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We design a quantum simulator for the Majorana equation, a non-Hamiltonian relativistic wave

equation that might describe neutrinos and other exotic particles beyond the standard model. Driven by

the need of the simulation, we devise a general method for implementing a number of mathematical

operations that are unphysical, including charge conjugation, complex conjugation, and time reversal.

Furthermore, we describe how to realize the general method in a system of trapped ions. The work opens a

new front in quantum simulations.
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A quantum simulator is a device engineered to reproduce
the properties of an ideal quantum model. This still-
emerging topical area has generated a remarkable exchange
of scientific knowledge between apparently unconnected
subfields of physics. In terms of applications, it allows for
the study of quantum systems that cannot be efficiently
simulated on classical computers [1]. While a quantum
computer could in principle implement a universal quantum
simulator [2], only particular systems have been simulated
up to now using dedicated quantum simulators [3]. Still,
there is a wealth of successful cases, such as spin models
[4,5], quantum chemistry [6], and quantum phase transi-
tions [7]. The quantum simulation of fermionic systems [8]
and relativistic quantum physics have also attracted recent
attention, reproducing dynamics and effects that are cur-
rently out of experimental reach. Examples include black
holes in Bose-Einstein condensates [9], quantum field theo-
ries [10,11], and recent quantum simulations of relativistic
quantum effects such as Zitterbewegung and the Klein
paradox [12–16] in trapped ions.

In this paper, we show how the Majorana equation [17]
can be simulated in an analog quantum simulator, having
the implementation of complex conjugation of the wave
function as a key requirement. In this manner, we are able
to propose a general scheme for implementing this and
other unphysical operations, such as charge conjugation
and time reversal. The implementations constitute a novel
toolbox of accessible quantum operations in the general
frame of quantum simulations. While quantum simulators

may soon realize calculations that are impossible for
classical computers, we show here the possibility of im-
plementing quantum dynamics that do not occur in the real
space-time quantum world.
The Majorana equation is a relativistic wave equation

for fermions where the mass term contains the charge
conjugate of the spinor, c c,

i@6@c ¼ mcc c: (1)

Here, 6@ ¼ ��@� and �� are the Dirac matrices [18], while

the non-Hamiltonian character stems from the simulta-
neous presence of c and c c. The significance of the
Majorana equation lies in the fact that it can be derived
from first principles in a similar fashion as the Dirac
equation [17,19]. Both wave equations are Lorentz invari-
ant but the former preserves helicity and does not admit
stationary solutions. The Majorana equation is considered
a possible model [20] for describing exotic particles in
supersymmetric theories—photinos and gluinos—or in
grand unified theories, as with the case of neutrinos.
Indeed, the discussion of whether neutrinos are Dirac or
Majorana particles still remains open [21]. Despite the
similar naming, however, this work is neither related to
the Majorana fermions (modes) in many-body systems
[22,23], nor to the Majorana fermions (spinors) in the
Dirac equation [20,24].
In order to simulate the Majorana equation, we have

to solve a fundamental problem: the physical implementa-
tion of antilinear and antiunitary operations in a quantum
simulator. Here, we introduce a mapping [25] by which
complex conjugation, an unphysical operation, becomes
a unitary operation acting on an enlarged Hilbert
space. The mapping works in arbitrary dimensions and
can be immediately applied on different experimental
setups. We show how to simulate the Majorana equation
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in 1þ 1 dimensions and other unphysical operations using
two trapped ions and their interactions with laser pulses.
We also give a recipe for measuring observables and a road
map toward more general scenarios. In this sense, this work
provides a novel toolbox for quantum simulations.

