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The ability to engineer both linear and nonlinear coupling with a mechanical resonator is an important

goal for the preparation and investigation of macroscopic mechanical quantum behavior. In this work, a

measurement based scheme is presented where linear or square mechanical-displacement coupling can be

achieved using the optomechanical interaction that is linearly proportional to the mechanical position. The

resulting square-displacement measurement strength is compared to that attainable in the dispersive case

that has a direct interaction with the mechanical-displacement squared. An experimental protocol and

parameter set are discussed for the generation and observation of non-Gaussian states of motion of the

mechanical element.
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I. INTRODUCTION

Currently the main approaches to cavity optomechanics
[1] can be divided into two categories—reflective and
dispersive. In each approach the mechanical and optical
degrees of freedom are coupled via radiation pressure and
the dependence of the cavity resonance frequency on the
mechanical position. The first approach is depicted in
Fig. 1(a), where the optical field is reflected from a me-
chanical element and the change in cavity frequency and
hence interaction Hamiltonian are linearly proportional to
the mechanical position. Optomechanical realizations of
this approach include deformable Fabry-Perot cavities and
optical whispering-gallery-mode resonators, which are dis-
cussed in Ref. [1]. The second approach is depicted in
Fig. 1(b), where a mechanical element is positioned within
an optical field and partial reflection from both sides gives
rise to a dispersive interaction. In this arrangement, the
cavity frequency varies periodically with mechanical dis-
placement. This can be used to give a linear or quadratic
position-dependent change in the cavity frequency if the
mechanical element is positioned at an antinode or node of
the field, respectively. The flexibility to select between
linear or quadratic displacement coupling provides consid-
erable versatility and thus dispersive optomechanics
is an exciting candidate to observe and explore quantum-
mechanical phenomena of macroscopic resonators.
Optomechanical realizations of this approach utilize a
dielectric membrane [2] or trapped cold atoms [3], posi-
tioned within an optical cavity, and experimental work is
underway to realize this with an optically trapped micro-
sphere [4]. The quadratic mechanical-position coupling
offered by dispersive optomechanics provides a route to

observe quantization in mechanical energy [2]. Moreover,
such quadratic coupling can also be used for cooling and
squeezing of the mechanical element [5] and it can be
enhanced by using additional optical spatial modes, which
even allows for quartic interaction [6].
In this paper, a scheme is presented that allows measure-

ment of the mechanical displacement squared using an
optomechanical interaction that is linear with the mechani-
cal position. Here, optical pulses that are short compared to
a mechanical period are used and the square-displacement
coupling is obtained by exploiting the nonlinear optical
dependence of the interaction. This interaction has been
linearized in much of the present literature, but continuous
nonlinear optomechanical interaction has recently been
studied resulting in nonclassical states of light [7] and of
the mechanical oscillator [8]. Also, working beyond the
linear regime has been proposed for non-Gaussian
quantum-state preparation of a collective spin variable [9].
The optomechanical setup considered here is shown in
Fig. 1(c), where an optical pulse in a coherent state interacts
with an optomechanical system and is then measured via
homodyne detection. Following the interaction, Wigner
reconstruction of the optical subsystem of the optomechan-
ical entangled state, would yield a ‘‘scimitar state’’ shown
in Fig. 1(d). The form of this optical state can be understood
as the mechanical position fluctuations (including quantum
fluctuations) rotate the optical field. For small rotations, one
sees from Fig. 1(d) that measurement of the optical phase
quadrature allows for a measurement of the mechanical
position. However, of particular interest here, measurement
of the amplitude quadrature may give outcomes that could
have resulted from two distinct mechanical positions. This
is due to an effective displacement-squared coupling, which
can be used for non-Gaussian state preparation. In Ref. [10]
it was discussed how measurement of the optical phase
quadrature can be used to perform quantum-state tomog-
raphy of the motional state of the mechanical resonator
and generate conditional squeezed mechanical states.
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Thus, the possibility to select between displacement and
displacement-squared measurements provides the tools to
generate non-Gaussian quantum states of the mechanical
resonator and perform state reconstruction simply by
choosing the phase in the homodyne interferometer as is
shown in Fig. 1(e).

