0 and gCEFk ¼
12.5 (see main text).
We show the calculated CEF thermodynamic properties

of TmMgGaO4, without any CEF randomness (broad-
ening) and without any intersite magnetic couplings (see

Fig. 10). Two robust Curie-law (θkw ¼ 0 K) behaviors, χk ¼
C1=T and C2=T, are clearly observed in two different
temperature ranges at 30 ≤ T ≤ 60 K and T > 4000 K,
with the constant entropies, SCEF ∼ R ln 2 and R ln 13,
where C1 ¼ 185 Kcm3=mol ∼NAμ0μ

2
Bg

2
k=ð4kBÞ in the

effective Ising spin-1=2 range and C2 ¼ 90 Kcm3=mol
∼NAμ0μ

2
Bg

2
JJðJ þ 1Þ=ð3kBÞ in the high-temperature iso-

tropic (χk ∼ χ⊥) free or isolated-ion limit [52–54], respec-
tively (see Fig. 10). In both temperature ranges, the CEF
effect to the susceptibility can be neglected. Below ∼10 K,
further condensation of the CEF entropy occurs due to the
inner gap of the two lowest-lying singlets (∼6.3 K).

1 10 100 1000 10 000
0

1

2

3

4

0.1

1

10

100

C
2/

T

~ 4000 K

H c

-1 C
E

F
(m

ol
cm

-3
)

Rln2

S
C

E
F

(R
ln

2)

T (K)

R ln13

H ⊥ c

Effective
spin-1/2

~ 60 K

Free-ion
limit

CEF effect to χ

C
1/

T

FIG. 10. Temperature dependence of the calculated CEF
thermodynamic properties. The least-RP fitted average CEF
parameters of TmMgGaO4 are used, without any CEF random-
ness (broadening) and without any intersite magnetic couplings.
The dashed blue lines show the Curie fits to the calculated
susceptibility along the c axis (χk ∼ 1=T), at 30 ≤ T ≤ 60 K and
T > 4000 K, respectively. The entropy (black) and dc suscep-
tibilities (red) are calculated at 0 and 0.05 T (measuring field),
respectively.

TABLE I. CEF parameters Bm
n obtained from the combined fit.

The units are in meV.

B0
2 B0

4 B3
4 B0

6 B3
6 B6

6

−0.58 −0.00068 −0.036 −0.0000047 −0.00123 −0.0000178

TABLE II. Fitted CEF energy levels and the corresponding
CEF states under 0 T.

E1 ¼ 0 K
jE1i ¼ 0.63ðj6i þ j − 6iÞ þ 0.32ðj3i − j − 3iÞ − 0.10j0i
E2 ¼ 6.3 K
jE2i ¼ 0.63ðj6i − j − 6iÞ þ 0.32ðj3i þ j − 3iÞ
E3 or E4 ¼ 446 K
jE3i ¼ 0.91j5i þ 0.42j2i − 0.05j − 1i
jE4i ¼ 0.91j − 5i − 0.42j − 2i − 0.05j1i
E5 or E6 ¼ 702 K
jE5i ¼ 0.98j4i − 0.19j1i
jE6i ¼ 0.98j − 4i þ 0.19j − 1i
E7 ¼ 810 K
jE7i ¼ 0.26ðj6i þ j − 6iÞ − 0.39ðj3i − j − 3iÞ þ 0.74j0i
E8 or E9 ¼ 905 K
jE8i ¼ 0.30j5i − 0.17j − 4i − 0.54j2i þ 0.75j − 1i
jE9i ¼ 0.30j − 5i þ 0.17j4i þ 0.54j − 2i þ 0.75j1i
E10 ¼ 1014 K
jE10i ¼ 0.32ðj6i − j − 6iÞ − 0.63ðj3i þ j − 3iÞ
E11 or E12 ¼ 1047 K
jE11i ¼ 0.29j5i þ 0.10j − 4i − 0.72j2i − 0.61j − 1i
jE12i ¼ 0.29j − 5i − 0.10j4i þ 0.72j − 2i − 0.61j1i
E13 ¼ 1192 K
jE13i ¼ 0.20ðj6i þ j − 6iÞ − 0.49ðj3i − j − 3iÞ − 0.66j0i

