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We study the classical dimer model on rhombic Penrose tilings, whose edges and vertices may be
identified as those of a bipartite graph. We find that Penrose tilings do not admit perfect matchings (defect-
free dimer coverings). Instead, their maximum matchings have a monomer density of 81 − 50φ ≈ 0.098 in

the thermodynamic limit, with φ ¼ ð1þ ffiffiffi
5

p Þ=2 the golden ratio. Maximum matchings divide the tiling
into a fractal of nested closed regions bounded by loops that cannot be crossed by monomers. These loops
connect second-nearest-neighbor even-valence vertices, each of which lies on such a loop. Assigning a
charge to each monomer with a sign fixed by its bipartite sublattice, we find that each bounded region has
an excess of one charge, and a corresponding set of monomers, with adjacent regions having opposite net
charge. The infinite tiling is charge neutral. We devise a simple algorithm for generating maximum
matchings and demonstrate that maximum matchings form a connected manifold under local monomer-
dimer rearrangements. We show that dart-kite Penrose tilings feature an imbalance of charge between
bipartite sublattices, leading to a minimum monomer density of ð7 − 4φÞ=5 ≈ 0.106 all of one charge.
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I. INTRODUCTION

Dimer models are convenient abstractions of the physics
of energetic constraints arising from strong correlations.
Their solvability admits mathematically precise statements,
which can then lend insight into a wide range of physical
situations. The quantum dimer model was introduced as an
approximate treatment of fluctuating nearest-neighbor spin
singlets in the resonating-valence-bond state [1–4] pro-
posed as a possible explanation for high-temperature
superconductivity [5,6]. Describing spin configurations
in terms of singlets naturally implies a hard-core constraint:
A single site with a spin-1=2 degree of freedom can belong
to at most one singlet defining a dimer model. Although the
spin-dimer mapping is not one to one, the dimer model is
nevertheless a useful caricature of the underlying spins, and
an intuitive understanding in terms of dimers often trans-
lates fruitfully into spin models despite their more com-
plicated structure.

Work on dimer models also underpins research on
topologically ordered states of matter [3,4]. A defining
characteristic of such phases is fractionalization, a phe-
nomenon whereby the emergent excitations of a system
appear as fractions of the microscopic degrees of freedom
[7]. In addition to its fundamental significance, fraction-
alization is also relevant to applications in which fraction-
alized quasiparticles can be used to perform quantum
computation in a topologically protected manner [8].
Dimer models provide a particularly elegant framework
within which to study such phenomena [9]. Monomers—
obtained by breaking apart dimers, and hence, fractional-
ized in an intuitive sense—can be thought of as sources and
sinks of an emergent gauge field. Quantum fluctuations
(resonances) between dimer configurations give the
gauge field dynamics. Depending on the lattice structure
and dimensionality, at long wavelengths the gauge field
dynamics can either exhibit confinement or else can be
described by a discrete or continuous gauge structure,
respectively, characterized by gapped or gapless excitations
[3,4,10]. In both cases, monomers may be separated to
arbitrary distances at finite energy cost (they are decon-
fined): The system thus hosts emergent fractionalized
quasiparticles.
The understanding of quantum dimer models frequently

draws on highly influential exact results of their classical
counterparts [11–15]. Insights are also afforded by numeri-
cal simulations of classical dimers [16,17] that are often
more computationally tractable than their quantum
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generalizations. Studying dimer coverings of graphs
remains an active area of current research in mathematics
and statistical physics [18–23]. For both the classical and
quantum cases, results to date have focused primarily on
periodic graphs, partly because of their relative simplicity
and the resulting potential for exact results and partly
because of the relevance to physical systems such as crystal
lattices [11,19]. There is also active interest in investigating
dimers on random graphs, such as those with quenched
disorder [24–27].
Traditionally, these two extremes, periodicity and dis-

order, were the only cases studied in materials physics. This
changed with the discovery of quasicrystals, states of
matter with properties intermediate between the periodic
order of crystals and the disorder of glasses. The identi-
fication of quasicrystals via their diffraction patterns—
which feature discrete rotational symmetries forbidden in
periodic crystals—led to a redefinition of crystallography
in the second half of the 20th century [28]. Perhaps the
simplest route to understanding quasicrystals is through
aperiodic tilings such as the Penrose tiling (Fig. 1), which
lacks the discrete translational invariance of periodic lat-
tices featuring instead a discrete scale invariance [29–32].
Quasicrystals are real materials with the symmetries of
Penrose-like tilings, just as crystals are real materials with
the space-group symmetries of periodic lattices [33].
Although a large body of work has explored single-particle
phenomena in quasiperiodic systems [34–36], including
more recent extensions to incorporate topological proper-
ties [37–39], few studies have explored strongly correlated
phenomena in quasicrystals. Recent interest in under-
standing many-body localization in quasiperiodic systems
[40–42], as well as the relevance of quasicrystals to
magnetic insulators, heavy fermion materials [43–47],

and even superconductivity [48], suggest that the time is
ripe to investigate such problems.
Here, we combine these two distinct lines of investiga-

tion and extend the study of dimer models to include
quasiperiodic graphs. The reason for studying dimer
models is twofold: On the one hand, they account for
the physics of magnetic frustration and local constraints
(textbook correlation effects) from the outset, and, on the
other hand, our analysis can leverage insights from com-
binatorial graph theory. Specifically, we consider classical
dimers on Penrose tilings, with the vertices and edges of the
tiling considered the vertices and edges of a graph. Perhaps
unsurprisingly, this case proves fundamentally distinct
from both periodic and disordered graphs. We prove a
number of exact results. For the majority of the paper, we
consider the Penrose tiling constructed from two rhombic
tiles shown in Fig. 1. For this system, we prove that it is not
possible to achieve a perfect matching of dimers to vertices,
such that each vertex touches precisely one dimer. We then
turn to maximum matchings, in which the maximum
number of dimers appears in the graph, with no vertex
connected to two dimers. We prove that the density of
monomer defects, vertices not reached by dimers, is
81 − 50φ, with φ ¼ ð1þ ffiffiffi

5
p Þ=2 the golden ratio. We

provide an algorithm for generating maximum matchings.
Considering the monomers as mobile particles with motion
defined by a local reconfiguration of dimers, we prove that
monomers are restricted to closed finite regions of the
graph, which appear in a nested fractal structure. We prove
that maximum matchings form a manifold connected by
local monomer-dimer moves. Turning briefly to the wider
class of Penrose-like tilings, we prove that a variation on
the Penrose tiling made instead from tiles shaped as darts
and kites is also unable to admit perfect matchings.
We prove that the minimum monomer density is precisely
ð7 − 4φÞ=5 in this case and that all monomers are of the
same bipartite charge. Considering aperiodic tilings other
than Penrose, we provide evidence in support of our
conjecture that certain examples admit perfect matchings.
On the other hand, we prove that certain other examples
cannot admit perfect matchings. We demonstrate that these
latter cases feature broadly similar behavior to the rhombic
Penrose tiling.
This paper proceeds as follows. In Sec. II, we provide

background on Penrose tilings and dimer matchings of
graphs. In Sec. III, we prove that Penrose tilings do not
admit perfect matchings, i.e., they must feature a finite
density of monomer defects, and study properties of the
boundaries which restrict the movement of monomers. In
Sec. IV, we provide an algorithm for generating maximum
matchings. In Sec. V, we find the minimum density of
monomers in the infinite Penrose tiling analytically and
numerically confirm the result. In Sec. VI, we demonstrate
that maximum matchings form a manifold connected by
local monomer-dimer moves. In Sec. VII, we consider

FIG. 1. A finite section of the Penrose tiling constructed of two
rhombuses (colored red and blue here).
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classical dimers on other Penrose-like tilings. Finally, in
Sec. VIII, we provide concluding remarks.

II. BACKGROUND

A. Penrose tilings

Penrose tilings are aperiodic covers of the Euclidean
plane by sets of inequivalent tiles [29–31]. Throughout
most of this paper, we take as the set two rhombuses (the
so-called P3 tiling shown in Fig. 1). Other Penrose tilings
can be created as decorations of the P3 tiling, as shown in
Fig. 2(c); one such example, the P2 tiling whose tiles are
darts and kites, we consider in Sec. VII. Unless otherwise
stated, “Penrose tiling” is assumed to mean the rhombic
tiling. Penrose tilings lack the discrete translational invari-
ance of periodic lattices, featuring instead a discrete scale
invariance. They were originally devised as a problem in
recreational mathematics, extending attempts to create
aperiodic tilings begun by Kepler [49]. The study of
Penrose tilings became relevant to physics with the
observation that certain alloys demonstrate closely related
symmetries [28]. The resulting quasicrystals can be iden-
tified by their diffraction patterns, which feature five-,
eight-, ten-, or 12-fold rotational symmetries [50], in
violation of the crystallographic restriction theorem which
states that periodic structures in 2D or 3D can feature only
two-, three-, four-, or sixfold rotations [51].
The Penrose tiling can be composed of the two rhom-

buses shown in Figs. 1 and 2. The two rhombuses have
internal angles (as multiples of 2π=10) f2; 3g (thick, blue in

the figures) and f1; 4g (thin, red in the figures). In order to
force the tiling to be aperiodic, so-called matching rules
must be applied to the tiles [Fig. 2(a)]: decorations of the
edges such that only like edges may meet in the tiling [52].
Any tiling obeying the matching rules is a Penrose tiling;
however, starting from a finite seed and growing the tiling
by locally adding new tiles at the edge, it is possible to
reach arrangements in which the tiling cannot be grown any
further [30–32]. Figure 3 shows the eight possible ways in
which the tiles can meet at a vertex, consistent with the
matching rules.

(a)

(b)

(c)

FIG. 2. (a) The Penrose tiling can be created by decorating the
rhombuses with matching rules, where the decorations of
neighboring edges must match. (b) An alternative method of
creating the tiling uses inflation rules, in which each tile is
subdivided into a combination of the two tiles as shown. Black
lines indicate graph edges and gray circles graph vertices.
(c) Decorating the tiles leads to different Penrose tilings made
from different tile types: the P1 pentagonal tiling and the P2 dart-
kite tiling.