There are three discrete symmetries [26] that are central
to quantum mechanics and our understanding of particles,
fields, and their interactions: parity P , time reversal T ,
and charge conjugation C. None of these operations can be
carried out in the real world: P involves a global change of
physical space, while C and T are antiunitaries. However,
there is no apparent fundamental restriction for implement-
ing them in physical systems that simulate quantum
mechanics. We will focus on the study of antiunitary
operations, which can be decomposed into a product of a
unitary,UC orUT , and complex conjugation,Kc ¼ c �.
We consider the mapping of the quantum states of an
n-dimensional complex Hilbert space Cn onto a real
Hilbert space [25] R2n,

c 2 Cn ! � ¼ 1

2

c þ c �

iðc � � c Þ

 !
2 R2n: (2)

This mapping can be implemented by means of an auxil-
iary two-level system, such that R2n 2 H 2 �H n. In this
manner, the complex conjugation of the simulated state
becomes a local unitary VK acting solely on the ancillary
space, Kc ¼ c � ! VK� ¼ ð�z � 1Þ�, and thus is
physically implementable for a wave function of arbitrary
dimensions. Furthermore, unitaries and observables
can also be mapped onto the real space, O ! � ¼
1 �Or � i�y �Oi, whereOr ¼ 1

2 ðOþKOKÞ andOi¼
� i

2ðO�KOKÞ, preserving unitarity and Hermiticity.

The proposed simulator also accommodates the antiunitary
operations C ¼ UCK and T ¼ UTK. To this end, we
have to choose a particular representation that fixes the
unitaries UC and UT , as will be shown below.

We possess now the basic tools to simulate the Majorana
equation (1). The expression for the charge-conjugate
spinor is given by c c ¼ W�0Kc , with W a unitary
matrix satisfying W�1��W ¼ �ð��ÞT . We illustrate
now the proposed quantum simulation with the case of
1þ 1 dimensions. Here, a suitable representation of charge
conjugation is c c ¼ i�y�zc

�, for which W ¼ i�y, and

the Majorana equation reads

i@@tc ¼ c�xpxc � imc2�yc
�; (3)

where px¼�i@@x is the momentum operator. In particular,
our mapping of Eq. (2) for n ¼ 2 reads

c 1

c 2

 !
2 C2 ! � ¼

c r
1

c r
2

c i
1

c i
2

0
BBBBB@

1
CCCCCA 2 R4; (4)

where c r;i
1;2 are the real and imaginary parts of c 1 and c 2,

respectively. Surprisingly, the non-Hermitian Majorana
equation for a complex spinor becomes a 3þ
1-dimensional Dirac equation for a four-component real
bispinor,

i@@t� ¼ ½cð1 � �xÞpx �mc2�x � �y��; (5)

with dimensional reduction, py; pz ¼ 0. Here, the dynam-

ics preserves the reality of the bispinor � and cannot be
reduced to a single 1þ 1 Dirac particle. In general, the
complex-to-real map in arbitrary space-time dimensions
transforms a Majorana equation into a higher dimensional
Dirac equation [27]. Since Eq. (5) is a Hamiltonian equa-
tion, it can be simulated in a quantum system.
The mapping of wave functions into higher-dimensional

spinors also allows us to explore exotic symmetries and
unphysical operations, which are otherwise impossible in
nature. From Eqs. (3)–(5), for the 1þ 1-dimensional case,
we can deduce that charge conjugation is implemented in
the enlarged space via the unitary operation VC,

c c ¼ Cc ¼ UCKc ! VC� ¼ �ð�z � �xÞ�: (6)

We can perform something similar with time reversal,
defined as the change t ! ð�tÞ. In this case, we expect
[19] i@@�c

0ð�Þ ¼ Hc 0ð�Þ, where the time variable � ¼ �t
and the modified spinor c 0ð�Þ ¼ T c ðtÞ. In order to
preserve scalar products and distances, the time-reversal
operator must be an antiunitary operator and thus decom-
posable as the product T ¼ UTK. In 1þ 1 dimensions,
imposing that the Hamiltonian be invariant under time
reversalT �1HT implies that the unitary operator satisfies
U�1

T
ði�x@xÞUT ¼ �i�x@x, with a possible choice being

UT ¼ �z. In other words, in the enlarged simulation
space

T c ¼ UTKc ! VT� ¼ ð�z � �zÞ�: (7)