YUESHENG LI et al. PHYS. REV. X 10, 011007 (2020)

011007-12



Finally, we checked the single-ion physics by mea-
suring specific heat of the strongly diluted sample,
Tm0.04Lu0.96MgGaO4, and observed the finite zero-
temperature value, Cm=T ∼ 0.65 J K−2 per mol Tm. This
indicates the mixing of the two lowest-lying CEF singlets
and the formation of a quasidoublet, which renders the Ising
anisotropy [38].

APPENDIX D: NEUTRON DIFFRACTION
MEASUREMENTS

Neutron diffraction in the ab plane (L ¼ 0) wasmeasured
on the D23 diffractometer at Institut Laue-Langevin
(ILL), France, with the PG (002) monochromator
(Ei ¼ 14.64 meV and λi ¼ 2.364 Å) on a single crystal
of TmMgGaO4 (2.5 × 5.7 × 9.8 mm3 and 0.711 g).
Experiments down to 50 mK and up to 5 T applied field
were performed using the dilution insert for the 12Tmagnet.
Neutron diffraction along the c axis (L ≠ 0) was measured
on the POLI diffractometer at Heinz Maier-Leibnitz
Zentrum (MLZ), Germany, with the Si (311) monochroma-
tor (Ei ¼ 62.07 meV and λi ¼ 1.148 Å) on the same single
crystal. Measurements down to 60 mK and up to 1.5 Twere
performed using the dilution insert for the 2.2 T magnet.
The nuclear Bragg reflections, (1,1,0), ð1̄; 1̄; 0Þ, ð1; 2̄; 0Þ,

ð1̄; 2; 0Þ, and ð2; 1̄; 0Þ, with the integral intensity of∼60 000
and the Gaussian FWHM of σΩ ¼ 0.65ð2Þ° [instrumental
resolution with PG [36], see Fig. 11(b)], were measured on
D23, and a ¼ 3.4097 Å was refined below 5 K. The
ð2̄; 1; 0Þ reflection could not be measured due to the beam
shielding by the magnet.
The maps measured at 0 T covered the 0.25 ≤ H ≤ 1.25

(0.01 per step) and −1.34 ≤ K ≤ −0.25 (0.01 per step)
range; see Fig. 11(a) for an example. At 1.5 and 3 T, the
maps covered the 0.25 ≤ H ≤ 1.25 (0.01 per step) and
−1.25 ≤ K ≤ −0.25 (0.01 per step) range [see Figs. 12(a)
and 12(b)]. The high-temperature background was mea-
sured on the sample at 2 K and 0 T, where the spin system
is paramagnetic [see Fig. 11(a)], and subtracted from the
low-T data.
In order to evaluate the correlation length of the three-

sublattice magnetic order, we choose a broad magnetic
Bragg peak, ð2

3
;− 1

3
; 0Þ [see Figs. 12(g) and 12(h)], mea-

sured in both 0 and 1.5 T at 60 mK. We performed least-
squares fits to the data using a combination of the Gaussian
and Lorentzian functions [see Fig. 11(b)]:

IðΩÞ ¼ Ibckgr þ
Z

LorðΩ0ÞGðΩ −Ω0ÞdΩ0: ðD1Þ

Here, the Gaussian part GðΩ−Ω0Þ¼fexp½−4ln2ðΩ−Ω0Þ2=
σ2Ω�=σΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=4=ln2

p g with the fixed σΩ ¼ 0.65° is due to the
instrumental broadening, the Lorentzian part LorðΩ0Þ ¼
ð2I0=πÞ½ωL=4ðΩ0 −Ω0Þ2 þ ω2

