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We present a quantum optics formalism to study the intensity power broadening of a semiconductor

quantum dot interacting with an acoustic-phonon bath and a high-Q microcavity. Power broadening is

investigated using a time-convolutionless master equation in the polaron frame, which allows for a

nonperturbative treatment of the interaction of the quantum dot with the phonon reservoir. We calculate

the full non-Lorentzian photoluminescence (PL) line shapes and numerically extract the intensity line-

widths of the quantum-dot exciton and the cavity mode as a function of the pump rate and temperature.

For increasing field strengths, multiphonon and multiphoton effects are found to be important, even for

phonon-bath temperatures as low as 4 K. We show that the interaction of the quantum dot with the phonon

reservoir introduces pronounced features in the power-broadened PL line shape, enabling one to observe

clear signatures of electron-phonon scattering. The PL line shapes from cavity pumping and exciton

pumping are found to be distinctly different, primarily since the latter is excited through the exciton-

phonon reservoir. To help explain the underlying physics of phonon scattering on the power-broadened

line shape, an effective phonon Lindblad master equation derived from the full time-convolutionless

master equation is introduced; we identify and calculate distinct Lindblad scattering contributions from

electron-phonon interactions, including effects such as excitation-induced dephasing, incoherent exciton

excitation, and exciton-cavity feeding. Our effective phonon master equation is shown to reproduce the

full PL intensity and the phonon-coupling effects very well, suggesting that its general Lindblad form may

find widespread use in semiconductor cavity-QED.
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I. INTRODUCTION

Semiconductor quantum dots (QDs) embedded in mi-
crocavities have established themselves as a new paradigm
in cavity quantum electrodynamics (cavity-QED).
Technological progress in the design and fabrication of
semiconductor cavity-QED systems has enabled them to
be used as components in quantum information processing
[1,2] and for the generation of indistinguishable photons
[3–6]. These quantum applications require robust cavity-
QED based QD devices that rest on the ability to manipu-
late and control the underlying quantum processes. Such
quantum control is usually obtained when the cavity
and QD are in the intermediate to strong-coupling regime
[7–9]. Recent experimental studies have focused on the
resonance fluorescence of a QD coupled to a cavity mode
[10–12], and significant progress has been made in the
study of an off-resonant QD-cavity system that is used to
observe resonance fluorescence of a single QD [13,14].
Semiconductor micropillar systems are particularly attrac-
tive since a geometrical separation between the pump field

and emitted fluorescence signal can be made, facilitating
nonlinear quantum optical studies such as intensity power
broadening [13].
For semiconductor cavity-QED systems, signatures of

electron–acoustic-phonon scattering have been noted with
incoherent excitation, resulting in off-resonant ‘‘cavity
feeding’’ [15–22] and an asymmetric (on-resonance) vac-
uum Rabi doublet [20,23,24]. Various phonon-coupling
models have been developed to try to explain these features
[20,24–29]; for example, data obtained for the linear spec-
trum of single site-selected dots in cavities show good
agreement with photon Green function theories—where
the phonon coupling is included as a self-energy correction
to the spectrum [22–24]. Recently, several works have also
experimentally investigated coherent power (intensity)
broadening in semiconductor cavity-QED systems.
For example, Majumdar et al. [30] studied the role of
phonon-mediated dot-cavity coupling on the power-
broadened photoluminescence (PL) intensity for a planar
photonic crystal system; with experiments performed at
temperatures of 30–55 K on self-assembled InAs QDs, the
cavity-emitted PL intensity was found to have extraneously
broadened linewidths [when compared with calculations
from a simple atomic master equation (ME)]. While addi-
tional coupling may occur, e.g., from the QD to the con-
tinuum states due to the presence of the nearby wetting
layer (if it exists), or due to Auger scattering [31–34], these
processes are usually more important for incoherent
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excitation. For near-resonant coherent excitation, Ulhaq
et al. [35] have demonstrated that dephasing and coupling
due to acoustic phonons is likely the primary (and intrin-
sic) mechanism that couples the QD and the spectrally
detuned cavity mode; their experiments were performed
using self-assembled InGaAs/GaAs QDs embedded in a
semiconductor micropillar cavity. While the important role
of electron-phonon scattering on the linear absorption and
emission spectra of self-assembled QDs is now becoming
better established [36–38], there appears to be little theo-
retical work describing phonon effects on PL power broad-
ening in a semiconductor cavity-QED system.

Nonlinear resonance fluorescence of an InGaAs QD
embedded in a high-quality micropillar cavity was recently
investigated by Ulrich et al. [39], where, in contrast to
atomic cavity-QED, a clear indication of excitation-
induced dephasing (EID) was found to manifest in
Mollow triplet spectra with pump-induced spectral side-
band broadening. Without cavity interactions, it is well
known that the interaction of the driven QD with the under-
lying phonon reservoir can introduce additional dephasing
processes and acoustic-phonon sidebands [36–38]. In a
cavity system, these phonon processes can also result in
significant coupling between a nonresonant cavity and a
QD exciton. Very recently, a polaron ME description of
phonon-induced EID in QDs and cavity-QED was de-
scribed by Roy and Hughes [40]; McCutcheon and Nazir
have also adopted a polaronME approach to describe pulse-
excited excitons (without cavity interactions) [41]. In light
of these phonon-scattering studies and the emerging class
of semiconductor cavity-QED experiments, the inclusion of
phonon scattering in the theoretical description of PL power
broadening in a cavity-QD system is highly desired. More
generally, one requires accurate quantum optical descrip-
tions of the semiconductor cavity-QED system, where im-
portant electron-phonon interactions are accounted for.

In this paper, we present a quantum ME formalism to
study the intensity power broadening of a semiconductor
cavity-QED system and identify the qualitative features
of power broadening in the PL intensity introduced due
to electron-phonon interactions. We exploit a time-
convolutionless ME (i.e., local in time) for the reduced
density matrix of the dot-cavity subsystem, where the
system-bath incoherent interaction is treated to second
order [40,41]. The perturbative treatment is performed in
the polaron frame which allows us to study the effects of
phonon dephasing on the coherent part of the Hamiltonian
exactly. Importantly, the cw laser driving the QD introduces
additional EID effects in addition to pure dephasing due to
the phonon reservoir [40,42]. In the appropriate limits, the
model fully recovers the independent boson model (IBM)
[43–45] and the Jaynes-Cummings model. The polaron
transformation is particularly convenient for studying QD-
cavity-QED systems as it eliminates the exciton-phonon
coupling and introduces a modified dot-cavity coupling and
a modified radiative-decay rate [43,45]; in addition, there is

a phonon-induced renormalization of the QD resonance
frequency through the polaron shift. In the case of an
exciton-driven system, the Rabi frequency of the cw laser
is also renormalized by a temperature-dependent factor
which essentially accounts for the dephasing of the cw
drive due to phonon coupling. A similar polaron ME ap-
proach was previously derived by Wilson-Rae and
Imamoglŭ [45], who studied the linear absorption spectrum
of a cavity-QED system; their ME form [46] is nonlocal in
time and is substantially more difficult to solve than the
time-convolutionless form [47].
For our coherently-pumped cavity-QED investigations,

