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We analyze the effects of quantum correlations, such as entanglement and discord, on the efficiency of

phase estimation by studying four quantum circuits that can be readily implemented using NMR

techniques. These circuits define a standard strategy of repeated single-qubit measurements, a classical

strategy where only classical correlations are allowed, and two quantum strategies where nonclassical

correlations are allowed. In addition to counting space (number of qubits) and time (number of gates)

requirements, we introduce mixedness as a key constraint of the experiment. We compare the efficiency of

the four strategies as a function of the mixedness parameter. We find that the quantum strategy gives
ffiffiffiffi
N

p
enhancement over the standard strategy for the same amount of mixedness. This result applies even for

highly mixed states that have nonclassical correlations but no entanglement.
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I. INTRODUCTION

In quantum metrology, the science of precision mea-
surements, there is a great deal of work on optimal phase
estimation [1,2] that addresses the practical problems of
state generation, particle loss, and decoherence. However,
this has mainly been done within specific experimental
contexts and often with (initially) pure states of the probe
only [1]. To understand the origin of the quantum enhance-
ment in metrology over the standard quantum limit, many
have analyzed the role of the number of bits required and
the number of elementary gates needed, as well as the role
of entanglement [3]. However, in addition to counting the
resources needed to attain quantum enhancement in met-
rology, constraints also need to be taken into account. For
example, in nuclear-magnetic-resonance (NMR)–based
quantum information processing, the quantum operations
take place at a fixed (room) temperature. This, of course,
means that not all physical states can be accessed, only
those of a certain (fixed) degree of mixedness. When
optimizing phase estimation, this mixedness has to be
taken into account. In fact, the degree of mixedness now
becomes at least as fundamental as the requirements of the
number of qubits and gates.

For pure states, entanglement (a type of quantum corre-
lation) is a key element that plays a crucial role in attaining
quantum enhancement in metrology. However, quantifying
correlations as a resource and mixedness as a constraint
leads to a complicated picture. For mixed states, entangle-

ment is no longer the sole correlation present; other quan-
tumness quantifiers, such as quantum discord [4–6], may
be relevant. A well-studied example of this kind is the
deterministic quantum computation with one qubit [7].
Here, a classically hard task is performed efficiently quan-
tum mechanically, but no (or only marginal) entanglement
is present, while quantum discord can be present; this has
led to the conjecture that discord may be responsible for
the quantum speed-up [8].
In this article, the role of correlations in quantum met-

rology is studied along the lines of [8]. We compare the
enhancement in metrology due to different strategies ap-
plied at a given (fixed) mixedness, within the constraint
where pure states are not readily available and classical
noise is always present (in contrast to the framework of
[9,10]). Our study is intended to gain insight into how
mixed-state correlations, namely, entanglement and dis-
cord, contribute to quantum enhancement in metrology.
We show that mixed-state metrology leads to the same
uncertainty in phase estimation as pure states, but with
an overhead that scales linearly with the classical noise.
This turns out to be independent of entanglement, and
therefore a quadratic quantum enhancement is available
even for states that are highly mixed and fully separable.

II. FRAMEWORK FOR CORRELATIONS STUDIES
IN MIXED-STATE METROLOGY

We work with an N-qubit system with each qubit ini-
tially being in the mixed state

� ¼ �0j0ih0j þ �1j1ih1j with

�0 ¼ 1þ p

2
and �1 ¼ 1� p

2
: (1)

From this we construct correlated states (also called probe
states) of various types with unitary gates. Recall that
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global unitary operations preserve the mixedness of the
total state but not the correlations contained within it. We
study three strategies having different types of multipartite
correlations. The first two are quantum strategies, called
Q1 and Q2, which use N-partite Greenberger-Horne-
Zeilinger (GHZ)-diagonal states. An N-partite GHZ state
is defined as the superposition of a binary string state and
its flipped version: jr1; r2; . . . ; rNi � j�r1; �r2; . . . ; �rNi, where
ri ¼ 0; 1 and �ri ¼ 1; 0, respectively. These states have
quantum correlations such as entanglement and discord.
The third is a classical strategy, labeledCl, which uses only
classically-correlated states (defined as having zero dis-
cord). We compare these three strategies to the standard
strategy, called S, where a single qubit is used N times to
estimate the phase. Below we lay out the details of prepar-
ing these states. The circuits for preparing these states are
explicitly given in Figs. 1(a)–1(d).

A. States preparation

1. Standard strategy

The state for the standard strategy is obtained by apply-
ing a Hadamard gate, H, to each qubit

%S ¼ ðH�HÞ�N: (2)

2. Classical strategy

The classical state is created by applying a series of
C-Not gates between the first and the ith qubit, C1i, fol-
lowed by a Hadamard gate on each qubit:

%Cl ¼ HNCð�1 � �N�1ÞCHN

¼ �0jþihþj � ðH�HÞ�N�1

þ �1j�ih�j � ðH�x��xHÞ�N�1: (3)

In the above, HN � N
N
i¼1 Hi, �N�1 �

N
N
i¼2 �i, and

C � N
N
i¼2 C1i, where C1i is a C-Not operation with the

first qubit as the control and the ith qubit as the target.