L� is the intrinsic scattering

signal from the three-sublattice magnetic order, and Ibckgr,
I0, ωL, and Ω0 are fitting parameters for the background,
integral intensity, intrinsic reflection width, and peak
center, respectively. We obtained ωL ∼ 0.34° and 0.08° at
0 and 1.5 T, respectively. If we fit the magnetic reflections
using a single Lorentzian function, FWHM ¼ 0.87ð2Þ° and
0.69(1)° are obtained at 0 and 1.5 T, respectively,
with FWHM < ωL þ σΩ.
Therefore, at 60 mK the correlation length of the three-

sublattice magnetic order can be estimated as ξabðÅÞ ∼
2π=½FWHMQðÅ−1Þ� ∼ λi=ð2ωL sin θÞ [41,42]. With
λi ¼ 2.364 Å and θ ¼ 13.4°, we obtain ξab ∼ 850 and
3800 Å at 0 and 1.5 T, respectively. The measured ξab
is more than 2 orders of magnitude larger than the lattice
parameter, a ¼ 3.4097 Å, but it is still much smaller than
the crystal size. Along the c axis, the interlayer correlation
length ξc can be estimated as ξc ∼ 2π=FWHML < c=12,

FIG. 11. (a) High-temperature neutron diffraction background
measured at 2 K and 0 T on D23. The much weaker peaks are
magnetic field independent at 60 mK, and should not originate
from the intrinsic magnetic signal of TmMgGaO4. The ring-
shaped signals originate from the copper sample holder. (b) Ω
scans measured on the broad magnetic reflection ð2

3
;− 1

3
; 0Þ in 0

and 1.5 T applied along the c axis, as well as on the nuclear
reflection ð1̄; 1̄; 0Þ in 0 T at 60 mK on D23. The blue line shows
the Gaussian fit with the resolution of σΩ ¼ 0.65ð2Þ°, and the red
lines are the fits to the data with a combination of the Gaussian
and Lorentzian functions [see Eq. (D1)]. L dependence of
selected magnetic structure factors measured on POLI in
(c) 0 T and (d) 1.5 T at 60 mK. (e) Longitudinal magnetic field
dependence of the integral intensities of five nuclear Bragg
reflections measured at 60 mK on D23. The colored lines are
the combinations of the field-independent nuclear contribution
and the calculated magnetic part using different models. The scale
and magnetic form factors are included in the calculated magnetic
contribution [see Eq. (E4)].
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where FWHML > 12ð2π=cÞ is the broadening of the
magnetic reflections along L [see Figs. 11(c) and 11(d)].
The magnetic field dependence of the intensity on the

nuclear reflections measured at ∼60 mK up to 5 T is shown
in Fig. 11(e). A rapid increase of the intensity is observed,
especially on the reflections of (1,1,0) and ð2;−1; 0Þ, at
∼3 T with increasing the applied field, which seems
consistent with models 2, 3, and 4 [Fig. 11(e)].
However, the measured increase of the intensity (with
large error bars) up to 5 T seems smaller than the expected
values. The increase of the intensity mainly reflects the
uniform or bulk magnetization process [Fig. 2(c)]. The spin
system of TmMgGaO4 is almost fully polarized at 5 T, and
thus the overall increase of the magnetic intensity with
integer indexes cannot be tiny [see Fig. 11(e)]. One possible
explanation is that the dominant nuclear part may weakly
depend on the applied magnetic field through the mag-
netostriction effect owing to the spin-lattice coupling.
At ∼60 mK, the magnetic reflections show the maxi-

mum intensities at μ0Hk ∼ 1.5 T, while they completely
disappear at μ0Hk ∼ 3 T. Well below the critical points,
Tc ¼ 0.7 K and μ0Hc ¼ 2.6 T, the magnetic reflections are
coherent with a correlation length of ≥ 1000 Å [see
Figs. 12(c) and 12(d)].
Integral intensities of the magnetic reflections measured

at 60 mK in both 0 and 1.5 T, with jHj ≤ 2 and jKj ≤ 2, are
listed in Table III. Three reflections, ð1

