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At its core, quantum mechanics is a theory developed to describe fundamental observations in the
spectroscopy of solids and gases. Despite these practical roots, however, quantum theory is infamous for
being highly counterintuitive, largely due to its intrinsically probabilistic nature. Neural networks have
recently emerged as a powerful tool that can extract nontrivial correlations in vast datasets. These networks
routinely outperform state-of-the-art techniques in language translation, medical diagnosis, and image
recognition. It remains to be seen if neural networks can be trained to predict stochastic quantum evolution
without a priori specifying the rules of quantum theory. Here, we demonstrate that a recurrent neural
network can be trained in real time to infer the individual quantum trajectories associated with the evolution
of a superconducting qubit under unitary evolution, decoherence, and continuous measurement from
physical observations only. The network extracts the system Hamiltonian, measurement operators, and
physical parameters. It is also able to perform tomography of an unknown initial state without any prior
calibration. This method has the potential to greatly simplify and enhance tasks in quantum systems such as
noise characterization, parameter estimation, feedback, and optimization of quantum control.
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I. INTRODUCTION

Quantum mechanics breaks dramatically with classical
intuition, contradicting determinism and introducing many
highly counterintuitive concepts, such as contextuality,
nonclassical correlations, and the uncertainty principle.
Despite its abstract mathematical framework, quantum
mechanics can be formulated operationally as an extended
information theory [1], where the physical system is treated
as a black box in which preparation and measurement
combine to give the probabilities of experimental out-
comes. The physical parameters are then estimated by
averaging measurement outcomes on a large ensemble. The
time evolution of the state of an isolated quantum mechani-
cal system is governed by the Schrödinger equation.
However, a realistic system cannot be isolated perfectly,
and the coupling to an environment brings about qualita-
tively different behavior that cannot be accounted for via

the Schrödinger equation alone. If the system is monitored
continuously, the dynamics of the system is perturbed
by the inevitable backaction induced by measurement.
Although the system’s evolution under measurement is
stochastic, the measurement record faithfully reports the
perturbation of the system with respect to the unperturbed
coherent evolution. Consequently, the observer’s knowl-
edge of the wave function can be updated using quantum
filtering—the extraction of quantum information from a
noisy signal. The stochastic time evolution of the wave
function is the so-called quantum trajectory. Under certain
approximations, this task can be performed by integrating
the stochastic quantum master equation, provided that the
Hamiltonian, dissipation, and measurement operators are
precisely calibrated [2–5]. On the other hand, recurrent
neural networks (RNNs) are a powerful class of machine-
learning tools able to extract hidden correlations from large
datasets [6]. They are most commonly applied to time-
binned data and, as such, achieve excellent performance on
difficult problems such as language translation [7] and
speech recognition [8]. RNN training is driven by examples
and performed without specifying dictionaries or linguistic
rules. Interestingly, quantum filtering [9] can be seen as a
similar task in which noisy experimental signals must be
translated into meaningful quantum information. Last year,
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various architectures of neural networks have been used in
the realm of quantum physics for the prediction the
theoretical quantum behavior of strongly correlated phases
of matter [10–14], the design of efficient quantum error
correction code [15], the decoding of large topological error
correcting codes [16–18], and the optimization of dynami-
cal decoupling schemes for quantum memories [19].
In this paper, we show that neural networks can be

trained to predict stochastic quantum evolution from
physical observations without specifying quantummechan-
ics a priori. We demonstrate that the RNN reproduces the
stochastic quantum evolution for a continuously monitored
superconducting qubit under a Rabi Hamiltonian. Rather
than providing a black-box model, we use the neural
network to robustly extract all physical parameters required
for quantum filtering. Moreover, while RNNs are tempo-
rally oriented, they are routinely trained in both the forward
and backward time ordering, so that the network may
exploit both past and future information. In the present
application, the use of past and future continuous meas-
urement outcomes improves the estimation accuracy of
quantum trajectories at a given time through a process
called quantum smoothing [20,21]. We train a bidirectional
RNN to perform a forward-backward analysis of trajecto-
ries, enabling quantum smoothing of predictions and the
faithful tomography of an unknown initial state. By treating
preparation and measurement on the same footing, the
RNN structure highlights the time symmetry underlying the
stochastic quantum evolution.