FIG. 3. The possible vertices in the P2 dart-kite tiling (left),
their equivalents in the P3 rhombic tiling (middle), and the
inflations of each (right). We label the P3 vertices according to
the number of edges connected to them. Tile matching rules
distinguish the 5A;B vertices and are indicated; P2 suns are labeled
according to the number of darts connected to them [53]. The P2
vertices divide into two bipartite sublattices: star-queen-king-ace
(black vertices) and deuce-jack-suns (white vertices).
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An alternative, recursive, algorithm for generating
Penrose tilings is illustrated in Fig. 2(b). In this approach,
rules are defined for subdividing each rhombus into a
combination of the two rhombuses, in a process called
inflation [32]. The resulting combination is then rescaled so
as to be constructed of exact copies of the original
rhombuses (the rescaling is not shown here). The inflations
of the eight vertex types are shown in Fig. 3. An infinite
number of inflations applied to any finite simply connected
tile set constructed from the tiles in Fig. 2 results in a
Penrose tiling. This construction also makes apparent the
discrete scale invariance of the Penrose tiling: Inflation
leads to a locally isomorphic tiling, meaning that every
finite set of tiles found in one can be found in the other [54].
The presence of triangles (half-rhombuses) in the base
inflation units leads to similar triangles on boundaries upon
inflation, but these are negligible in the thermodynamic
limit. Denoting the number of thick (blue) and thin (red)
tiles after n inflations as bn and rn, respectively, their
growth can be characterized by a 2 × 2 matrix:

�
bnþ1

rnþ1

�
¼

�
2 1

1 1

��
bn
rn

�
: ð1Þ

Under repeated applications of the matrix, i.e., repeated
inflations of the tiling, we find

�
bn
rn

�
¼

�
2 1

1 1

�n� b

r

�
¼

�
F2nþ1bþ F2nr

F2nbþ F2n−1r

�
; ð2Þ

where the initial numbers of tiles are b and r. The growth of
the number of tiles is controlled by the Fibonacci numbers
Fn (for n ≥ 0):

n ¼ 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10;…;

Fn ¼ 0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55;… ð3Þ

The largest eigenvalue of the matrix is φ2, with
φ ¼ ð1þ ffiffiffi

5
p Þ=2 the golden ratio. φ is a Pisot-

Vijayaraghavan (PV) number: a number with modulus
greater than 1, whose Galois conjugates all have modulus
strictly less than 1 [30,55,56]. Any integer power of a PV
number is also a PV number. All quasicrystals and Penrose-
like tilings can be generated by inflation, and in all cases the
largest eigenvalue of the inflation matrix is a quadratic
irrational PV number [57,58]. In the thermodynamic limit,
the largest eigenvalue dominates, and the ratio of the
components of the associated right eigenvector gives the
ratio of the number of tiles of each type. For the Penrose
tiling, this ratio of thick to thin tiles is φ.
While the aperiodic nature of the tiling requires ambi-

guity in tile placements, the matching rules of Fig. 2(a) may
force certain tile placements given certain local configu-
rations. The set of tiles which unambiguously appears

around a given feature is known as an empire [32]. In
general, the empire of a feature will not be simply
connected; the set of tiles simply connected to the feature
is known as the local empire. Figure 4 shows the local
empires of each vertex type in the Penrose tiling [59]. These
play a major role in our discussion and crucially enable us
to prove general results of the entire tiling.

B. Dimer coverings

There is extensive literature on dimer coverings of
graphs in both physics and mathematics. Here we present
only the points salient to the remaining discussion in this
paper; for a general introduction to the topic, see
Refs. [14,19,60], and for an introduction to the relevance
to physics, see Refs. [20,61].
A graph is a set of vertices connected by edges. We

consider planar graphs, which can be embedded in the
Euclidean plane such that no edges pass under or over one
another. The graphs we consider are also bipartite, meaning
that the vertices can be colored one of two colors, say, red
and blue, such that the edges connect only red vertices to
blue and vice versa (see Fig. 5). An equivalent statement is
that all cycles (loops or closed paths) on the graph are of
even length [60].

FIG. 4. Each vertex type in Fig. 3 is accompanied by a set of
tiles which always appears around it, termed a local empire [32].
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A matching of a graph is a set of edges such that no
vertex touches more than one edge in the set [60]. A
matching is equivalent to a hard-core dimer covering, and
henceforth, we use the terms interchangeably and consider
an edge to be covered by a dimer if it belongs to the
matching. A maximal matching is a matching in which no
further edges can be covered by dimers while remaining a
matching [Fig. 5(a)]. We focus here on maximum match-
ings, maximal matchings with the additional property that
the dimers cover the maximum possible number of edges
[Fig. 5(b)]. A perfect matching is a maximum matching in
which every vertex connects to a dimer [Fig. 5(c)]. There
may be more than one perfect matching. Starting from a
perfect matching of a bipartite graph (if one exists), deleting
one dimer leads to two monomer defects where vertices
connect to zero dimers [Figs. 5(d)–5(f)]. A maximum dimer
matching hosts the minimum number of monomers [60].
Various algorithms exist for generating maximum match-
ings of graphs, such as the Hopcroft-Karp algorithm for

bipartite graphs [62]. Along an alternating path, edges are
alternately covered and not covered by dimers [63]. If the
path closes, it is an alternating cycle. If it does not close, one
end necessarily terminates on a monomer. An augmenting
path is an alternating path with both ends terminating on
monomers. In a bipartite graph, two monomers connected
by an augmenting path must be of opposite bipartite charge;
we term one a monomer and the other an antimonomer by
analogy to particles. To augment a general alternating path
is to switch which edges are covered by dimers and which
are not. These cases are shown in Figs. 5(d)–5(f).
The creation of two monomers can be seen as analogous

to the creation of a particle-antiparticle pair, with the charge
of the particle being its bipartite color (red or blue).
Rearranging dimers can have the effect of moving mono-
mers; specifically, augmenting an alternating path terminat-
ing on a monomer moves the monomer along the length of
the path. We define a minimal monomer move to be a hop
across one unoccupied edge and one occupied edge, i.e.,
augmenting a shortest-length alternating path terminating on
the monomer. As the monomer moves along the path, it
switches which edges are covered by the dimers. An
augmenting path connecting a monomer to an antimonomer
can be thought of as a classical version of the Dirac strings
connecting magnetic monopoles to their antimonopoles
required by gauge consistency [64]. In a quantum gauge
theory, these Dirac strings (which ensure the single valued-
ness of the wave function of an electron passing around the
string) would be gauge-dependent quantities requiring a
precise relationship between the electric and magnetic
charge quanta in order to be unobservable. This ambiguity
can survive in the graph setting in the following sense:
Presented with a configuration of monomers and antimo-
nomers, it may not be possible to make an unambiguous
statement as to where the strings of flipped dimers lie. The
dimers in a liquid phase can be seen as a structured vacuum
in which monomers move.
In this paper, we identify the edges and vertices of the

Penrose tiling with the edges and vertices of a graph and
seek properties of dimer coverings of this graph. While we
are unaware of previous work on this subject, some results
on more general planar bipartite graphs can be applied to
this case, as in Refs. [20,65,66]. Interacting spins on
Penrose-like tilings were considered in Refs. [44,45,67–70].
The Hubbard model is treated on Penrose tilings in Ref. [71],
building on earlier observations in both Penrose tilings [72]
and other systems [73,74]. Intriguingly, Ref. [71] finds a
finite density of localized electronic zero modes which
exactly matches the density of monomers we identify here.
This seemingly miraculous coincidence is in fact a result of a
theorem due to Longuet-Higgins [75], which we explore in
upcoming work [76]. Dimers on one-dimensional quasilat-
tices are discussed in Ref. [77]. Treated as a graph in this
way, the Penrose tiling of course admits a planar embedding,
and we maintain the geometry of the tiling in the remaining

(a)

(d)

(e)

(f)

(b) (c)

FIG. 5. (a) A maximal matching of a graph is a dimer covering
such that no further edge can be covered with a dimer (purple)
without causing a vertex (gray circles) to connect to two dimers.
(b) A maximum matching additionally contains the maximum
number of dimers. (c) If every vertex in a maximum matching
connects to a dimer, the result is a perfect matching. (d) An
alternating cycle is enclosed by the dashed line in this perfect
matching of a bipartite graph. Augmenting the cycle (switching
which edges are covered by dimers) results in another perfect
matching. (e) Deleting one dimer results in a monomer-
antimonomer pair. Augmenting paths are alternating paths with
both ends terminating on monomers. Augmenting the path
removes both monomers. No augmenting path can be present
in a maximum matching. (f) An alternating path terminating on
one monomer is highlighted. Augmenting the path moves the
monomer. We term a minimal monomer move the augmentation
of an alternating path of minimum length, which enacts a
monomer hop across one unoccupied and one occupied edge.

CLASSICAL DIMERS ON PENROSE TILINGS PHYS. REV. X 10, 011005 (2020)

011005-5



discussion (although the results presented depend solely on
the network topology of the graph). As the faces are all
rhombuses, it follows that the graph is also bipartite: This is
true for all planar graphs whose faces all have an even
number of edges [78,79].

III. IMPOSSIBILITY OF PERFECT
MATCHINGS ON PENROSE TILINGS

Considering that the number of edges emanating from a
vertex can range from three to seven in the Penrose tiling, it
may not seem surprising that the corresponding graph does
not admit a perfect matching. On the other hand, the graph is
bipartite, and all cycles are of even length. The tiling can be
constructed as a 2D slice through a 5D simple-hypercubic
lattice; the graph equivalent of this higher-dimensional
lattice would admit perfect matchings [30,31].
Finite sections of Penrose tilings can be created by

inflating simply connected sets of tiles using the inflation
rules in Fig. 2. Maximum dimer matchings can then be
found, for example, using the Hopcroft-Karp algorithm.
However, monomers resulting from this process may in
principle be able to hop to the boundary by a sequence of
minimal monomer moves (i.e., by augmenting alternating
paths connecting each monomer to the boundary). In this
case, it is unclear whether the monomers were an artifact of
considering only a finite section of the tiling.
One statement about the Penrose tiling, however, follows

straightforwardly from its bipartite structure: namely, that
any matching on the rhombic Penrose tiling is charge
neutral in the thermodynamic limit.
Proof.—First note that the trivial matching with zero

dimers (monomers on all vertices) is charge neutral. This is
because the average number of edges protruding from a
vertex (the vertex valence) is the same for both bipartite
sublattices. The average valence across the entire graph
must be four, as all tiles have four edges. The average
valence of the two bipartite sublattices must be equal
because all vertex types appear in both sublattices (easily
checked in a finite region). Then note that any matching is
formed by placing dimers onto this trivial matching. Each
dimer eliminates one monomer of each bipartite charge and
therefore conserves total charge. ▪
We now prove that a perfect matching of the Penrose

tiling is not possible, as the structure of the tiling leads to
closed loops of edges which can never be covered by
dimers in maximum matchings. These loops cannot be
crossed by alternating paths in maximum matchings and so
act as impenetrable obstacles to monomer movement when
the movement is defined via minimal monomer moves. The
existence of a net imbalance of bipartite charge enclosed by
such a loop then suffices to demonstrate the impossibility of
perfect matchings. In the next subsection, we often simply
state the key results that we rely on and (where appropriate)
sketch the key ideas behind the proofs, relegating the
details to the Appendix A.

