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Chern insulators are band insulators exhibiting a nonzero Hall conductance but preserving the lattice

translational symmetry. We conclusively show that a partially filled Chern insulator at 1=3 filling exhibits

a fractional quantum Hall effect and rule out charge-density-wave states that have not been ruled out by

previous studies. By diagonalizing the Hubbard interaction in the flat-band limit of these insulators, we

show the following: The system is incompressible and has a 3-fold degenerate ground state whose

momenta can be computed by postulating an generalized Pauli principle with no more than 1 particle in 3

consecutive orbitals. The ground-state density is constant, and equal to 1=3 in momentum space.

Excitations of the system are fractional-statistics particles whose total counting matches that of quasiholes

in the Laughlin state based on the same generalized Pauli principle. The entanglement spectrum of the

state has a clear entanglement gap which seems to remain finite in the thermodynamic limit. The levels

below the gap exhibit counting identical to that of Laughlin 1=3 quasiholes. Both the 3 ground states and

excited states exhibit spectral flow upon flux insertion. All the properties above disappear in the trivial

state of the insulator—both the many-body energy gap and the entanglement gap close at the phase

transition when the single-particle Hamiltonian goes from topologically nontrivial to topologically trivial.

These facts clearly show that fractional many-body states are possible in topological insulators.
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I. INTRODUCTION

The interest in the field of topological insulators has
exploded in recent years, fueled by the theoretical predic-
tion [1,2] and experimental observation [3,4] of the topo-
logical insulators that preserve the time-reversal symmetry.
These insulators have an insulating bulk but exhibit per-
fectly metallic edges or surface states whose existence is
required by the nontrivial topology of the bulk electronic
structure. However, most of the theoretical work on topo-
logical insulators is essentially of a single-particle nature
and neglects interactions, except for perhaps at random-
phase-approximation level. The few interacting states [5]
that have been proposed to give rise to topological insula-
tors can be understood from a mean-field perspective [6]—
their quasiparticle excitations are still electronlike and not
anyonlike. As such, the type of interacting topologically
ordered states with fractional-statistic quasiparticles, such
as the fractional quantum Hall (FQH) states, has not been
found or proposed in an interacting topological insulator.
The discovery of topologically ordered states of matter in
the absence of the usual external magnetic field applied to
the system would be of tremendous interest to the
condensed-matter community and could potentially revo-
lutionize fields such as topological quantum computation.

Interestingly, it has recently been suggested [7–10] that a
Chern insulator, i.e., a zero magnetic equivalent of the
quantum Hall effect [11], with strong interactions (com-
pared to the bandwidth) has as a ground state, a fractional
Hall effect at filling 1=3 as its ground state. By diagonal-
izing the Hubbard interaction in a model with an almost-
flat-band dispersion, the authors of [7–9] have found, for
small sizes of the system, an almost 3-fold degenerate
ground state, reminiscent of the fractional quantum Hall
state on a torus. However, the origins of such a degenerate
state can be either a charge-density wave or a fractional
quantum Hall state. Arguments were given for why the
state should be a FQH state, but they do not differentiate
qualitatively between the FQH state and a charge-density
wave, as will be shown later. The very small sizes of the
systems considered in the previous works and the lack of
qualitatively unequivocal calculations that prove the exis-
tence of a fractional Chern insulator state make such a state
still elusive. In the present paper, we present the proof of
principle that a � ¼ 1=3 FQH state exists in the nontrivial
Chern insulator subject to a Hubbard interaction.
By working in the flat-band limit where the kinetic

energy is zero and the band gap can be set to infinity,
we present multiple results that strongly suggest the pres-
ence of a � ¼ 1=3 FQH state. We show that a repulsive-
interaction Hamiltonian has a 3-fold degenerate ground
state at filling 1=3 separated from the excited states by a
gap, which we show approaches a finite value in the
thermodynamic limit. Upon the adiabatic insertion of a
magnetic flux quantum, the degenerate ground states flow
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into each other—and cross without level repulsion at large
particle number. The flux insertion and the 3-fold ground-
state degeneracy have already been found in two earlier
papers, but, without proving the existence of a finite gap in
the thermodynamic limit, they could very well be the
hallmark of a charge-density wave (CDW). By going to
larger sizes than previously achieved, we show that the
energy gap between the 3-fold degenerate ground state and
the first excited states seems to remain finite in the ther-
modynamic limit when the single-particle Hamiltonian is a
nontrivial Chern insulator. Indeed, a commensurate CDW
at a fractional filling would also give rise to a gaped phase.
Thus, the gap argument might be insufficient to prove the
existence of a Laughlin-like phase. The ground states occur
at lattice momenta consistent with an emergent generalized
Pauli principle forbidding the presence of more than 1
particle in 3 consecutive orbitals. We compute the

momentum-space density nð ~kÞ of each of the 3 degenerate
ground states and find it to be a constant approaching 1=3

for all ~k, another clue that the ground state is not a CDW
but a true FQH state. We then show that the quasihole
excitations of these states resemble Laughlin-FQH excita-
tions: Their total counting matches exactly that of the
Laughlin quasihole states on the torus. We also present a
heuristic Pauli principle which, in some cases, counts the
number of quasihole states for each momentum sector. The
matching of the excitation properties is a clear signal that
the state observed is a FQH state: Charge-density-wave
states would not have an excitation spectrum resembling
that of a FQH state. We then compute the entanglement
spectrum (ES) for the ground state of the repulsive-
interaction Hamiltonian, find a large entanglement gap,
and show that the counting of the entanglement states
below the gap matches that of Laughlin quasiholes. The
entanglement gap remains finite in the thermodynamic
limit, and closely tracks the gap in the energy spectrum
as the system is tuned through a phase transition of the
single-particle Hamiltonian between the nontrivial Chern
insulators and a trivial band insulator. We also discuss
the dependence of the state on the symmetries and aspect
ratio of the lattice and on the parameters of the Chern
insulators. Both the energy spectrum and the entanglement
spectrum of the interacting system change fundamentally
as the single-particle Chern-insulator Hamiltonian under-
goes a phase transition and becomes a trivial band insula-
tor. In the end, we discuss the analytical principle behind
the counting of quasihole states on the lattice.

II. THE MODEL AND ITS SYMMETRIES

Several Chern-insulator models with an approximate flat
band have been recently proposed [8,10,12]. For our model,
we pick the Chern insulator on a checkerboard lattice, first
introduced in [8,12]. This model already exhibits weak
dispersion of the bands, but because we work in the flat-
band limit, this is not essential to our calculation—we could

have picked an alternate single-particle Hamiltonian.
As written in [12] the one-body Hamiltonian reads

H1 ¼
P

kðcykA; cykBÞh1ðkÞðckA; ckBÞT with A; B being the

two sites in the unit cell. The Hamiltonian matrix can be
expressed in terms of the 3 Pauli matrices h1ðkÞ ¼P

idiðkÞ�i where the diðkÞ’s are dxðkÞ ¼ 4t1 cosð�Þ�
cosðkx=2Þ cosðky=2Þ, dyðkÞ ¼ 4t1 sinð�Þ sinðkx=2Þ�
sinðky=2Þ, dz ¼ 2t2½cosðkxÞ � cosðkyÞ� þM. In the

original model [12] there is an additional diagonal term—
4t3 cosðkxÞ cosðkyÞ—which is of course relevant for the

energy (and shrinks the dispersion of the bands, thereby
making them flatter) but does not matter for the eigenstates.
Sincewe are diagonalizing in the flat-band limit, we neglect
this term. � is the phase factor added to the nearest-
neighbor hoppings, while the parameterM is a mass added
in order to drive the transition from a topological Chern
insulator (for M ¼ 0) to a trivial atomic-limit insulator
when M ! �1. The model always has an energy gap
(for t1; t2; � not vanishing) with the exception of the points
kx ¼ 0, ky ¼ �,M ¼ �4t2, and kx ¼ �, ky ¼ 0,M ¼ 4t2,