we consider two distinctly different pumping scenarios:
(i) the QD is driven by a coherent cw laser field, and
(ii) the cavity mode is driven by a coherent cw laser field.
We describe the generic features arising due to the relative
interplay between phonon-induced dot-cavity coupling and
EID in the case of a QD-driven system, and compare and
contrast with power broadening for a cavity-driven system;
we also discuss the differences in the integrated PL (IPL) for
a dot-driven and cavity-driven system. For strong coherent
drives (electromagnetic fields), the PL intensity contains
significant phonon-bath signatures over a wide range of
frequencies. To help explain the effects of phonon scatter-
ing in these systems, we also derive an effective phononME
of the Lindblad form, and give simple analytical formula for
the various phonon-mediated scattering rates.
Our paper is organized as follows. In Sec. II we present

the model Hamiltonian and derive a time-convolutionless
polaron ME where electron-phonon interactions are in-
cluded to all orders. In Sec. III we introduce an effective
phonon-modified Lindblad ME and compare it to the full
time-convolutionless solution; the effective Lindblad ME
is shown to yield good agreement with the time-
convolutionless ME, and we use it to describe the various
phonon-scattering processes. In Secs. IVA, IVB, IVC,
IVD, and IVE we present and discuss our numerical
results of the power-broadening line shape for both
QD-driven and cavity-driven systems. In Sec. V we present
our conclusions. The Appendix provides some technical
details about the derivation of our effective phonon-
scattering rates and Lindblad ME.

II. GENERAL THEORYAND POLARON MASTER
EQUATION MODEL

The dynamics of a strongly confined QD can be modeled
by considering a quantized electron-hole excitation, where
the electron occupies a conduction-band state and the hole
occupies a valence-band state. Neglecting quantum spin,
the dominant features of a strongly confined QD can be
described by the two lowest-energy bound states. This two-
level model is then conditioned by the interaction of the
electrons with the lattice modes of vibration, i.e., the
acoustic phonons. When the effective two-level system is
driven by a cw laser field, power broadening may be
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substantially modified by the coupling of the QD to the
phonon modes [48,49]. Figure 1 shows a schematic of a
semiconductor cavity-QED system [Fig. 1(a)], and an
energy-level diagram associated with cavity pumping
[Fig. 1(b)] and exciton pumping [Fig. 1(c)]; the various
parameters in the figures will be introduced below. The
semiconductor cavity system of interest could be a micro-
pillar cavity system [cf. Figure 1(a)], which allows one to
excite and measure through different photon reservoirs
[39] (e.g., cavity pumping and exciton emission).

Working in a frame rotating with respect to the laser
pump frequency !L, we first introduce the model
Hamiltonian describing a cavity-QED system where the
QD interacts with an acoustic-phonon reservoir:

H ¼ @�xL�̂
þ�̂� þ @�cLâ

yâþ @gð�̂þâþ ây�̂�Þ
þHx=c

drive þ �̂þ�̂�X
q

@�qðb̂q þ b̂yq Þ þ
X
q

@!qb̂
y
q b̂q;

(1)

where b̂qðb̂yq Þ are the annihilation and creation operators of
the phonon reservoir, â is the leaky cavity-mode annihila-
tion operator, �̂þ (annihilation) and �̂� (creation) are the
Pauli operators of the electron-hole pair or exciton, ��L �
!� �!L (� ¼ x, c) are the detunings of the exciton (!x)
and cavity (!c) from the coherent pump laser (!L), and g
is the cavity-exciton coupling strength. The pump term

Hx=c
drive accounts for the coherent drive on the cavity-QED

system; for a QD (exciton)-driven system, Hx
drive ¼

@�xð�̂þ þ �̂�Þ, while for a cavity-driven system, Hc
drive ¼

@�cðâþ âyÞ. The defined pump rate �x=c is 2 times the

classical Rabi frequency.
Transforming to the polaron frame, we eliminate the

QD-phonon coupling and introduce a renormalized
dot-cavity coupling strength [28]. For the case of the
QD-driven system, the polaron transformation also results
in a renormalized Rabi frequency, defined below. The
polaron transformation [1,43] can be written as

H0 ¼ expðSÞH expð�SÞ; (2)

where

S ¼ �̂þ�̂�X
q

�q

!q

ðb̂yq � b̂qÞ: (3)

The transformed Hamiltonian becomes

H0
sys ¼ @ð�xL � �PÞ�̂þ�̂� þ @�cLâ

yâþ hBiX̂g; (4a)

H0
bath ¼

X
q

@!qb̂
y
q b̂q; (4b)

H0
int ¼ X̂g�̂g þ X̂u�̂u; (4c)

with

B̂� ¼ exp

�
�X

q

�q

!q

ðb̂q � b̂yq Þ
�
; (5a)

�̂g ¼ 1
2ðB̂þ þ B̂� � 2hBiÞ; (5b)

�̂u ¼ 1

2i
ðB̂þ � B̂�Þ: (5c)

The polaron shift,

�P ¼
Z 1

0
d!

Jð!Þ
!

; (6)

and the thermal average of the bath displacement operator
[43],

hBi ¼ exp

�
� 1

2

Z 1

0
d!

Jð!Þ
!2

cothð�@!=2Þ
�
; (7a)

¼ exp

�
� 1

2

X
q

�
�q

!q

�
2ð2 �nq þ 1Þ

�
; (7b)

¼ hBþi ¼ hB�i; (7c)

where �nq � hb̂yq b̂qi ¼ ½e�@!q � 1��1 is the mean phonon

occupation number (Bose-Einstein distribution) at a bath
temperature, T ¼ 1=Kb�, and Jð!Þ is the phonon spectral
function defined later in Eq. (14). For clarity, we will
henceforth assume that the polaron shift is implicitly in-
cluded in our definition of !x (one should, however, keep
in mind that this shift is temperature dependent). For a dot

(exciton)-driven system, X̂g and X̂u are defined through

X̂g ¼ @gðây�̂� þ �̂þâÞ þ @�xð�̂� þ �̂þÞ; (8a)

X̂u ¼ i@½gð�̂þâ� ây�̂�Þ þ i@�xð�̂þ � �̂�Þ�; (8b)

and for a cavity-driven system,

FIG. 1. (a) Schematic of an example of a semiconductor cavity
used in cavity-QED (micropillar system), containing a coupled
QD, and driven by a cw laser (�x, from the side, or �c, from the
top). The micropillar system is advantageous to study PL power
broadening since, e.g., exciton broadening can be directly studied
through cavity emission—since these input-output channels are
geometrically decoupled. (b) Schematic of a cavity-driven cavity-
QED system,where jþi denotes the excitedQD state, j�i denotes
the ground state, j1i and j0i represent the first excited and ground
state of the cavity mode. Also shown is the phonon reservoir
as blue (multiple) lines. The terms hBig and hBi�x represent a
phonon-modified coherent reduction (hBiðTÞ � 1) in the exciton-
cavity coupling rate and the exciton pump rate, respectively, (see
text for details). (c) Schematic of a dot-driven cavity-QED system
with same energy-level notation as in (b).
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X̂g ¼ @gðây�̂� þ �̂þâÞ; (9a)

X̂u ¼ i@gð�̂þâ� ây�̂�Þ: (9b)

It is worth noting the slightly unusual definition of the
system Hamiltonian, Eq. (4a). The usual (but in general,
incorrect) decomposition of the system Hamiltonian to
include only the noninteracting QD and cavity parts does
not take into account the effect of the coherent cw drive on
the system Hamiltonian. As the cavity and the QD systems
are internally coupled, as discussed by Carmichael and
Walls [50], this leads to violation of detailed balance.
The system Hamiltonian written above leads to the correct
form of the density operator while preserving detailed
balance. Moreover, it includes the effect of dot-cavity
coupling and the dot-cw driving on the coherent part of
the Hamiltonian to all orders.