II. MODEL

The optomechanical Hamiltonian with linear mechani-
cal position coupling in the optical rotating frame at the
cavity frequency including a coherent resonant drive is

Hlin

@
¼ !Mb

yb� glin
ffiffiffi
2

p
ayaXM � i

ffiffiffiffiffiffiffiffiffiffiffiffi
2�Np

q
�inða� ayÞ;

(1)

where the optomechanical-coupling rate, which is realiza-
tion dependent, is of the form glin ¼ !Lx0=L. The cavity
field’s resonance frequency, annihilation operator, and am-
plitude decay rate are !L, a, and �, respectively, and L is
the cavity length. The mechanical zero-point extension is

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=2m!M

p
, where !M, b, m, and XMðPMÞ are the

mechanical element’s eigenfrequency, annihilation opera-
tor, effective mass, and position (momentum) quadrature
(operator), respectively, where a single mechanical mode is
considered. The input pulse has mean photon number Np

and is described by �in, the normalized envelope, i.e.,R
dt�2

inðtÞ ¼ 1, which is assumed real.

During the interaction, which is short with respect to a
mechanical period, thus requiring � � !M, the mechani-
cal position is considered constant and the optical and
mechanical equations of motion can be solved indepen-
dently of one another. Immediately after the pulse interac-
tion, the mechanical position is unchanged, i.e.,
Xout
M ¼ Xin

M; however, optomechanical entanglement is
generated and correlations are established between the

mechanical momentum and the optical intensity, Pout
M ¼

Pin
M þ ffiffiffi

2
p

glin
R
dtaya.

The intracavity field evolves during the nonlinear opto-
mechanical interaction according to
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where the field is rotated in proportion to the mechanical
position and ain is the optical input noise. This can be
immediately solved exactly [11], however, in this work
the solution is approximated as the rotation is assumed
small and the mean of the field is

haðtÞiffiffiffiffiffiffiffi
Np

p ’ �0ðtÞ þ i
glin
�

�1ðtÞhXMi � g2lin
�2

�2ðtÞhX2
Mi; (3)

where the dimensionless temporal mode functions �0;1;2

are introduced [12]. The phase quadrature of the intra-
cavity field contains information on the mechanical
displacement, and the amplitudequadrature carries informa-
tion of the mechanical-displacement squared [Fig. 1(e)].
Measurements of these quadratures can be performed by

time-domain homodyne detection of the output field aout ¼ffiffiffiffiffiffi
2�

p
a� ain. Homodyning the amplitude quadrature is

described by QX ¼ ffiffiffi
2

p R
dt�LOðtÞXout

L ðtÞ, where Xout
L ¼

2�1=2ðaout þ ayoutÞ (similarlyQP describes phase-quadrature
detection). For an optimal measurement of X2

M, (XM)

FIG. 1. Cavity optomechanics is currently realized using
(a) reflective and (b) dispersive approaches. The interaction in
the former is proportional to mechanical displacement XM, how-
ever, in the latter the interaction can be tuned to being proportional
to XM or X2

M. Pulses of light may be used to probe and manipulate
the motional state of the mechanical resonator. The optical setup
considered here (c) is a pulse incident upon an optomechanical
system with an interaction proportional to XM and then an optical
quadrature measurement performed via homodyne detection.
Following the interaction, the Wigner function of the optical
field (d) is scimitar shaped due to mechanical-position-induced
optical rotations. The distribution of the initial coherent state is
indicated by the dashed circle. (The parameters for this plot
were chosen to exaggerate the curvature.) For small rotations,
the phase quadrature QP is proportional to XM and the amplitude
quadrature carries X2

M information. The amplitude-quadrature
measurement outcome indicated by the red dashed line may
have originated from two distinct mechanical positions, which
provides a means for superposition preparation. By choosing the
phase in (e) homodyne detection one can use the amplitude
quadrature for X2