3
; 1
3
; 0Þ, ð− 5

3
; 1
3
; 0Þ,

and ð− 1
3
; 5
3
; 0Þ, were unavailable due to the beam shielding

by the magnet, whereas the ð1
3
;− 2

3
; 0Þ reflection was

clearly observed in the maps (see main text), but lost in
Ω scans. The magnetic diffraction intensity is calculated to
be ∼1400 (model 3) and 1100 (model 4) using Eqs. (E3)
and (E4), which are largely consistent with the average
intensity of the magnetic reflections with jQj ¼ 3.5276π=a

FIG. 12. Magnetic neutron diffraction of TmMgGaO4 mea-
sured on D23 at 60 mK under the magnetic field of (a) 1.5 T and
(b) 3 T, applied along the c axis. Selected Ω scans measured on
the ð2

3
;− 1

3
; 0Þmagnetic reflection (c) at 0 Tand (d) at 60 mK. The

colored lines show the corresponding Lorentzian fits. (e) Temper-
ature and (f) magnetic field dependence of the magnetic reflection
intensities measured at 0 T and at 60 mK, respectively. The
colored lines show the combined critical fits. (g) Temperature and
(h) magnetic field dependence of the magnetic reflection FWHM
measured at 0 T and at 60 mK, respectively.

TABLE III. Intensities of the magnetic reflections measured at 60 mK.

At 0 T At 1.5 T At 0 T At 1.5 T

ð− 1
3
;− 1

3
; 0Þ 1956(47) 6339(168) ð2

3
;− 1

3
; 0Þ 1818(54) 5640(143)

ð− 1
3
; 2
3
; 0Þ 1405(38) 4436(118) ð− 2

3
; 1
3
; 0Þ 1710(46) 5332(151)

ð− 2
3
;− 2

3
; 0Þ 1136(27) 3404(117) ð2

3
;− 4

3
; 0Þ 868(33) 2447(93)

ð4
3
;− 2

3
; 0Þ 911(24) 2632(97) ð2

3
; 2
3
; 0Þ 1282(28) 3629(119)

ð− 2
3
; 4
3
; 0Þ 917(24) 2627(89) ð− 4

3
; 2
3
; 0Þ 839(26) 2489(80)

ð− 1
3
;− 4

3
; 0Þ 675(26) 1743(64) ð1

3
;− 5

3
; 0Þ 645(37) 1768(75)

ð4
3
;− 5

3
; 0Þ 729(30) 2056(86) ð5

3
;− 4

3
; 0Þ 607(21) 1776(87)

ð5
3
;− 1

3
; 0Þ 732(32) 1998(94) ð4

3
; 1
3
; 0Þ 1088(43) 2853(130)

ð1
3
; 4
3
; 0Þ 699(105) 1470(97) ð− 4

3
; 5
3
; 0Þ 728(38) 2028(85)

ð− 5
3
; 4
3
; 0Þ 645(33) 1697(63) ð− 4

3
;− 1

3
; 0Þ 886(40) 2299(92)

ð− 2
3
;− 5

3
; 0Þ 351(28) 998(79) ð5

3
; 2
3
; 0Þ 1228(339) 1365(223)