Next, we unitarily transform to a frame of reference
defined by this system Hamiltonian, which we will use to
obtain a time-convolutionless ME; the net effect of this
transform, e.g., in the case of resonance fluorescence with
an exciton-driven system, results in Mollow triplet peaks
that sample the asymmetric phonon bath at the dressed
eigenfrequencies—as determined by the modified system
Hamiltonian. Somewhat similar techniques (i.e., bath sam-
pling at the dressed resonances) have been employed to
study atomic dynamics in generalized (engineered) photon
reservoirs, including photonic-band gap materials [51] and
squeezed reservoirs [52].

Phenomenologically, we include the radiative decay of
the QD and the cavity mode decay as Liouvillian super-
operators acting on the reduced density matrix [20]. In
addition, we incorporate an additional pure-dephasing pro-
cess beyond the IBM with a rate �0—this accounts for the
broadening of the zero-phonon line (ZPL) with increasing
temperatures [36,53–61]. Though there is some contro-
versy about what causes the broadening of the ZPL, e.g.,
spectral diffusion, anharmonicity effects, [57,58] phonon
scattering from interfaces, [59,60], and a modified phonon
spectrum [61], it is well known that the ZPL broadens as a
function of temperature with a Lorentzian scattering pro-
cess; thus, we treat the broadening of the ZPL phenom-
enologically, while accounting for broadening as a
function of temperature similar to experiments
[20,53,56], with �0ðTÞ scaling as �1 �eV=K. The various
Lindblad superoperators act on the reduced system density
matrix, and are defined through

Lð	Þ ¼ ~�

2
ð2�̂�	�̂þ � �̂þ�̂�	� 	�̂þ�̂�Þ

þ 
ð2â	ây � âyâ	� 	âyâÞ

þ �0

2
ð2�̂11	�̂11 � �̂11�̂11	� 	�̂11�̂11Þ; (10)

where 2
 is the cavity decay rate, ~� ¼ �hBi2 is the
radiative-decay rate, and �̂11 ¼ �̂þ�̂�. The radiative-
decay rate has an additional renormalization by a factor

of hBi2, which reduces the effective radiative-decay rate in
the presence of phonons [62].
We then derive a time-convolutionless ME for the re-

duced density operator 	ðtÞ of the cavity-QED system [41]
in the second-order Born approximation (for incoherent
bath coupling). The time-convolutionless form of the ME,
though local in time, is known to capture non-Markov
effects due to the reservoir [63]. However, for our analysis,
we will make a Markov approximation as typical phonon
processes are substantially faster (i.e., a few picoseconds)
than the relevant system dynamics by at least an order of
magnitude. This allows us to obtain effective rates which
naturally depend on the spectral densities of the phonon
spectral function that are locally sampled by the dressed
resonances. We have checked that the Markov limit of the
fully non-Markovian time-convolutionless ME is rigor-
ously valid for the system and excitation (cw) cases of
interest. Thus, while it is straightforward to carry out non-
Markov calculations, it is not necessary here—they give
identical results.
In the interaction picture described by H0

sys, we consider

the exciton-photon-phonon coupling H0
int to second order

(Born approximation), and trace over the phonon degrees
of freedom to obtain a Markovian time-convolutionless
ME [40,41]:

@	ðtÞ
@t

¼ 1

i@
½H0

sys; 	ðtÞ� þ Lð	Þ � 1

@
2

Z 1

0
d�

X
m¼g;u

fGmð�Þ

� ½X̂m; e
�iH0

sys�=@X̂me
iH0

sys�=@	ðtÞ� þ H:c:g;
(11)

where Gg=uðtÞ ¼ h�g=uðtÞ�g=uð0Þi, and we have assumed

that the phonon bath is in thermal equilibrium. The polaron
Green functions are [43,45]

GgðtÞ ¼ hBi2fcosh½�ðtÞ� � 1g; (12a)

GuðtÞ ¼ hBi2 sinh½�ðtÞ�; (12b)

which depend on the phonon correlation function,

�ðtÞ¼
Z 1

0
d!

Jð!Þ
!2

½cothð�@!=2Þcosð!tÞ� isinð!tÞ�;
(13a)

¼X
q

�
�q

!q

�
2½ð �nqþ1Þe�i!qtþ �nqe

i!qt�; (13b)

where Jð!Þ is the characteristic phonon spectral function,
defined in this work as

Jð!Þ ¼ �p!
3 exp

�
� !2

2!2
b

�
: (14)

This form of the spectral function [Eq. (14)] describes the
interaction between the electrons and the longitudinal
acoustic phonons via a deformation potential coupling
which is the main source of dephasing in self-assembled
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InAs/GaAs QDs. For all our calculations that follow, we
use parameters suitable for InAs/GaAs QDs [64], with
!b ¼ 1 meV (!b is a high frequency cutoff proportional
to the inverse of the typical electronic localization length in
the QD) and �p=ð2Þ2 ¼ 0:06 ps2; these values vary

somewhat in the literature, though we have taken ours
from fitting recent experiments [24,39,40]. Using the pa-
rameters above, e.g., at T ¼ 10 K, yields a polaron shift,
�P � 42 �eV, and a Franck-Condon renormalization,
hBi ¼ 0:84. With these phonon parameters, we already
see that clearly the coherent renormalization effects will
be important for anlyzing PL intensity for QD-cavity sys-
tems, even at relatively low phonon-bath temperatures.

We briefly mention that there are other electron–
phonon-scattering models that can go beyond the polaron
ME approach. For example, McCutcheon et al. [65] re-
cently introduced a more general ME technique to describe
the nonequilibrium dynamics of a QD system interacting
with a phonon reservoir based on a variational formulation
(with no cavity coupling). This elegant approach extends
the validity of the ME to parameter regimes, �x � !b,
where the ME in the polaron frame can break down.
However, the pump parameter regimes that we study in
this work (�x=c 	 !b) are well within the domain of

validity of our ME, so we can safely use the polaron ME,
while also accounting for cavity coupling [40]. A more
general description of the system dynamics valid in all
regimes can be obtained using a quasiadiabatic path-
integral approach [66,67]. The benefits of our polaron
ME is that the solution, even with multiphonon and multi-
photon effects included, is relatively straightforward, and it
has already been used to help explain experiments for
coherently excited dots in the regime of cavity-QED
[39,40]. Moreover, as we will show below, one can derive
a user-friendly Lindblad ME that contains many of the
key features of phonon interactions in semiconductor
cavity-QED systems.