3. Quantum strategy 1

For the first quantum strategy, the GHZ-diagonal state is
prepared by taking the initial uncorrelated N-qubit state
and applying the Hadamard gate to the first qubit that is
followed by a series of C-Not gates between the first and
the ith qubit:

%Q1 ¼ CH1ð�1 � �N�1ÞH1C

¼ 1

2

��N�1 pð��xÞ�N�1

pð�x�Þ�N�1 ð�x��xÞ�N�1

 !
: (4)

Above, H1 � H �N
N
i¼2 1i.

This state was employed in the experiment reported in
[11], but it turns out not to be the optimal state to attain
quantum enhancement in metrology. A more optimal state
is described below.

4. Quantum strategy 2

For the second quantum strategy the GHZ-diagonal state
is prepared by the following steps: (a) taking the initial
uncorrelated N-qubit state between the first and the ith
qubit; (b) then applying the Hadamard gate to the first
qubit; c) finally applying another series of C-Not gates
between the first and the ith qubit;

%Q2 ¼ CH1Cð�1 � �N�1ÞCH1C

¼ �0

2

��N�1 ð��xÞ�N�1

ð�x�Þ�N�1 ð�x��xÞ�N�1

 !

þ �1

2

ð�x��xÞ�N�1 �ð�x�Þ�N�1

�ð��xÞ�N�1 ��N�1

 !
: (5)

The Q2 state is constructed in much of the same way as
the Q1 state, but initialized with C-Not gates to shift the
initial population. This strategy was used in the experiment
reported in [12].

B. Relations to NMR

Our strategies correspond particularly well to a set of
recent NMR experiments on magnetic-field sensing
[11,12]. The initial state in the NMR experiments is

FIG. 1. The circuits for the four strategies considered in this
paper are shown above. �1 is the control qubit and �N�1 �NN

i¼2 �i are the rest of the N � 1 qubits. Initially all qubits are in
the same state, given in Eq. (1). The gates (in sequence from left
to right) are a Hadamard gate H, a C-Not gate, the phase due to
the unknown sample, and lastly, the meter represents the mea-
surement.
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pseudopure—characterized by a density matrix that is very
close to being completely mixed, although its eigenvalues
are not quite identical. In NMR, the qubits are the spins of
nuclei and unitary operations on these spins are performed
by applying electromagnetic pulses of a selected frequency
and duration. Qubits can be selectively addressed by
choosing spins with a specific resonance frequency; these
can be local or global (entangling) unitary operations. As
more species of spins are added, the pulses needed to
exclusively address and couple the different species be-
come more difficult to engineer. However, in practice,
these operations can be performed with extremely high
fidelity (see [13] for detailed analysis).

In the experiments reported in [11,12], only two species
were used, one as control and the other as target. This is the
so-called star topology, where the first qubit (�1 in Fig. 1)
is used as the control qubit and the rest (�N�1 in Fig. 1) are
subjected to a single transformation at once. For us this
translates into using the same one-qubit gate on each of the
qubits in �N�1 and a two-qubit gate between the control
qubit and each of the qubits in �N�1. The state preparation
in [11] slightly differs from the state preparation in [12].
The difference is precisely the difference between the two
quantum strategies considered here: The state in [11] cor-
responds to the circuit in Fig. 1(c) and the state in [12]
corresponds to the circuit in Fig. 1(d).

III. QUANTUM FISHER INFORMATION FOR
DIFFERENT STRATEGIES

Now we are in the position to compute the phase uncer-
tainty for each of the strategies described above. For mixed
states, the phase uncertainty is determined by computing
the quantum Fisher information [14–16] given by

Fð%Þ ¼ 4
X
j>k

ð�j � �kÞ2
�j þ �k

jh�jjGj�kij2; (6)

where f�jg and fj�jig are the eigenvalues and the

corresponding eigenvectors of state %, and G is the
Hamiltonian of the process that the state is subjected to.
The Hamiltonian for the ith qubit is Gi ¼ j1iih1ij. For the
N-qubit case, each qubit picks up a phase locally. As a
result, the global Hamiltonian is G ¼ P

iGi � 1�i, where
the identity matrix acts on the remainder of the Hilbert
space. The phase uncertainty is related to the quantum
Fisher information as

�� � 1ffiffiffiffiffiffiffiffiffiffi
Fð%Þp : (7)