A. Impermeable monomer membranes

We begin by observing that any even-valence vertex
in the Penrose tiling (a 4-vertex or 6-vertex) has no
even-valence neighbors and precisely two even-valence
second-nearest neighbors (see Fig. 1) [80]. A proof of this
statement relies on considering the local empire of the
6-vertex in Fig. 4, which is large enough to cover the entire
tiling when allowing for overlaps [81].
A corollary of this result is that these chains of even-

valence vertices must either form closed loops or cross
the entire system. We explain this fact and consider further
properties of the loops in Sec. III B. The smallest such
loop takes the form ð4−Þ5. We term this configuration a
“45 loop”; we later show that it is the only exception to
various rules. Here we demonstrate that even-valence loops
act as impermeable barriers to monomers within the set of
maximum matchings. In order to do so, we first note that
even-valence vertices never host monomers in maximum
matchings.
Proof.—A full proof of this statement is provided in

Appendix A. Here to set the stage of our discussion,
we provide the flavor of the graphical arguments used in
the proof (shown in Fig. 6) by considering the simplest

(a)

(b)

FIG. 6. Elements used in the proof that (a) a 6-vertex (blue)
cannot host a monomer in a maximum matching, and (b) the
dimer which must emanate from the 6-vertex must be placed on
one of the three purple edges indicated. The direction of the
4- and 6-vertices is defined to align with the arrow. Thick black
lines indicate edges which cannot be covered by dimers in
maximum matchings. Solid (dashed) lines indicate definite
(potential) uncoverable edges. Potential uncoverable edges are
those that may or may not become uncoverable depending on
how the local empire overlaps with others in the full tiling.
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case, which is again that of the 6-vertex owing to the large
size of its local empire. We begin by assuming that a
monomer does exist on the 6-vertex [the blue vertex in
Fig. 6(a)] and prove a contradiction: The monomer always
connects via an augmenting path to an antimonomer. That
is, placing the monomer on a 6-vertex implies a second
monomer which is able to hop to the neighboring vertex via
minimal monomer moves. Therefore, in a maximum
matching the edge connecting these neighboring monomers
will always be covered by a dimer. First, the presence of a
monomer on the 6-vertex means that, by definition, no
monomers can exist on neighboring vertices in a maximum
matching. Consider the neighboring 3-vertex circled in
black in Fig. 6(a): This must have a dimer connected to one
of the two edges not connected to the 6-vertex. The two
choices are equivalent under a vertical mirror symmetry.
Cover the green edge with a dimer as shown. Proceeding
clockwise, a chain of dimers (purple) is implied in the
numerical order indicated. If any of these edges is not

covered by a dimer, an antimonomer will result which
connects via an augmenting path to the original monomer.
At the end of this chain of implied dimers, the red monomer
results. This monomer neighbors the original 6-vertex
monomer and provides the desired contradiction, as the
number of dimers in the matching can always be increased
by covering the edge connecting the two monomers. No
monomer can ever appear on a 6-vertex, and, by extension,
on any vertex connected by an alternating path to a 6-
vertex, in a maximum matching. A similar argument
(Appendix A 2, Fig. 19) demonstrates that 4-vertices also
never host monomers in maximum matchings. ▪
In proving the above result, we find a further restriction:

namely, that in a maximum matching, monomers cannot be
placed on the 5C-vertices which connect even-valence
vertices, except in a 45-loop, where at most one 5C-vertex
can be covered by a monomer (a graphical proof is given in
Appendix A 2, Fig. 20). We test these results numerically in
finite systems by generating maximum matchings using the

FIG. 7. A maximum matching of a finite section of the Penrose tiling. Certain edges (thick black lines) of even-valence vertices (dark
gray) cannot be covered by dimers (purple) in maximum matchings. Monomers colored blue or red according to their bipartite charge
cannot cross the closed thick black loops.
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Hopcroft-Karp algorithm and verify that they satisfy these
constraints.
The above arguments constrain the placement of dimers

in maximum matchings: In any maximum matching, an
even-valence vertex must always touch a dimer, which
must always cover one of the edges indicated in Fig. 6(b).
Figure 7 shows a finite section of Penrose tiling. Thick
black lines indicate the edges which can never be covered
by dimers in a maximum matching. As expected, these
edges form closed loops connecting second-nearest-neigh-
bor even-valence vertices but also include twigs protruding
from the loops at the 6-vertices. The twigs capture the
added constraints on dimer placement on 6-vertices shown
in Fig. 6(b). We term these closed loops of second-nearest-
neighbor even-valence vertices connected via 5C-vertices
monomer membranes. As we show in Appendix A 4,
monomer membranes provide impermeable barriers to
monomer motion. They play a central role in the remainder
of our discussion.

The set of maximummatchings is unaffected if we delete
the edges which can never be covered by dimers. As can be
seen in Figs. 7 and 8, deleting these edges causes the graph
to break into disconnected regions. Note that this illustrates
the importance of the twigs—without deleting these, the
different regions remain connected. A careful inspection
reveals that there is an edge of the 5C-vertex, when the
5C-vertex appears in the configuration −4 − 6 − 4 − 5C −
4 − 4 − 6 − 4− (where only the relevant 5C-vertex is
listed), which must also be deleted to cause the regions
to disconnect. We prove in Appendix A 2 that the edge is
indeed uncoverable by a dimer in maximum matchings
precisely whenever it appears in this configuration. Each
disconnected region is a subgraph containing an excess of
one or the other bipartite charge. This fact forces a finite
number of monomers of the corresponding excess charge in
each region. Any two neighboring regions contain oppo-
sitely charged monomers. The edges of the 45-loop can be
covered by dimers, and so it does not result in disconnection.

FIG. 8. (a) Deleting uncoverable edges in Fig. 7 disconnects the graph into monomer regions (the incomplete outermost region is
removed). Neighboring monomer regions contain opposite net bipartite charge. The monomer indicated with a gold cross and arrow is
able to reach the gold vertices by augmenting its alternating paths. It is not able to reach all vertices, even of its own charge; the
obstruction is made by dimers rather than monomers (see Sec. VI). (b) Decorating the basic inflation elements with dimers in the final
inflation results in the dimer covering shown. The following dimer inflation algorithm gives a maximum matching: Whenever a vertex is
covered by two dimers, delete one. One monomer is then associated with each 5A;B-vertex with zero or one 7-vertices as second-nearest
neighbors, and three monomers are associated with each 5A-vertex with two 7-vertices as second-nearest neighbors.
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As we have mentioned, graphical proofs of the state-
ments above are provided in Appendix A. They rely upon
chains of dimers being implied by the matching rules
subsequent to placing only two initial objects (a monomer
and a dimer, or two dimers). These implication networks, as
we term them, always exist, and always close: Once a dimer
is implied, a whole chain must be implied, terminating only
once the resulting network returns to the original dimer (we
allow dimers to continue to be implied after a monomer has
been implied). The proof follows from two observations:
(i) Constraining two legs of a 3-vertex not to host dimers
automatically implies a dimer on the third leg and (ii) at
least two of the three vertices diametrically opposite a
3-vertex (i.e., across the three rhombuses that meet at the
vertex) are themselves 3-vertices. The monomer mem-
branes contain no 3-vertices; they form the boundaries of
the implication networks [82].

B. Monomer membrane properties

As monomer membranes are central to understanding the
maximum matchings of the Penrose tiling, we provide
further details of their properties here.
Figure 9 shows an alternative decoration of the two

rhombuses with red and blue curves. Continuity of the
curves enforces the tile matching rules (Fig. 2). Conway
and Penrose independently demonstrated, that at most, two
of the red curves may cross the entire tiling; all others form
closed loops with D5 symmetry (5m in Hermann-Mauguin
notation), which enclose regions of D5 symmetry, each
centered on either a 5A- or 5B-vertex [32,54]. Every thick
rhombus in the tiling is adjacent to precisely two other thick
rhombuses, and therefore, chains of thick rhombuses also
either cross the system or form closed curves. The red
curves can be seen to follow the thick-rhombus chains.
Monomer membranes also follow thick-rhombus chains,
crossing the chains twice at each 6-vertex, and staying on
the same side of the chains around 4-vertices. The proof
again follows from the fact that the local empire of the
6-vertex shown in Fig. 9 can cover the entire tiling,
allowing for overlaps. The results of Conway and
Penrose therefore carry over to monomer membranes: At
most two monomer membranes cross the entire system. All
others are closed, with D5 symmetry and bound D5-
symmetric sets of tiles. The proof that closed monomer
membranes feature D5 symmetry follows from the fact that
each is generated by repeated inflation of a 5A- or 5B-
vertex, each of which has D5 symmetry, and the fact that
inflation about a D5-symmetric point preserves the sym-
metry. As system-spanning loops cannot have D5 sym-
metry, they cannot appear in any Penrose tilings created by
inflating D5-symmetric tile sets. As we focus primarily on
such tile sets, the system-spanning loops will play a limited
role in the subsequent discussion.
The local empire of the 5A-vertex is bounded by a 45-

loop, the smallest monomer membrane. All other monomer

membranes can be generated as inflations of this case [83].
Inflating the 45-loop twice returns a (rotated) 45-loop with
some surrounding tiles. For subsequent inflations, the list of
even-valence vertices in the outermost monomer membrane
under inflation is

45 → ð46Þ5 → ð4644Þ5 → ð46444646Þ5 → …; ð4Þ

where only the even-valence vertices in the loop are listed.
The length of the boundary after m inflations, as measured
by the number of even-valence vertices it contains, is
5 × 2m. This number is odd for m ¼ 0 (45, the only mem-
brane permeable to monomers) and even for all m > 0.
The specific sequences of 4’s and 6’s can be generated by

the substitution rules:

4 → 46;

6 → 44: ð5Þ

If n4;6 and n04;6 denote the number of 4-, 6-vertices before
and after inflation, we may assign a growth matrix as in
Sec. II A:

FIG. 9. Decorating the tiles with red and blue curves as
indicated, continuity of the curves implies the matching rules
of Fig. 2(a). At most, two red curves may cross the entire system
[32,54]. All others must close around regions of D5 symmetry.
The curves follow chains of thick rhombuses, one of which is
highlighted in blue (all thick rhombuses are adjacent to precisely
two others). The curves also follow chains of second-nearest-
neighbor even-valence vertices (monomer membranes): a 4-6-4
segment is highlighted with a thick black line. Therefore, these
chains also close around regions of D5 symmetry centered on
either a 5A- or 5B-vertex. The thick black line can be seen to curve
away from the 4-vertex with curvature 2π=5 and toward the 6-
vertex with curvature −4π=5, with the directions of the vertices
defined in Fig. 6.
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The largest eigenvalue of the growth matrix is 2, confirming
that the loop length doubles under inflation. Since the
number is rational, the loops formed by an infinite number
of inflations are not themselves quasilattices [84].
The total curvature of any loop must be 2π. The

membranes curve away from the 4-vertex with curvature
2π=5 (since the 45-loop closes) and toward the 6-vertex
with curvature −4π=5 [since the ð46Þ5-loop also closes].
This fact can be seen, for example, in Fig. 9. Monomer
membranes of increasing size come in two varieties: one
centered on a 5A-vertex, and one centered on a 5B-vertex.
The sequence of vertices appearing in each of these two
varieties of membranes [Eq. (4)] can be generated by the
following rule: Starting from a 4 (respectively, 46), gen-
erate the next term in the sequence by inserting (464) to the
left of each symbol in the previous sequence. Considering
just the minimal repeat unit (which appears five times in the
full loop), gives

4 → ð464Þ 4 → ð464Þ 4 ð464Þ 6 ð464Þ 4 ð464Þ 4 → …;

46 → ð464Þ 4 ð464Þ 6 → … ð7Þ

matching the sequence of Eq. (4), also generated by Eq. (5).
Since (464) is curvature-free, this construction preserves
the curvature of the seed. This guarantees a �2π curvature
for the loop. In principle, there are other sequences
compatible with D5 symmetry and closed loops, such as
ð46464Þ5. This case proves incompatible with the tile-
matching rules of Fig. 2: Any D5-symmetric region of a
Penrose tiling must be centered on a 5A- or 5B-vertex, but
this sequence is centered on a decapod defect [32,54,56].
The monomer membranes are fractal objects and are

characterized by a fractal dimension dF. We may define dF
as follows: Upon rescaling the area A via

A → Aϵ; ð8Þ

a geometric quantity SdF of dimension dF scales to

SdF → SdFϵ
dF=2: ð9Þ

The average coordination of tiles in the Penrose tiling is
four, meaning the number of vertices is equal to the number
of tiles; thus, under inflation, the total number of vertices in
the infinite tiling (hence, the effective area) increases by a
factor ϵ ¼ φ2, whereas the number of vertices along a
monomer membrane doubles. Hence, the fractal dimension
of the monomer membrane is determined by setting
ðφ2ÞdF=2 ¼ 2, yielding

dF ¼ 1

log2 φ
≈ 1.440: ð10Þ

IV. MAXIMUM MATCHINGS

In Sec. III, we establish that Penrose tilings do not admit
perfect matchings. Consequently, any dimer covering must
necessarily include monomers. In this section, we proceed
to find a set of maximum dimer matchings, which host the
fewest possible monomers. We do so in two steps: First, in
Sec. IVA we provide an algorithm for generating dimer
matchings, and then in Sec. IV B we prove that the
matchings generated by this algorithm indeed contain
the maximum number of dimers.