ð2
3
; 5
3
; 0Þ 687(90) 1458(153) ð− 5

3
;− 2

3
; 0Þ 155(40) 878(107)
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[ð−1=3;−4=3; 0Þ, ð1=3;−5=3; 0Þ, and so on] (∼1900, see
Table III), at 1.5 T. The measured magnetic intensity
decreases from ∼5400 (averaged) at jQj ¼ 4π=ð3aÞ to
∼1900 (averaged) at jQj ¼ 3.5276π=a (Table III), while
the magnetic form factor only slightly decreases from
0.9354 to 0.6446. Therefore, other intensity correction
factors play an important role [44], and we multiply the
magnetic structure factor calculated with Eq. (E3) by an
estimated factor of ∼ð0.54×10−12 cmÞ2×5400×0.6446=
ð1900×0.9354ÞSph∼1800 Tm in Fig. 2(d).
We performed the combined fit to the intensities of the

magnetic reflections measured at 0.1–3.5 K in the field of
0 T,

IHK0 ¼ AHK0
jTc − Tj2β

1þ eðT−TcÞ=T0
; ðD2Þ

by sharing the same fitting parameters, Tc and β. We
fixed T0 ≡ 0.001 K to ensure the conditional function,
whereas AHK0 were the fitted prefactors for the reflections
(H, K, 0). Through the combined fit [see Fig. 12(e)], the
critical temperature and exponent, Tc ¼ 0.70ð5Þ K and
β ¼ 0.103ð3Þ, were obtained. Similarly, we also fitted
the intensities measured in the fields of 2–5 T applied
along the c axis at 60 mK,

IHK0 ¼ A0
HK0

jHc −Hj2β0
1þ eðH−HcÞ=H0

; ðD3Þ

by sharing the same fitting parameters,Hc and β0. We fixed
μ0H0 ≡ 0.001 T, and obtained μ0Hc ¼ 2.61ð2Þ T and
β0 ¼ 0.317ð2Þ [see Fig. 12(f)].
Around (just below) the critical points, the (quasi-)long-

range spin order is replaced by the short-range one, and
thus the FWHM of the magnetic reflections increases
quickly [see Figs. 12(g) and 12(h)] [55].

APPENDIX E: EXACT DIAGONALIZATION
CALCULATIONS AND SIMULATIONS

Including the precise single-ion and bond disorder
effects into the many-body correlated model of
TmMgGaO4 is a challenging problem. For simplicity,
we kept all symmetries of the system (space group
R3̄m) and assumed the distributions Y − Ȳ ¼ KYðΔ − Δ̄Þ
around the average value in both models 3 and 4 (see main
text), where Y ¼ Jzz1 , J

zz
2 , gk is the Hamiltonian parameter

and KY is the fitting linear parameter proportional to the
FWHM of Y. Each set of the Hamiltonian parameters
corresponds to one local CEF environment (Mg2þ=Ga3þ
arrangement), and we perform the ED calculations for each
of these sets. To facilitate the calculations, we truncated the
distribution function at jΔ − Δ̄j=FWHMðΔÞ ≥ 1.3 and
2.0 with PðΔÞ=PðΔ̄Þ ≤ 0.9% and ≤ 5.9%, for model 3
(Gaussian) and model 4 (Lorentzian), respectively, and then

normalized the numerical distribution function byP
γ PðΔγÞ ¼ 1.
For each set of the Hamiltonian parameters, we calculate

the magnetization [see Fig. 2(c)] using

Mk ¼
μBgk

P
j exp

�
− EjðHkÞ

kBT

�
hj; Hkj

P
nS

z
njj; Hki

N
P

j exp
�
− EjðHkÞ

kBT

� ; ðE1Þ

where EjðHkÞ and jj; Hki are the eigenvalue and eigenstate
of Eq. (5), after the ED calculation. The dc magnetic
susceptibility is obtained as χk ¼ NAMk=Hk [see Fig. 2(a)].
The zero-field heat capacity [see Fig. 2(b)] can be calcu-
lated as

Cm ¼ NA

NkBT2

∂2 ln½Pj expð− EjðHk¼0Þ
kBT

Þ�
∂ð 1

kBT
Þ2 ; ðE2Þ

and the static structure factor of the Ising dipole moment
[see Fig. 2(d)] is calculated by

jFj2∼
P

jexpð−EjðHkÞ
kBT

Þjhj;Hkj
P

ngkSznexpðiQ ·rnÞjj;Hkij2

N2
P

jexpð−EjðHkÞ
kBT

Þ
;