Quantum Fisher information is a function of the
Hamiltonian that generates the interaction between the
probe and the object being measured. It also depends on
the state of the probe. In our problem, the Hamiltonian is
the same for all strategies, only the correlations within the

states change. The final measurements at the end are
assumed to be optimal, generalized measurements, as is
assumed in the derivation of the quantum Fisher informa-
tion. For the strategies considered here, the measurements
turn out to be rather straightforward; see [13] for details.
The equality in Eq. (7) can be achieved by statistical
estimators, provided that the system is sampled several
times. A detailed analysis would identify a statistical esti-
mator to extract the maximum information and saturate the
Cramér-Rao bound [17]. We compute the quantum Fisher
information and the phase uncertainties for the three quan-
tum strategies as follows. At the end of the section we
compare these values.

A. Standard strategy

We begin by computing the quantum Fisher information
for N qubits that share no correlations whatsoever. This is
the same as doing the phase-estimation experiment with a
single qubit and repeating the experiment N times.
The initial state of the qubit is taken to be %S ¼
ðH�HÞ�N . The eigenvectors are j�ji ¼ jr1; . . . ; rNi,
where jrii 2 fjþi; j�ig is the eigenstate of the ith subsys-
tem. We denote an arbitrary degenerate eigenvector,

having
�
N
m

�
-fold degeneracy as jc mi: Label m counts the

number of subsystems in state j�i. The corresponding
eigenvalue is �m ¼ �N�m

0 �m
1 .

Now, we label the eigenvectors of qubits 2 to N by j�i
and consider the eigenvectors jc mi ¼ jþ; �mi and
jc mþ1i ¼ j�; �mi and the action of the Hamiltonian on
them hc mjGjc mþ1i ¼

P
ihþ; �mjGij�; �mi. The only

term that survives is hþjG1j�ih�mj�mi ¼ 1
2 . Since the

states are in the product form, the same result is true for
all subsystems and the quantum Fisher information for N
qubits is N times the quantum Fisher information of a
single qubit

Fð%SÞ ¼
XN�1

m¼0

N
N � 1

m

 ! ð�N�m�1
0 �mþ1

1 � �N�m
0 �m

1 Þ2
�N�m�1
0 �mþ1

1 þ �N�m
0 �m

1

¼ Np2: (8)

This is the expected result and agrees with the pure state
results as p ! 1.

B. Classical strategy

To create a classical state we start with ��N , which
has eigenvectors j�ji¼ jr1; . . . ;rNi, where jrii ¼ j0i; j1i,
is the eigenstate of the ith subsystems. Once again we
denote an arbitrary degenerate eigenvector, having�
N
m

�
-fold degeneracy as jc mi: Label m counts the number

of subsystems in state j1i. The corresponding eigenvalue is
�m ¼ �N�m

0 �m
1 .

Next we apply the C-Not gate between the first and
the ith qubit. The eigenstates under the C-Not operation
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change as follows: jc mi¼ j0;�mi! j0;�mi and jc mþ1i ¼
j1; �mi ! jc N�mi ¼ j1; �N�m�1i. Next, a Hadamard gate
is applied on each qubit, which simply changes j0i ! jþi
and j1i ! j�i. The action of the Hamiltonian on the
eigenstates jþ; �mi and j�; �mi gives hþ; �mjGj�; �mi ¼
1
2 with the corresponding left and right eigenvalues �l ¼
�N�m
0 �m

1 and �r ¼ �m
0 �

N�m
1 . j�mi occur with binomial

distribution
�
N�1
m

�
.

The action of the Hamiltonian on the eigenstates
j�;þi;�m;�ii and j�;�i;�m;�ii is h�;þi;�m;�ijGj�;
�i;�m;�ii¼ hþijGij�ii¼ 1

2 , where the ith state on the left

is jþi and the state on the right is j�i. j�m;�ii is the state of
parties excluding the first and the ith qubits occurring�
N�2
m

�
times. The index i runs up to N � 1, yielding the

same inner product.
When the first qubit is in state jþi, the corresponding

left and right eigenvalues are �l ¼ �N�m
0 �m

1 and �r ¼
�N�m�1
0 �mþ1

1 . The square of the difference in these eigen-

values, divided by their sum, is simply �N�m�1
0 �m

1 p
2.

When the first qubit is in state j�i, the corresponding left
and right eigenvalues are �l ¼ �m

0 �
N�m
1 and �r ¼

�mþ1
0 �N�m�1

1 . The difference between these eigenvalues

squared divided by their sum is simply �m
0 �

N�m�1
1 p2.