For numerical calculations, we solve the above ME with
steady-state pumping (i.e.,�x=c are time-independent), with

the exciton initially in the ground state. Prior to these
dynamical calculations, we compute the phonon-scattering
terms in Eq. (11), whose solution is naturally problem
dependent (through H0

sys). Thus, there are no fixed

phonon-scattering rates for analyzing QD power broaden-
ing as a function of pump power, as the phonon-scattering
rates are pump dependent. The same arguments apply for
studying power broadening as a function of temperature;
one must obtain the phonon-induced scattering rates for
each pump value and temperature. Experimentally, the PL
intensity line shape is usually obtained by measuring the
QD exciton intensity (Ix) or cavity-mode intensity (Ic) as a
function of an increasing pump field. To connect to these
quantities, we solve the above ME in a Jaynes-Cummings
basis with states j0i;j1Li;j1Ui;j2Li;j2Ui;..., and compute
the steady-state exciton and cavity-photon populations,

�nx � h�þ��ijss / Ix and �nc�hayaijss/Ic. Defining the
photon states jni, with n ¼ 0; 1; 2; . . . , and exciton states
j þ =�i, the Jaynes-Cummings ladder states are then re-
lated to the bare states, e.g., through j0i¼j�ij0i, j1Li ¼
1ffiffi
2

p ðj�ij1i � jþij0iÞ, j1Ui ¼ 1ffiffi
2

p ðj�ij1i þ jþij0iÞ, etc.
In our calculations we make use of the quantum optics

toolbox by Tan [68], and find that a basis truncation to two-
photon correlations (two photons or 5 states) is sufficient
and/or necessary for all the dot-driven simulations, while a
basis truncation to six photon correlations (six photons or
13 states) is sufficient and/or necessary for all cavity
calculations that follow. The role of multiphoton effects
depends on the value of the dot-cavity coupling rate g,
which we choose to be g ¼ 20 �eV, which is consistent
with typical semiconductor cavity-QED power-broadening
experiments (e.g., see Refs. [30,35]). A detailed discussion
of the role of multiphoton, and multiphonon processes, is
presented in Sec. IVB.

III. EFFECTIVE PHONON MASTER EQUATION
OF THE LINDBLAD FORM

Our polaron ME [Eq. (11)] includes both coherent and
incoherent contributions from electron-phonon scattering,
but some care and insight is needed in extracting the
relevant incoherent scattering rates. It is therefore instruc-
tive to construct a simplified phonon-modified ME of
the Lindblad form, which we call an effective phonon
master equation (EPME); we do this by simplifying the

term, e�iH0
sys�=@X̂me

iH0
sys�=@, appearing in the full time-

convolutionless ME [Eq. (11)]. The resulting Lindblad-
form ME enables a very simple numerical solution and
facilitates the extraction of various phonon-induced scatter-
ing rates in a clear and transparent way. We expect that the
integral in Eq. (11) can be approximated, under certain
circumstances, by only including the phase evolution of

the operators X̂g;u with respect to the noninteracting part of

the system evolution. Further, for a QD-driven system we
only include terms proportional to g2 and �2

x and ignore
cross terms proportional to g�x; the inclusion of the cross
terms do not preserve the Lindblad form and contribute
very little to the overall broadening line shape as can be
demonstrated numerically. For a cavity-driven system, we

again include the phase evolution of the operators X̂g;u with

respect to the noninteracting part of the system evolution;
however, the effective Lindblad description has only con-

tributions which are proportional to g2—since X̂g;u do not

depend on �c. We will, of course, compare the EPME
solution with the full numerical solution of the polaron
time-convolutionless ME, i.e., Eq. (11); the prime purpose
of the EPME is to help elucidate the physics of phonon-
induced incoherent scattering, though we will highlight
regimes where it can work quite well in accurately describ-
ing the full characteristics of the entire power-broadened
PL line shape.

INFLUENCE OF ELECTRON–ACOUSTIC-PHONON . . . PHYS. REV. X 1, 021009 (2011)

021009-5



We postulate that the dynamics of the QD-driven system
can now be approximately described through

@	ðtÞ
@t

¼ 1

i@
½Heff

sys; 	ðtÞ� þ Lð	Þ þ Lphð	Þ; (15)

where Lphð	Þ (ph refers to phonon) is given by

Lphð	Þ ¼
���
ph

2
Lð�̂�Þ þ ��þ

ph

2
Lð�̂þÞ þ ��þa

ph

2
Lð�̂þâÞ

þ �ay��
ph

2
Lðây�̂�Þ; (16)

and the superoperator LðD̂Þ is defined as

LðD̂Þ ¼ 2D̂	D̂y � D̂yD̂	� 	D̂yD̂: (17)

The above effective ME [Eq. (15)] has a remarkably simple
form, and its general format should be familiar to many
researchers who have been using atomic cavity-QED mod-
els to connect to experimental data with semiconductor
cavity-QED systems. However, it must be used with cau-
tion, as it is only valid within certain regimes where the
above noted approximations are good. The phonon-
mediated rates, which drive the effective Lindblad dynam-
ics, are derived to be (see the Appendix)

���=�þ
ph ¼ 2hBi2�2

xRe

�Z 1

0
d�e�i�xL�ðe�ð�Þ � 1Þ

�
; (18)

��þa=ay��
ph ¼2hBi2g2Re

�Z 1

0
d�e�i�cx�ðe�ð�Þ�1Þ

�
; (19)

where �cx ¼ !c �!x is the cavity-exciton detuning.
Figure 2 shows a schematic of the various effective

phonon-scattering processes: ��þ
ph describes phonon-

assisted incoherent excitation and EID (pump-induced
broadening), ���

ph describes enhanced radiative decay and

EID, ��þa
ph describes (the somewhat unlikely scenario of)

exciton excitation via the emission of a cavity photon, and

�ay��
ph describes the process of cavity excitation (cavity

feeding) via the absorption of a photon. Importantly, all of
these scattering events are driven by electron-phonon in-
teractions and they cause effects that are significantly
different to simple pure-dephasing models. In fact, pure
dephasing through �0 only results in Lorentzian coupling,
and is found to play a minor role in what follows below.

Our formalism above shows that for a cavity-driven

system, ��þ=��
ph ¼ 0 and ���=�þ

ph ¼ 0, and there is no

phonon-induced EID due to the lack of any coupling of the
drive with the phonon reservoir. We therefore expect (and
find) substantially different intensity power broadening be-
tween dot-driven and cavity-driven systems; both of these
exciton-driven and cavity-driven models are also markedly
different from simple atomic models. We highlight that a

similar exciton-cavity (feeding) rate �ay��
ph has been derived

byXue et al. [25] and byHohenester [27], though thesewere

obtained for an undriven cavity-QED system. Both of these
useful approaches also use a polaron frame to describe the
incoherent scattering, though the end equations have some
potential problems for small cavity-exciton detunings
(where, admittedly, these effective rates are at best approxi-
mate anyway), and neither approach includes a coherent
(temperature-dependent) reduction in g ! hBig. For ex-
ample, Hohenester [27] derives the following exciton-cavity

feeding rate: �ay��
ph ¼2g2Re½R1

0 d�e
�i�cx�e��ð�Þ�, which

has a similar form to our Eq. (19) (apart from the sign of
the phase and the need to subtract off a background term for
small detuning), but does not include hBðTÞi2—an important
temperature-dependent term. The general predictions using
this rate formula are consistent with experiments [26],
and all these aforementioned polaron formalisms produce
qualitatively the same trend as a function of cavity-exciton
detuning (compare results in Refs. [25,27] with those in
Figs. 5 and 6).
An alternative effective Lindblad ME with the same

process identified in Refs. [25,27] and above (i.e., for
exciton-cavity coupling), was recently presented by
Majumdar et al. [14] and used in part to study the role of
phonon scattering for the cavity-emitted resonance fluo-
rescence spectrum. The influence of phonons was included
as two additional incoherent decay terms, which were
included to second order in the QD-phonon coupling.
Unlike the polaronic approaches above, electron-phonon
interactions were included only to first order, which is