M measurements and quantum-state preparation
or use the phase quadrature for XM measurements to perform
quantum-state tomography.
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one chooses the local oscillator pulse �LO to have an
amplitude directly proportional to �2, (�1). The mean

of the amplitude-quadraturemeasurement is hQXi ¼ Qð0Þ
X �

�XhX2
Mi, where the first term is the contribution from�0 and

�X is the square-displacement measurement strength. For
convenience, the outcome of the homodyne measurement is

rewritten as �QX ¼ Qð0Þ
X �QX. The optimal single-pulsed

measurement of XM is achieved with an input drive with a
Lorentzian spectrum, which matches the natural decay of
the cavity [10]. The square-displacement measurement
strength is optimal when �2

inð!Þ¼ð3�Þ�18�5=ð�2þ!2Þ3,
which is not Lorentzian due to the higher-order nature

of the interaction considered here. This gives �X ¼ffiffiffiffiffiffiffiffiffiffiffiffi
42Np

p
g2lin=�

2.

This kind of pulsed interaction and measurement is well
suited to being described with the use of measurement
operators as outcome probabilities, and conditional me-
chanical states can be readily determined [13]. Homodyne
detection of the amplitude quadrature has the outcome

probability density Prð�QXÞ ¼ TrMð�y
X�X�

in
MÞ, where

�X is the corresponding measurement operator. In this
pulsed regime �QX has mechanical dependence only on

XM, which allows �y
X�X to be interpreted as an outcome

probability density conditioned on a mechanical position.
For the coherent optical drive considered here one obtains

�XðXM;�QXÞ ¼ ��1=4ei�linXM exp½�1
2ð�QX � �XX

2
MÞ2�;

(4)

where the mean momentum transfer is �lin ¼
ð5 ffiffiffi

2
p

=3ÞNpglin=�.

III. COMPARISON TO THE DISPERSIVE
QUADRATIC INTERACTION

Before proceeding to a discussion of the mechanical
states of motion that can be prepared with �X, the
square-displacement measurement scheme introduced
above is compared with the dispersive case. The
Hamiltonian from Ref. [2] for optomechanical systems
with a dispersive element positioned so that the cavity
frequency varies quadratically with the position of the
element, in the optical rotating frame at resonance, includ-
ing the drive is

Hsq

@
¼ !Mb

ybþ gsqa
yaX2

M � i
ffiffiffiffiffiffiffiffiffiffiffiffi
2�Np

q
�inða� ayÞ; (5)

where the quadratic-optomechanical coupling rate is

gsq ¼ ð16�2cx20=L�
2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� rÞp
, r is the (field) reflectivity

of the dispersive element, and � is the optical wavelength.
The phase quadrature of an optical pulse incident upon such
an optomechanical system will be displaced in
proportion to X2

M, and it is readily shown that for a homo-
dyne measurement of the phase quadrature with outcome

QP the measurement operator is �sq ¼ ��1=4e�i�sqX
in
MXM�

exp½� 1
2 ðQP þ �sqX

2
MÞ2�, which has recently been

used in Ref. [14]. After pulse-shape optimization, �sq ¼
3Npgsq=� and �sq ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
10Np

p
gsq=�. Comparing the mea-

surement strengths for the dispersive direct X2
M interaction

and the effectiveX2
M coupling from the linear interaction for

identical Np and � gives

�X

�sq
’ 1

�

F 2
lin

F sq

x2lin
x2sq

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� rÞp ; (6)

where the cavity finesses and mechanical zero-point exten-
sions are distinguished by subscripts for the two optome-
chanical cases. Remarkably, using the optomechanical
interaction that is linearly proportional to XM and optical
amplitude-quadrature measurements allows for X2

M mea-
surements that are stronger than that availablewith the direct
X2
M interaction in dispersive optomechanics by approxi-

mately the cavity finesse. This, in combination with the
measurement-based selectability between linear or qua-
dratic couplings offered here, is the main result of this work.