Because of symmetry under exchange of qubits, all other
Hamiltonians will have the same result as above. The Fisher
information is simply the sum of the three results above

Fð%ClÞ¼
XN�1

m¼0

N�1

m

 !ð�m
0 �

N�m
1 ��N�m

0 �m
1 Þ2

�m
0 �

N�m
1 þ�N�m

0 �m
1

þp2ðN�1Þ

�XN�2

m¼0

N�2

m

 !
½�N�m�1

0 �m
1 þ�m

0 �
N�m�1
1 �

¼Np2þ1�p2�XN�1

m¼0

4

��m
0 �m�N

1 þ�m�N
0 ��m

1

N�1

m

 !

�Np2þ1�p2�e�Np2
; (9)

where the last approximation is obtained numerically.

C. Quantum strategy 1

The eigenstates of %Q1 are of the form jc m�i ¼ 1ffiffi
2

p �
ðj0; �mi � j1; ��N�1

x �miÞ, with �N�m
0 �m

1 and �N�m�1
0 �mþ1

1

as their corresponding eigenvalues, respectively, and m
denotes the number of subsystems in state j1i. Once again,
the degeneracies follow the binomial distribution. The
action of the Hamiltonian is

hc m�jGjc mþi ¼ 1
2ðh0; �mj þ h1; ��N�1

x �mjÞGðj0; �mi
� j1; ��N�1

x �miÞ
¼ 1

2ðh0; �mj þ h1; ��N�1
x �mjÞðmj0; �mi

� ðN �mÞj1; ��N�1
x �miÞ

¼ 1
2ð2m� NÞ: (10)

The quantum Fisher information is

Fð%Q1Þ ¼
XN�1

m¼0

ð�N�m�1
0 �mþ1

1 � �N�m
0 �m

1 Þ2
�N�m�1
0 �mþ1

1 þ �N�m
0 �m

1

� ðN � 2mÞ2 N � 1

m

 !

¼ p2N þ 2p3ðN � 1Þ þ ðN2 � 3N þ 2Þp4: (11)

Once again, the result above satisfies the known result for
pure states. Note that the leading term scales as p2N and
the N2 term has a prefactor of p4.

D. Quantum strategy 2

The eigenstates of %Q2 are of the form jc m�i ¼ 1ffiffi
2

p �
ðj0; �mi � j1; ��N�1

x �miÞ, with �N�m
0 �m

1 and �m
0 �

N�m
1 as

their corresponding eigenvalues, respectively, and m ¼
0; . . . ; N denotes the number of subsystems in state j1i.
Note that the eigenstates here are the same as the previous
case but the corresponding eigenvalues are different. Once
again, the degeneracies follow the binomial distribution.
The action of the Hamiltonian is same as the previous case.
The quantum Fisher information is

Fð%Q2Þ¼
XN�1

m¼0

ð�N�m
0 �m

1 ��m
0 �

N�m
1 Þ2

�N�m
0 �m

1 þ�m
0 �

N�m
1

ðN�2mÞ2 N�1
m

� �
:

(12)

Once again, the result above satisfies the known result for
pure states. Numerical results indicate that Fð%Q2Þ �
p2N2. This means that the classical noise (p2) is the
same as the standard case, but we have a quadratic en-
hancement in the number of qubits.

E. Comparison of quantum Fisher
information of different strategies

The results of phase uncertainties, presented in Table I,
are plotted in Fig. 2 for N ¼ 10. Remember that our goal is
to compare different strategies as functions of N at a fixed

TABLE I. The quantum Fisher information gives the lower

bound on the phase uncertainty, �� � 1=
ffiffiffiffiffiffiffiffiffiffi
Fð%Þp

. Note that
classical noise is equal to p2 in strategies S and Q2 and is
independent of N. The phase uncertainty for each strategy is
plotted as a function of p in Fig. 2.

Strategy quantum Fisher information

S Np2

Cl ðN � 1Þp2 þ 1�PN�1
m¼0

4
��m
0

�m�N
1

þ�m�N
0

��m
1

N � 1
m

� �

Q1 Np2 þ 2p3ðN � 1Þ þ p4ðN2 � 3N þ 2Þ

Q2
P

N�1
m¼0

ðN�2mÞ2ð�N�m
0

�m
1
��m

0
�N�m
1

Þ2
�N�m
0

�m
1
þ�m

0
�N�m
1

N � 1
m

� �
� N2p2
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value of p. Strategy Q2 is far better than any of the other
strategies, especially Q1. In fact, for highly mixed states
the Cl strategy performs better thanQ1. The point at which
the classical strategy overtakes the Q1 strategy is approxi-
mately when p � 1ffiffiffi

N
p . [This crossing point turns out to be

independent of entanglement as the crossing occurs before
(for N ¼ 2) and after (for N > 2) entanglement vanishes.]
The quantum Fisher information for strategyQ2 is affected
by the classical noise in qubits only quadratically, i.e.
Fð%Q2Þ 	 ðNpÞ2; it could have been exponential in the

number of qubits, i.e., Fð%Q2Þ 	 N2pN . Photon losses for

optical setups have a devastating effect on quantum en-
hancement, while the NMR setup seems to be robust under
the lack of initial coherence.