where a gap is absent and where the phase transitions
between the atomic limits M ! �1 and the Chern-
insulator phase occur. For jMj< 4jt2j, the filled valence
band has a Hall conductance of 1. The single-particle
Hamiltonian matrix has the following symmetries: inver-
sion with identity inversion matrix h1ð�kx;�kyÞ ¼
h1ðkx; kyÞ, as well as (at M ¼ 0) a certain type of particle-

hole symmetry coupled with a C4 rotation and a mirror
operation, �zh1ðkx; kyÞ�z ¼ �h1ðky; kxÞ. Unfortunately,

due to the presence of fractions k=2, the model in [12] is
not in Bloch form. To render it in Bloch form, we perform
the gauge transformation ckB ! ckB exp½�iðkx � kyÞ=2� to
obtain

h2ðkÞ ¼
h11ðkÞ h12ðkÞ
h?12ðkÞ �h11ðkÞ

 !
;

where h11ðkÞ ¼ 2t2½cosðkxÞ � cosðkyÞ� þM;

h12ðkÞ ¼ t1e
i�½1þ eiðky�kxÞ� þ t1e

�i�ðeiky þ e�ikxÞ:
(1)

The inversion symmetry of h1ðkÞ translates into another

symmetry of h2ðkÞ given by UyðkÞh2ð ~kÞUðkÞ ¼ h2ð� ~kÞ
with UðkÞ being a diagonal 2� 2 unitary matrix with 1,

e�iðkx�kyÞ=2 on the diagonal. We now fractionally fill the
valence band of this insulator and add interactions. The
existence of a FQH state in a Chern insulator should not
be taken for granted. Unlike the Landau level, a band
insulator has nonzero bandwidth and a Berry-phase distri-
bution, which cannot be made uniform over the full
Brillouin zone. Fractionally filling the band will, even in
the presence of large interactions, allow the particles to
cover only part of the Brillouin zone and hence feel only
part of the Berry curvature. To eliminate the effect of
the band curvature, and to allow the filled particles to
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democratically sample thewhole Brillouin zone, we always
work in the flat-band limit of a topological insulator. This
corresponds to keeping the single-particle eigenstates of
h2ðkÞ but putting the energies of the occupied bands to be
an arbitrary energy�E0 where E0 > 0. At the Hamiltonian
level, we transform from h2ðkÞ ¼ E�ðkÞP�ðkÞ þ
EþðkÞPþðkÞ to hFB2 ðkÞ ¼ �E0P�ðkÞ þ E0PþðkÞ, where
P� are the projectors onto the occupied and unoccupied
bands. As such, the energy difference between the valence
and conduction bands can be made large without changing
the eigenstates of the system. We diagonalize the interac-
tion Hamiltonian directly in the filled band, neglecting the
conduction band. This is similar to the lowest-Landau-level
(LLL) projection in the usual fractional quantum Hall ef-
fect. A nice feature of the checkerboard-latticemodel is that
the Hubbard interaction is fixed and has a simple form:

Hinteraction ¼
X

hiji
ninj; (2)

where i; j are nearest-neighbor sites. One can see that the
interaction only couples A with B sites. This is not the case
for multiorbital models, in which case there is both an
on-site and nearest-neighbor interaction. Upon Fourier
transform and gauge transformation, the interaction reads

1

N

X

k1;2;3;4

�~k1þ ~k3� ~k2� ~k4; mod 2�Vk1;k2;k3;k4c
y
k1A

ck2Ac
y
k3B

ck4B;

where

Vk1;k2;k3;k4 ¼ ½1þ eiðk4y�k3yÞ�½1þ e�iðk4x�k3xÞ�: (3)

In passing, we remark that the present interaction and
matrix elements are, in principle, very different from the
pseudopotential Hamiltonians that give rise to the fractional
quantum Hall effect in the lowest Landau level.

III. NUMERICAL PROCEDURE AND RESULTS

We now diagonalize this Hamiltonian for N particles
in a Nx � Ny lattice, where, for the ground state we have

Nx � Ny ¼ 3N (we concentrate on the � ¼ 1=3 filling),

while for the quasihole excitations we have Nx � Ny >

3N. This setup is quite different from the fractional quan-
tum Hall effect on a lattice [13–15], where the lattice size
can be changed while keeping fixed both N and �. In our
case, only the lattice aspect ratio might be tuned in some
cases (not all of them are accessible for a given N and �).

All the numerical calculations are performed with t2 ¼
ð2� ffiffiffi

2
p Þ=2t1 as discussed in [12]. The total translation

operators in the x; y directions commute with both the
single and many-body Hamiltonians and hence the eigen-
states are indexed by total momentum quantum numbers
ðKx; KyÞ, which are the sum of the momentum quantum

numbers of each of the N particles modulo ðNx; NyÞ. The
basis states are

QN
i¼1 �

y
�; ~k1

. . .�y
�; ~kN

j0i (we work in the

LLL, and the �y
�; ~k

’s are the creation operators for a particle

of momentum ~k in the valence band). When acting on the
basis states, c ~k;� ¼ u�;�; ~k��; ~k, where u�;�; ~k is the � ¼
A; B component of the eigenstate of the occupied band
of h2ðkÞ or hFB2 ðkÞ (they have identical eigenstates).

Diagonalizing directly in the valence band provides for
large numerical efficiency. The inversion symmetry of the
single-particle problem is maintained at the level where
the many-body interaction is taken into account. Thus, the
spectrum has an exact ðKx; KyÞ ! ð�Kx;�KyÞ symmetry

which can be used as checkup. We first perform all the
calculations for the M ¼ 0 nontrivial Chern insulator, and
then drive the fractional Chern insulator to a phase tran-
sition by increasing M.

A. Degenerate ground state and its properties

In Fig. 1 we show the spectrum of the system for several
sizes N ¼ 6; 10; 12 and aspect ratios ðNx;NyÞ ¼ ð3; 6Þ;
ð5; 6Þ; ð6; 6Þ in the M ¼ 0 nontrivial Chern-insulator case.
The choice of aspect ratios will be explained later.
We observe a 3-fold degenerate ground state at lattice
momenta fð0; 3Þ; ð0; 3Þ; ð0; 3Þg, fð0; 1Þð0; 3Þð0; 5Þg, and
fð0; 0Þ; ð0; 0Þð0; 0Þg. The principle that determines these
momenta will be explained later. The insertion of flux
quantum in either of the x; y directions can be performed
by letting each single-particle momentum kx;y!kx;yþ
�=Nx;y with �2½0;2��. For the case where N ¼ 10,

Fig. 2 shows that the 3 degenerate states (which occur at
the same lattice momentum and are hence split by the
interaction) experience spectral flow into each other (as
also shown previously in Ref. [8]). In the presence of a gap,
3-fold degenerate ground states that experience spectral
flow in a � ¼ 1=3 fractionally filled Chern insulator are
enough to guarantee the presence of a�xy ¼ 1=3 fractional

quantum Hall state. Upon the insertion of 3 fluxes, the
ground states move back to the initial configuration, but, as
the filled band has Chern number unity, one electron has
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FIG. 1. Low-energy spectrum for N ¼ 6, 10, and 12, Nx ¼
N=2, Ny ¼ 6. The energies are shifted by E1, the lowest energy

for each system size. We only show the lowest energy per
momentum sectors in addition to the 3-fold ground state. We
note the good ground-state degeneracy, even for relatively small
system sizes such as 6 particles.
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been transferred across the gap, giving a Hall conductance
of �xy ¼ 1=3. These arguments have already been pre-

sented in [7,8] but they are valid only in the presence of
a spectral gap, which was not proved in [7,8]. In the
absence of such a proof, the effects presented in [7,8] could
also occur in a 1=3 charge-density wave. The existence of a
gap in the thermodynamic limit is complicated by com-
mensuration effects on the lattice. Because of the system
sizes that can be accessed numerically, we cannot give a
quantitative value for the size of the gap in the thermody-
namic limit. Our results do, however, strongly suggest that
this value should be finite.