II. EXPERIMENTAL SYSTEM

Our experiment consists of a superconducting transmon
qubit [22] dispersively coupled to a superconducting wave-
guide cavity [23]. In the interaction picture and rotating
wave approximation, our system is described by the
Hamiltonian H ¼ Hint þHR:

Hint ¼
ℏχ
2
a†aσZ; ð1Þ

HR ¼ ℏΩR

2
σX; ð2Þ

where ℏ is the reduced Planck’s constant, a† (a) is the
creation (annihilation) operator for the cavity mode,
and σX;Y;Z are qubit Pauli operators where the qubit ground
state is the eigenmode of the σZ operator associated for
the eigenvalue −1. HR describes a microwave drive at the
qubit transition frequency which induces unitary evolu-
tion of the qubit state characterized by the Rabi fre-
quency ΩR ¼ 2π × 0.80 MHz. Hint is the interaction
term, characterized by the dispersive coupling rate
χ ¼ −2π × 0.18 MHz. This term describes a qubit state-
dependent frequency shift of the cavity, which we use
to perform a quantum state measurement of our qubit.

The cavity is coupled to the transmission line at a rate
κ ¼ 2π × 7.2 MHz. A microwave tone that probes the
cavity near its resonance frequency will acquire a qubit
state-dependent phase shift. If the measurement tone is very
weak, quantum fluctuations of the electromagnetic mode
fundamentally obscure this phase shift, resulting in a partial
or weak measurement of the qubit state [2]. The strength
of the measurement is set such that the qubit-induced
dephasing rate γϕ is on par with the Rabi timescale, here
γϕ ¼ 1.1 μs−1. We use a near-quantum-limited parametric
amplifier [24] to amplify the quadrature of the reflected
signal which is proportional to the qubit state-dependent
phase shift. After further amplification, we digitize the
signal in 40 ns time steps, yielding a measurement
record Vt.
We begin each run of the experiment by heralding the

ground state of the qubit using the above readout technique.
We then prepare the qubit along one of the six cardinal
points of the Bloch sphere by applying a preparation pulse.
Next, a measurement tone at the cavity frequency of
6.666 GHz continuously probes the cavity for a variable
time T between 0 and 4 μs, which weakly measures the
qubit in the σZ basis. Concurrently, we apply the Rabi
Hamiltonian HR. Finally, we apply pulses to perform qubit
rotations and a projective measurement, yielding a single
shot measurement of the desired qubit operator σX, σY ,
or σZ.

III. QUANTUM TRAJECTORIES

To allow the neural network to operate as generally as
possible, we formulate system inputs and outputs symmet-
rically and avoid passing it objects such as a wave function
that encodes information about the structure of quantum
theory. The role of the wave function in quantum mechan-
ics is to provide the probability of a measurement outcome
yt given the preparation and evolution of the system at
earlier times Pðytjy0Þ. In the case of a continuously
monitored quantum bit, the preparation and measurement
outcome are each a binary variable y0, yt ∈ f0; 1g extracted
through a projective readout performed at the initial and
final times, respectively; the preparation and measurement
configurations, labeled a and b, encode microwave pulses
performing qubit rotations for state preparation and tomog-
raphy, respectively, in the X, Y, and Z basis. The stochastic
measurement record fVtg is collected with a high quantum
efficiency parametric amplifier during the qubit evolution.
Quantum trajectory theory describes how an observer’s

state of knowledge evolves given a measurement record
[25]. Therefore, quantum trajectories are specified by
Pðytjy0; a; b; V0…VtÞ, the probability of measuring the
outcome yt with the measurement parameter b given the
initial measurement y0 in the preparation parameter a and
the stochastic measurement outcome up to a time t. Tracking
this quantum evolution can be understood as a translation of
the measurement records into a quantum state evolution.
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Figure 2(a) shows the distribution of measurement records
obtained for the preparation setting (y0 ¼ 0, a ¼ Z).
Quantum trajectories are typically extracted from a

continuous measurement by integrating the stochastic
master equation (SME) governing the evolution of the
density matrix ρt:

dρt ¼
�
i½HR; ρt� þ L

� ffiffiffiffiffi
γϕ
2

r
σZ

�
ρt

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

deterministic evolution

dt

þ ffiffiffi
η

p
H
� ffiffiffiffiffi

γϕ
2

r
σZ

�
ρt|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

backaction

dwt; ð3Þ

where L is the Lindblad superoperator describing the qubit
dephasing induced by the measurement of strength γϕ,H is
a measurement superoperator describing the backaction of
the measurement on the quantum state for a quantum
efficiency η, and dwt is a Gaussian-distributed variable with
variance dt extracted from the measurement record nor-
malized appropriately using

dwt ¼
�
Vt − 2

ffiffiffi
η

p
Tr
�
ρt

ffiffiffiffiffi
γϕ
2

r
σZ

��
dt: ð4Þ

The probability distribution for the projective outcome is
then given by the Born rule PX;Y;ZðtÞ ¼ Pðytjy0; a; b ¼
X; Y; Z; V0…VtÞ ¼ ðTr½ρtσX;Y;Z� þ 1Þ=2. The integrated
stochastic master equation provides faithful predictions
when experimental parameters are precisely known from
independent calibration under the assumption that the
cavity decay rate is much larger than the qubit measurement
rate κ ≫ γϕ. Figure 2(a) shows two representative trajec-
tories extracted from the measurement records based on the
stochastic master equation.

IV. RECURRENT NEURAL NETWORK

Based solely on a large set of labeled examples
ðyt; y0; a; b; fVτgÞ directly extracted from the experimental
system, we now demonstrate that the network can be
trained to predict the probability Pðytjy0; a; b; V0…VtÞ
of observing the measurement outcome yt ∈ f0; 1g given
the history of the quantum evolution accessible to the
observer—in other words, the best knowledge of the qubit
wave function.
We use a long short-term memory recurrent neural

network [26] schematically depicted in Fig. 1(b). These
typically consist of a layer of n virtual neuronlike nodes
recurrently updated in time. The state of the neuron’s layer
at a time t is encoded in an n-dimensional vector h⃗t. It is
computed as a weighted linear combination of the neuron’s
layer state at a previous time t − 1 combined with the
measurement record at a time t and passed through a

nonlinear activation function ϕ such that h⃗t ¼ ϕðWh:h⃗t−1þ
VtW⃗V þ B⃗hÞ, where W and B are the weights of the
connections between the neurons and the biases, respec-
tively, which are determined during the training stage. The
probability PbðytÞ of getting the outcome y given the
measurement setting b is computed at each time step as a
linear combination of the neuron layer state passed through
the activation function given by Pðytjy0; a; b; V0…VtÞ ¼
σðW⃗b:h⃗t þ B⃗bÞ. The preparation settings a and the initial
qubit state (input bit y0) are specified in the initial state
of the neuron layer. The neural network is trained to
minimize a loss function L by strengthening or weakening
connections between neuron layers encoded in the weight
matrices Wh;V;b, as shown in Fig. 1(b). The cross-entropy
loss function Lb ¼ −yT log PðyT jy0; a; b; V0…VTÞ−
ð1 − yTÞ log (1 − PðyT jy0; a; b; V0…VTÞ) is minimized
when the prediction Pðytjy0; a; b; V0…VtÞ and the distri-
bution of experimental outcomes yT for a given measure-
ment settingbmatch. Crucially, the function implemented by
the neural network is differentiable, and, therefore, theweight

(c)

(b)

(a)