IV. OPTIMALITYAND BOUNDS

The quantum Fisher information in Eq. (6) depends
on how the process Hamiltonian can connect two eigen-
states of the density matrix and the difference in the
corresponding eigenvalues. Maximizing the two will max-
imize the quantum Fisher information under the constraint
of the correlation class. Since only unitary operations are
allowed for state preparation, the spectrum of the density
operator remains fixed for all strategies. Therefore, the first
term of Eq. (6), namely, ð�j � �kÞ2=ð�j þ �kÞ, is fixed.

The only change can come from the changes in the eigen-
vectors. The optimal quantum Fisher information is then
given by

Fmaxð%Þ ¼ 4max
fUg

X
j>k

ð�j � �kÞ2
�j þ �k

jh�jjUyGUj�kij2; (13)

where the unitary transformation U has to be constrained
such that it does not change the correlation class of %. A
rigorous proof of the optimization of the quantum Fisher

information for all N and p is a very difficult problem.
Below we argue that for any N the states chosen for
strategies Cl and Q2 are optimal for p, which is close
to 1, and we conjecture that they remain so for all values
of p. Certainly they provide strong lower bounds for the
quantum Fisher information that is sufficient to support the
conclusions of this article. We should reemphasize that
these probe states are experimentally realizable and
realistic.

A. Optimizing the standard strategy

For the standard strategy, the quantum Fisher informa-
tion can be computed for a single qubit and the N-qubit
quantum Fisher information is simply N times the former.
The single-qubit Hamiltonian for the process isG ¼ j1ih1j.
Therefore, the eigenbasis for the density matrix should be
fjþi; j�ig in order to maximize the transition from one
eigenstate to another. This is why the Hadamard gate is
applied on all qubits for the preparation.

B. Optimizing the classical strategy

A classical state has a separable (locally orthonormal)
eigenbasis [6]; therefore, a classical state is simply ob-
tained by rearranging the correspondence between the
eigenvectors and the eigenvalues of the N-qubit density
matrix of the standard strategy [Eq. (2)]. Therefore, the
unitary operations can only permute the computational
basis along with local rotations.
The eigenvectors of the classical state are given as

j�ji ¼ jr1r2 . . . rNi. The action of the Hamiltonian is

Gj�ji¼
X
i

Gijr1r2 . . .rNi¼
X
i

h1ijriijr1 . . .1i . . .rNi: (14)

For h�kjGj�ji to be nonvanishing, j�ki must differ from

j�ji only at one site. Then h�kjGj�ji ¼ jh1ijriij2, and the
maximum is attained when jri 2 fj�ig. Since the process
Hamiltonian is diagonal in the z basis, we would like to
rotate the eigenvectors to the x basis by applying the
Hadamard gate to each qubit, which is similar to the
standard strategy above.
Now we provide a prescription for maximizing the

quantum Fisher information, which is certainly optimal
for large p, and we conjecture that it remains optimal for
all values. The key idea is to ensure that the largest and
smallest eigenvalues are connected by the process
Hamiltonian, i.e.,

max
ð�j � �kÞ2
�j þ �k

8 j; k; (15)

with h�jjGj�ki � 0. The largest eigenvalue is �N
0 , which

corresponds to eigenvector j þ . . .þi. The action of the
Hamiltonian is on j þ . . .þi is

0.0 0.2 0.4 0.6 0.8 1.0
p0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Q2

Q1

Cl

S

FIG. 2. Phase uncertainty (��) for N ¼ 10. The lower bound
on the phase uncertainty is given by the quantum Fisher infor-
mation as a function of p (see Table I). Q2 is by far the most
optimal strategy for all values of p, while Cl is better thanQ1 for
small values of p.
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Gj þ . . .þi ¼ XN
i¼1

1ffiffiffi
2

p j þ . . . 1i . . .þi: (16)

This is a superposition ofN terms with the ith qubit in state
j1i. Therefore, the only states that have a finite value for
hc mjGj þ . . .þi � 0 are (1) the state with the lowest
eigenvalue (�N

1 ), which becomes

C -Not: j � � . . .�i ! j �þ . . .þi; (17)

(2) states with one excitation, i.e., j þ . . .�i . . .þi (there
are N � 1 such states with eigenvalues �N�1

0 �1). These

latter contributions will be small because the eigenvalues
will be different by only one excitation, but will occur
multiple times. Therefore, �N

0 � �N
1 is the largest possible

leading term for the quantum Fisher information. The same
argument can be repeated for the eigenvectors with the
second largest and the second smallest eigenvalues, and so
on, until all eigenvectors are paired in this manner.