The finite-size scaling of the gaps � is presented in
Fig. 3. Several crucial trends are visible. For Ny ¼ 3, the

gap is finite but decreasing as we increase N (or equiv-
alently Nx ¼ 3N=Ny). Its decrease does not mean that the

FQH state is compressible in the thermodynamic limit.
Indeed, the thermodynamic limit here does not correspond
to a 2-dimensional system: for N ! 1, if Ny is kept fixed

at 3, we reach the case of a one-dimensional system. This

system, even at the single-particle level, cannot have a
Chern number—as discussed later, Chern numbers appear
only in the true 2-dimensional limit. As such, it is expected
that, for fixedNy, the gap diminishes in the thermodynamic

limit. Going to Ny ¼ 6 shows a large increase in the gap

from Ny ¼ 3 exactly because the aspect ratio changed and

the system is more 2 dimensional. However, if we keep Ny

fixed, the gap will also start diminishing as we go to the
thermodynamic limit, a fact clearly shown in Fig. 3. When
we go to larger Ny values, the gap increases again. We are

thus confident that the gap remains open and scales to a
finite value for Nx=Ny ! finite, N ! 1.

The energy spread is plotted in Fig. 4. If E1; E2; E3 are
the energies of the 3 quasidegenerate ground states and E4

is the energy of the first state above the lowest 3 states, then
the spread � ¼ E3 � E1 while the gap � ¼ E4 � E3.
Figure 4 the degree of degeneracy relative to the size of
the gap as a function of N ¼ Nx � Ny=3 for fixed Ny. We

see that the degeneracy gets better and better for larger Ny.

We have also plotted the momentum-space density of the
3 degenerate states in the fractional Chern insulator. In a
FQH state on the sphere or on the torus, the occupation of
every angular-momentum orbital is constant and equal to
1=3 (the filling factor) in the thermodynamic limit. In the
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FIG. 2. Evolution of the 3-fold degenerate ground state upon
flux insertion along the y direction at N ¼ 10, Nx ¼ 5, and
Ny ¼ 6. The 3-fold degenerate ground-states spectral flow into

each other (inset) separated at each point in the flux insertion
from the first excited state (the only one of the excited states
shown here), which does not exhibit spectral flow with any of the
other states.
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FIG. 3. Energy gap � for different system sizes and aspect
ratio. The gap is defined as the difference between the energy of
the first excited state and the highest energy of the 3-fold ground-
state manifold. In each case, Nx ¼ 3N=Ny.
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FIG. 4. Ratio between the energy spread � of the 3-fold
ground-state manifold and the energy gap � for various system
sizes and aspect ratio. The spread is defined as the difference
between the highest energy and the lowest energy of the 3-fold
ground-state manifold. In each case, Nx ¼ 3N=Ny.
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FIG. 5. Occupation number of each of the single-particle mo-
mentum orbitals for the three N ¼ 10 ground states (which occur
at different total momenta) at Nx ¼ 5, Ny ¼ 6. Notice that the

occupation number is uniform and close to the filling factor 1=3.
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current case, we expect in finite-size deviations from
the constant-density 1=3 scenario, due to the fact that the
Berry curvature is not uniform in the Brillouin zone. We,
however, also expect that the deviations not be very large
because, in the end, the states must be an incompressible
liquid. The standard deviation of the momentum-space
density strongly depends on the aspect ratio, typically
�0:1 for Ny ¼ 3 and �0:02 for Ny ¼ 6 (almost indepen-

dent fromN). The results are presented in Fig. 5.We observe
that the occupation numbers of each of the momenta of the
3 degenerate ground states for the N ¼ 10 particle state
are close to 1=3, as expected for an incompressible liquid
at this filling. As the 3 ground states occur at different
momenta, the fact that each of the ground states has a
uniform nðkÞ close to 1=3 for any value of k removes the
possibility that these states are charge-density waves.

B. Quasihole excitations

To iron out any doubt about the existence of a FQH
state, we now investigate the quasihole excitations of the
system. The excitations of a FQH state are very specific in
the sense that they carry a fractional 1=3 charge and exhibit
fractional 1=3 statistics. This would not happen in a
charge-density-wave state. The quasihole excitations arise
by inserting a flux in the FQH state. These properties
endow the excitations with a state counting specific to
the FQH universality class at a certain filling, independent
of the specific Hamiltonian to be diagonalized or even of
the form of the model wave function. In the current case, it
is expected that the actual form of the ground-state
wave function is not of a simple known Laughlin form.
However, it is also expected that the FQH at filling 1=3 is
the Abelian FQH 1=3 state, whose universal properties
(after integrating out the fermions) are described by the
topological Abelian Chern-Simons field theory. As such,
its universal quasihole counting (even in finite size)
should be identical to that of the usual Laughlin quasihole
states. In fact, as our interaction represents a generic
Hamiltonian (similar to the Coulomb Hamiltonian in the
FQH case), all we can hope for is that the set of quasiholes
is separated by a finite gap from higher-energy nonuniver-
sal excitations that are not described by the topological
field theory.

The FQH � ¼ 1=3 quasihole counting is identical to that
of particles with Haldane 1=3 statistics in both the thermo-
dynamic limit and in the finite-size systems. This counting
can be directly obtained from the topological Chern-
Simons field theory and the assumption of bulk-edge cor-
respondence: In a system with the boundary, the Abelian
1=� Chern-Simons field theory is not gauge invariant, it is
missing an edge piece which is a boson at compactification

radius
ffiffiffiffiffiffiffiffi
1=�

p
. The modes of this boson are the edge modes,

a gapless conformal field theory whose excitations, when
placed in a finite-size box, exhibit Haldane 1=� statistics:
Every particle must be separated from another particle by

at least 1=� orbitals. This is called the ð1; 1=�Þ generalized
Pauli principle, which will be presented in the next section.
However, the bulk-edge correspondence renders this
counting also the same as that of the quasiholes in the
bulk of the FQH state, and represents a hallmark of the
� ¼ 1=3 FQH state.
We now compare such a counting with that obtained

from numerics. For the model FQH Hamiltonians such as
the Haldane pseudopotentials, the quasiholes are just the
degenerate ground states of the system when fluxes are
added to the system. In this sense, the ground state is just
the highest-density state of a set of other degenerate states,
which occur at higher fluxes and which describe the quasi-
holes. As we cannot add unit fluxes to a ground state with a
set aspect ratio and still keep the translational symmetry
intact, we choose to analyze quasiholes by either increas-
ing Nx ! Nx þ 1 (or Ny ! Ny þ 1) or by removing par-

ticles from a ground state and keeping the aspect ratio
fixed—hence our system sizes contain at least 3 fluxes
above the ground state. A generic example is that shown
in Fig. 6, in which N ¼ 9 particles reside in Nx � Ny ¼
5� 6 orbitals, 3 fluxes more than the ground state at filling
1=3. We diagonalize the interacting Hamiltonian for this
number of particles and observe (Fig. 6) that the spectrum
splits into two parts separated by a clearly visible and
unambiguous energy gap. The counting of states below
the gap equals the counting of quasiholes of a 1=3 frac-
tional quantum Hall state of 9 particles in 30 orbitals
(explained in the next section). Even more, the counting
of states per momentum sector also matches that of the
generalized Pauli principle for the quasihole states [16]
previously obtained in the FQH context. This will also be
explained in the next section.
While for N ¼ 9, Nx � Ny ¼ 5� 6 the gap that sepa-