FIG. 1. Recurrent neural network training from physical ob-
servations. (a) Schematic of the superconducting qubit disper-
sively coupled to a microwave cavity monitored by a high
quantum efficiency Josephson parametric amplifier (JPA). The
qubit is simultaneously driven on resonance at a Rabi rate ΩR and
dispersively monitored with a strength γϕ near the cavity
resonance frequency. (b) Data collected from the experimental
system, comprising the preparation, measurement outcomes, and
continuous measurement record of the qubit, are directly
streamed to a RNN, which provides a prediction of the meas-
urement outcome. The weights of the RNN are updated at each
iteration through stochastic gradient descent. (c) The stochastic
gradient descent aims at minimizing the cross-entropy loss
function LW , which evaluates the distance between the prediction
and the measurement outcome.
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matrices can be updated at each iteration of the training by
differentiating the loss function and applying a gradient-
descent minimization step:W ← W − ξh∂Lb=∂Wi, where ξ
is the learning rate. The training process ends once theweight
matricesW converge toward a minimum of the loss function.
The effectiveness of neural networks lies in their ability to
converge toward a minimum of a very high-dimensional
nonlinear loss landscape through gradient backpropagation
as illustrated in Fig. 1(c).

V. TRAINING

The long short-term memory recurrent neural network
comprises 64 neurons with rectified linear unit activation
functions. This specific RNN architecture evades the ex-
ploding or vanishing gradient problem of standard RNN
architectures, improving the learning of long-term depend-
encies [27]. The neural network is implemented with the
Tensorflow library [28] developed by Google and opti-
mized for a graphics processing unit (Nvidia Tesla K80
GPU), which enables a speedup of the training.
The data are fed to the network in batches, each

containing 1024 measurement records on which a step
of the gradient descent is performed using the so-called
Adam optimization algorithm[29]. The measurement
records are split into two datasets. 1.5 × 106 traces are
used for the training, and 5 × 105 randomly chosen traces
are used for evaluation and displayed in the manuscript.
The training data can be reinjected several times to the
network in order to improve the model accuracy. Each of
these training cycles corresponds to a training epoch. In
practice, up to ten training epochs have been performed. At
each training epoch, the learning rate is lowered from
1 × 10−3 to 1 × 10−6. In order to improve the training
robustness, 30% of the neurons are dropped out randomly
during the first epoch. The fraction of dropped out neurons
is gradually lowered to 0 with each subsequent training
epoch. This method prevents the network from overfitting
and helps the generalization abilities of the model [30].
Note that the training quality does not strongly depend on
the details of these parameters. A key feature of the training
is that it can be performed in real time directly from data
collected from the experimental system.
A common practice in the field of deep learning is to

maximize the number of neurons and, hence, the number of
free parameters, in order to saturate the computation power
for a given training time [31]. In this work, the training time
is given by the repetition rate of the experiment (0.5 ms per
trace) which is limited by the qubit relaxation time
(T1 ¼ 60 μs). Therefore, the number of neurons (64) is
picked such that the training can be performed in 0.8 ms per
trace on average. The 0.3 ms discrepancy between the
experiment and training accounts for data processing,
saving, and data transfer to the cloud. Therefore, the 2 ×
106 traces are produced and fed to the RNN in 20 min. Six

preparation settings ðy0 ∈ f0; 1g, a ∈ fX; Y; ZgÞ and six
measurement settings ðyT ∈ f0; 1g, b ∈ fX; Y; ZgÞ are
used. In practice, we perform the preparation and meas-
urement with the following rotations of the qubit—RY

π=2,
RY
−π=2, R

X
π=2, R

X
−π=2, R

X
0 , and RX

π—which correspond to the
cardinal points of the Bloch sphere. The associated prepa-
ration labels ðy0; aÞ and measurement labels ðyT; bÞ are
then given, respectively, by (y, X), (ȳ; X), (y, Y), (ȳ; Y), (y,
Z), and (ȳ; Z) with ȳ ¼ 1 − y. The total time evolution is
varied over 20 values within 4 μs ðT ∈ ½0; 4�Þ, and the
measurement record fVtg is acquired during the qubit
evolution with a sampling time of 40 ns. Once the training
phase is completed, the RNN returns the prediction
Pðytjy0; a; b; V0…VtÞ, which can be interpreted as the
probability of measuring the qubit at a time t along the
measurement axis b ¼ X, Y, and Z.