C. Optimizing the quantum strategy

We know that for case p ¼ 1, the optimal pure quantum
state for metrology is the GHZ state. For cases where
p < 1, we conjecture that a GHZ basis is the optimal basis
for quantum Fisher information. Our first attempt along
these lines is to use the same circuit that would be used for
the pure-state case, transforming the eigenstate with the
largest eigenvalue, �N

0 , into the GHZ state. This is, in fact,

strategy Q1. The problem with this strategy is that the
process Hamiltonian connects this state to a second state
that has an eigenvalue that is different by only one excita-
tion, i.e., �N�1

0 �1. More precisely, the first term of the

quantum Fisher information for strategy Q1 is

ð�N
0 � �N�1

0 �1Þ2
�N
0 þ �N�1

0 �1

N2: (18)

However, following the line of reasoning of Sec. IVB,
we would like the two eigenvalues for the leading term to
be maximum and minimum. Therefore, it would be desir-
able to permute the eigenvalues of all eigenstates whose
leading term is j1i. This is precisely what the initial C-Not
gates do in Q2:

CH1Cj11 . . . 1i ¼ CH1j10 . . . 0i ¼ 1ffiffiffi
2

p Cj � 0 . . . 0i

¼ 1ffiffiffi
2

p ðj00 . . . 0i � j11 . . . 1iÞ: (19)

The leading term of the quantum Fisher information for
strategy Q2 is then

ð�N
0 � �N

1 Þ2
�N
0 þ �N

1

N2: (20)

Let us now show that the last term is the largest possible
leading term. Suppose that the eigenvector with the largest
eigenvalue is connected to some other state not having the

smallest eigenvalue, and this is the leading term. Explicitly,
we have

ð�N
0 � �N�m

1 �m
0 Þ2

�N
0 þ �N�m

1 �m
0

jhc maxjGjc mij2: (21)

Since the last term in the last equation is independent of p,
when we take p ¼ 1 we have

jhc maxjGjc mij2 
 N2: (22)

N2 is the largest possible value for the quantum Fisher
information. We also have

ð�N
0 � �N�m

1 �m
0 Þ2

�N
0 þ �N�m

1 �m
0


 ð�N
0 � �N

1 Þ2
�N
0 þ �N

1

; (23)

with equality satisfied if and only if m ¼ 0 when p � 0; 1.
This is true because the numerator becomes smaller and the
denominator becomes larger as the value of m increases.
Therefore,

ð�N
0 � �N�m

1 �m
0 Þ2

�N
0 þ �N�m

1 �m
0

jhc maxjGjc mij2 
 ð�N
0 � �N

1 Þ2
�N
0 þ �N�1

0 �N
1

N2;

(24)

with equality for m ¼ 0.
Now that the largest and the smallest eigenvalues are

taken care of, we can repeat this process, matching themth
smallest eigenvalue with the mth largest eigenvalue. These
arguments strongly suggest that the strategy Q2 is the
optimal quantum strategy for mixed states for all values
of p and N.

V. CORRELATIONS FOR
DIFFERENT STRATEGIES

In order to relate the results of phase estimation to
correlations, we have computed all the correlations for
the strategies, Cl, Q1, and Q2. The state in the S strategy
has no correlations and the state in the Cl strategy does not
have any entanglement or discord by definition. The states
of strategies Q1 and Q2 have entanglement for some values
of p, while quantum discord is present for all values of p.
We begin with computing for Q1 andQ2 the values of p at
which the entanglement vanishes.

A. Entanglement in %Q1

It has been shown thatin order for a GHZ-diagonal state
to be separable, it is necessary and sufficient that every
possible partial transposition be positive [18]. Using this
result, we can find a relation for a given N that gives the
value p for the boundary between a separable and an
entangled state. The form of the states we are looking at
in the computational basis have already been given in
Eq. (4). Since this matrix is a collection of 2� 2 block
matrices, the partial transposition that gives the most nega-
tive eigenvalues is simply the one that results in a 2� 2
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matrix with the smallest diagonal elements and the largest
off-diagonal elements. Assuming that p > 0, the 2� 2
matrix with the smallest diagonal elements is the one
spanning the space in the central part of the matrix with
diagonal elements �N�1

1 . The 2� 2 matrix with the largest

off-diagonal elements sits in the corners with values
p�N�1

0 . There exists a partial transposition that swaps

the smallest off-diagonal elements with the largest off-
diagonal elements, resulting in the matrix

�N�1
1 p�N�1

0

p�N�1
0 �N�1

1

 !
: (25)

The smallest eigenvalue is then ð�N�1
1 � p�N�1

0 Þ and it is

zero (this is the point at which the state becomes separable)
at �N�1

1 ¼ p�N�1
0 . One can solve this equation numeri-

cally for a given N.