A. Dimer inflation algorithm

Recall that the Penrose tiling can be constructed by
an inflation procedure. It is natural to ask whether we
can leverage this fact to construct dimer coverings in a
similar fashion. Consider a finite section of the Penrose
tiling generated by inflating a simply connected tile set
a finite number of times. We can imagine decorating the
seed by placing dimers on certain edges before inflation.
Strictly, the procedure to achieve n inflations would be
to inflate n − 1 times via the standard inflation rules,
then once with the decorated inflation rules which
specify the dimer positions. As an example, Fig. 8(b)
shows a finite section of the Penrose tiling obtained by
performing four inflations of the local empire of the 5A-
vertex using the standard inflation rules of Fig. 2,
followed by a final inflation using the dimer-decorated
inflation rules specified in Fig. 8(b). However, this
figure also illustrates a general obstruction to this
procedure: namely, that it always leads to some vertices
in the final covering which are covered twice by dimers
(which is forbidden).
It is impossible to create a maximum matching with the

full inflation symmetry of the tiles.
Proof.—This is seen most easily by observing that the

three edges on the central red triangles of the thin tile
become the three edges of the 6-vertex, one of which
must be covered by a dimer in a maximum matching
[Fig. 6(b)]. Placing a dimer on any one of these edges
leads to a forbidden double cover elsewhere in the
inflated pattern. ▪
However, a simple algorithm can be applied to any

forbidden dimer covering [such as that in Fig. 8(b)] to
produce an allowed matching. Whenever a vertex is
covered by two dimers, simply delete one. This will create
a monomer neighboring the formerly double-covered
vertex. Note also that monomers existed already (generated
by the inflation, not the deletion) at 5B-vertices and some
5A-vertices. In the case of the 5B, this is unavoidable, as all
five of the edges meeting at these vertices come from the
same edge in the inflation tiles (the edge lying on the mirror
axis of the thick rhombus).
This construction, which we term the dimer inflation

algorithm, can be seen to place monomers as follows:
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(i) If a 5A- or 5B-vertex has no 7-vertices as second-
nearest neighbors, a monomer is placed with the
same bipartite charge as the 5-vertex.

(ii) If a 5A-vertex has one 7-vertex as a second-nearest
neighbor, a monomer is placed with opposite bi-
partite charge to the 5-vertex.

(iii) If a 5A-vertex has two 7-vertices as second-nearest
neighbors, three monomers are placed with opposite
bipartite charge to the 5-vertex.

The monomers in (i)–(iii) are the only monomers placed by
the dimer inflation algorithm.
Proof.—Allowing for overlaps, the local empire of the

4-vertex is sufficiently large that it can cover the entire
Penrose tiling. Therefore, the inflation of the local empire
of the 4-vertex can cover the inflated tiling. Figure 10(a)
shows the local empire of the 4-vertex and Fig. 10(b) its
inflation by the dimer-decorated inflation tiles. This tile
set including its dimer decoration covers the entire tiling,
and it suffices to check that the dimer inflation algorithm
places only monomers according to the authority of (i)–
(iii), the algorithm places only monomers (and does not
place anything other than monomers). A 5B-vertex

appears in the tile set and hosts a monomer, in agreement
with (i). All 5A-vertices appear on the boundary of the
tile set upon different continuations. All possible contin-
uations of the boundary consistent with the matching
rules must be checked. Figure 10(c) shows two contin-
uations of the tile set; the combined tile set features all
combinations of 5A;B- and 7-vertices and all obey the
stated monomer placement rules. We check all possible
boundary completions and confirm that statements (i)–
(iii) hold and that no further monomers are created by the
dimer inflation algorithm. ▪
As there are 12 edges in total between the two once-

inflated tiles, there are 212 choices for dimer coverings
consistent with inflation. We prove in Sec. IV B that the
algorithm considered here leads to a maximum dimer
matching, and so no other choice can do better.
However, we find several other examples which do as
well as this choice, albeit with slightly more complicated
rules for removing double-dimer coverings of vertices.

B. The dimer inflation algorithm produces
maximum matchings

To see that the matching generated by the dimer inflation
algorithm in Fig. 8(b) is maximum, recall the following
facts. First, the local empire of the 6-vertex (Fig. 11) is
sufficiently large that it can cover the entire Penrose tiling,
allowing for overlaps [81]. Second, monomers cannot cross
monomer membranes (solid thick black edges in Fig. 11 for

(a) (b)

(c)

FIG. 10. Proof that the dimer inflation algorithm of Sec. IVA
associates monomers with 5A;B-vertices based on how many 7-
vertices they have as second-nearest neighbors [points (i)–(iii) in
that section]. (a) The local empire of the 4-vertex is large enough
to cover the Penrose tiling, allowing for overlaps. (b) Inflating
using the dimer-decorated inflation rules leads to a set of tiles
large enough to cover the inflated tiling. (c) To confirm state-
ments (i)–(iii) about monomer placement, it is necessary to check
every continuation of the boundary vertices. Two continuations
are shown, with relevant features highlighted: a 5B-vertex, and
5A-vertices with zero, one, and two 7-vertices as second-nearest
neighbors.

FIG. 11. The local empire of the 6-vertex with key vertices
identified, used in the proof in Sec. IV B and Appendix B that the
dimer inflation algorithm in Fig. 8(b) generates maximum
matchings. Solid (dashed) circles indicate vertices of definite
(potential) valence: red 7-vertices, blue 5A-vertices, and pink 5B-
vertices. Solid (dashed) thick black lines indicate definite
(potential) segments of monomer membranes (which cannot be
covered by dimers or crossed by monomers).
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even-loop segments, dashed thick black edges for potential
even-loop segments). Third, the dimer inflation algorithm
creates monomers as stated in points (i)–(iii) of Sec. IVA. If
we can prove that no monomers placed by the algorithm are
connected by augmenting paths, then the matching must be
maximum. The only obstacles to augmenting paths are
monomer membranes. We need to check only the relation-
ships between the 5- and 7-vertices, rather than the
monomers themselves, as the relationship between the
monomers and the vertices is specified in (i)–(iii).
For example, any path connecting any two 5B-vertices

must contain an even number of edges (be of even length) if it
does not cross an impermeable monomer membrane. This is
because each 5B-vertex has associated with it a monomer of
the same bipartite charge in a maximum matching. Two of
these monomers must have the same charge if they are not
separated by a monomer membrane. If they had opposite
charge theywould be connected by an augmenting path, and
the matching would not be maximum. Therefore, any two
5B-vertices connected by a path not crossing a monomer
membrane must also have the same bipartite charge. As a
corollary, any path connecting two 5B-vertices and not
crossing amonomermembranemust itself be of even length.
In fact, not only does this result hold but so does a

stronger one: Any path connecting any two 5B-vertices
crosses an even (odd) number of edges if it crosses
impermeable monomer membranes an even (odd) number
of times. This implies not only that the 5B-related mono-
mers within one region are of the same bipartite charge, but
those within neighboring regions are of opposite bipartite
charge. Consider the local empire of the 6-vertex in Fig. 11.
It contains one certain 5B-vertex (pink, solid circle) in the
bulk, and two potential 5B-vertices on the boundary related
by a mirror symmetry (pink, dashed circles). The solid
thick black lines indicate segments of the impermeable
monomer membrane, and the dashed thick black lines
indicate potential monomer membrane segments. As the
membrane forms a closed loop, it must separate the known
5B-vertex from the two potential 5B-vertices. We see that
these vertices are separated by paths of odd length. The two
boundary pink potential 5B-vertices are separated by paths
of even length. However, if they are both 5B-vertices, this
fact resolves the ambiguity of the potential monomer
membranes passing through them and confirms that they
are not separated by a monomer membrane, which is
correct. As the entire tiling can be constructed from this
local empire, there can be no other possible relations
between 5B-vertices.
To complete the proof, it suffices to prove the following

statements:
(i) Any path connecting any two 7-vertices is of even

(odd) length if it crosses impermeable monomer
membranes an even (odd) number of times.

(ii) Any path connecting any two 5A;B-vertices, where the
5A;B-vertices have no 7-vertices as second-nearest

neighbors, is of even (odd) length if it crosses
impermeable monomer membranes an even (odd)
number of times.

(iii) Any path connecting any 7-vertex to any 5A;B-
vertices, where the 5A;B-vertices have no 7-vertices
as second-nearest neighbors, is of odd (even) length
if it crosses impermeable monomer membranes an
even (odd) number of times.

The statements are summarized in Fig. 12. Note that the
only monomer membrane permeable to monomers is the
45-loop. The results are evident for the interior of the local
empire of the 6-vertex; the only cases to check are therefore
any (ambiguous) boundary vertices which have the poten-
tial to become one of the vertices in question.
The options are presented in Fig. 11. Red vertices are

7-vertices (solid circles indicate certain 7-vertices, whereas
dashed circles indicate potential 7-vertices); blue vertices
are (potential or actual) 5A-vertices; pink vertices are
(potential or actual) 5B-vertices. The verification that every
case works is lengthy but straightforward and appears in
Appendix B. In all possible cases, the three listed require-
ments are fulfilled, and the dimer inflation algorithm given
in Sec. IVA generates maximum matchings.

V. MONOMER DENSITIES IN
MAXIMUM MATCHINGS

Having presented in Sec. IV an algorithm for generating
maximum matchings of the Penrose tiling, we proceed to
analytically calculate (in Sec. VA) and numerically check
(in Sec. V B) the density of monomers in any maximum
matching.

A. Analytic calculation of the minimal
monomer density

The results of Sec. IV reveal that we can associate
monomers with 5A-vertices, 5B-vertices, and 7-vertices.

FIG. 12. The listed vertex types must be separated by paths of
even (e, solid lines) or odd (o, dashed lines) length if the vertices
are separated by an even number of monomer membranes
(including zero). If the vertices are separated by an odd number
of monomer membranes, e and o should be interchanged. The
box labeled “5A” excludes the “5A − 7” and “7 − 5A − 7”
configurations, and 5A − 7 excludes 7 − 5A − 7. See Fig. 10
and Sec. IV B.

FLICKER, SIMON, and PARAMESWARAN PHYS. REV. X 10, 011005 (2020)

011005-12



The monomers are not constrained to sit at specific
locations relative to these vertices, as they can move to
any vertices to which they connect via alternating paths.
However, we are able to use the association between
monomers and vertices implied by the dimer inflation
algorithm [points (i)–(iii) in Sec. IVA] to establish the
density of monomers in maximum matchings of the
Penrose tiling.
Table I lists the relative frequencies of each vertex type in

the Penrose tiling [53,85,86]. If we consider not just the
vertex and its inflation, but the local empires of each,
certain facts become evident. A 5A;B-vertex with no
7-vertices as second-nearest neighbors is created by inflat-
ing a 5B;A-vertex; this pattern is associated with one
monomer. A 5A-vertex with one 7-vertex as a second-
nearest neighbor is created by inflating a 6-vertex; this
pattern is also associated with one monomer. Finally, a 5A-
vertex with two 7-vertices as second-nearest neighbors is
created by inflating a 7-vertex; this pattern is associated
with three monomers. New vertices are also generated
between existing vertices upon inflation, but inspecting the
inflated vertices in Fig. 3 reveals that only 3B- and 5C-
vertices appear in this way.
Putting the results together, we find that the density of

monomers ρmonomer in the tiling is

ρmonomer ¼
fð5AÞ þ fð5BÞ þ fð6Þ þ 3fð7Þ

φ2
P

v∈verticesfðvÞ
; ð11Þ

where fðvÞ is the relative frequency with which a v-vertex
appears (see Table I). The factor of φ2 in the denominator
arises because it is the inflated pattern which is to be
compared to, and the number of all vertices increases by φ2

under inflation in the infinite tiling. Substituting the values
from Table I, we find the result for the monomer density:

ρmonomer ¼ 81 − 50φ; ð12Þ

where the simplified result follows from repeated use of the
defining equation of the golden ratio, φ2 ¼ φþ 1.