rates the quasihole manifold from the spurious states is
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FIG. 6. Low-energy spectrum for N ¼ 9, Nx ¼ 5, Ny ¼ 6. The
number of states below the dashed line is 19 in sectors where
Ky mod 3 ¼ 0; 18 in other sectors, as expected from the analytical

results. The total counting matches the one expected for Laughlin
quasihole states. The counting for each momentum sector is given
by the generalized Pauli principle and the 2-dimensional to
1-dimensional unfolding presented in the next section.
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clear, this is not always the case. In Fig. 7 we plot the
spectrum of the N ¼ 7, Nx � Ny ¼ 8� 3 problem: For

most momentum sectors we find a clear gap, visible by eye,
between a low-energy quasihole manifold and that of
spurious, high-energy states. However, for the momenta
ðKx; KyÞ ¼ ð2; 0Þ [and for its inversion symmetric (6,0)] we

see one state (at energy around 0.21) that lies in the gap. It
is a priori unclear whether, just based on the numerical
information, this state belongs to the quasihole manifold or
not (the analytic counting obtained in the next section
would indeed tell us that it does belong to the quasihole
manifold). To find this out, we look at the level spectral
flow of the states at ðKx; KyÞ ¼ ð2; 0Þ upon flux insertion

kx ! kx þ�=Nx in Fig. 8, where we insert flux in the x
direction. We note that the state at energy 0.21 exhibits
level spectral flow with the states below it, and hence it
belongs to the quasihole subspace. Note that the first two
excited states (around energy 0.24) do not mix with the
quasihole manifold upon the flux insertion and even exhibit
level repulsion between themselves. For example, when

� ¼ �=8 the lower-energy manifold is clearly separated
from the spurious, high-energy one. The flux insertion tells
us that the state which, in the periodic-boundary-condition
case was at energy 0.21, indeed belongs to the quasihole
manifold.
A similar analysis has been made on several other system

sizes and aspect ratios for quasiholes close to the 1=3 fill-
ing. In the absence of a pseudopotential Hamiltonian and
since we work on a lattice, several factors must be taken
into account when looking at quasiholes. First, as we are
diagonalizing a generic Hubbard-type Hamiltonian, we
must make sure that we are still close to filling 1=3.
Taking out too many particles (creating too many quasi-
holes) could potentially lead us to another filling factor and
diminish or even erase the gap between the low-energy
quasiholes and the spurious high-energy states. Since we
work on the lattice, care should be taken that the single-
particle system is not 1 dimensional—the aspect ratio
should be roughly balanced. This will be discussed later.
In most cases when these two conditions are satisfied, the
gap between the quasihole manifold and the upper spurious
states is visible. The total number of states (in all momen-
tum sectors) below the spectral gap matches exactly the
number of states of the Laughlin quasiholes in the regular
FQH effect on the torus of N particles and Nx � Ny number

of orbitals. This is the number of (1,3)-admissible partitions
on the torus (as defined below, see Figs. 9 and 10) that we
can write down out of N particles in Nx � Ny orbitals. For

N ¼ 8 and Nx, Ny ¼ 5; 6, respectively, we obtain a total of

6435 states while for N ¼ 9 we obtain 550 states by
counting these partitions. This number is identical to the
numerical data (see Figs. 6 and 7). We have checked a
series of sizes up to N ¼ 10 and have confirmed in each
case the existence of a large gap between a high-energy
nonuniversal sector and a low-energy quasihole sector
whose counting matches exactly that of the Laughlin
quasiholes obtained by counting (1,3)-admissible parti-
tions. All these quasihole states exhibit spectral flow
within themselves. This proves that the observed state is
an Abelian fractional quantum Hall state with �xy ¼ 1=3,

as it has excitations obeying Haldane 1=3 statistics and
having the counting of a Uð1Þ boson. The overall quasi-
hole counting matches the (1,3) generalized Pauli princi-
ple. But in most cases, this statement is also valid for the
counting per each momentum sector. The (1,3) general-
ized Pauli principle is generic of the Laughlin-FQH state
at filling 1=3 and will be presented below.

IV. HEURISTIC COUNTING RULE: PAULI
PRINCIPLE AND CRYSTAL MOMENTA

We now present a counting rule for the total lattice
momentum at which the degenerate ground states occur.
A more detailed version will be developed in an upcoming
paper [17]. The 2-dimensional lattice of sitesNx � Ny with

kx 2 ½0; Nx � 1� and ky 2 ½0; Ny � 1� can be folded into a
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 0.22

 0.24

 0.26

 0  5  10  15  20

E
 / 
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Kx + Nx * Ky

FIG. 7. Low-energy spectrum for N ¼ 7, Nx ¼ 8, Ny ¼ 3. The
number of states below the dashed line is 12 in all sectors and
matches the number of expected quasihole states given by the
generalized Pauli principle.
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FIG. 8. Evolution of the low-energy spectrum for N ¼ 7,
Nx ¼ 8, Ny ¼ 3 at Kx ¼ 2, Ky ¼ 0 upon flux insertion along

the x direction. The number of states below the dashed line is 12
for any value of � and matches the number of expected quasi-
hole states given by the generalized Pauli principle
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1-dimensional lattice of orbitals of momentum � ¼
Nxky þ kx by placing the x-momentum range one after

another for the different values of the y momenta, as
shown in Fig. 9. This then represents a map between

the momentum of the i-th particle orbital kx;i; ky;i and

the 1-dimensional momentum of the i-th orbital �i 2
½0; Nx � Ny � 1�. The �i’s then form a partition � ¼
½�1; . . . ; �N�, which we order from highest to lowest.

(0,0)

(0,1)

(0,2)

(0,Ny-2)

(0,Ny-1)

(1,0) (2,0) (Nx-2,0) (Nx-1,0)

(Nx-1,Ny-1)

(Nx-2,Ny-2)

Kx

Ky 0 1 Ny-1...

...0 1 ... N2

Ground 
State 1

Ground 
State II

Ground 
State III

1 0 0 1

3 0 1 ... Nx-12 3 0 1 ... Nx-12 3

1 0 0 1 1 0 0 1 0 00 00 0

0 1 0 0 0 1 0 0 0 1 0 0 1 01 01 0

0 0 1 0 0 0 1 0 0 0 1 0 0 10 10 1

-1x

FIG. 9. Momentum of the 3-fold degenerate ground state for the fractional Chern insulator at filling � ¼ 1=3. The 2-dimensional
lattice of momenta kx; ky with kx 2 ½0; Nx � 1� and ky 2 ½0; Ny � 1� (in units of 2�=Nx, 2�=Ny, respectively) where we have taken

Nx to be a multiple of 3 (since Nx � Ny ¼ 3N, this can always be done) is unfolded in a 1D lattice. The total momentum of the ground

states is then the same as the momentum of the three (1,3)-admissible partitions possible for the number of orbitals Nx � Ny and number

of particles N ¼ Nx � Ny=3.

kx

ky 0 1 2
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Ground State 1

Ground State II

Ground State III

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 00

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 10 0

Total Momentum

Kx Ky

0+0+1+1+2+2
=6 (mod 3)=0

0+0+1+1+2+2
=6 (mod 3)=0

0+0+1+1+2+2
=6 (mod 3)=0

2+5+2+5+2+5
=21 (mod 6)=3

1+4+1+4+1+4
=15 (mod 6)=3

0+3+0+3+0+3
=9 (mod 6)=3

kx

ky 0 1 2
0 1 2

Ground State 1

Ground State II

Ground State III

1

0

0

Total Momentum

Kx Ky

0+1+2+3
=6 (mod 4)=2

0+1+2+3
=6 (mod 4)=2

0+1+2
=6 (mod 4)=2

2+2+2+2
=8 (mod 3)=2

1+1+1+1
=4 (mod 3)=1

0+0+0+0
=0 (mod 3)=0

3
0 1 2 0 1 2 0 1 2

0 0 1 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1

0 1 1 1 1

FIG. 10. Example of the total momentum counting for the 3-fold degenerate ground states of the N ¼ 4 (top) and N ¼ 6 (bottom)
problem. Every time the number of particles N is a multiple of both kx; ky, the 3-fold degenerate ground states occur at the same total

momentum and are expected to be split by the interaction for finite-size samples. Notice that for the N ¼ 4 problem, the total momenta
at which the ground state occurs are related by inversion symmetry, as ð1; 2Þ ¼ ð�2;�2Þmod ð3; 4Þ.