Figure 1 illustrates a scheme of the simulated symmetries.
As mentioned before, quantum simulations of unphysical
operations can be straightforwardly extended to higher
dimensions. In this sense, Eqs. (6) and (7) will be valid
for wave functions c in a d-dimensional space as long as
we consider the complex conjugation of an arbitrary wave
function as VK� ¼ ð�z � 1dÞ�.
The proposed protocol for implementing unphysical

operations within a physical setup allows us to deal with
situations that are, otherwise, intractable with conventional
quantum simulations. To exemplify the value of this novel
building block in the quantum-simulation toolbox, we
consider a case of an advanced quantum simulation, where
after a certain time of unitary (physical) evolution of the
system, an unphysical operation, such as the charge con-
jugate or time reversal, needs to be performed, before the
unitary evolution is continued. Such a situation is impos-
sible to reproduce seamlessly with classical computers.
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With tools that currently exist in quantum simulations, we
would need to stop the dynamics, implement a full quan-
tum tomography of the current quantum state
associated to a huge Hilbert space, apply the unphysical
operation in a classical computer, encode back the modi-
fied quantum state into the experimental setup, and then to
proceed with the quantum simulation. Clearly, this task
would be impossible with classical resources but could
be accomplished with a suitable implementation of our
proposed ideas.

In a recent experiment, the dynamics of a free Dirac
particle was simulated with a single trapped ion [13].
Here, Eq. (5) has a more complex structure requiring a
different setup. Moreover, the encoded Majorana dynamics
requires a systematic decoding via a suitable reverse map-
ping of observables. We can simulate Eq. (5) with two
trapped ions, with lasers coupling their internal states and
motional degrees of freedom. The kinetic part, cpxð1 � �xÞ,
is created with a laser tuned to the blue and red motional
sidebands of an electronic transition [12,14], which is fo-
cused on ion 2. The second term, �x � �y, is derived from

detuned red and blue sideband excitations stimulated in each
ion. The Hamiltonian describing this situation reads as

H ¼ @
!0

2
�z

1 þ @
!0

2
�z

2 þ @�ayaþ @�rb
yb

þ @�f½eiðqz1�!1tþ�1Þ þ eiðqz1�!0
1
tþ�0

1
Þ��þ

1 þ H:c:g
þ @�f½eiðqz2�!2tþ�2Þ þ eiðqz2�!0

2tþ�0
2Þ��þ

2 þ H:c:g
þ @ ~�f½eiðqz2�!tþ�Þ þ eiðqz2�!0tþ�0Þ��þ

2 þ H:c:g:
Here z1;2 ¼ Z� z=2 are the positions, of the two ions,

respectively, measured from their center of mass Z and
relative coordinate z. The phases of the lasers �i, for
i ¼ 1; 2 (�;�0), are controlled to simulate the interaction
term (kinetic term). The frequencies of the center-of-mass
vibration and the stretch mode are given by � and

�r ¼
ffiffiffi
3

p
�, respectively, and whereas ay, a, by, and b, are

the corresponding creation and annihilation operators.

Finally, � and ~� are the laser Rabi frequencies in the
rotating-wave approximation. With the adequate choice of
parameters,

!1¼!0þ�r��; !0
1¼!0��rþ�; !2¼!0��rþ�;

!0
2¼!0þ�r��; !¼!0��; !0 ¼!0þ�; �¼�;

�0 ¼0; �1¼�=2; �0
1¼�=2; �2¼0; �0

2¼0;

(8)

the Hamitonian in the interaction picture reads as

H ¼ @	r�ð�x � 1� 1 � �yÞðbyei�t þ be�i�tÞ
þ @	 ~�ð1 � �xÞiðay � aÞ; (9)

where 	 � 	r3
1=4 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@=4m0�
p � 1 is the Lamb-Dicke

parameter and m0 is the ion mass. In the limit of large

detuning, we have � � 	r�
ffiffiffiffiffiffiffiffiffiffiffiffi
hbybi

p
, 	 ~�jhay � aij, and

we recover Eq. (5) with the momentum operator px ¼
i@ðay � aÞ=2� and the equivalences c ¼ 2	�~� and

mc2 ¼ 2@	2
r�

2=� with� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=4m0�

p
. Introducing the ra-

tio � ¼ jmc2=hcpxij, with � ¼ 2ð	r�=�Þ2
jhiðay�aÞijð	 ~�=�Þ , we see that

it is possible to tune the numerator and denominator inde-
pendently to preserve the dispersive regime,while exploring
simultaneously the range from � ’ 0 (ultrarelativistic limit)
to � ! 1 (nonrelativistic limit).
An interesting feature of the Majorana equation in 3þ 1