IV. EXPERIMENTAL PROTOCOL
AND DISCUSSION

Jacobs and colleagues discussed the preparation of su-
perposition of the position of a mechanical resonator via
X2
M measurements [15]. This work has recently been ex-

tended to include feedback control of the superposition
separation [16]. Such benchmark quantum states show
striking differences between classical and quantum behav-
ior and are thus highly sought experimentally to study the
quantum-mechanical properties of macroscopic objects
[17–19]. In the following, an experimental protocol and a
parameter set are discussed to prepare and observe the
spatial superposition of a massive mechanical resonator
using the nonlinear interaction and measurement �X. A
measurement on a variety of experimentally accessible
initial states is considered, and the resulting conditional
and unconditional mechanical states of motion are
determined.
As the spectrum of measurement outcomes is continu-

ous, it is not experimentally possible to postselect from
many experimental runs on a single measurement outcome.
Instead, a window must be used. The mechanical state
conditioned on outcomes occurring in the window �QX �
w=2 (labeled by w) is

�ðwÞ
M ¼ 1

PrðwÞ
Z
w
d�Q0

X�Xð�Q0
XÞ�in

M�
y
Xð�Q0

XÞ; (7)

where PrðwÞ ¼ R
w d�QX Prð�QXÞ is the probability of

obtaining an outcome in the window. The mean measure-
ment outcome for a mechanical thermal state with thermal
occupation �n is h�QXi ¼ �Xð1=2þ �nÞ. As the mean is
greater than zero, some insight is gained into the form of
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Prð�QXÞ, which is a non-Gaussian function with a large
wing for positive outcomes that increases for a larger
mechanical position variance.

In Fig. 2 the action of �X is considered on three me-
chanical Gaussian states: the ground state, a thermal state,
and a momentum-squeezed state. One may suspect that
quite a narrow window for conditioning must be used in
order to achieve significant coherence between the super-
position components, however, conditional mechanical
states, prepared from high-purity initial states, show strong
quantum coherence even for relatively large conditioning
windows. For example, the conditional mechanical state
shown in Fig. 2(b) exhibits strong Wigner negativity even
for w ¼ 0:8, which allows the use of 15% of the measure-
ment outcomes. This plot also reveals the interesting fea-
ture that the negative regions are ‘‘curled around’’ positive
regions, a feature which is not seen in the more commonly
studied superposition of coherent states. This arises due to
the population components having an asymmetric distri-
bution about their peaks, specifically, there is a broader

wing nearer XM ¼ 0 and a sharper edge on the other side.
This form of the population components is more clearly
seen in Fig. 2(e), which is the conditional mechanical state
starting from a low-occupation thermal state. When the
population components have a more symmetric XM distri-
bution about their peak, the interferences no longer curl as
strongly, as is seen in Fig. 2(h), the conditional state
starting from a squeezed state.
Since a measurement of the optical amplitude quadra-

ture erases all the linear-displacement information gained
during the interaction and h�QXi> 0, the unconditional
(i.e., all measurement outcomes are ignored) mechanical

state, �out
M ¼ R1

�1 d�QX�X�
in
M�

y
X, is also non-Gaussian,

however, mixed.
The superposition separation � is defined as the distance

between the maxima of the two population components.
This depends on the initial mechanical distribution, the
measurement outcome, and the square-displacement mea-
surement strength. For Gaussian initial mechanical states
with a standard deviation � in their position spread, the
superposition separation is

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�QX�X � ��2

p
�X

: (8)