FRACTIONAL CHERN INSULATOR PHYS. REV. X 1, 021014 (2011)

021014-7



This partition is then similar to the orbital momenta of
the particles of the usual FQH on the torus. On such
geometry and in the lowest Landau level, the single-
particle orbitals can be written as

�FQH
� ðx; yÞ ¼ X

m2Z

e2�=Lyð�þmN�ÞðxþiyÞe�ðx2=2l2
b
Þ

� e�ð1=2Þð2�lb=LyÞ2ð�þmN�Þ2 : (4)

In the above, we have picked the Landau gauge ~A ¼ Bx~ey.

lb is the magnetic length, N� is the number of flux quanta,

and Ly is the system size along y. With this gauge choice, �

is the orbital momentum along the y direction and is
such that � 2 ½0; N� � 1�. Setting N� ¼ Nx � Ny, we

can formally relate the FQH momentum � and the line-
arized momentum of the fractional Chern insulator
� ¼ Nxky þ kx.

Using this analogy between FQH on the torus and frac-
tional Chern insulator, we now index each many-body state
by a single partition (called ‘‘root’’ partition [16]) that
satisfies a generalized Pauli principle (also called an ‘‘ad-
missibility condition’’), which does not allow the existence
of more than 1 particle in 3 consecutive orbitals. In parti-
tion notation, this reads �i � �iþ1 � 3. Because of the
periodicity of the torus, we must also make sure that
the first and last particles are separated by at least 3
orbitals, which reads �N þ Nx � Ny � 1� �1 � 3. At the

ground-state filling N ¼ Nx � Ny=3 (we pick Nx a multiple

of 3) there are only three such partitions that correspond

to the occupation numbers 100100100. . .100100
[Kx; Ky ¼ NxðNx � 3Þ=6; NðNy � 1Þ=2 mod ðNx; NyÞ],
010010010. . .010010 [Kx; Ky ¼ NxðNx � 3Þ=6 þ N;

NðNy � 1Þ=2 mod ðNx; NyÞ], and 00100100100. . .001001

[Kx;Ky ¼NxðNx� 3Þ=6þ 2N;NðNy� 1Þ=2mod ðNx;NyÞ],
of the orbitals of momentum �1; �2; . . . ; �N . As an empiri-
cal observation, it was noted in [7] that the degenerate
ground states appear at momenta related by a translation
with the same number in both x; y directions. This is an
immediate corollary of the counting principle presented
above. In the present model, due to inversion symmetry,
at least two of the ground states are exactly degenerate. The
principle for finding the ground-state momentum reminds
one of the root partitions used in the usual FQH effect [16]
or in the thin-torus limit of the FQH states [18].
At this point, a discussion of the dependence of the

physics on the aspect ratio of the problem is necessary.
In cases of finite-size systems, the exact-diagonalization
data for the momentum of the 3 quasidegenerate ground
states matches the momentum counting presented above
for aspect ratios for which the system is 2 dimensional. The
Chern-insulator problem has the particular property that
the filled band only has a Chern number (Hall conduc-
tance) equal to unity in the case of Nx=Ny ! finite. For

example, if we let Ny ¼ 1 and Nx ! 1, the Chern number

of this Hamiltonian will not be equal to unity. The Chern
number is equal to

R
dkxdkyTrðP½@kxP; @kyP�Þ=ð2�Þ2 and

hence Ny cannot take small values such as 1, 2 in order

for the derivatives of the Chern number to be well defined.
The Brillouin zone mesh of momenta must truly be

kx

ky 0 1 2

0 1 2 0 1 2 0 1 2

Total Momentum

11

1 1

0 0

0 0
0 0

0 0
0 0

0 0
0

0
0 0

00
Two states at total 
momentum (0,0)

11 0 000 00 0 1 0

1 10 0

Kx (mod 3) Ky (mod 3)

0 000 0 1 0
Two states at total 
momentum (1,0)

01 0 000 00 1 2 0

0 00 10 100 0 2 0
Two states at total 
momentum (2,0)

01
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0 0
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0 1
1

1
0 1

10
Two states at total 
momentum (0,1)

00 0 010 01 0 1 1

1 00 00 010 0 1 1
Two states at total 
momentum (1,1)

00 1 000 01 0 2 1

0 00 00 100 1 2 1
Two states at total 
momentum (2,1)
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0 0
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0 1
0 0

1 0
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0 0
1

0
0 2

20
Two states at total 
momentum (0,2)

00 0 101 00 0 1 2

0 10 00 010 0 1 2
Two states at total 
momentum (1,2)

10 0 001 00 0 2 2

0 01 00 010 0 2 2
Two states at total 
momentum (2,2)

FIG. 11. Example of total momentum counting for the quasiholes of the N ¼ 2, Nx ¼ Ny ¼ 3 problem.

N. REGNAULT AND B. ANDREI BERNEVIG PHYS. REV. X 1, 021014 (2011)

021014-8



2 dimensional in order for the filled band to have an integer
Chern number. We hence expect that the interacting prob-
lem also be sensitive to the aspect ratio when one of the
dimensions becomes much smaller than the other (of
course in the thermodynamic limit, as long as Nx=Ny

remains finite, we expect the degeneracy of the FQH states
to be independent of the aspect ratio). In fact, the interact-
ing problem has also a different dependence on the aspect
ratio. To see this, one can look at the extreme case of
Ny ¼ 1, Nx ¼ 3N. In this case, we are indeed solving a

1-dimensional problem of orbitals kx ¼ 0; . . . ; 3N � 1—
extremely similar to that of the LLL orbitals on the
torus—but with interacting Hamiltonian that comes
from a 2D Hubbard interaction. This Hamiltonian is
much different from the Haldane pseudopotential
Hamiltonian which involves Clebsch-Gordon coefficients
on the sphere and Jacobi theta functions on the torus. As
such, the problem is physically distinct at the interacting
level, and for these skewed aspect ratios we do not expect
FQH states in the Chern-insulator problem. Indeed, in
the finite-size diagonalizations performed below, we will
always aim to choose the most symmetric aspect ratio
available. As observed in Fig.s 3 and 4, the cleanness of
the results will depend on this choice, as it is natural for
these finite sizes.

The counting of quasiholes per momentum sector is
slightly more complicated, and we have not found
the full counting rule per momentum sector. The map
between the 2-dimensional momentum numbers and the
1-dimensional orbital partition that allowed us to find the
momentum of the ground states cannot always work for
the quasihole states. It sometimes violates the inversion
symmetry (see the Appendix for such cases) and thus it
sometimes does not match the numerical results.
Nevertheless, the total number of quasiholes, irrespective
of the momentum sectors, always matches the counting of
partitions. This matching of the exact diagonalization
states and the 1.3—admissible partitions is a rather remark-
able demonstration of the � ¼ 1=3 character of the states.
Even more interestingly, the Pauli principle and the map
between the 2-dimensional momentum numbers and the
1-dimensional orbital partition works for each momentum
sector (not only for the total number of quasiholes) in the
great majority of the cases studied. As an example, we
present in Fig. 11 the generalized Pauli counting principle
at work for N ¼ 2, Nx ¼ Ny ¼ 3.