B. Numerical confirmation of the
minimal monomer density

In order to confirm the analytic result of the previous
section, we carry out numerical calculations of the mono-
mer densities in finite-size sections of the Penrose tiling. To
generate the sections, we carry out up to 13 inflations on
seed tile configurations using the inflation rules of Fig. 2.
We use as the seeds only the two basic rhombuses, thick
and thin. Any other seed is simply a combination of these,
differing only on the boundary.
In Fig. 13, we show the numerically obtained monomer

densities (number of monomers in the finite system divided
by the total number of vertices in the system). The inflation
method can leave stray twigs on the boundary of the
system; we prune these before finding maximum match-
ings. We consider two possible methods of placing mono-
mers: the dimer inflation algorithm outlined in Sec. IVA
(solid red squares for inflations of the thick tile, solid blue
circles for inflations of the thin tile) and the Hopcroft-Karp
algorithm [62]. We test the Hopcroft-Karp result against an

TABLE I. The vertices in the dart-kite P2 tiling (Fig. 3); their
equivalents in the rhombic P3 tiling; their inflations in P3; their
relative frequencies; simplified forms of the frequencies, making
use of the defining equation of the golden ratio φ2 ¼ φþ 1.

Dart kite Rhombus Inflation Frequency Simplified

Queen 3A 7 φ3ðφ4 − 1Þ 11φþ 7

Deuce 3B 3A φ5ðφ4 − 1Þ 29φþ 18

King 4 6 φ2ðφ4 − 1Þ 7φþ 4

Star 5A 5B φ4 3φþ 2

Sun 5 5B 5A φ2 φþ 1

Jack 5C 4 φ4ðφ4 − 1Þ 18φþ 11

Sun 4 6 5A − 7 φ4 − 1 3φþ 1

Sun 3 7 7 − 5A − 7 φðφ4 − 1Þ 4φþ 3

Ace � � � � � � φ6ðφ4 − 1Þ 47φþ 29

FIG. 13. Numerical results for the density of monomers in finite
sections of the Penrose tiling. To achieve results with the least
possible bias, we consider inflations of each basic tile: the thick
(red squares) and thin (blue circles) rhombuses for P3 and the dart
(red crosses) and kite (blue crosses) for P2 (see Sec. VII). For the
rhombic tiling, solid symbols correspond to systems in which
monomers are placed according to the dimer inflation algorithm
(DIA) of Sec. IVA, whereas hollow symbols correspond to
systems in which maximum matchings are found using the
Hopcroft-Karp algorithm (HK, also used for the dart-kite tiling).
The analytical results of 81 − 50φ ≈ 0.098 for the rhombic P3
tiling and ð7 − 4φÞ=5 ≈ 0.106 for the dart-kite P2 tiling are
shown by the black dashed lines.
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alternative maximum matching method, the Eppstein algo-
rithm, and obtain identical results.
Differences between the numerical and analytical results

may be attributed both to the usual boundary effects in a
finite system and to the impossibility of reproducing an
irrational number as a ratio of two integers. In Fig. 13, we
see that both methods of monomer placement lead to
monomer densities tending rapidly to the analytic value
(note the logarithmic scale on the horizontal axis). The
dimer inflation algorithm is less affected by the boundaries
than the Hopcroft-Karp matching. The dimer inflation
algorithm incurs errors in monomer placement only within
one vertex from the boundary when the boundary artifi-
cially decreases the valence of the vertex. The Hopcroft-
Karp method, on the other hand, can take advantage of
augmenting paths connecting bulk monomers with mono-
mers artificially created by the boundary, and these paths
can be of arbitrary length provided they are not constrained
by monomer membranes.

VI. THE MAXIMUM MATCHING MANIFOLD
IS CONNECTED BY MINIMAL

MONOMER MOVES

In this section, we demonstrate that, starting from one
maximum matching, all others can be reached by minimal
monomer moves without passing through nonmaximum
matchings. The set of maximum matchings therefore forms
a connected manifold.
To motivate this idea, consider a general bipartite graph

which admits a perfect matching. Deleting a dimer from
such a matching creates two neighboring monomers of
opposite bipartite charge. In physical models, such a pair-
creation process is expected to be energetically costly.
Assigning an energy to pair creation, the set of perfect
matchings constitutes the degenerate set of classical ground
states of the system. Starting from one perfect matching, if
all others can be accessed by reconfiguring dimers in a
physical manner (discussed shortly) while remaining
within the set of perfect matchings, the set of degenerate
classical ground states forms a connected manifold [87].
This fact is a necessary but not sufficient condition for the
system to be ergodic, meaning that the time spent under
dynamical evolution in a given volume of phase space of
equal-energy microstates is proportional to the volume
itself, or, equivalently, that all accessible microstates are
sampled equally over sufficiently long timescales [88]. In
the present work, we are not specializing to a particular
energy function or physical model, and the results can be
considered to be in the zero-temperature limit.
The sort of features which could disconnect a set of

matchings might be, for example, the presence of non-
contractible system-spanning loops under periodic boun-
dary conditions. These loops can disconnect the phase
space into topological sectors unreachable from one
another by local (i.e., physical) moves [4]. Before

considering the case of the Penrose tiling, it is instructive
to continue to consider an arbitrary bipartite graph admit-
ting multiple perfect matchings. In the case that only one
topological sector exists, all perfect matchings can be
enumerated by the following process: Starting from one
perfect matching (which can be found, for instance, by the
Hopcroft-Karp algorithm), another can be generated by
augmenting an alternating cycle. In fact, all perfect match-
ings can be enumerated by augmenting all alternating
cycles in a given perfect matching [89]. The following
physical analogy motivates such moves: Deleting one
dimer on the cycle creates a monomer-antimonomer pair.
The monomer can then hop around the cycle via minimal
monomer moves and reannihilate with the antimonomer,
with the net effect being the desired augmentation. The
analogy is imperfect, however, as the intermediate stages
are not contained within the set of perfect matchings. In
quantum dimer models, they can be considered virtual
processes.
Now consider the case of a finite bipartite graph which

does not admit a perfect matching. Starting from a
maximum matching, we further restrict to the case that
every alternating cycle connects to at least one monomer
via alternating paths. All maximum matchings can now be
enumerated by identifying and augmenting all alternating
cycles, plus all alternating paths (by definition, each
alternating path terminates on precisely one monomer)
[89]. The physical analogy holds more closely in this case.
Augmenting an alternating path can be achieved simply
by hopping the monomer along the path with minimal
monomer moves. Augmenting an alternating cycle can be
achieved by hopping a monomer to any vertex on the cycle,
hopping the monomer around the cycle, then hopping the
monomer back to its initial vertex along the same path it
took to the cycle. In this process, the only change to the
dimer configuration is to augment the alternating cycle,
since dimers on the path connecting the starting vertex to
the cycle are returned to their initial configuration when the
monomer retraces its steps.
Since no pair creation occurs, these processes stay within

the set of maximum matchings. The restriction that all
alternating cycles connect via alternating paths to mono-
mers means that it is always possible to find a monomer to
carry out such a move. A simple example of a graph
violating this condition is to add to this example a second
graph, disconnected from it, which itself admits multiple
perfect matchings: Therefore, the total graph still does not
admit a perfect matching, but the perfectly matched region
still requires the unphysical virtual processes to augment its
alternating cycles.
Recall that the Penrose tiling divides into monomer

regions bounded by monomer membranes. At most, two
monomer membranes (i.e., one monomer region) can cross
the entire system. The others are closed with D5 symmetry.
Since monomer membranes can never host dimers in
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maximum matchings, we can consider each monomer
region separately. Every monomer region contains an
excess of bipartite charge.
Proof.—This can be seen (admittedly in a slightly

roundabout way) from the fact that (i) the dimer inflation
algorithm generates maximum matchings with monomers
on every 5B-vertex, (ii) every monomer region contains a
5B-vertex (since the local empire of the 6-vertex contains
5B-vertices on both sides of the impermeable membrane
and covers the entire tiling), and (iii) the total number of
monomers in a monomer region is equal to the monomer
region’s net bipartite charge. ▪
All vertices with the same bipartite charge as their

monomer region connect via alternating paths tomonomers.
Proof.—We just proved that every monomer region

contains at least one monomer. To see that every vertex
within a monomer region (where the vertex has the same
bipartite charge as the region) connects to a monomer via
an alternating path, consider the following argument. Pick
an arbitrary vertex v0 within the monomer region with the
same charge as the monomers in that region. If the vertex
hosts a monomer, we are done. If not, the vertex must be
covered by a dimer. Consider the vertex at the other end of
the dimer, v1. All the other edges of v1 must be uncovered.
Consider these edges and the vertices vi2 (where iþ 1 is the
valence of v1) to which they connect. If any of vi2 hosts a
monomer, this monomer then connects via an alternating
path vi2 − v1 − v0 to the original vertex v0, and we are done.
If not, each of vi2 is covered by precisely one dimer. By
iterating this process, a monomer must eventually be
reached. ▪
Since the Penrose tiling is bipartite and divides into

closed regions in which every alternating cycle connects via
an alternating path to a monomer, the set of maximum
matchings forms a manifold connected by minimal mono-
mer moves.
It is not true that any monomer within a monomer region

connects via an alternating path to any given vertex with the
same bipartite charge as the region. In terms of minimal
monomer moves, a rearrangement of the remaining mono-
mer positions may in general be necessary to facilitate a
monomer reaching a given vertex. Figure 8(a) shows two
monomer regions of the Penrose tiling obtained from Fig. 7
by removing edges which can never be covered by dimers
in maximum matchings, then by removing the largest
connected component of the resulting disconnected graph
(the outermost monomer region in Fig. 7). One monomer is
highlighted with an arrow and gold cross; the set of vertices
connected to this monomer by alternating paths is high-
lighted in gold. This is the set of vertices the monomer can
reach via minimal monomer moves, holding all other
monomers fixed. The dark gray vertices are even-valence
vertices before disconnection and form the unreachable
monomer membrane which bounds the monomer region.
Other vertices intermingled with the gold vertices are of the

wrong bipartite charge and also cannot be reached.
However, there are many more vertices within the region
which are legitimate sites for occupation and simply cannot
be reached. The obstacle is not directly provided by other
monomers, although these can also in principle form
obstructions; instead, it is the dimer network. By moving
monomers other than the crossed monomer, it is possible to
rearrange the dimer network to allow the crossed monomer
to reach any vertex.