FIG. 2. Schematic of the phonon-scattering processes: (a) ��þ
ph ,

(b) ���
ph , (c) ��þa

ph , and (d) �ay��
ph , for a QD-driven system

introduced in the effective Lindblad description and defined in
Eqs. (18) and (19). The various symbols are the same as in Fig. 1.
Processes (a) and (b) describe the phonon-induced incoherent
excitation and excitation-induced dephasing; process (c) de-
scribes phonon-induced exciton excitation via cavity decay,
though this process has a small probability because of a rela-
tively large cavity decay rate (
); process (d) describes phonon-
induced cavity excitation through the decay of an exciton; at low
temperature this (cavity-feeding) process occurs primarily via
phonon emission, and will be more efficient for a cavity mode
that is red shifted with respect to the exciton. The sign of the
cavity detuning in (c)-(d) is just an example, and note that the
phonon interactions with �cx ¼ � or �cx ¼ �� will be differ-
ent (especially at lower temperatures).
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generally not valid in these cavity-QED systems—even at
low temperature [40] (see Sec. IVB). Potentially more
problematic is the fact that the effects of the coherent drive
on the phonon reservoir and the associated EID effects are
missing; in contrast, we find these to be the dominant
source of broadening from electron-phonon scattering.
The need for EID processes in the coherently driven semi-
conductor cavity-QED system has already been shown
for the Mollow triplet, both experimentally [39] and theo-
retically [40]. However, for a cavity-driven system, the

phonon-scattering process described through Lay��
ph is the

main effect of phonon coupling, and this process is par-
tially captured (through weak phonon interactions) in
Ref. [14].

In addition to the phonon-induced Lindblad decay rates
above, one also has phonon-mediated frequency shifts
beyond the polaron shift. The effective Hamiltonian, de-
scribing the coherent part of the system evolution Heff

sys

becomes

Heff
sys ¼ @�xL�̂

þ�̂� þ @�cLâ
yâþ hBiX̂g

þ @��þa
ph ây�̂��̂þâþ @�ay��

ph �̂þâây�̂�

þ @���
ph �̂

��̂þ þ @��þ
ph �̂

þ�̂�; (20)

with

���=�þ
ph ¼ hBi2�2

xIm

�Z 1

0
d�e�i�xL�½e�ð�Þ � 1�

�
; (21)

��þa=ay��
ph ¼ hBi2g2Im

�Z 1

0
d�e�i�cx�½e�ð�Þ � 1�

�
; (22)

where ��þa
ph , �ay��

ph , ��þ
ph , and ���

ph are the Stark shifts

(which scale proportionally with hBig2 or hBi�2
x).

V. NUMERICAL RESULTS

A. Role of phonon scattering on intensity power
broadening: Effective phonon ME versus the

full time-convolutionless ME

We first investigate the role of the four phonon Lindblad
terms in a typical power-broadened PL intensity computed
with our EPME [Eq. (15)] and compare with the full
solution [Eq. (11): time-convolutionless ME]. The main
parameters are listed in Fig. 3, and we have adopted system
parameters and coupling constants similar to those in
recent semiconductor experiments [30,35].

In Fig. 3 we study the role of ���
ph , �

�þ
ph , �

ay��
ph , and ��þa

ph ,

as defined in Eqs. (18) and (19), on the power-broadening
line shape (Ic / �nc); here we use �x ¼ 40 �eV for
a QD-driven system at a bath temperature of T ¼ 4 K,
and study two different cavity-exciton detunings, (a),
(b) �cx ¼ 3 meV and (c), (d) �cx ¼ �3 meV. The corre-
sponding peak �nc that results from this interaction is
around 4� 10�5. To better highlight the various scattering

mechanisms, we include only one of the Lindblad terms in
each calculation, as labeled in the plots. By looking at
Figs. 3(a) and 3(c), it is clear that the process Lð�̂þÞ is
primarily responsible for incoherently exciting the phonon
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C

FIG. 3. (a) Influence of the effective phonon-scattering rates,
��þ
ph (red line) and ���

ph (dashed line) [defined in Eq. (18)], on the

PL intensity Ic for a QD-driven system at T ¼ 4 K with �cx ¼
3 meV. Also shown is the full polaron ME solution (grey line)
[Eq. (11)]. We plot the cavity intensity (Ic) for exciton excitation
as a function of QD-laser detuning and show the contribution of
one effective Lindblad rate per calculation; the collective influ-
ence of these processes is shown later in Fig. 5 and compared
with the full solution. (b) As in (a), but for effective phonon-

scattering rates, �ay��
ph (red line) and ��þa

ph (dashed line) [defined

in Eq. (19)]. The system and material parameters are � ¼
2 �eV, 
 ¼ 50 �eV, g ¼ 20 �eV, �x ¼ 40 �eV, �0ð4 KÞ ¼
2 �eV, and we compute hBið4 KÞ ¼ 0:91. (c)-(d) As in (a)-(b)
but with �cx ¼ �3 meV.
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FIG. 4. (a) Influenceof the role of the effective phonon-scattering

rates,�ay��
ph (reddashed line) and��þa

ph (bluedashed line), on thePL

intensity Ix for a cavity-driven system at T ¼ 4 K for �cx ¼
�0:5 meV. Also shown is the full polaronME solution (grey lines)
[Eq. (11)]. For clarity, the ��þa

ph curves are shifted vertically by 0.3,

alongwith the full polaronME solution.We plot the contribution of
one effective Lindblad rate per calculation. (b) As in (a) but for
�cx ¼ 0:5 meV. The parameters are the same as in Fig. 3, but with
�c ¼ 40 �eV (cavity pumping). Since we have cavity excitation,

then the phonon-scattering rates ��þ=��
ph are zero.
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sidebands [cf. 3(a)] and EID; while process Lð�̂�Þ intro-
duces further pump-dependent EID, as will be highlighted
in detail later (note that this process has the same Lindblad
operator terms as� or ~�). The broad background centered at

!L �!x 
 1 meV is present only with ��þ
scattering

included. The exciton-cavity scattering processes,
Lðây�̂�Þ and Lð�̂þâÞ, account for cavity excitation and
cavity destruction, respectively, by phonon-assisted pro-
cesses and these affect the relative magnitudes of the
cavity-measured PL intensity at different temperatures
and drives. Figures 3(b) and 3(d) demonstrate that
Lðây�̂�Þ is the main cavity-exciton coupling (feeding)
term; this mechanism results in enhanced cavity-photon
numbers at the exciton transition, especially when the cav-
ity is red shifted from the exciton—since phonon emission
is favorable at lower temperatures. In contrast, the Lð�̂þâÞ
process gives no noticeable exciton-cavity coupling be-
cause of the (relatively) large cavity decay rate [27].