V. ENTANGLEMENT SPECTRUM

We now turn back to the 3-fold degenerate ground state
of the system. There are several attempts to obtain an
analytical expression of the Laughlin state for the frac-
tional Chern insulators [19,20]. Unfortunately, none of
them can be used in our case, so we cannot perform any
wavefunction overlap calculations to compare their ana-
lytical expression with the ground state of our system.

Nevertheless, we can still show that the ground state
contains, by itself, information about the Abelian fractional
1=3 character of the excitation spectrum. This is actually a
far better probe than an overlap, since the 1=3 character is
the feature, not the analytical expression. To do this, we use
the recently developed entanglement spectrum [21,22],
which for a single nondegenerated ground state j�i can
be defined through the Schmidt decomposition of j�i in
two regions A; B (not necessarily spatial):

j�i ¼ X

i

e�	i=2j�A
i i � j�B

i i; (5)

where h�A
i j�A

j i ¼ h�B
i j�B

j i ¼ �i;j. The expð�	iÞ and

j�A
i i are the eigenvalues and eigenstates of the reduced

density matrix, 
A ¼ TrB
, where 
 ¼ j�ih�j is the total
density matrix. There is no generalization of (5) to degen-
erate ground states. Still the definition of the entanglement
spectrum through the reduced density matrix can be ex-
tended to that case. While several schemes can be pro-
posed, it has been observed in [22] that the incoherent
summation over the degenerate ground states 
 ¼
1
3

P
ij�iih�ij is a good candidate for this generalization.

This combination builds a density matrix which commutes
with the total translation operators, which is a desired
feature to sort the 	i with respect to the momentum quan-
tum numbers.
Depending on the space where the system is split into A

and B, be it real, momentum or particle space, different
aspects of the system excitations will be revealed through
the ES. It was proven that if the regions A; B are regions of
particles [22], the particle entanglement spectrum hence
obtained by tracing over the positions of a set of B particles
gives information about the number of quasiholes of the
system of NA particles and the number of orbitals identical
to that of the untraced system. In the case of the usual
FQH, the particle entanglement spectrum of a model state
contains an identical number of levels (i.e., the number of non
zero eigenvalues) as those of the quasiholes. Thus, the count-
ing of nonzero eigenvalues does not suffer from
the sometimes uncontrolled finite-size effects, as observed
with state decomposition in the momentum space [21,23].
For this reason we will use state decomposition in the
particle space as a probe for the fractional Chern insulator.
Away from the model states, like the Coulomb ground

state, the ES may exhibits an entanglement gap [21,24]. It
separates a low-energy structure with perfect quasihole
counting and a high-entanglement-energy nonuniversal
part. But a clear and significant gap is not always observed,
even for the � ¼ 1=3 Coulomb state.
For the fractional Chern insulator, the situation is sur-

prisingly much better: We observe a clear, large entangle-
ment gap between low-entanglement-energy levels and the
high-entanglement-energy levels like those observed in
Figs. 12 and 13. Moreover, the counting of the levels below
the gap is identical to the counting of quasiholes of NA
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particles in Nx � Ny orbitals. In both examples shown in

Figs. 12 and 13, it matches per each momentum sector that
of (1,3)-admissible partitions of NA particles in Nx � Ny

orbitals. We find it very revealing that the fractional-Chern-
insulator ground states obtained here contain much
clearer information (large, clear entanglement gap) than
the ground states of the Coulomb interaction in the FQH.
The entanglement spectrum shows that the ground states
by themselves contain essential information on the frac-
tional nature of the excitations in the fractional Chern
insulator. The current clean application of the entangle-
ment spectrum also shows that this quantity is
fundamentally useful toward revealing the physics of
strongly-correlated states besides the usual FQH model
wave functions for FQH states.

The ES also provides some insight about the system
when the number of sites in one direction is equal to 3.
A clear entanglement gap is observed and the counting
below this gap matches the expected one, but only for
NA ¼ 2 and NA ¼ 3. For larger values of NA, the number
of levels below the gap is lower than expected. This
strongly suggest that for the small aspect ratios where the
ratio Ny=Nx ! 0, the state is not a fully developed frac-

tional Chern insulator—or indeed, by our previous argu-
ments, the single-particle problem is not even a well-
developed integer Chern insulator. In the case of the other
aspect ratios, all the ESs for any value of NA and any
system sizes up to N ¼ 12 perfectly matche the predicted
counting. For the cases such as Nx � Ny ¼ 6� 5 and

6� 6, the (1,3) Pauli-principle counting matches the ES
data for each momentum sector for all NA ¼ 1; 2; 3; 4; 5.
The perfect match clearly shows that this state is a frac-
tional Chern insulator.

VI. TRANSITION TO THE TRIVIAL INSULATOR

Tuning the mass term above the 4t2 threshold yields an
insulator topologically equivalent to the atomic limit, with
zero Hall conductance. Partially filling this insulator at say
M ¼ 6t2, we find no clear sign of a 3-fold degenerate
ground state, and no clear gap to the excitation spectrum
(see Fig. 14). In the interacting problem, we would think
that the gap rearrangement happens more quickly than
M=4t2. This hypothesis is natural since the many-body
gap is expected to be more sensitive than the single-particle
one. The evolution of the many-body gap with the parame-
ter M is plotted in Fig. 15. In the atomic limit M ! 1, B
sites have an energy �M and all the particles are strongly
localized on those sites. If all B sites were occupied and A
sites unoccupied, the filling would be 1=2, and hence as we
are at a smaller filling 1=3, and as the interaction couples
sites A and B, the ground state will be highly degenerate.
We see that the many-body gap as a function of M collap-
ses at exactly the value of M at which the one-body
transition takes place. We also plot the entanglement gap
�PES as a function ofM in Fig. 16. The entanglement gap is
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FIG. 12. Particle entanglement spectrum for N ¼ 10, Nx ¼ 5,
Ny ¼ 6, and NA ¼ 5. The 	’s are the entanglement energies. The

number of states below the dashed line is 776 in all the kx ¼ 0,
and 775 in the other sectors. This is in agreement with the (1,3)
Pauli principle for every momentum sector.
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FIG. 13. Particle entanglement spectrum for N ¼ 12, Nx ¼
Ny ¼ 6, and NA ¼ 4. The 	’s are the entanglement energies.

The number of states below the dashed line is 741 in momentum
sectors where Nx mod 2 ¼ Ny mod 2 ¼ 0 and 728 elsewhere.

The total number below this line (26 325) exactly matches the
one predicted by the counting rule.
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FIG. 14. Low-energy spectrum for different values of M at
N ¼ 10, Nx ¼ 5, and Ny ¼ 6. We show only the two lowest

energies per momentum sector. All energies are shifted such that
the ground-state energy is 0 for each M value.
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defined as the minimum separation, over the different
momenta sectors, between the higher entanglement energy
level belonging to the Laughlin counting and the lower
entanglement energy level that does not belong to this
counting. �PES tracks the energy gap and its collapse
also at the same value as the many-body and single-particle
energy gaps.