B. Entanglement in %Q2

Using the same technique as above and assuming that
p > 0 in Eq. (5), we can show that the 2� 2 matrix with

the smallest diagonal elements has the elements 1
2�

N�
0 �Nþ

1 ,

for N� ¼ N=2 for even N, and N� ¼ ðN � 1Þ=2 for odd
N. The 2� 2matrix with the largest off-diagonal elements
sits in the corners with values �N

0 � �N
1 . There exists a

partial transposition that swaps the smallest off-diagonal
elements with the largest off-diagonal elements resulting in
the matrix

2�N�
0 �Nþ

1 �N
0 � �N

1

�N
0 � �N

1 2�N�
0 �Nþ

1

0
@

1
A: (26)

The smallest eigenvalue is then ð2�N�
0 �Nþ

1 � �N
0 þ �N

1 Þ,
which is zero at �N�

0 �Nþ
1 ¼ ð�N

0 � �N
1 Þ=2. This is the point

at which the state becomes separable. Again, one can solve
this equation numerically for a given N.

C. Discord in %Q1

Quantum discord, denoted by D, is defined as the dis-
tance (using relative entropy) between a quantum state and
its closest classical state: Dð%Þ ¼ minfjkigSð%k�%Þ. The

closest classical state �% is found by dephasing % in a

locally orthonormal product basis fjkig: �% ¼ P
kjki�

hkj%jkihkj (see [6] for details). We note that discord serves
as the upper bound on entanglement as a function of p,
EðpÞ 
 DðpÞ [6].

Computing quantum discord is an extremely hard prob-
lem; there exists no closed-form solution even for arbitrary
two-qubit states: The main difficulty lies in determining
the minimizing basis fjkig. In this problem, we are dealing
with a multiqubit state. Using relative entropy of discord
avoids making arbitrary bipartitions, as would be required
for computing bipartite discord.

However, following the recipe of [6], the closest classi-
cal state to %Q1 is conjectured to be given by dephasing %Q1

in the standard basis:

�Q1 ¼ 1

2

��N�1 0

0 ð�x��xÞ�N�1

 !
: (27)

To calculate D, we just need to take the difference in the
entropies of %Q1 and �Q1;

DQ1 ¼ Sð�Q1Þ � Sð%Q1Þ ¼ 1� Sð�Þ; (28)

where S is the von Neumann entropy: Sð�Þ ¼
�tr½� logð�Þ� and � is the state given in Eq. (1).
Since the last equation is a conjecture, we have numeri-

cally simulated the closest classical state for up to five
qubits (see Fig. 3). The result above holds up (i.e., discord
is independent of N), but we do not yet have an analytic
proof. One can consider this result to be at least an upper
bound on discord. We should note that the lower-bound
discord is strictly greater than 0, as it is easy to verify that

0.0 0.2 0.4 0.6 0.8 1.0
p0.0

0.2

0.4

0.6

0.8

1.0

D Q1

N 5

0.0 0.2 0.4 0.6 0.8 1.0
p0.0

0.2

0.4

0.6

0.8

1.0

D Q2

N 5

FIG. 3. Numerical simulation of discord for Q1ðQ2Þ.
Simulation of quantum discord (D) for N ¼ 5 with 10 000
random measurements on �Q1ðQ2Þ to obtain �Q1ðQ2Þ. The top

(blue) line is the maximum possible values for D, i.e., 5�
S½%Q1ðQ2Þ�. The bottom (red) line is the conjectured D ¼
S½�Q1ðQ2Þ� � S½%Q1ðQ2Þ�. All random measurement points fall

between the two lines, suggesting that the conjectured formulas
are correct given Table II.
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the lower bound corresponds to a quantum-correlated state
[19]. Finally, we have plotted the discord given in the last
equation as a function of p in Fig. 4(a).

D. Discord in %Q2

Since both %Q1 and %Q2 are GHZ-diagonal states, the

forms of their closest classical states are also the same.
This means that we can simply dephase %Q2 in the compu-

tational basis to get

�Q2 ¼ �0

2

��N�1 0

0 ð�x��xÞ�N�1

 !

þ �1

2

ð�x��xÞ�N�1 0

0 ��N�1

 !
: (29)

To calculate D, we just need to take the difference in the
entropies of %GHZ and �:

DQ2 ¼ Sð�Q2Þ � Sð%Q2Þ

¼ 2
X
m

h

�
�N�m
0 �m

1 þ �m
0 �

N�m
1

2

�
N � 1
m

� �
� NSð�Þ;

(30)

where hðxÞ ¼ �x logðxÞ. Same as Eq. (28), this formula is
conjectured, but numerical evidence shown in Fig. 3 sup-
ports this result. The discord as a function of p as given in
Eq. (28) is also shown in Fig. 4(a).