In Fig. 4 we carry out a similar exercise for a cavity-
excited system (�c ¼ 40 �eV), calculating Ix ( / �nx),
where we study the influence of Lðây�̂�Þ and Lð�̂þâÞ
on power broadening; here we find excellent agreement

with only the �ay��
ph scattering term (lower red, dashed

curve) compared to the full ME solution (lower grey,

solid line), which results in a significant exciton-cavity
feeding process via phonon emission [cavity is red detuned
in (a) cf. Fig. 2(d)]. Again we find that Lð�̂þâÞ gives no
noticeable cavity feeding. For this cavity-driven system,
we have chosen �cx ¼ �0:5 meV instead of �cx ¼
�3 meV (which we chose earlier for the exciton-driven
system); this is because a strong exciton-driven system
invariably kicks up the phonon sidebands even at low
temperatures that can swamp the emission at the cavity
mode; so we use a larger cavity-exciton detuning for the
exciton-driven case. The cavity-driven system is thus much
cleaner to analyze for smaller cavity-exciton detunings,
and the exciton-measured PL intensity is also substantially
reduced for larger detunings. We remark that the corre-
sponding peak �nx for this excitation regime is around 0.3.
In Figs. 5(a) and 5(b) we plot the normalized cavity-

mode intensity, Ic / �nc, for a dot-driven system as a
function of QD-laser detuning, again for the two different
cavity-exciton detunings, (a) �cx¼3meV and (b) �cx¼
�3meV, at T ¼ 4 K. We also show the PL intensity for
�x ¼ 20 �eV and �x ¼ 40 �eV. To study the effects of
increasing temperatures, in Fig. 6 we plot the Ic at T ¼
20 K. In these graphs, we show the total power-broadened
PL intensity obtained using the EPME [dashed lines
in (a), (b)] and compare with the full polaron ME solution
[solid lines in (a), (b)]; given the approximations made in
the derivation of the EPME, the agreement is remarkably
good. The frequency-shift terms ��

ph are found to be very

small here and can be neglected for the cases shown. Note
that the phenomenological pure-dephasing rates are tem-
perature dependent, where we choose �0ð4 KÞ ¼ 2 �eV
and �0ð20 KÞ ¼ 20 �eV (e.g., see Refs. [20,53]).−1 0 1 2 3
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FIG. 5. Phonon bath at T ¼ 4 K. (a)-(b) Normalized cavity-
mode intensity (Ic) for a dot-driven system as a function of
QD-laser detuning for two different dot-cavity detunings,
(a) �cx ¼ 3 meV and (b) �cx ¼ �3 meV, and for two different
values of the cw laser Rabi frequency (orange line, corresponds
to �x ¼ 20 �eV, and grey, upper solid curve, corresponds to
�x ¼ 40 �eV). Also shown (black dashed lines) is the PL
intensity obtained using the effective Lindblad form of the full
time-convolutionless ME. Note that we have vertically shifted
the PL intensity for �x ¼ 40 �eV by 0.2 for clarity. (c) Plot of

the phonon rates ��þ=��
ph (see text) for �cx ¼ �3 meV as a

function of QD-laser detuning. Note ���
ph ð��cxÞ ¼ ��þ

ph ð�cxÞ.
(d) Plot of the phonon rates ��þa=ay��

ph as a function of QD-cavity

detuning. For convenience, the scattering rates are plotted in
normalized units with respect to �2

x and g2.
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FIG. 6. As in Fig. 5 but with the phonon bath at T ¼ 20 K. The
system parameters are identical to those given in Fig. 3, except
that �0ð20KÞ¼20�eV and we now compute hBið20 KÞ ¼ 0:73
[cf. hBið4 KÞ ¼ 0:91]. For convenience, the scattering rates are
plotted in normalized units with respect to �2

x and g2; the two
regions marked by the black vertical lines indicate the cavity
detunings used in (a) and (b).
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The thermally averaged expectation values of the
phonon displacement operators are calculated to be
hBið4 KÞ ¼ 0:91 and hBið20 KÞ ¼ 0:73. These results
suggest that the dynamics can be well described by our
EPME, by essentially only including three separate
phonon-scattering effects—since, from the findings above,
Lð�̂þâÞ can be safely neglected.

In Fig. 5(c) we plot the phonon-scattering rates, ���
ph and

��þ
ph , as a function of QD-laser detuning for �x ¼ 40 �eV,

at T ¼ 4 K; in Fig. 6(c) we plot these scattering rates for
T ¼ 20 K. Since the rates depend on QD-laser detuning
and the pump strength, they are obviously important for
understanding power broadening in a cavity-QED system.

In Figs. 5 and 6(d) we plot the rates, ��þa and �ay��
, as a

function of QD-cavity detuning for two different tempera-
tures; the regions marked by the vertical lines indicate the
chosen detunings in Figs. 5(a) and 6(a) and 5(b) and 6(b)—
also note that these particular rates are fixed as a function
of QD-laser detuning. As discussed earlier, the scattering

term ��þa describes a process which involves deexciting
the QD and exciting the cavity mode, aided through pho-
non emission or absorption. For convenience, we plot the
phonon-scattering rates in normalized units so that the
rates can be obtained at any value of �x and g. For
example, considering a phonon-bath temperature of T ¼
4 K, with a cavity-exciton detuning of �cx ¼ �1 meV,

and g ¼ 80 �eV, then [see Fig. 5(d)] �ay��
ph 
 0:5=103 �

802�eV 
 3�eV.

The collective influence from the various phonon-
scattering terms, discussed above, results in the broadening
(EID) of the QD exciton resonance, incoherent excitation
of the phonon bath, and significant exciton-cavity coupling
(or feeding); the first two of these are pump dependent,
through �hBi2�2

x, while the last process scales with
hBi2g2. The trends of the exciton-cavity feeding rate

�ay��
ph are consistent with the results of Refs. [25,26],

where one observes a peak scattering rate at around �cx �
1–2 meV (depending upon the temperature). Note that at

T ¼ 4 K and �cx ¼ �3 meV, ��þa dominates, whereas

�ay��
is much larger for �cx ¼ 3 meV. However, at

T ¼ 20 K, the two rates are much closer to each other
for the different detunings as the dependence of the rates
on QD-cavity detuning becomes more symmetric with
increasing temperature [26].
It is interesting to note that the broadening of the QD

exciton resonance as a function of QD-laser detuning
closely mirrors the PL line shape associated with the linear
exciton spectrum obtained using the IBM. A similar ob-
servation was demonstrated by Ahn et al. [69], where the
effects of electron-phonon coupling in QDs (with no cav-
ity) on nonstationary resonance fluorescence spectra were
studied; the resonance fluorescence dynamics of the QD
electronic transition was shown to have a strong depen-
dence on the duration of the laser field, and by increasing
the duration of the laser pulse, the background phonon
continuum was strongly excited.
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FIG. 7. (a)-(b) Relative QD intensity for a cavity-driven sys-
tem as a function of QD-laser detuning for �cx ¼ �0:5 meV
and phonon-bath temperatures (a) T ¼ 4 K and (b) T ¼ 20 K,
and for two different values of the cw laser Rabi frequency
(orange solid line corresponds to �c ¼ 40 �eV, and grey, lower,
solid line corresponds to �c ¼ 60 �eV). Also shown (black
dashed curves) is the PL intensity obtained using the effective
Lindblad form of the full time-convolutionless ME. The parame-
ters are as follows: � ¼ 2 �eV, 
 ¼ 50 �eV, �0 ¼ 2 �eV at
T ¼ 4 K, and �0 ¼ 20 � eV at T ¼ 20 K. (c)-(d) Same as in (a)
and (b) but with �cx ¼ 0:5 meV.