VII. ANALYTICAL COUNTING OF QUASIHOLES
PER MOMENTUM SECTOR

The heuristic generalized Pauli-principle counting of the
previous section gives the correct (matching the data) total
counting of quasihole-state manifold at any N;Ny; Nx (as

long as the aspect ratio is 2 dimensional). In most cases,
although not in all, it also gives the correct counting per
each momentum sector. The generalized Pauli principle is
based on the correspondence between a 2D momenta map
and 1D orbitals, which is heuristic. In this section, we
provide some analytic results of the counting per momen-
tum sector that has been tested to work for all the momen-
tum sectors and is not based on a 2D-to-1D folding. The
counting of the total number of quasihole states of a 1=3
state of N particles in Nx � Ny orbitals on the torus can be

obtained by counting the number of ways of putting N
particles in Nx � Ny orbitals with the restriction that there

should be no more than 2 particles in 3 consecutive orbitals
[(1,3)-admissibl- partitions-generalized Pauli principle] on
the sphere:

#qhsphere ¼
N þ n

n

 !
; n ¼ NxNy þ 2� 3N; (6)

where n is the number of quasiholes, and then subtracting
the configurations that violate the (1,3) generalized Pauli
principle once we make the system periodic to go to the
torus. These configurations come in only three possible
ways, and can be written in terms of the occupation number
of orbitals

0100 ½all ð1; 3Þ-admissible configurations�001;
100½all ð1; 3Þ-admissible configurations�0010;
100½all ð1; 3Þ-admissible configurations�001:

(7)

These represent the only sets of configurations that are
allowed on the sphere but that have more than one particle
in 3 consecutive orbitals if the orbital space is made
periodic. The number of the first two are equal by inversion
symmetry and reads as

N � 2þ n0

n0

 !
; n0 ¼ NxNy þ 1� 3N; (8)

while the third one reads as

N � 2þ n00

n00

 !
; n00 ¼ NxNy þ 2� 3N: (9)

The result then reads as

#qh torus ¼ NxNy

ðNxNy � 2N � 1Þ!
N!ðNxNy � 3NÞ! : (10)

This is the total number of quasiholes of a 1=3 state on the
torus in a translationally invariant system, and for a an
incompressible and featureless FQH topological state,
there is no particular reason why some momenta should
have an occupation number different from others. Indeed,
both the interacting-particle and the single-particle models
are translationally invariant, and as such in the featureless
liquid ground state, momenta occupation numbers
should be the same. Hence, on a finite-size lattice for
which we have Nx � Ny momenta, we would expect to

have
ðNxNy�2N�1Þ!
N!ðNxNy�3NÞ! states for each momenta. While this is

always certainly true in the thermodynamic limit (as in the
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FIG. 16. Entanglement spectrum gap �PES as a function
of M at filling � ¼ 1=3 for N ¼ 8 and N ¼ 10 with Nx ¼
N=2, Ny ¼ 6.
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heuristic Pauli principle), there are cases of finite-size

systems when
ðNxNy�2N�1Þ!
N!ðNxNy�3NÞ! is not an integer. This means

that in finite-size cases, commensuration effects weakly
modify the finite-size counting of each sector so that the
requirement that there be an integer number of quasihole
states for each momentum sector is satisfied. This is the
reason for the finite-size changes of the number of states in
each momentum sector.

Physical reasoning leads us further. WhenN is relatively
prime with both Nx and Ny there can be no commensura-

tion effects, and the number of quasihole states per each
momentum sector has to be identical. Indeed, in this case,
ðNxNy�2N�1Þ!
N!ðNxNy�3NÞ! is an integer, is equal to the number of states

per momentum sector provided by our heuristic Pauli
principle, and matches the numerical data for the number
of states per momentum sector. This is also the asymptotic
value of the number of states per momentum sector in the
thermodynamic limit.

Finite-size effects become important in the case when
the greatest common divisors (GCD) of N;Nx or N;Ny is

larger than 1. Three scenarios can occur. First,
GCDðN;NyÞ> 1, GCDðN;NxÞ ¼ 1: In this case, the num-

ber of quasihole states is the same for all the Ky total

momenta that are divisible by GCDðN;NyÞ and is different
from the number of states atKy total momenta not divisible

by GCDðN;NyÞ. A clear example of this situation is in

Fig. 6: N ¼ 9, Nx ¼ 5, Ny ¼ 6, and hence GDCðN;NyÞ ¼
3. The momenta ðKx; KyÞ for which Ky mod 3 ¼ 0 have 19

states in the quasihole subspace, whereas all momenta for
which Kymod 3 � 0 have 18 states in the quasihole sub-

space. This is also equivalent to the counting of (1,3)
partitions obeying the generalized Pauli principle. The
case GCDðN;NxÞ ¼ 1, GCDðN;NxÞ> 1 is obviously the
x $ y of the case presented above.

Second, when GCDðN;NyÞ ¼ GCDðN;NxÞ> 1, the

number of quasihole states is the same for all Kx; Ky,

which are simultaneously both divisible by GCDðN;NyÞ�
½¼ GCDðN;NxÞ� and different from the number of quasi-
hole states at Kx; Ky when either Kx or Ky is not divisible

byGCDðN;NyÞ. An example of this latter situation is in the

counting of the entanglement spectrum states of the
N ¼ 12 (Nx ¼ 6, Ny ¼ 6) particles’ ground state and

NA ¼ 4 in Fig. 13. The counting of states in the entangle-
ment spectrum should be identical with that of
NA ¼ 4 quasiholes in Nx � Ny ¼ 36 orbitals. As such,

GCDðN;NxÞ ¼ GCDðN;NyÞ ¼ 2. Momenta ðKx; KyÞ ¼
ð0; 0Þ; ð2; 0Þ; ð4; 0Þ; ð0; 2Þ; ð2; 2Þ; ð4; 2Þ; ð0; 4Þ; ð2; 4Þ; ð4; 4Þ,
which are both divisible by GCDðN;NxÞ and have 741
quasihole states, whereas all other momenta, in which
either Kx or Ky are not divisible by GCDðN;NxÞ, have
728 quasihole states, for a total of 26 325 states, which
matches the total number of states of the (1,3) Pauli prin-
ciple. These rules for the counting of states are physically

motivated by the fact that momenta on the lattice should be
filled democratically except in the case when the number
of particles exhibits some commensuration [expressed by
us as the condition GCDðN;Nx;yÞ> 1] with the lattice

dimensions. They have been checked for a range of particle
numbers (up toN ¼ 12) and found to hold in all cases. The
rules make sense physically: In the case of commensura-
tion, the momenta that are divisible by the commensuration
factor (GCD) should all exhibit the same counting (once
the commensuration condition has been established, the
commensurate momenta are treated democratically). This
counting should be different from the counting of the
momenta incommensurate with the GCD. Whenever either
GCDðN;NxÞ or GCDðN;NyÞ equal unity, the Pauli-

principle counting of states matches the numerically found
counting.
Third, GCDðN;NyÞ � GCDðN;NxÞ � 1: This case has

not been analyzed and compared to the numerical data (as
the size of the numerical computation becomes too large).
However, we can offer a conjecture for the quasihole state
counting per momentum. ðKx; KyÞmomenta, which are not

multiples of eitherGCDðN;NyÞ orGCDðN;NxÞ, have iden-
tical counting, different from all others. The momenta for
which GCDðN;NxÞ divides Kx but GCDðN;NyÞ does not
divide Ky all have the same counting, different from any

other. This is similar for momenta for which GCDðN;NyÞ
divides Ky but GCDðN;NxÞ does not divide Kx. Finally,

momenta for which Kx is divisible by GCDðN;NxÞ and Ky

is divisible by GCDðN;NyÞ have same counting, different

from the rest.