VI. VALIDATION

Once the RNN is trained, the predictions of the meas-
urement outcomes form an ensemble of trajectories for
each of the measurement settings as shown in Fig. 2(b). The
predictions of the neural network are in good agreement
with the representative trajectories integrated from the
SME. In this section, we show that the accuracy of the
quantum trajectory predicted by the SME and the RNN can
be precisely quantified, and we demonstrate that the RNN
predictions are more accurate than the ones inferred from
the SME with respect to the projective measurement
outcomes. The quality of the training can be evaluated
self-consistently on the evaluation dataset (not used during
the training). This method has been previously used
to benchmark the prediction of the stochastic master
equation [2–5]. We select the subset of the trajectories
leading to the same prediction p within a small δ such that
Sp ¼fyT such thatPðyT jy0;a;b;V0…VTÞ∈ ½p−δ;pþδ�g.
Figures 2(c) and 2(d) display the agreement between the
ensemble of trajectories ending in p� δ ¼ 0.85� 0.015
and the histogram of the final measurement value. If the
prediction is accurate, it should agree with the final
tomographic measurement average on the subset Sp,
defined as hyiSp ¼ N −1

p
P

y∈Sp
y with N p the number of

trajectories in Sp, such that hyiSp ¼ p. The overall agree-
ment between the prediction and the tomography values
can be quantified as an average error ϵ ¼ P

pðN p=N Þ×
ðhyiSp

− pÞ2, where N is the total number of trajectories.

The RNN prediction gives an average error lower than 10−2

for the all-measurement axis. As a comparison, using the
same evaluation dataset, the prediction of the stochastic
master equation (numerically propagated using the meth-
ods of Ref. [32]) based on the independently calibrated
experimental parameters gives a higher average error along
the Y and Z axes. Such a discrepancy can be attributed to
small calibration errors and experimental drifts. This self-
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consistent evaluation demonstrates the prediction power of
the trained RNN and its robustness against calibration
errors of physical parameters.

VII. BIDIRECTIONAL RNN

RNNs are inherently time oriented; the prediction
Pðytjy0; a; b; V0…VtÞ, at a time t, depends only on the
measurement record at earlier times. A common feature
used to improve the prediction power of a RNN, for a
translation application, in particular, is to combine the
prediction of two RNNs trained, respectively, forward and
backward in time, exploiting the same data in both
directions [6]. The forward prediction provides the trajec-
tory given the past measurement record ðV0 → VtÞ and
the preparation settings ðy0; aÞ: P⇒ðytÞ ¼ Pðytjy0; a; b;
V0…VtÞ, while the backward prediction provides the
trajectory given the “future” measurement record ðVT →
VtÞ played backward and the measurement settings ðyT; bÞ:
P⇐ðytÞ ¼ PðytjyT; a; b; VT…VtÞ. As shown in Fig. 3(a),
the RNN provides an ensemble of backward trajectories.
The accuracy of backward predictions is evaluated
using the same validation method as the forward prediction;

the subset of backward trajectory Sp giving the same
prediction p must agree on average with the preparation
measurement such that hy0iSp

¼ p. The accuracy of the
backward prediction is shown in Fig. 3(b), where the
average errors for the preparation settings X, Y, and Z
for the backward predictions are ϵ⇐X ¼ 1.1 × 10−2,
ϵ⇐Y ¼ 0.9 × 10−2, and ϵ⇐Z ¼ 0.7 × 10−2, respectively, and
the overall accuracy is comparable to the forward predic-
tion. Remarkably, the backward and forward predictions do
not necessarily agree at a given t; indeed, these predictions
are based on distinct parts of the measurement records.
They provide complementary information from the past
and future evolution of the system. These predictions can,
therefore, be combined to enhance the knowledge of the
quantum state based on the full measurement record.
Backward-forward analysis is a well-established postpro-
cessing method with recurrent neural network [6] as well as
hidden Markov chain methods [33]. Time-reversal sym-
metry underlies quantum evolution and exchanges the role
of state preparation and state measurement [34]. In a sense,
backward-forward analysis naturally translates into the
quantum regime as the prediction and retrodiction of

(a) (c)

(b)