VII. CLASSICAL DIMERS ON OTHER
PENROSE-LIKE TILINGS

All rhombic Penrose tilings are locally isomorphic to one
another. Different decorations of the tiles can lead to
alternative Penrose tilings in different local isomorphism
classes. As the resulting graph connectivity changes under
such decorations, the properties of maximum matchings
may also change. In order to place our results of the
rhombic Penrose tiling in a more general context, in this
section we consider dimer coverings of other two-
dimensional Penrose-like tilings.

A. Other Penrose tilings

The P3 rhombic Penrose tiling is the third to be
identified. Earlier versions include the dart-kite tiling P2,
and the original pentagonal tiling P1, which has four
different tile types. Figure 2 shows decorations of the
P3 tiles which lead to the P1 and P2 tilings [90]. Since one
of the P1 tiles is a pentagon, P1 necessarily contains cycles
of odd length, and the corresponding graph is therefore not
bipartite. For this reason, we do not discuss it further. In this
section, we consider the dimer-covering properties of the
dart-kite P2 tiling and provide another simple decoration of
P3 which trivially results in a perfect matching.

1. The Penrose dart-kite (P2) tiling

The Penrose P2 tiling consists of two tiles referred to by
Penrose as the dart and kite. Figure 2 shows how to derive a
P2 tiling by decorating the rhombic tiles of P3.
Alternatively, P2 can be obtained by its own inflation
rules. As both tiles have four sides, the graph is again
bipartite. A finite region of the P2 tiling is shown in Fig. 14.
P2 features nine vertex types. Following Ref. [53], we term
them the deuce, jack, queen, king, ace, star, and suns 3–5
(as with 5A and 5B in the rhombic tiling, the different sun
vertices are distinguished by their neighboring tiles; the
number indicates the number of dart tiles pointing out from
the sun). Except the ace, all vertices are in one-to-one
correspondence with vertices in the rhombic tiling; the
correspondence is given in Fig. 3 and Table I. Inspecting
the local empires of each vertex reveals an interesting
property: Each vertex belongs to precisely one-bipartite
sublattice. The suns, deuce, and jack form the entirety of
one sublattice [blue vertices in Fig. 14, and the star, queen,
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king, and ace form the other (red)]. This property of P2 is in
contrast to P3 in which each vertex appears in both
sublattices. The P2 tiling admits a covering (allowing
for overlaps) by a set of tiles known as a cartwheel
[54,81,90]. Some cartwheels are highlighted in Fig. 14.
Figure 15 shows a maximum matching of the same

region obtained using the Hopcroft-Karp algorithm. A
number of monomers appear all on the same bipartite
sublattice. Inspecting the vertex frequencies in Table I

reveals an imbalance in the relative frequencies of vertices
in the two sublattices: In the infinite tiling, the star-queen-
king-ace sublattice contains more vertices than the sun-
deuce-jack sublattice. A perfect matching is therefore
impossible, as the lower bound on the monomer density
is given by the excess density of one sublattice over the
other. In fact, this lower bound is the true monomer density.
To see this, it suffices to prove that monomers on the star-
queen-king-ace sublattice can reach any vertex on that
sublattice: If this is the case, the sun-deuce-jack sublattice
must be perfectly matched, otherwise, the total number of
monomers could be decreased by moving a monomer
on the star-queen-king-ace sublattice next to a monomer
on the sun-deuce-jack sublattice, then annihilating both.
Therefore, if the monomers present on the star-queen-king-
ace sublattice can reach any vertex of that sublattice, then
the sun-deuce-jack sublattice is perfectly matched, and the
matching contains the minimum number of monomers.
Any vertex on the star-queen-king-ace sublattice can be

reached by a monomer.
Proof.—By considering an arbitrary maximummatching

of the cartwheel with each of its continuations, any vertex
on the star-queen-king-ace sublattice can be seen to connect
via an alternating path to a monomer. As every vertex in the
infinite tiling appears within a cartwheel, every vertex on
the infinite star-queen-king-ace sublattice connects to a
monomer by an alternating path, and all vertices on this
sublattice can be reached by a monomer. ▪
Therefore, the monomer density on P2 is precisely given

by the imbalance of vertices between the two sublattices.
This density can be found as follows:

ρmonomer ¼
P

v∈AfðvÞ −
P

v∈BfðvÞP
v∈AfðvÞ þ

P
v∈BfðvÞ

; ð13Þ

where fðvÞ is the relative frequency with which vertex v
appears (see Table I), A denotes the set of vertices on the
star-queen-king-ace bipartite sublattice, and B denotes the
set of vertices on the deuce-jack-sun sublattice. The result
simplifies to

ρmonomer ¼ ð7 − 4φÞ=5: ð14Þ

We again confirm this result numerically by employing the
Hopcroft-Karp algorithm to find maximum matchings of
successively larger finite-sized regions created by inflating
the two basic tiles. The result shown in Fig. 13 shows a
rapid convergence toward the analytic result, which is valid
in the thermodynamic limit.
We note that this result should be sharply contrasted with

the case of the rhombic tiling: There, in the thermodynamic
limit there is no net imbalance in the vertices of any
sublattice; the overall tiling is, as we show, charge neutral.
Instead, there the presence of a finite density of monomers
is a consequence of the impermeability of monomer

FIG. 14. A region of the Penrose dart-kite (P2) tiling. The
vertices (Fig. 3) divide into bipartite sublattices: star-queen-king-
ace (red) and deuce-jack-suns (blue). Dark gray decagons
indicate cartwheels, regions which can cover the infinite tiling
allowing for overlaps [81].

FIG. 15. A maximum matching of the Penrose dart-kite (P2)
tiling in Fig. 14. Monomers are shown in red. All lie on the same
bipartite sublattice.
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membranes that “cage” positively and negatively charged
monomers into separate regions and prevent them from
annihilating. The fact that the monomer density in the kite-
dart tiling precisely matches the excess of one sublattice
over the other in the thermodynamic limit shows that such
caging does not occur here.

2. Decorated Penrose tilings

The different Penrose tilings P1–P3 can be derived from
one another as decorations of the tiles. P1 is nonbipartite,
P2 is bipartite and features charged maximum matchings,
and P3 is bipartite and features charge-neutral maximum
matchings. It is natural to ask whether a decoration of the
tiles is possible, which leads to a bipartite graph admitting
perfect matchings. In fact, such decorations are simple to
design, with one option shown in Fig. 16. Each tile of P3
has been decorated with edges, vertices, and dimers, in
such a way that a perfect matching is present by con-
struction [91]. All vertices of P3 appear in the region
shown, and it can be seen that the number of graph edges
enclosing a valence-v vertex is 2v. As this number is even,
and the only other cycles (appearing within the tiles) are of
length four, the graph is bipartite. Some of the edges of the
graph are allowed to curve for ease of drawing.

B. Eightfold and 12-fold Penrose-like tilings

By considering various decorations of Penrose tilings,
we find a wide range of behaviors of classical dimer
models. In order to establish the generality of these results,
in this section we briefly consider classical dimers on other
two-dimensional Penrose-like tilings.
All known examples of physical quasicrystals have five-,

eight-, ten-, or 12-fold rotational symmetry and feature
symmetries related to quadratic irrational PV numbers
[50,55,58]. In the present paper, we construct Penrose-like
tilings using inflation rules. An alternative construction
method is based on the use of Ammann bars, decorations of
the tiles with straight line segments such that valid tile

configurations lead to infinite sets of straight lines [32,54].
Reference [56] identifies that there are only six possible
two-dimensional Penrose-like tilings which have the min-
imal set of one-dimensional Ammann decorations com-
patible with their orientational symmetries. The authors of
that paper provide a method of constructing the tilings from
the Ammann bars. The construction leads to tilings made
up of small numbers of inequivalent convex tiles (as in P3,
which has two tiles). The six two-dimensional Penrose-like
tilings resulting from this construction are as follows: the
rhombic Penrose tiling (with a tenfold symmetric diffrac-
tion pattern, and PV number φ), tilings 8A and 8B with
eightfold symmetric diffraction patterns and PV number
1þ ffiffiffi

2
p

(the silver ratio), and tilings 12A − 12C with 12-
fold symmetric diffraction patterns and PV number
2þ ffiffiffi

3
p

.
We save a full analysis of the behavior of dimer

matchings in all of these cases for future work.
However, we are able to make a number of comments.
Case 8A is better known as the Ammann-Beenker tiling
[32,90]. In upcoming work, we prove that this case admits
perfect matchings [92]. Turning to case 8B, we are able to
find a perfect matching of a large finite region, and we
conjecture that the infinite tiling also admits perfect
matchings.
Case 12A is better known as the Socolar-Taylor tiling

[56,93]. It contains three tiles with angles which are
multiples of 2π=12. Creating a maximum matching of a
finite region, we find that monomers of both charges
necessarily exist and are trapped by uncrossable mem-
branes as in the rhombic Penrose tiling. A sample of this
matching is shown in Fig. 17. The existence of any
monomer unable to reach the boundary of a finite region,
in any maximum matching, is sufficient to prove that
perfect matchings do not exist for the infinite tiling. The
matching in Fig. 17 contains one blue monomer and four
red monomers; in lighter colors are vertices which connect
to these monomers via alternating paths and which can
therefore be reached under minimal monomer moves.
While the matching itself is arbitrary, the set of vertices
which can be reached by monomers is independent of
matching [94]. Monomer membranes separate regions of
opposite bipartite charge, as in the rhombic Penrose tiling,
and again appear to follow chains of 4- and 6-vertices
interspersed with 5-vertices. Unlike the Penrose tiling,
however, the Socolar-Taylor membranes are able to branch.
Branchings appear to occur at double-width membrane
segments formed from two 4-vertices appearing back to
back across a thin tile. These double-width segments are
then able to separate regions of the same bipartite charge
(we use two different colors of light red to indicate these
distinct regions).
Cases 12B and 12C are similarly unable to admit perfect

matchings and feature both single- and double-width
membranes as in 12A. Whereas all monomer regions we

FIG. 16. The rhombic Penrose tiles (light gray) decorated with
edges (black), vertices, and dimers (purple) such that each tile of
the same type is identical, and the resulting bipartite graph admits
a perfect matching.
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identify in 12A contain a net imbalance of charge, as in the
Penrose tiling, cases 12B and 12C additionally feature
perfectly matched islands enclosed by membranes. A maxi-
mum matching of a region of 12B is shown in Fig. 18.