ðE3Þ

where rn is the position vector of the nth site on the
triangular lattice. Therefore, the magnetic neutron diffrac-
tion intensity can be further calculated as [44]

I ¼ ð0.54 × 10−12 cmÞ2SphjfðjQjÞj2jFj2; ðE4Þ

where Sph∼ (Ið−1;2;0Þ þ Ið1;−2;0Þ þ Ið1;1;0Þ þ Ið−1;−1;0Þþ
Ið2;−1;0Þ)/5/jFnj2 ∼ 3.0 × 1027 Tm cm−2 is the scale factor
at jQj ¼ 4π=a obtained from the nuclear reflections mea-
sured at 0 T and 60 mK [see Fig. 11(e)], and jFnj2 ¼
1.84 × 10−23 cm2=Tm is the structure factor of these
reflections calculated with the reported crystal structure
of TmMgGaO4 [32]. jfðjQjÞj2 is the magnetic form factor
of Tm3þ.
Finally, the observables Xcal

i are obtained by Xcal
i ¼P

γ PðΔγÞXiðΔγÞ in models 3 and 4. Using Eq. (E3), we
can largely reproduce the low-T magnetic neutron diffrac-
tion measured on the single crystal of TmMgGaO4 [see
Figs. 13(a)–13(e)].
We also perform the ED calculation on the 12-site cluster

with different PBC [see Fig. 4(b) for the geometry]. The
calculated thermodynamic data are shown in Fig. 13(f),
with the previous 9-site ED result for comparison.
Although certain differences are observed at low temper-
atures, the overall trend is similar. The measured signal-to-
noise ratio (the standard deviation) of the magnetic
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heat capacity is much larger than that of the magnetiza-
tion (susceptibility) data due to the technical difference
(Fig. 2), and thus the slight difference [Fig. 13(f)] in the
magnetic heat capacity obtained on different clusters
will not significantly affect the final (fitted) result [see
Eq. (1)]. Indeed, our best parametrization (Δ ¼ 5.7 K,
Jzz1 ¼ 10.9 K, gk ¼ 13.6, Jzz2 ¼ 1.1 K) shows excellent
agreement with the theoretical result reported recently,
where the authors used the quantum Monte Carlo (QMC)
method and arrived at Δ ¼ 0.54Jzz1 ¼ 6.2 K, Jzz1 ¼
0.99 meV ¼ 11 K, gk ¼ 1.101 × 12 ¼ 13.2, Jzz2 ¼
0.05Jzz1 ¼ 0.6 K [45], using the same model (no. 2). At
relatively high temperatures and/or in high longitudinal

magnetic fields, the size effect is relatively small. On the
other hand, at low temperatures (≤ 1 K) and at ∼0 T our
ED calculation becomes semiquantitative. Therefore, we
get a relatively large deviation from the QMC result on Jzz2
[45] because this coupling mostly affects the low-energy
part of the spectrum. Therefore, we mainly focus on the
low-T (∼60 mK) physics of TmMgGaO4 in magnetic fields
∼1.5 T (μ0HkgkμB=kB ∼ 13 K), where the up-up-down
order is most stable and the ED calculations should be
accurate enough.
The spin-wave excitations can be calculated by the SpinW-

MATLAB code based on the linear spin-wave theory [56] [see
Figs. 14(a)–14(d)].With the above code,model no. 1 largely
reproduces the spin-wave excitation measured at 0 T, which
is sensitive to the main nonmagnetic phase with large inner
gaps, while it completely fails to explain the thermodynamic
properties and magnetic neutron diffraction measured under
the longitudinal field (see Fig. 2). For example, this
calculated spin-wave excitations of model 1 show a full
gap of ≥ 0.4 meV, and obviously cannot account for
the highly enhanced reflections at K points anymore, at
∼1.5 T [see Fig. 14(a)]. Moreover, the measured width of
the spin-wave excitation seems much wider than the
reported instrumental resolution (σE ¼ 0.114 meV) atEi ¼
4.8 meV [43].
Very recently, Ref. [45] pointed out that the linear spin-

wave approximation may become invalid in TmMgGaO4.
Similarly, we also calculate the INS spectra using the ED
results as