TABLE II. Dependence on the x=c FWHM of the power-
broadened line shape on 
, for a QD-driven cavity-measured
system (x FWHM, with �cx ¼ 3 meV), and a for cavity-driven
QD-measured PL (c FWHM, with �cx ¼ 0:5 meV). The
QD-cavity parameters are the same as in Table I, and all units
are in �eV.

x FWHM (QD-driven) c FWHM (cavity-driven)


 ¼ 10 120 41


 ¼ 30 120 60


 ¼ 50 120 107

TABLE I. Dependence on the x=c FWHM of the intensity
PL on �, for a QD-driven cavity-measured PL (x FWHM,
with �cx ¼ 3 meV), and for a cavity-driven QD-measured PL
(c FWHM, with�cx ¼ 0:5 meV). The QD-cavity parameters are

 ¼ 50 �eV, g ¼ 20 �eV, �ðx=cÞ ¼ 30 �eV, and �0 ¼ 2 �eV

(4 K). No coupling to phonons is considered and all numbers are
in units of �eV.

x FWHM (QD-driven) c FWHM (cavity-driven)

� ¼ 2 120 107

� ¼ 4 104 107

� ¼ 6 98 107
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Similar to the QD-driven system, in Fig. 7 we also
investigate the exciton PL characteristics, Ix / �nx, but
with cavity excitation (investigated in more detail in
Sec. IVC). As anticipated from Fig. 4, we again obtain a
very good fit between our EPME results and the full
polaron time-convolutionless ME solution. In general, the
effective phonon Lindblad solution is expected to closely

mimic the full solution here for large QD-cavity detunings
(j�cxj � g, �c), though we find that it can work well over
a wide range of excitation conditions. Moreover, for cavity
excitation, essentially only the Lðay��Þ scattering process
is needed.
A preliminary analysis of the role of the various scatter-

ing processes on the PL intensity is presented in Tables I,
II, III, IV, V, and VI. Here we focus on the qualitative
influence of the various scattering rates on the exciton (x)
and cavity (c) FHWM broadenings, but later we will
investigate the full power-broadened PL curves in detail.
In Table I we study the dependence of the x=c FWHM of
the PL intensity on � (the bare radiative-decay rate).
Increasing � results in reduced broadening of a cavity-
measured QD-driven PL line shape (x FWHM). Increasing
� broadens the QD resonance resulting in reduced cou-
pling between the cavity mode and the QD and subsequent
narrowing of the cavity-measured QD-driven PL line
shape. However, � has little effect on the power broadening
of a QD-measured cavity-driven PL intensity (c FWHM).
In Table II we present numerical results for the x=c FWHM
of the PL intensity for different values of 
. Increasing 

here has no observable effect on QD-driven cavity-
measured PL intensity, but increasing 
 results in the
increased broadening of a cavity-driven QD-measured PL
intensity. In Table III we study the dependence on �0, i.e.,
the pure dephasing of the ZPL. Increasing �0 increases the
broadening of QD-driven cavity-measured PL intensity,
but has negligible effect on the cavity-driven QD-measured
system.
In Table IV we study the role of the two phonon

Lindblad processes, ��þ
ph and ���

ph , on a QD-driven

cavity-measured system at T ¼ 4 K, for various values
of �x for our chosen parameters, the other two phonon

processes, i.e., ��þa
ph and �ay��

ph , do not influence the power-

broadening line shape here. As can be seen, increasing the
influence of these effective Lindblad processes by increas-
ing �x reduces the linewidth of the cavity-measured PL
intensity. We also see that the x FWHM broadening for
increasing drives may be drastically underestimated by the
effective phonon ME, even though the qualitative trends of

TABLE III. Dependence on the x=c FWHM of the power-
broadened line shape on �0, for a QD-driven cavity-measured
PL system (x FWHM, with �cx ¼ 3 meV), and for a cavity-
driven QD-measured PL (c FWHM, with �cx ¼ 0:5 meV). The
other QD-cavity parameters are the same as in Table I, and all
units are in �eV.

x FWHM (QD-driven) c FWHM (cavity-driven)

�0 ¼ 2 120 107

�0 ¼ 4 146 107

�0 ¼ 6 169 107

TABLE IV. Dependence on the x FWHM of the power-
broadened PL intensity of a QD-driven cavity-measured system
(�cx ¼ 3 meV), on the two phonon Lindblad processes, ��þ

ph and

���
ph , at T ¼ 4 K, for various values of �x. The other system

parameters are the same as in Table I. Also considered is the case
of no incoherent phonon coupling with hBi ¼ 1 (i.e., also no
coherent phonon coupling), and hBi ¼ 0:91 at T ¼ 4 K (with
coherent phonon coupling). The inclusion of hBi at 4 K here is to
make a better comparison with the same effective �x ( ! hBi�x)
and effective g ( ! hBig); in reality, the no-phonon case will be
different because of the lack of coherent phonon renormaliza-
tions (later we will show this difference more explicitly, e.g., in
Figs. 10–13). All numbers are in units of �eV, and note that the

broadening here is independent of ��þa
ph and �ay��

ph . The last

column gives the full polaron ME result [Eq. (11)].

No ��
ph

hBi ¼ 1
No ��

ph

hBi(4 K) ��þ
ph ���

ph EPME Full

�x ¼ 20 80 73 71 72 70 72

�x ¼ 40 159 146 138 139 134 151

�x ¼ 60 240 219 251 200 223 390

TABLE V. Dependence on the c FWHM of the power-
broadened PL intensity of a cavity-driven QD-measured system,

on the two phonon Lindblad processes, ��þa
ph and �ay��

ph , at

T ¼ 4 K, for various values of g. Also considered is the case
of no phonon coupling, with two hBi values as above. The
general system parameters are the same as in Table I, and all
numbers are in units of �eV.

No ��
ph hBi ¼ 1 No ��

ph hBi(4 K) ��þa
ph �ay��

ph

g ¼ 20 101 101 101 102

g ¼ 40 101 101 101 109

g ¼ 60 101 101 101 115

TABLE VI. Dependence on the c FWHM of the power-
broadened PL intensity of a cavity-driven QD-measured system
(�cx ¼ 0:5 meV), on the two Lindblad processes, ��þa

ph and

�ay��
ph , at T ¼ 4 K, for various values of �c. Also considered

is the case of no phonon coupling with two hBi values. The
general system parameters are the same as in Table I, and all
numbers are in units of �eV.

No ��
ph

hBi ¼ 1
No ��

ph

hBi(4 K) �ay��
ph ��þa

ph EPME Full

�c ¼ 20 100 100 100 100 100 100

�c ¼ 40 101 101 101 103 103 103

�c ¼ 60 102 102 102 107 108 108

C. ROYAND S. HUGHES PHYS. REV. X 1, 021009 (2011)

021009-10



the full PL intensity are similar; this is because we have
neglected the influence of the drive on the phase integra-
tions that enter the full incoherent phonon scattering [see
Eqs. (8a) and (11)].

In Table V, we list the c FWHMof the power-broadening
line shape of a cavity-driven QD-measured system for the

two Lindblad processes, ��þa
ph and �ay��

ph , at T ¼ 4 K, for

various values of g. The Lindblad process caused by ��þa
ph

has no effect on the c FWHM. However, increasing �ay��
ph

(the cavity feeding process) results in some increased
broadening. Finally, in Table VI we show the influence of

these phonon processes (�ay��=�þa
ph ) with increasing �c,

and these calculated rates also show a slight increase of the
c FWHM with increasing drives. Now we see that the c
FWHM broadening for increasing drives is extremely well
reproduced with the effective phonon ME; this is because
the cavity pump no longer enters H0

sys [see Eqs. (9a) and

(11)]. Note, in both Tables V and VI, we see no role from
the slight coherent reduction of hBig at 4 K.