Experimental progress in optomechanics is steadily ap-
proaching the regimewhere the important parameter glin=�,
which quantifies the mechanical momentum displacement
by a single photon (for � � !M), approaches unity. In this
work �X scales with the square of this parameter and the
pulsed position-measurement strength for mechanical
quantum-state tomography [10] scales linearly with this
parameter. In present-day experiments [20], glin=� � 1,
which this work overcomes by utilizing large coherent
amplitudes in order to achieve sufficient coupling to pre-
pare and observe non-Gaussian mechanical states of mo-
tion. To ensure a short interaction, the cavity decay rate is
chosen as � ¼ 103!M, which for a desired finesse sets the
cavity length required. In Table I a list of parameters is
provided for a deformable Fabry-Perot optomechanical
system with a kHz-scale mechanical resonator.
The protocol for quantum-state preparation and

quantum-state tomography comprises three steps: (i) an
initialization stage of mechanical precooling and/or
squeezing. Since � � !M is required here and low-
frequency mechanical resonators are considered, active-
feedback cooling is most suitable [21,22]. Alternatively,
in this regime, squeezing and purification can be achie-
ved with the use of conditional measurements [10].
Additionally, squeezing can be achieved by applying a
parametric modulation to the mechanical device [23].
(ii) Following this, an optical pulse is injected into the
optomechanical cavity to realize �X and the measurement
outcome is recorded. At this point, the mechanical oscil-
lator has gained the momentum �lin, which after one
quarter of a period of free evolution shifts the cavity

FIG. 2. Mechanical Wigner functions of initial states (left),
conditional states (center), and unconditional states (right).
(XM is the horizontal axis, PM is the vertical axis. The plot
range is�5 for all axes. Color scale: black is for zero magnitude,
blue for positive values, and red for negative values.) The initial
states are the ground state, �n ¼ 0 (a), a thermal state with
�n ¼ 2 (d), and a momentum-squeezed vacuum state with squeez-
ing parameter r ¼ 0:5 (g). Conditional states prepared with �X

acting on the corresponding initial states with �X ¼ 1, �QX ¼
1:5, w ¼ 0:8 are shown in (b) and (e) and �QX ¼ 6:4 has been
used in (h). The probabilities of obtaining an outcome in the
windows used above are: (b) 14.9%, (e) 14.5%, and (h) 1.1%.
Note the disappearance of negativity—a quantum-to-classical
transition—for initial thermal occupation (e) and if the measure-
ment outcomes are ignored (c), (f), (h).
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resonance frequency by�!� ¼ glin
ffiffiffi
2

p
�lin. As this can be

much larger than � any subsequent pulse will not reso-
nantly drive the cavity. In order to overcome this, a two-
pulse preparation sequence can be used where a second
pulse follows after half a mechanical period of free evolu-
tion to cancel the mean momentum gained by the resona-
tor. In this case, one applies�X twice where both outcomes
are recorded, thus strengthening the measurement of X2

M.
This procedure requires a good degree of optical amplitude
stability, which is necessary for�X measurements anyway.
During the free evolution, the appropriate master equation
is solved to determine the mechanical state immediately
prior to the second measurement. However, as discussed
below, given the parameters considered here, the coupling
to the mechanical bath is not expected to play a strong role
during this time scale. (iii) With the resonator state near the
origin of phase space, quantum-state tomography, as dis-
cussed in Ref. [10], is now performed. This is achieved by
later injecting a subsequent pulse with the local oscillator
phase switched to measure the optical phase quadrature as
in Fig. 1(e). Repeating this protocol many times and post-
selecting the measurement outcomes �QX within the de-
sired window provides a powerful experimental platform
to generate and fully reconstruct a non-Gaussian state of
motion of a mechanical resonator.

In order to prepare mechanical superposition states with
�X there needs to be a sufficient mechanical-displacement-
induced optical rotation such that two distinct positions
give the same amplitude-quadrature outcome. This is best
achieved if the mechanical mean position gives zero rota-
tion. For mechanical states that have a nonzero mean,
which could have been conditionally prepared with a prior
pulse [10], non-Gaussian state preparation and tomography
can be performed by providing a feedback phase shift
[indicated by the arrow in Fig. 1(c)] to rotate the optical
scimitar to be centered about the QX axis, as in Fig. 1(d).
Additionally, it is noted that for optical rotation beyond
that considered in (3), existing experimental calibration
procedures and the interpretation of optical phase mea-
surements will require modification to take the optome-
chanical nonlinearity into account.