IðQ; EÞ ∼
g2kjfðjQjÞj2kf

N2ki

X
j;j0;n;n0

expð− EjðHkÞ
kBT

Þ
ZðHk; TÞ

× hj;HkjSzne−iQ·rn jj0; Hkihj0; HkjSzn0eiQ·rn0 jj; Hki

×
expð−4 ln 2½EþEjðHkÞ−Ej0 ðHkÞ�2

σ2E
Þ

σE
ffiffiffiffiffiffiffi
π

4ln2

p : ðE5Þ

Here, ki and kf are the incident and final neutron wave
vectors and ZðHk; TÞ is the partition function. By setting
E ¼ 0 meV (ki ¼ kf) and σE ¼ 0 meV, Eq. (E5) is equiv-
alent to Eq. (E3) (the integral structure factor of the Ω scan
of the neutron diffraction), after the normalization by the
magnetic form factor. Because of the size effect of the ED
calculation, the resulted resolution of the transfer momen-
tum is very low [see Figs. 14(e)–14(h)]. At K points our
calculated diffraction intensities using models 1 and 2 and
at 0 T by the ED are well consistent with the recently
reported QMC results equipped with stochastic analytical
continuation [45] [see Figs. 14(e) and 14(f), respectively].
Similarly, our ED calculation using model 1 at K points
clearly contradicts the measured spin-wave excitations
[43], as well as the SpinW calculation based on the linear
spin-wave approximation [Fig. 14(a)]. Because model no. 1

FIG. 13. Magnetic neutron diffraction of TmMgGaO4 mea-
sured at 60 mK in (a) 0 T and (c) 1.5 T. The calculated spectra are
shown at (b) 0 T and (d) 1.5 T using model no. 4 by Eq. (E3) with
the magnetic form factor. The isotropic resolution is used in the
momentum (Q) space, ∼0.015 in both (b) and (d). (e) Static
structure factor per Tm calculated by model no. 4 [see Eq. (E3)]
along ½1

3
;− 2

3
; L� at 0 and 1.5 T at 60 mK. (f) Thermodynamic

properties calculated on the 9-site (solid lines) and 12-site
(dashed lines) clusters with different PBC. The same Hamiltonian
parameters of the fitted model no. 2 are used. The red, blue, and
black (in the inset) lines show the calculated dc susceptibility at
0.1 T (measuring field), heat capacity at 0 T, and magnetization at
60 mK, respectively.
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gives an energy gap of ∼0.42 meV at K points similar to
that reported in Ref. [45], and much larger than σE at 0 T.
On the other hand, our ED calculations using the random
models 3 and 4 well reproduce the observed (quasi)gapless
(gap < σE) feature at K points in 0 T [43], as well as the
enhanced magnetic reflection intensity at ∼1.5 T [see
Figs. 14(g) and 14(h)]. Therefore, we emphasize the
important ingredient, the distribution of the effective
spin-1=2 Hamilitonian parameters, on the correlated mag-
netism of non-Kramers GS quasidoublets. It is caused by
the nonmagnetic Mg/Ga site-mixing disorder, which is
expected to be uniformly distributed at the Mg=Ga sites in
RMgGaO4 (R is rare earth), according to the diffraction and
structure refinements [10,11,32]. Interestingly, the coherent
magnetic reflections and (quasi-)long-range magnetic
order, instead of the short-range spin glass GS, are
observed in TmMgGaO4, despite the above randomness.
Reference [3] also reported that the long-range order can
survive in a triangular Ising antiferromagnet, in the pres-
ence of the uniform bond randomness.
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