VIII. CONCLUDING REMARKS

In this paper, we consider dimer coverings of the Penrose
tiling considered as a graph. We find that a perfect matching
is not possible, but we identify various properties of
maximum matchings, which are those that have the largest
possible number of dimers (smallest number of monomers).
We devise a method of generating these maximum match-
ings using the properties of the Penrose tiling (the dimer
inflation algorithm) and use this to show that the density of
monomers in such matchings is 81 − 50φ. These mono-
mers exist in closed monomer regions bounded by loops of
second-nearest-neighbor even-valence vertices. These
loops are fractal objects that we dub monomer membranes,
which the monomers cannot cross. Each monomer region
has an excess of one or other bipartite charge equal to the
number of monomers it contains in maximum matchings.
Regions on opposite sides of a membrane have opposite net
bipartite charge.
We note that an immediate physical application of our

results is as a model for adsorbed atoms and molecules on
the surfaces of quasicrystals, already known to lead to a
variety of exotic structures [95–97]; it is straightforward to
translate our analysis into a series of statements about such
structures. However, as we note in the Introduction, the
dimer model can be used to study a wide range of
phenomena, and therefore, we might anticipate various
other possible applications, as we now sketch.
First, we note that the physics of local constraints can

drive a variety of rich phenomena even at the classical level.
Perhaps the most famous recent example is the study of
condensed-matter analogs of magnetic monopoles [98–
100]. Although they have eluded detection as fundamental
particles, various experiments have indicated that they may
emerge as collective excitations in the spin-ice materials
dysprosium titanate and holmium titanate (A2Ti2O7 with
A ¼ Dy, Ho) [98]. In these materials, the magnetic rare-
earth ions inhabit a pyrochlore lattice of corner-sharing
tetrahedra [101]. By an appropriate choice of local spin
axes, the low-energy physics may be approximately cap-
tured by that of a nearest-neighbor Ising antiferromagnet. In
any classical ground state, two of the four spins on a
tetrahedron point into the center and two point out. Since
there are six possible configurations per tetrahedron, the
result is a macroscopically degenerate ground state char-
acterized by the local two-in, two-out ice-rule constraint
[102]. This situation can be viewed as Gauss’s law for an
emergent gauge field, but it is also linked to the local
magnetization since each spin is a magnetic dipole. The
lowest-energy excitation out of the ice-rule manifold
consists of a single spin flip, which creates a three-in
one-out tetrahedron neighboring a one-in three-out tetra-
hedron. Upon coarse graining by summing the divergence
of the magnetization over each tetrahedron, the excitation
appears as a neighboring source and sink of magnetization
termed a monopole and antimonopole (the analog to

FIG. 17. A maximum matching of the Socolar-Taylor tiling
[56,93]. Purple edges indicate dimers; the dark blue (four dark
red) vertices indicate monomers, while light blue (light red)
vertices connect to blue (red) monomers via alternating paths
(note the two distinct colors of light red, indicating distinct
monomer regions; the separation of the different blue regions is
clear). Monomer membranes are identified with thick black lines.

FIG. 18. A maximum matching of the Boyle-Steinhardt 12B
tiling [56]. Colors as in Fig. 17. Note the existence of perfectly
matched regions within monomer membranes, thick black lines.
These resemble manta rays converging on a coral reef at the
center. These perfectly matched regions appear to be unique to
the 12B and 12C tilings.
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monomers and antimonomers in the case of the dimer
model). Subsequent spin flips allow the monopole and
antimonopole to move apart. A Dirac string of flipped spins
connects monopole-antimonopole pairs analogous to aug-
menting paths in the Penrose tilings considered here. In the
spin-ice setting, statistical fluctuations between different
spin configurations make the precise location of the string
ambiguous (except with reference to a chosen starting
state), giving a classical analog of the underlying gauge
theory [99]. The strings also lead to an effective Coulomb
law interaction between monopoles. This picture is a clear
demonstration of the idea of fractionalization, albeit in a
classical context, and its parallels to dimer models are clear.
Our results suggest that classical frustrated magnets in
quasiperiodic systems should host a similarly rich set of
phenomena.
Quantum fluctuations between classically degenerate spin-

ice configurations—generated, for instance, by transverse-
field terms beyond the Ising limit—can give rise to a quantum
gauge theory in its Coulomb phase, with a gapless “photon”
collective mode. In such a phase often termed a three-
dimensional Uð1Þ quantum spin liquid, the monopoles are
emergent gapped quasiparticles, which carry a Uð1Þ charge
and exhibit a Coulombic interaction. The search for such
quantum spin ices remains an active field of research [7,103].
Similarly, endowing dimer configurations with

dynamics—the simplest of which is a resonance that
augments the elementary alternating cycle on a single
four-site plaquette—yields a quantum dimer model. On
periodic bipartite lattices in three dimensions, such dimer
models are also known to exist in a Coulomb liquid phase
[4,10]; here, the photon is a collective mode of the dimers,
whereas the monomers are gapped gauge-charged objects
(similar to the monopoles in spin ice). However, on
periodic nonbipartite lattices in any dimension, quantum
dimer models lead to fully gapped dimer liquid phases with a
discrete gauge structure and topological order [3,4]. The
situation ismore subtle on two-dimensional periodic bipartite
lattices, as in the case of the original square-lattice quantum
dimer model [1]. On such lattices, although classical dimers
exhibit power-law correlations, the corresponding quantum
Coulomb liquid phase is generically destroyed by instanton
effects [104]. Such effects lead to the formation to a variety of
dimer crystal phases, in which the emergent gauge field is
confined. Deconfinement (as in the Coulomb phase) survives
only at critical points between these crystal phases. However,
more careful analysis of the effective theory near such
transitions reveals that lattice effects can have a significant
impact on their properties [105,106]. If the incipient crys-
talline order is incommensurate with the underlying periodic
lattice, the dimer model remains gapless, and the collective
mode survives. The interplay between the different possible
dimer crystal orders and the lattice leads to a devil’s staircase
of gapped commensurate crystals interleaved with gapless
incommensurate ones—a phenomenon dubbed Cantor

deconfinement [105]. This situation provides one obvious
motivation to study quantum dimer models on lattices, such
as thePenrose tiling,where any crystalline order is likely to be
frustrated.
The presence of a finite local density of monomers (but

vanishing net monomer charge) suggests a route to evading
the effects of instantons in a quantum extension of the
present model: The presence of dynamical gauge-charged
matter is known to mitigate their influence [107,108].
Intriguingly, the presence of monomer membranes that
are impermeable to gauge charge suggests a rather unusual
phase structure that blends aspects of both confinement and
deconfinement. The presence of fractal structures that
constrain the low-energy dynamics also bears a family
resemblance to the physics of fractons, immobile quasi-
particles that appear as low-energy excitations in certain
translation-invariant Hamiltonian models [109–112],
which may be viewed as end points of fractal objects.
The immobility of fractons and their glassy dynamics
[109,113] is closely related to the properties of simple
classical spin models with kinetic constraints [114]. While
the precise connection between our work, the physics of
fracton models, and these related physical systems remains
unclear, we flag this as an interesting avenue for fur-
ther study.
The various lines of investigation that we suggest above

will clearly be advanced by the development of a conven-
ient coarse-grained description of the Penrose dimer model.
For dimer models on 2D periodic lattices, such a descrip-
tion is provided by a mapping to a so-called height model
that parametrizes dimer configurations in terms of con-
figurations of a two-dimensional surface or height field.
A conventional scalar height model cannot readily be
defined on the Penrose tiling, owing to the variation in
valence of the various vertices. Suitable generalizations
may exist which achieve the same result.
In a different vein, it would be interesting to determine

which of the properties we demonstrate in the Penrose
tiling carry over to other Penrose-like tilings, the members
of the noncrystallographic Coxeter groups [56,115]. There
is an infinite number in 1D (e.g., the Fibonacci quasilattice
[32,58,116]), six in 2D (considered in Sec. VII), five in 3D
(with the point group symmetries of the icosahedron and
dodecahedron), one in 4D (with the point group symmetry
of the 600 cell), and none in dimension five or higher. All
can be generated by inflation rules, matching rules, and by
a cut-and-project method from higher dimensions, sug-
gesting that similar methods to those we develop here may
be extended to those cases. The three-dimensional cases in
particular would be interesting candidates for physically
relevant systems exhibiting topological order. We also hope
that the present physically motivated study of the Penrose
tiling may open up new directions for studying the
fascinating mathematical properties of these tilings, such
as their three colorability [32,54,117].
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Part of the interest in dimer coverings of graphs lies in
their potential relevance to the problem of discretizing
conformal field theories governing critical systems
[20,118,119]. As Penrose-like tilings lack the discrete
translational invariance of periodic lattices but instead
feature a discrete scale invariance, they seem a natural
subject of study from this perspective. Indeed, in the special
case of conformal quasicrystals, which form the boundary
of regular tilings of hyperbolic space, the structures have
invariance under discretized Weyl transformations and so
can be considered to host a full conformal invariance [120].
We anticipate that the themes we explore here will prove

relevant to understanding the range of emergent strongly
correlated phenomena possible in quasicrystals. Our aim in
presenting these results has been to lay the foundations for
future investigations of new and unconventional forms of
classical and quantum order possible in these systems.
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APPENDIX A: PROOFS ON MONOMER
MEMBRANE IDENTIFICATION

AND PROPERTIES

In this Appendix, we provide proofs for the statements
used to identify and study monomer membranes in
Sec. III A.

1. Neighbor structure of even-valence vertices

We first prove the first statement in Sec. III A: namely,
that any even-valence vertex in the Penrose tiling (a 4-
vertex or 6-vertex) has no even-valence neighbors and
precisely two even-valence second-nearest neighbors. This
can be proven by considering the local empire of the 6-
vertex in Fig. 4. This region is large enough to cover the
entire tiling, allowing for overlaps [81]. In Fig. 6, the local
empire of the 6-vertex is shown; the solid thick black lines
connect second-nearest-neighbor even-valence vertices
(note that we include an extra twig on the 6-vertex; this
is explained shortly). The thick dashed black lines represent
potential completions of the loop, which could become
solid depending on how the incomplete boundary vertices

are finished (i.e., the precise way in which each vertex
appears in the tiling). The 6-vertex has zero even-valence
neighbors, and two 4-vertices are the only even-valence
second-nearest neighbors. Each of these 4-vertices has no
even-valence neighbors, and, aside from the 6-vertex, may
have either a 4-vertex or 6-vertex as another second-nearest
neighbor (by considering all possible completions of the
boundary vertices). Elsewhere in the local empire, an arc of
three second-nearest-neighbor 4-vertices appears. Again
considering all possible completions of boundary vertices,
the only possible continuations are to a −4 − 6 − 4 − 4 −
4 − 6 − 4− configuration, where only second-nearest-
neighbor even-valence vertices are listed, or a 45-loop.
This completes the proof that even-valence vertices have
zero even-valence vertices as neighbors and precisely two
even-valence vertices as second-nearest neighbors. ▪

2. Absence of monomers on monomer membranes
in maximum matchings

A key result in the main text is that monomers never
appear on monomer membranes. In the main text, we
prove, using a graphical argument that considers implica-
tion networks, that 6-vertices cannot host monomers. We
now use a similar approach to show that monomers cannot
appear on 4-vertices, or on 5C-vertices appearing between
4-vertices and 6-vertices, in a maximum matching.
Collectively, these vertices comprise closed loops which
monomers cannot cross, which we term monomer mem-
branes in the main text. Note that monomers can appear on
5C-vertices appearing between two 4-vertices but only in
the exceptional case of the 45-loop (see Sec. III).
In Fig. 19, we prove that no monomer can appear on a

4-vertex in a maximum matching. The local empire of the
4-vertex is too small to construct a direct analog to the
argument presented for the 6-vertex. However, 4-vertices
have either 4-vertices or 6-vertices as second-nearest neigh-
bors (with 5C-vertices connecting them). Figures 19(a)–
19(d) assume a −4 − 6− configuration, where the boxed
symbol is the vertex under consideration and the 5C
connecting vertices are not listed. Figures 19(e)–19(h)
assume a −4 − 4 − 4− configuration. Place a monomer
(blue) on the 4-vertex. The circled second-nearest neighbor
can host dimers in one of three symmetry-inequivalent
positions [Figs. 19(a)–19(c)], or it can host a monomer
[Fig. 19(d)]. In all cases, it can be seen that at least two
further monomers are implied which connect via aug-
menting paths to the monomer on the 4-vertex (a contra-
diction). In Figs. 19(e)–19(h), the same argument applies in
the other configuration. Therefore, a monomer cannot
appear on a 4-vertex in a maximum dimer matching. ▪
In Fig. 20, we prove that no monomer can be based

on a 5C-vertex appearing between a 4-vertex and a 6-vertex
in a maximum matching. Place a monomer (blue) on the
5C-vertex. The circled vertex must host a dimer if an
augmenting path is to be avoided. The two options are
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shown in Figs. 20(a) and 20(b), and in both cases, the
second monomer is shown to be unavoidable. ▪
Finally, note that when a 5C-vertex appears as part of an

impermeable monomer membrane (i.e., any membrane lar-
ger than 45), the set of edges which can be covered by
dimers is restricted. The easiest way to state the restriction
is that the edges which cannot be covered are those which
are either already implied by the uncoverable edges of 4-
or -6-vertices, and the edge lying along the mirror plane
of the 5C-vertex whenever deletion of this edge will lead to
a disconnected graph. In the −4 − 5C − 6− configuration,
this result is proven as part of the proofs just given for the
4- and 6-vertices (the relevant uncoverable legs of the 5C-
vertex are the uncoverable legs of the 4- or 6-vertex). In the
45 configuration, the result does not hold, and all legs of
the 5C-vertex are potentially coverable. The only remaining
case is the −4 − 6 − 4 − 5C − 4 − 4 − 6 − 4− configura-
tion (where only the relevant 5C-vertex is listed). Two of
the uncoverable legs are again proven uncoverable by the

4-vertex proof. The remaining case also follows directly
from Fig. 22(c).