FIG. 2. RNN prediction of the quantum evolution. (a) Blue-scale histogram of the normalized measurement records extracted from the
experiment; traces plotted in color show two representative instances. (b) Red-scale histograms of RNN prediction for the measurement
basis b ¼ X, Y, and Z in the driven case, beginning from y0 ¼ 1 in the preparation basis a ¼ X. Traces plotted in color show the two
representative predictions from the measurement records by the RNN (plain line) and by the stochastic master equation (dashed line).
(c) Training validation; red-scale histogram of the RNN prediction leading to p� δ ¼ 0.85� 0.015 at T ¼ 2.5 μs indicated by the red
maker. This subset of trajectories belongs to the validation subset Sp. (d) Comparison of the RNN prediction with the tomography. The
tomography hyTiSp (y axis) is given by the projective measurement outcome along X, Y, and Z quadratures averaged over the subset of
trajectories Sp leading the prediction p (x axis). The orange dots correspond to the RNN predictions, and the blue dots correspond to the
SME predictions. The average errors ϵX;Y;Z shown in the plots are used to quantify the agreements between the prediction and the
tomography; it is calculated based on the method explained in the validation section of the main text. Inset: Histogram corresponding to
the integrated voltage during the projective measurement for the quantum trajectory subset Sp for p ¼ 0.85� 0.015. The threshold is
used to discriminate the 0 and 1 states, leading to a tomography prediction hyTiSp ¼ 0.85 in perfect agreement with the RNN prediction.
The SME prediction indicates Sp.
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quantum trajectories [35–37]. Quantum predictions and
retrodictions can be combined based on quantum smooth-
ing techniques [20,21] enabling the enhancement of physi-
cal parameter estimation [38,39]. The forward and
backward predictions can be combined into a smoothed
prediction by

P⇔ðytÞ ¼
P⇐ðytÞP⇒ðytÞ

P⇐ðytÞP⇒ðytÞ þ ½1 − P⇐ðytÞ�½1 − P⇒ðytÞ�
:

ð5Þ

As depicted in Fig. 3(c), the smoothed trajectories combine
the backward and forward information such that it dis-
misses the least informative predictions [P⇐ðytÞ; P⇒ðytÞ∼
0.5] and strengthens the most informative ones [P⇐ðytÞ;
P⇒ðytÞ ∼ 0=1]. By removing ambiguities in the qubit
evolution, we access information which is blurred by
statistical uncertainties in the standard approach, and we
observe an improved temporal resolution on the qubit
trajectory a posteriori. The forward-backward analysis

demonstrates how bidirectional RNNs naturally combine
causal and anticausal correlations hidden in the measure-
ment records.

VIII. INITIAL STATE ESTIMATION

The role of the preparation ðy0; aÞ and measurement
ðyT; bÞ are treated symmetrically in the forward and
backward prediction. Hence, while the forward RNN
predicts the outcome of the final projective measurement,
the backward RNN provides an estimation of the initial
state of the system given the measurement record. These
predictions can be, therefore, exploited to perform initial
state tomography; this task is reminiscent of the enhanced
readout discrimination by machine learning demonstrated
in Ref. [40]. For the state estimation, we do not specify the
final projective measurement, and we initialize the back-
ward network with a maximally unknown state [P⇐ðyTÞ ¼
0.5 for X, Y, and Z]. Each backward trajectory provides up
to one bit of information about the initial state [41].
Combining this information using maximum-likelihood

(a)

(d)

(e)

(b)

(c)

FIG. 3. RNN prediction and retrodiction of the quantum evolution. (a) Red-scale histograms of the RNN prediction for the
measurement basis b ¼ Y and Z in the driven case beginning from y0 ¼ 1 in the preparation basis a ¼ Z. Traces plotted in color
show the two representative predictions from the measurement records by the RNN (plain line) and by the stochastic master equation
(dashed line). (b) Blue-scale histogram of the normalized measurement records extracted from the experiment; traces plotted in
color show representative instances. (c) Red-scale histograms of the RNN retrodiction for the same measurement record. Traces
plotted in color show the two representative retrodictions from the measurement records by the RNN. (d) Retrodiction validation:
Comparison of the RNN backward prediction with the tomography. The tomography hy0iS (y axis) is given by the initial projective
measurement outcome along X, Y, and Z quadratures averaged over the subset of trajectories Sp leading to the prediction p (x axis).
The blue dots correspond to the RNN predictions. The average errors ϵ⇐X;Y;Z shown in the plots are used to quantify the agreements
between the prediction and the tomography; it is calculated based on the method explained in the validation section of the main text.
(e) Red-scale histograms of smoothed RNN predictions based on the forward-backward analysis given by Eq. (5) for the same
measurement records.
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methods allows for reconstructing the initial state P⃗0. Here,
the optimization consists in minimizing the following
likelihood function over the probability of the initial state
following Ref. [42]:

P0ðy0jaÞ¼ argmin
P0

�X
n

jP0−Pðy0ja;VðnÞ
T …VðnÞ

0 Þj2
�
: ð6Þ

As shown in Fig. 4(a), we find an agreement between the
initial state estimation and preparation within the 95% con-
fidence interval estimated with bootstrapping method. It
demonstrates that, despite the nontrivial dynamics resulting
from the interplay between the Rabi evolution and the
continuous monitoring, the combination of RNN backward
predictions performs as a faithful qubit state tomography.

IX. PARAMETER ESTIMATION

The trajectories predicted by the trained RNN can be
exploited to estimate the physical parameters of the
experimental system. In Fig. 4(b), we plot the distribution
of the forward RNN prediction in the Y,Z plane for all
times. This distribution exhibits a tilted ellipse shape within
the Bloch sphere (white circle); the great axis of the ellipse
is along the Z axis, showing that the quantum trajectories
tend to collapse toward the poles of the Bloch sphere,
corresponding to the pointer states of the measurement
operator. In the equatorial plane, the distribution is
squeezed, indicating that the quantum state experiences
more dephasing and loses purity. These features are
generated by the behavior of the system over individual
time steps, which is captured by both the neural network
predictions and the underlying physical model. The sto-
chastic master equation has two main contributions [25];
on one hand, the deterministic evolution encodes the
Hamiltonian evolution along with the decoherence, while,
on the other hand, the measurement backaction describes
the update of the quantum state given the stochastic
measurement record. By performing a least-squares fit of
a master equation model to the deterministic and diffusive
components of the forward RNN prediction, we are able to
reconstruct the physical parameters associated with the
stochastic master equation describing the quantum evolu-
tion under continuous measurement.
The deterministic component of the evolution can be

extracted from the forward prediction of the RNN by
evaluating the average drift of individual trajectories. We
compute the ensemble-averaged prediction change over
intervals of 40 ns, dP⃗ ¼ hP⃗tþ1 − P⃗ti with P⃗t ¼ ½PXðytÞ;
PYðytÞ; PZðytÞ�, versus the position on the Bloch sphere
depicted in Fig. 4(c). We observe a vector map indicating
an average drift of trajectories in the Bloch sphere. The
drift corresponds to a rotation of the qubit state along the X
axis of the Bloch sphere and an additional squeezing
dynamics along the Z axis. The average dynamics is well
reproduced by the deterministic evolution of the stochastic
master equation in Eq. (3) for a Rabi Hamiltonian
HR ¼ ℏΩRðσx=2Þ with a Rabi frequency ΩR=2π ¼ 0.82�
0.02 MHz and a measurement-induced dephasing operatorffiffiffiffiffiffiffiffiffiffi
γϕ=2

p
σZ with a rate γϕ ¼ 1.1� 0.05 μs−1. The measure-

ment-induced disturbance can also be extracted from
the prediction of the RNN by evaluating the average
diffusion of the individual trajectories [4]. We compute
the covariance matrix associated with the prediction
change over intervals of 40 ns, dP2 ¼ covarðP⃗tþ1 − P⃗tÞ.
The diffusion vector map is given by the eigenvectors of the
covariance matrix weighted by its eigenvalues versus the
position in the Bloch sphere as depicted in Fig. 4(b). This
vector map describes the magnitude and the direction of the
disturbance induced by the measurement in the Bloch
sphere. We observe that the disturbance is maximal along

(d)(c)

(a) (b)