VIII. CONCLUSION

In conclusion, we have shown that the ground state of
the � ¼ 1=3 flat-band Chern insulator in the presence of
repulsive interactions is an incompressible state with Hall
conductance 1=3, and that quasihole excitations satisfying
fractional statistics. The presence of the excitation whose
counting is identical to those in the FQH � ¼ 1=3 state is a
clear and up-to-now missing proof that the ground state is
indeed a fractional Chern insulator and not a 1=3 charge-
density-wave state. We have presented a mapping between
the lattice momenta and the torus orbitals and shown that
the counting and total momenta of the ground states and
those of the quasiholes can be obtained by employing a
generalized Pauli principle of not more than 2 particles in 3
consecutive orbitals. We have then shown that the entan-
glement spectrum of the ground state also has an entangle-
ment gap and that the levels below the gap match in
counting those of the Laughlin quasihole states.
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APPENDIX: QUASIHOLES AND THE
GENERALIZED PAULI PRINCIPLE

The counting of quasiholes per momentum sector is
slightly more complicated, and we have not found the
full counting rule per momentum sector. Although the total
number of quasiholes always matches the counting of
partitions, the map between the 2-dimensional momentum
numbers and the 1-dimensional orbital partition that al-
lowed us to find the momentum of the ground states cannot
always work for the quasihole states. This can be easily
seen as the partition map between the momentum of the
i0-th particle kxi; kyi, and the 1-dimensional momentum

(1,3)-admissible partition � ¼ ð�1; . . . ; �NÞ with �i ¼
Nx � kyi þ kxi does not (for quasiholes) have to respect

the inversion symmetry that the model studied has. To
illustrate this, take two particles i; j, their momenta
ðkxi; kyiÞ, ðkxj; kyjÞ, and their orbital momentum �i; �j sat-

isfying the (1,3) admissibility j�i � �jj � 3. The inversion

property acts at the single-particle level and transforms
kx; ky ! �kx;�ky. To make the inverted momentum be-

long to the positive numbers, we must addNx; Ny to the x; y

momenta except if the momenta are 0, in which case we do
nothing. With these new momenta, we form the inverted
partitions �inv

i ; �inv
j and check whether these violate the

admissibility rule, i.e., whether j�inv
i � �inv

j j< 3. We

then have to analyze seven cases separately out of which
three cases turn out to be problematic:

(1) kxi � 0, kyi � 0, kxj � 0, kyj � 0, �inv
i ¼

NxNy þ Nx � �i, �inv
j ¼ NxNy þ Nx � �j, and

j�inv
i � �inv

j j ¼ j�i � �jj> 3—inversion symmetry

preserved.
(2) kxi ¼ 0, kyi � 0, kxj � 0, kyj � 0, �inv

i ¼
NxNy � �i, �inv

j ¼ NxNy þ Nx � �j, and

j�inv
i ��inv

j j¼jNxþ�i��jj—and hence inversion

symmetry is not preserved in the cases, kyj ¼ kyi,

kxj ¼ Nx � 2, Nx � 1, or kyj ¼ kyi þ 1, kxj ¼ 1; 2.

(3) kxi ¼ 0, kyi � 0, kxj � 0, kyj ¼ 0, �inv
i ¼

NxNy � �i, �inv
j ¼ Nx � �j, and j�inv

i ��inv
j j¼

jNxNy�Nx��iþ�jj—and hence inversion sym-

metry is not preserved in the cases, kyi ¼ Ny � 1,

kxj ¼ 1; 2.

(4) kxi ¼ 0, kyi � 0, kxj ¼ 0, kyj � 0, �inv
i ¼

NxNy��i, �inv
j ¼NxNy��j, and j�inv

i ��inv
j j¼

j�i��jj>3—inversion symmetry preserved.

(5) kxi ¼ 0, kyi ¼ 0, kxj � 0, kyj � 0, �inv
i ¼ �i ¼ 0,

�inv
j ¼ NxNy þ Nx � �j, and j�inv

i � �inv
j j ¼

jNyNx þ Nx þ �i � �jj> 3 if Nx > 1—inversion

symmetry preserved.

(6) kxi ¼ 0, kyi ¼ 0, kxj � 0, kyj ¼ 0, �inv
i ¼ �i ¼ 0,

�inv
j ¼ Nx � �j, and j�inv

i � �inv
j j< 3—for �j ¼

kxj ¼ Nx � 2, Nx � 1, then inversion symmetry is

not preserved.
(7) kxi ¼ 0, kyi ¼ 0, kxj ¼ 0, kyj � 0, �inv

i ¼
�i ¼ 0, �inv

j ¼ NxNy � �j, and j�inv
i � �inv

j j ¼
jNxNy � �jj> 3—inversion symmetry preserved.

Despite the above, in most (but not all) of the cases, the
counting of states per momentum is still given by the (1,3)
partitions of the same total momentum Kx ¼

P
N
i¼1 kxi and

Ky ¼
P

N
i¼1 kyi, even though there is no inversion symme-

try in the partitions (as proven above; we stress that the
total counting of quasiholes always matches that of (1,3)
partitions, as it should for a Laughlin state; only the 2D-to-
1D mapping proposed in this paper sometimes fails for
quasihole states). What happens in these cases is that
momentum sectors related by inversion symmetry both
contain the same number of partitions, which, under the
inversion operation, are not (1,3) admissible. So the effect
of the 2D-to-1D mapping on the sectors not respecting the
inversion symmetry is magically canceled. We find that the
matching per momentum sector of the exact diagonaliza-
tion states and the (1,3)-admissible partitions to be a rather
remarkable demonstration of the � ¼ 1=3 character of the
states.

[1] C. L. Kane and E. J. Mele, Quantum Spin Hall effect in
Graphene, Phys. Rev. Lett. 95, 226801 (2005).

[2] B. Andrei Bernevig, Taylor L. Hughes, and Shou-Cheng
Zhang, Quantum Spin Fall Effect and Topological Phase
Transition in HgTe Quantum Wells, Science 314, 1757
(2006).

[3] M. Koenig, S. Wiedmann, C. Brune, A. Roth, H.
Buhmann, L.W. Molenkamp, X.-L. Qi, and S.-C. Zhang,
Quantum Spin Hall Insulator State in HgTe Quantum
Wells, Science 318, 766 (2007).

[4] D.Hsieh,D.Qian, L.Wray,Y.Xia,Y. S.Hor, R. J. Cava, and
M. Z. Hasan, A Topological Dirac Insulator in a Quantum
Spin Hall Phase, Nature (London) 452, 970 (2008).

[5] D. A. Pesin and L. Balents, Mott Physics and Band
Topology in Materials with Strong Spin-Orbit
Interaction, Nature Phys. 6, 376 (2010).

[6] S. Rachel and K. Le Hur, Topological Insulators and Mott
Physics from the Hubbard Interaction, Phys. Rev. B 82,
075106 (2010).

[7] D. N. Sheng, Z.-C. Gu, K. Sun, and L. Sheng, Fractional
Quantum Hall Effect in the Absence of Landau Levels,
Nature Commun. 2, 389 (2011).

[8] T. Neupert, L. Santos, C. Chamon, and C. Mudry,
Fractional Quantum Hall States at Zero Magnetic Field,
Phys. Rev. Lett. 106, 236804 (2011).

[9] Y.-F. Wang, Z.-C. Gu, C.-D. Gong, and D.N. Sheng,
Fractional Quantum Hall Effect of Hard-Core Bosons in
Topological Flat Bands, Phys. Rev. Lett. 107, 146803
(2011).

FRACTIONAL CHERN INSULATOR PHYS. REV. X 1, 021014 (2011)

021014-13

http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nphys1606
http://dx.doi.org/10.1103/PhysRevB.82.075106
http://dx.doi.org/10.1103/PhysRevB.82.075106
http://dx.doi.org/10.1038/ncomms1380
http://dx.doi.org/10.1103/PhysRevLett.106.236804
http://dx.doi.org/10.1103/PhysRevLett.107.146803
http://dx.doi.org/10.1103/PhysRevLett.107.146803


[10] E. Tang, J.-W. Mei, and X.-G. Wen, High-Temperature
Fractional Quantum Hall States, Phys. Rev. Lett. 106,
236802 (2011).

[11] F. D.M. Haldane, Model for a Quantum Hall Effect
Without Landau Levels: Condensed-Matter Realization
of the ‘‘Parity Anomaly,’’ Phys. Rev. Lett. 61, 2015
(1988).

[12] K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Nearly-Flat
Bands with Nontrivial Topology, Phys. Rev. Lett. 106,
236803 (2011).

[13] A. Kol and N. Read, Fractional Quantum Hall Effect in a
Periodic Potential, Phys. Rev. B 48, 8890 (1993).
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