Studying the decoherence of quantum superposition in a
mechanical resonator is important to determine the feasi-
bility of optomechanical systems as components for
quantum-information applications. Proposals for such ap-
plications are numerous and include quantum memory
[24], optomechanically mediated qubit-light transduction
[25], and coherent optical wavelength conversion [26], to
name a few. There is much literature on the topic of
environmental coupling and decoherence [27], so no de-
tailed discussion will be provided here. However, in the
context of this proposal, what is important is the parameter
�n=Q, where Q is the mechanical quality factor. This pa-
rameter quantifies the rate of rethermalization normalized
to the mechanical frequency and must be much less than
unity for studying the evolution of quantum-mechanical
phenomena over the time scale !�1

M . A temperature of
25 mK accessible with dilution refrigeration and a Q ¼
5� 106 give �n=Q ¼ 0:05 using the mechanical frequency
above. With the full quantum-state tomography available
here, this scheme allows the dynamics of mechanical
superposition states to be measured, which may be
used to characterize the couplings responsible for decoher-
ence, thus allowing for improved mechanical device
engineering.
Furthermore, the significant mass involved in the spatial

superposition offers a parameter regime that allows for an
experimental test of collapse models. Very recent pro-
posals in matter-wave interferometry [14,28], which also
consider the use of filtering-type operations to generate
superposition, may provide the ability to test continuous
spontaneous localization [29]. The mechanical resonator
parameters considered here are not suitable for testing
continuous spontaneous localization predominantly
because the superposition separation is small [30].
However, the separation can be larger than the distribution
of the mass contained within the nucleus and so this can be
used to test gravitational collapse [31]. For example, using
the parameters above (� ¼ 2:0, x0 ¼ 10 fm) the separation
is approximately 28 fm and the diameter of a 28Si nucleus
is approximately 8 fm. It may be useful in such an inves-
tigation to start with an initial squeezed mechanical state,
as is considered in Figs. 2(g)–2(i), as one can study a larger
range of superposition separations as the probability den-
sity of measurement outcomes is broader.

V. CONCLUSION

This work has provided a means to measure the dis-
placement or displacement squared of a mechanical reso-
nator using the optomechanical interaction linearly
proportional to the mechanical displacement by simply
changing the phase in optical homodyne measurement.
Displacement-squared measurements have so far been
predominantly considered in dispersive optomechanics;
however, the optimal square-displacement measurement
strength obtained in the scheme introduced here can be

TABLE I. An experimentally accessible set of parameters to
achieve unity square-displacement measurement strength.

Optical wavelength: � 1064 nm

Mechanical effective mass: m 40 ng

Mechanical eigenfrequency: !M=2� 2 kHz

Cavity finesse: F 5� 104

Photon number per pulse: Np 1:7� 109

Cavity length: L 750 	m
Mechanical ground-state size: x0 10 fm

Optomechanical coupling: glin=2� 3.8 kHz

Single-photon strength: glin=� 1:9� 10�3

Separation ( �n ¼ 0, �QX ¼ 1:5): � 2.0
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significantly stronger than that available in dispersive op-
tomechanics as it scales more favorably with the cavity
finesse. This opens the possibility that optomechanics
with an interaction Hamiltonian that is linear with the
mechanical position may also provide a route to observe
mechanical-energy quantization, as was considered in [2].
Moreover, as was proposed in [15], with an X2

M coupling to
a mechanical resonator one can prepare a superposition of
positions via measurement. This, applied to the X2

M cou-
pling achieved here and combined with the ability to
perform mechanical state tomography with time [10], pro-
vides an alternative to Refs. [17,19] to generate the super-
position of a mechanical resonator without the need for
large single-photon mechanical displacement glin=�.
Such mechanical superposition states are important to
investigate experimentally in order to determine the feasi-
bility of mechanical resonators as elements in quantum-
information applications and to explore decoherence
mechanisms arising from environment interaction or, for
example, gravitationally induced collapse.
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