3. Restrictions on dimer placement

We now prove that in any maximum matching, an even-
valence vertex must always touch a dimer, which must
always cover one of the edges indicated in Fig. 6(b). The
first part of the statement follows from the absence of
monomers on even-valence vertices in maximum match-
ings. The second can almost be seen directly from the proof
presented in Fig. 6(a): The monomer placed on the 6-vertex
could equally well be a dimer protruding downwards [any
of the three options indicated as disallowed in Fig. 6(b)].
However, there would be no immediate problem with a
monomer residing next to such a dimer. To complete the
proof, we need only to show that a monomer of the opposite
bipartite charge always resides on the other side of the thick
black line.
In Fig. 21, we prove that the dimer which must connect

to the 6-vertex must appear on one of the three legs
indicated in Fig. 6(b). The proof takes the following form.
Based on the results of Figs. 6 and 19, no monomer can
exist on 4-vertices or 6-vertices. The proofs in those figures
also demonstrate that if the monomer is substituted with a
dimer extending into the region on the opposite side of the
thick black line, augmenting paths can exist which include
this dimer. After augmentation, the dimer will be returned
to one of the edges specified in Fig. 6(b). Rephrasing in
terms of minimal monomer moves, exactly one monomer
will be able to cross the black line. This cannot occur in a
maximum matching if there is a monomer of opposite
bipartite charge waiting on the other side of the thick black
line, as the two monomers will then be able to annihilate,
and should not have been present in a maximum matching.
In Figs. 21(a) and 21(b), above the thick black line we

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 19. Proof no monomer can be based on a 4-vertex in a maximum matching. See accompanying text in Appendix A 2.

(a) (b)

FIG. 20. Proof no monomer can be based on a 5C-vertex
appearing between a 4-vertex and a 6-vertex in a maximum
matching. See accompanying text in Appendix A 2.
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reproduce one of the maximum matchings from Fig. 6(a),
with the dimers recolored to gray to indicate that the
specific configuration is unimportant to the argument (any
case will work). We assume the 6-vertex does not host a
monomer but instead hosts the forbidden dimer indicated in
blue. By considering the possible edges of the circled
4-vertex directly below, of which there are two symmetry-
inequivalent choices, we show the implied dimers in each
case, and in each case a blue monomer is implied with the
opposite charge to the monomers in the region above the
line. As the blue dimer connects the regions, there exists an
augmenting path (i.e., exactly one monomer can cross the
wall to annihilate), and the matching is not maximum. Note
that the choice of the circled 4-vertex is simply out of
convenience, and other vertices could have been consid-
ered. In Fig. 21(b), we construct a similar proof for the
remaining symmetry-inequivalent edge of the 6-vertex,
again covered by a dimer indicated in blue, and this time
the circled 3-vertex is convenient to consider. ▪

In Fig. 22, we prove that the dimer which must connect
to the 4-vertex must appear on one of the two legs indicated
in Fig. 6(b). The case of the 4-vertex is complicated by the
relatively smaller local empire of the 4-vertex. Three cases
need to be considered, recalling that any even-valence
vertex has two even-valence vertices as second-nearest
neighbors. First, the 4-vertex may have a 6-vertex as a
second-nearest neighbor, as in Figs. 22(a) and 22(b). In this
case, we may again consider the local empire of the
6-vertex. We place the blue dimer on each of the edges
in question, and we consider a convenient nearby vertex. In
this case, the nearby 5A-vertex works well (shown). The
five edges connected to this vertex must be considered, of
which only one choice is shown in Figs. 22(a) and 22(b).
The other cases can be checked quickly and yield the
familiar result, that the forbidden placement of the blue
dimer allows a single monomer to cross the black line and
annihilate with an oppositely charged monomer, so this
configuration will not appear in a maximum matching.

(a) (b) (c) (d)

FIG. 21. Proof that, of the edges emanating from a 6-vertex, only the edges indicated in Fig. 6(b) may host dimers. See accompanying
text in Appendix A 2.

(a) (b) (c)

FIG. 22. Proof that, of the edges emanating from a 4-vertex, only the edges indicated in Fig. 6(b) may host dimers. See accompanying
text in Appendix A 2 and Fig. 21.
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The second option is that the 4-vertex has 4-vertices on
either side but that the vertex after that is a 6-vertex. The
local empire of this configuration is shown in Fig. 22(c); in
fact, it implies the chain −4 − 6 − 4 − 4 − 4 − 6 − 4− as
shown. There is only one symmetry-inequivalent edge to
consider; choose again the circled neighboring 5A-vertex,
and any of the five dimer placements implies blue mono-
mers to annihilate with the red monomers in the other
region. The final option is that the 4-vertex appears in a 45

ring [also present elsewhere in Fig. 22(c)]. In this case, the
proof cannot be constructed, as this is the only case in
which the otherwise-forbidden edges of the 4-vertex can be
covered by a dimer. Only one of the five such edges may be
covered by a dimer, and this is only if there is no monomer
within the ring.
Therefore, if present, the forbidden dimer will permit an

augmenting path (which crosses the line). In a maximum
matching, this situation can never arise, since by defi-
nition, augmenting paths cannot exist. Rephrasing in
terms of minimal monomer moves, the forbidden dimer
would allow the passage of precisely one monomer over
the line, which could then annihilate with a monomer of
opposite charge. ▪

4. Proof of the impermeability of monomer
membranes by monomers

We now show that monomer membranes provide impen-
etrable barriers to monomer motion. To see this, observe
that each closed loop bounds two regions. On the side of the
loop into which the even-valence vertices point [with their
directions indicated in Fig. 6(b)], a dimer will protrude
from each even-valence vertex. In principle, this dimer
could provide one end of an alternating path, the other end
of which terminates on a monomer. However, the mono-
mers in this region are all of the opposite bipartite charge to
the even-valence vertices comprising the membrane, so this
situation cannot occur. On the side of the loop away from
which the even-valence vertices point, there exist mono-
mers of the same bipartite charge as the even-valence
vertices—but no dimers connect from the even-valence
vertices into this region, and, since alternating paths start on
monomers and end on the dimer connected to a vertex, no
alternating path can reach these vertices. The situation is
reversed for the 5C-vertices constituting the remaining
members of the loops, which have opposite bipartite charge
to the even-valence vertices. ▪

APPENDIX B: PROOF THAT THE DIMER
INFLATION ALGORITHM GENERATES

MAXIMUM MATCHINGS

In this Appendix, we prove the following statements
made in Sec. IV B:

(i) Any path connecting any two 7-vertices is of even
(odd) length if it crosses impermeable monomer
membranes an even (odd) number of times.

(ii) Any path connecting any two 5A;B-vertices, where
the 5A;B-vertices have no 7-vertices as second-
nearest neighbors, is of even (odd) length if it
crosses impermeable monomer membranes an even
(odd) number of times.

(iii) Any path connecting any 7-vertex to any 5A;B-
vertices, where the 5A;B-vertices have no 7-vertices
as second-nearest neighbors, is of odd (even) length
if it crosses impermeable monomer membranes an
even (odd) number of times.

Figure 11 shows the local empire of the 6-vertex, sufficient
to cover the Penrose tiling. Colored disks indicate vertices
of certain valences which are either definite (solid circles)
or potential, depending on the surrounding patches (dashed
circles). Red vertices are 7-vertices; blue vertices are
5A-vertices; pink vertices are 5B-vertices. The thick solid
line indicating the monomer membrane boundary passing
through the 6-vertex disconnects vertices a–g plus
the internal red and blue vertices, from vertices h–k and
the internal pink vertex, in all possible continuations of the
monomer membrane. Note that all internal vertices obey
the specified rules, and so, when considering a boundary
vertex, its relationship needs only to be shown to be correct
to any one internal vertex.

(i) Red vertices c, e, and g are connected by even-
length paths to the interior red vertices.

(ii) All these vertices are connected by odd-length paths
to red vertices h and j, which must be separated by a
monomer membrane (if h is a 7-vertex it implies g is
not, as the potential monomer membrane is resolved
to pass downwards, implying g is a 5C-vertex).

(iii) Red vertex b is connected by odd-length paths to the
interior red vertices. However, if b is a 7-vertex, c
(and its mirror equivalent) is forced to be a 6-vertex,
in which case, b is separated from the interior red
vertices by an impermeable monomer membrane.

(iv) Blue vertex a is connected to the interior blue
vertices by odd-length paths. If b is a 4-vertex then
a is a 5A-vertex with no 7-vertices as second-nearest
neighbors, so a receives a monomer of the same
bipartite charge, and since the interior blue vertices
have at least one 7-vertex as a second-nearest
neighbor, they receive monomers of opposite bipar-
tite charge to themselves, i.e., the same as the charge
of a. This is correct. If b is not a 4-vertex, it must be
a 7-vertex. The monomer associated with a is now of
the opposite bipartite charge to a, but if b is not a
4-vertex then c must be a 6-vertex to continue the
monomer membrane, and so a is separated by an
impermeable monomer membrane from the interior
blue vertices. This too is correct.

(v) Blue vertex d is connected by even-length paths to
the internal blue vertices.

(vi) Pink vertex f is connected by odd-length paths to the
internal red vertices.

CLASSICAL DIMERS ON PENROSE TILINGS PHYS. REV. X 10, 011005 (2020)

011005-23



(vii) Red vertex h is connected by odd-length paths to the
internal pink vertex.

(viii) Blue vertex i is connected by odd-length paths to the
internal pink vertex. If i is a 5A-vertex then h and j
must be 7-vertices, and so the monomers associated
with i are of opposite bipartite charge to i. As the
monomer associated with the pink vertex is of the
same charge as the pink, this is correct. If i is a
4-vertex, h must be a 6-vertex, and there is no issue
with the presence of the internal pink vertex.

(ix) Similarly, if either h or j is a 7-vertex, this forces the
i to be a 5A-vertex, and the same cases hold. The
same cases also hold for k.

This concludes the check of every possible boundary vertex
of interest on the local empire of the 6-vertex (the unmarked
boundary vertices either cannot be 5A-, 5B-, or 7-vertices, or
the results are implied by the vertical mirror plane passing
through the 6-vertex).
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