dimensions is the conservation of helicity. Its reminiscent
in 1þ 1 dimensions is an observable called, hereafter,
pseudohelicity � ¼ �xpx. This quantity is conserved in
the 1þ 1-dimensional Majorana dynamics of Eq. (3) but
not in the 1þ 1-dimensional Dirac equation. We will use
this observable to illustrate measurements on the Majorana
wave function. The mapping for operators can be simpli-
fied if we are only interested in their expectation values.
Reconstructing the complex spinor with the nonsquare
matrix c ¼ M� and M ¼ ð1 i1 Þ, associated with

Eqs. (4) and (5), we have hOic ¼ hc jOjc i ¼
h�jMyOMj�i ¼: h ~Oi�. Therefore, to obtain the pseudo-
helicity �, we have to measure

~� ¼ My�xpxM ¼ ð1 � �x � �y � �xÞ � px (10)

FIG. 1. Diagram showing the different steps involved in the proposed quantum simulation of unphysical operations in 1þ 1
dimensions.
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in the enlarged simulation space. In the type of trapped-ion
experiments discussed above, we can use laser pulses to
map information about the pseudohelicity onto the internal
states. The application of a state-dependent displacement
operation on ion 2, U2 ¼ exp½�ikð1 � �yÞ � px=2�, gen-
erated by resonant blue and red sidebands, followed by a
measurement of 1 � �z, is equivalent to measuring
the observable [13] AðkÞ ¼ cosðkpxÞð1 � �zÞ þ sinðkpxÞ
ð1 � �xÞ. Here, k is proportional to the probe time tprobe.

Note that d
dk hAðkÞijk¼0 / hð1 � �xÞ � pxi. Therefore, the

first term in (10) can be measured by applying a short probe
pulse to the ions and measuring the initial slope of the
observable AðkÞ. To measure the second term in Eq. (10),
we apply the operation U1 ¼ exp½�ikð�x � 1Þ � px=2�,
and measure the spin correlation �z � �x. We have, then,
d
dk h�z � �xijk¼0 ¼ 2hð�y � �xÞ � pxi.

So far, we have presented a complete toolbox for im-
plementing unphysical operations, C, T , and K. We can
combine all these tools to study the dynamical properties of
the transformed wave functions. To exemplify the kind of
experiments that become available, we have studied the
scattering of wave packets against a linearly growing po-
tential, VðxÞ ¼ 
x, with conventional numerical tools. It is
known that repulsive potentials can be penetrated by Dirac
particles [18] due to Klein tunneling [14,15]. This is shown
in Fig. 2(a), where a Dirac particle splits into a fraction of a
particle that bounces back, and a large antiparticle compo-
nent that penetrates the barrier. This numerical experiment
has been combined with the discrete symmetries and the
Majorana equation. In Fig. 2(b) we apply the time-reversal
operation after the particle has entered the barrier: All
momenta are reversed and the wave packet is refocused,
tracing back exactly its trajectory. In Fig. 2(c) we apply
charge conjugation, changing the sign of the charge and
turning a repulsive electric potential into an attractive one,
which can be easily penetrated by the antiparticle. In
Fig. 2(d), we show the scattering of a Majorana particle.

While there are no plane wave solutions in the Majorana
equation, we can still see a wave packet penetrating the
barrier, showing a counterintuitive insensitivity to the
presence of it.
The previous implementation of discrete symmetries is

valid both for Majorana and Dirac equations. Equally
interesting is the possibility of combining both Dirac and
Majorana mass terms in the same equation [20], i@6@c ¼
mMcc c þmDcc , which still requires only two ions to
implement experimentally. It also becomes feasible to
have CP-violating phases in the Dirac mass term
mD expði��5Þ. Furthermore, we could study the dynamics
of coupled Majorana neutrinos with a term �Mc c, where �M
is now a matrix and c ¼ c ðx1; x2Þ is the combination of
two such particles, simulated with three ions and two
vibrational modes.
In summary, we have introduced a general method to

implement quantum simulations of unphysical operations
and non-Hamiltonian dynamics, such as the Majorana
equation, in a Hamiltonian system.
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