E. Review of correlations in probe states

We also compute the classical correlations in the states
belonging to different strategies by following the proce-
dure in [6]; however, we forego showing the details here. In
Table II we list the formulas for all correlations computed
in this section and we have plotted them, as a function of p,
in Fig. 4(b).

VI. ANALYSIS

Now we are in the position to relate correlations with the
enhancement of the quantum Fisher information. We start
by noting that quantum Fisher information is affected by
classical noise in qubits only quadratically, i.e., Fð%Q2Þ 	
ðNpÞ2, while entanglement for Q2 vanishes when p �
1=N. Classical correlations for the three strategies scale
linearly with the number of qubitsN (see Table. II). In fact,
Q1 has more classical correlations than Cl and Q2 for all
values of p. This supports the expected result that classical
correlations, although present in bulk, do not contribute to
the quantum enhancement. The total correlations, defined0.0 0.2 0.4 0.6 0.8 1.0

p0.0

0.2

0.4

0.6

0.8

1.0
D

Q2, N 30

Q2, N 10

Q1

0.0 0.2 0.4 0.6 0.8 1.0
p0

2

4

6

8

10
C

Q2

Q1

Cl

FIG. 4. Conjectured discord (D) and classical correlations (C)
as functions of p. (a) Discord is always present for the two
quantum strategies. Discord in Q1 is independent of N.
Entanglement is always (equal at p ¼ 1 or) smaller than discord
and vanishes (for N ¼ 10) around p ¼ 0:118 for Q1 and around
p ¼ 0:088 for Q2. (b) Classical correlations for N ¼ 10 are
plotted as function of the mixedness.

TABLE II. Entanglement vanishing points as functions of p
for the states of strategies Q1 and Q2 are given. The expressions
for discord (and therefore classical correlations) are conjectured
and supported by numerical studies (see Fig. 3). These quantum
and classical correlations are plotted as functions of p in Figs. 4
(a) and 4(b). Below, N� ¼ ðN � 1Þ=2 if N is odd and N� ¼ N=2
if N is even. Sð�Þ ¼ �tr½� logð�Þ� is the von Neumann entropy
and hðxÞ ¼ �x logðxÞ.
Entanglement vanishing points

EQ1 ¼ 0 , p 
 ð�1=�0ÞN�1

EQ2 ¼ 0 , �N�
0 �Nþ

1 � 1
2 ð�N

0 � �N
1 Þ

Quantum discord

DQ1 ¼ 1� Sð�Þ
DQ2 ¼ 2

PN�1
m¼0

N
m� 1

� �
hð�N�m

0
�m
1
þ�m

0
�N�m
1

2 Þ � NSð�Þ
Classical correlations

CCl ¼ ðN � 1Þ½hð�2
0 þ �2

1Þ þ hð2�0�1Þ � Sð�Þ�
CQ1 ¼ ðN � 1Þ½1� Sð�Þ�
CQ2 ¼ N½1� Sð�Þ� �DQ2
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as the sum of quantum discord and classical correlations,
T ¼ Dþ C, are the same for bothQ1 andQ2. This further
allows us to distinguish the role of quantum correlations in
the two cases.

We can now state our main observations. The
enhancement of the phase uncertainty (hence the quantum
Fisher information) due to the optimal quantum strategy
over the standard strategy is

quantum advantage ¼
ffiffiffiffiffiffiffiffiffi
FQ2

FS

s
� ffiffiffiffi

N
p 8 p: (31)

Since the classical noise is roughly p2 for both strategies S

andQ2 (see Table I), the quantum advantage is
ffiffiffiffi
N

p
. This is

true for highly mixed states that have no entanglement, i.e.,
have p values close to zero. Surprisingly, not a great deal of
quantum coherence is needed to attain quantum advantage
in quantum metrology.

For the experiments reported in [11,12], p � 10�5 and
N � 10. Therefore, both states %Q1; %Q2 are unentangled.

Both experiments report quantum enhancement, which is
in accordance with our findings. Quantum discord, on the
other hand, does not vanish until p ! 0. And for Q2,
quantum discord depends on the number of qubits, unlike
for Q1 (see Table. II), under the assumption that our
conjectured expressions for discord are fully valid.
Quantum discord for Q2 grows for small values of p as
N increases. This provides evidence that quantum discord
may to a certain degree be responsible for the enhancement
in quantum metrology. We should note that for entangle-
ment to appear when p � 10�5, the number of qubits has
to be roughly N � 105.

In conclusion, we have analyzed the role of quantum and
classical correlations in mixed-state phase estimation. We
have found evidence that classical correlations do not play
a large role in quantum enhancement, as expected.
However, we have also shown that quadratic quantum
enhancement does not vanish as entanglement vanishes.
For such states, quantum discord is present and is a grow-
ing function of the number of qubits. This adds to the
evidence that quantum discord may be responsible for
some quantum enhancements.
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