FIG. 4. Parameter estimation of the quantum master equation
and initial state tomography. (a) State estimation. Estimation of
six initial state preparations (red circles) using maximum-like-
lihood estimation on backward RNN predictions (approximately
20 000 trajectories each) initialized from an undetermined
projective measurement outcome; the circle radius gives the
95% confidence interval extracted from bootstrapping methods.
(b) Distribution of the RNN predictions in the Y and Z
measurement basis for all time. (c) Average drift of individual
trajectories in the Bloch sphere: the vector map of the averaged
evolution of RNN predictions in the Y and Z measurement basis
between two consecutive time steps. This map captures the
Hamiltonian evolution and the Lindbladian dissipation. (d) Aver-
age diffusion of individual trajectories in the Bloch sphere:
computed vector map associated with the covariance of the
prediction between two consecutive time steps in the Y and Z
measurement basis. This map captures the measurement-induced
backaction.
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the equatorial plane of the Bloch sphere and vanishes at the
poles. The diffusion is well reproduced by the deterministic
evolution of the stochastic master equation in Eq. (3). From
this map, we extract a measurement rate of γm ¼ 0.40�
0.01 μs−1 along theZ axis of theBloch sphere. The quantum
efficiency of our measurement defined as the ratio of the
measurement-induced dephasing and the measurement rate
gives η ¼ γm=γϕ ¼ 36%. Note that the quantum efficiency
is usually challenging to estimate and requires several steps
of calibrations. As summarized in Table I, the estimated
experimental parameters differ slightly from the calibra-
tions, which is attributed to residual detuning of the Rabi
drive with respect to the qubit frequency.

X. CONCLUSION

We demonstrate that a recurrent neural network can be
trained to provide a model-independent prediction of the
outcome of fully general quantum evolution based only on a
physical observation, at the level of a single qubit. The
ensemble of predictions can be compared to quantum
models such as the stochastic master equation to extract
physical parameters without additional calibration. By
considering causal and retrocausal evolution, we show that
initial state tomography can be carried out even for nontrivial
quantum evolution. The black-box approach of this work is
an illustration of the fact that quantum mechanics is an
operational theory, in which states and measurement out-
comes can be predicted from physical observations without
the mathematical abstraction of a Hilbert space. The model-
agnostic nature of the RNN is therefore readily generalized
to larger quantum systems. Such networks could excel at
finding efficient state representations for larger systems,
which could prove useful for real-time modeling, filtering,
and parameter estimation. The robust, model-independent
nature of prediction is a promising tool for the calibration of
future quantum processors and will enable the characteri-
zation of imperfections outside of the scope of the usual
approximation, such as correlated errors or non-Markovian
noise, and may even be suited for identifying and quantify-
ing effects initially unknown to the experimenter.
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APPENDIX: EXPERIMENTAL SETUP
AND SAMPLE

Our transmon qubit is fabricated on double-side-
polished silicon, with a single double-angle-evaporated
Al=AlOx=Al Josephson junction. The internal dimensions
of the aluminum 3D cavity are 81 mm × 51 mm × 20 mm.
The qubit is positioned 23 mm from the edge of the
cavity. The qubit is characterized by a charging energy
Ec=h ¼ 220 MHz and a 0 to 1 transition frequency
ωq ¼ 2π × 4.262 GHz. The qubit coherence is character-
ized by an excited state lifetime of T1 ¼ 60 μs, echo
time of Techo ¼ 40 μs, and Rabi decay time of 25 μs. The
lowest cavity mode used in the experiment has resonance
frequency ωc ¼ 2π × 6.666 GHz, linewidth κ ¼ 2π×
7.2 MHz, and qubit dispersive frequency shift
χ ¼ 2π × 0.18 MHz. The cavity output is amplified using
a lumped-element Josephson parametric amplifiers operated
in the phase-sensitive mode, and the amplifier gain are set to
15 dB. The signal is further amplified with a cryogenic
HEMTamplifier, model number LNF4-8. Owing to the high
noise temperature of the HEMT, we added a Josephson
traveling wave parametric amplifier immediately before it.
At room temperature, the signal is further amplified and then
mixed down to 105 MHz using a microwave mixer. Finally,
this 105MHz signal is read into a PCusing two 1 gigasample
per second analog-to-digital converters, where it is digitally
demodulateddown todc, compressed, and sent to theGoogle
Cloud platform for neural network training.
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