To summarize this subsection, we have identified three
main Lindblad phonon processes that contribute to the PL
intensity of a cavity-QED system. We have also found
earlier that the effective scattering rates associated with
these processes can be calculated, under certain detuning
conditions, from simple analytical solutions [Eqs. (18) and
(19)]; these effective Lindblad solutions are compared to
the full polaron ME solution and found, in certain cases, to
yield very good agreement. In this way we can also argue
the underlying physics of the identified phonon-scattering
processes. However, there can be noticeable differences,
especially for the measured x FWHM broadening of an
exciton-driven system. In general, we also recognize that
driving via the exciton or the cavity can yield drastically
different results.

In what follows below, we will use the full polaron ME,
and first verify the general need for multiphonon and
mutiphoton effects.

B. Influence of multiphonons and multiphotons
on the PL intensity

Our time-convolutionless ME above [Eq. (11)] utilizes
the polaron frame, which allows for a nonperturbative
treatment of phonons. This enables one to use the full
IBM machinery to compute the phonon correlation func-
tions. It is also useful to look at the one-phonon limit of the
time-convolutionless ME by expanding the phonon Green
functions to lowest order in the phonon coupling. In this
limit we can expand the phonon correlation function �ðtÞ
to lowest order in the dot–phonon-coupling constant as
follows: GgðtÞ ’ 0 and GuðtÞ ’ �ðtÞ, where we have used

hBi ’ 1. This then connects to a weak-phonon coupling
(i.e., perturbative) approach.

In Figs. 8(a) and 8(b) we plot the cavity-mode intensity
(Ic) for an exciton-driven system as a function of

exciton-laser detuning for a one-phonon solution and the full
polaron (multiphonon) solution. We recognize that one-
phonon-scattering process tends to deviate from the full
polaronPL intensity,which is especially noticeable at higher
temperatures and for larger driving-field strengths. Thus,
even for low temperatures, a weak phonon-coupling theory
can break down. We further find that the one-phonon ap-
proximation overestimates the power-broadening PL inten-
sity for a negatively detuned cavity. Similar conclusions
about the need for multiphonon effects were also found in
the context of the resonance fluorescence spectra of a
QD-driven cavity-QED system [40] and time-dependent
excitonic Rabi rotation dynamics [41]. However, for a
cavity-driven system [Fig. 8(c) and 8(d)], at low tempera-
tures (e.g., 4K), theweak-phonon theory can be accurate. Of
course, other QD material parameters can yield different
trends in the role and assessment of multiphonon coupling.
Since the phonon correlation functions that we use are well
known for an IBM model, the full phonon calculation
of the PL intensity presents the same level of computational
complexity as the one-phonon calculations, which is amajor
advantage of theME formalism above. Even at the Lindblad
ME level, it is just as easy to use a full polaron solution.
We also study the influence of quantized multiphoton

processes in the PL intensity of both an exciton-driven and
a cavity-driven system. In Figs. 9(a) and 9(b), using cavity
excitation (�c ¼ 30 �eV), we plot Ix as a function of
QD-laser detuning for various truncations of the photon
Hilbert state. We find that it is necessary to include up to
six-photon processes (e.g., a 13 state model) to correctly
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FIG. 8. (a)-(b)Cavity-modePL intensity for aQD-driven system
(�x ¼ 30 �eV) as a function of QD-laser detuning for a one-
phonon theory (red dashed line) and the full polaron model (grey
solid line) with �cx ¼ �3 meV, for phonon-bath temperatures
(a) T¼4K and (b) T¼20K. (c)-(d) Relative QD (exciton) inten-
sity for a cavity-driven system (�c ¼ 30 �eV) as a function of
QD-laser detuning for a one-phonon theory (red dashed line) and
the full polaronmodel (grey solid line) with�cx ¼ �0:5 meV, for
phonon-bath temperatures (c) T ¼ 4 K and (d) T ¼ 20 K.
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describe the effect of cavity photons; note that including
more than six-photon processes yields an identical result
to the six-photon calculations, so these values have con-
verged on the numerically exact answer. While the need
for six-photon processes may seem surprising for the rela-
tively small values of g (i.e., 20 �eV), the exciton-phonon
coupling with phonon scattering can be more sensitive to
cavity-QED effects—especially with coherent excitation.
In the rest of the paper, we thus compute the PL intensity of
the cavity-driven system in a six-photon truncated basis.

In Figs. 9(c) and 9(d) we plot the cavity PL intensity (Ic)
for a QD-driven system (�x ¼ 30 �eV), as a function of
exciton-laser detuning for various truncations of the photon
Hilbert state. Unlike a cavity-driven system, we now find
that a two-photon truncation of the photon Hilbert space is
enough to obtain a correct (i.e., converged in the photon
basis) description of the cavity PL. The fundamental differ-
ence between a QD-driven and a cavity-driven system is due
to the fact that the cavity is represented as a quantized
harmonic oscillator whereas a QD is a two-level system.
Hence, for our system parameters, the cavity is more easily
excited into higher lying Jaynes-Cummings ladder states,
even though the system exhibits relative strong dissipation
(i.e.,
 ¼ 2:5g). Neglecting quantummultiphoton processes
can therefore introduce spurious effects in the PL line shape.
A two-photon truncationwas also found to be sufficient (and
necessary) for the study of the fluorescence spectrum
(Mollow triplet) of a QD-driven cavity-QED system [40].

In summary, the results above highlight the need for
both multiphonon and multiphoton effects for understand-
ing power-broadened PL intensity, even for low tempera-
tures (4 K) and rather small cavity-dot coupling rates
(g ¼ 20 �eV, cf. 
 ¼ 50 �eV).

C. Power broadening through coherent exciton
pumping and cavity emission

Next we study the cavity-emitted PL for different input
powers of an exciton pump. In Figs. 10(a) and 10(b) we
plot the relative cavity-mode intensity (Ic) as a function of
exciton-laser detuning for a QD-driven system at two
temperatures, (a) T ¼ 4 K and (b) T ¼ 20 K, for various
values of �x. The cw field drives the QD which is now
detuned to the right (higher energy) of the cavity mode by
3 meV. In Fig. 10(c) we plot the relative cavity-mode
intensity with only ZPL broadening and set hBi ¼ 1 (i.e.,
no coherent or incoherent coupling effects from phonons).
This then closely corresponds to an atomiclike power-
broadening model, but with the addition of the pure
dephasing of the ZPL—a model that is commonly used
to analyze semiconductor cavity-QED experiments. The
power-broadened intensity line shape in the absence of
phonon coupling can be explained by considering two
Lorentzian line shapes centered at the two resonances,
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FIG. 9. (a)-(b) Exciton PL intensity for a cavity-driven system
(�c ¼ 30 �eV) as a function of QD-laser detuning (with �cx ¼
0:5 meV), for different numbers of truncated photon states at
(a) T ¼ 4 K and (b) T ¼ 20 K: two-photon (or more, since this
value has converged): black dashed line, four-photon: grey solid
line, six-photon (or more): red solid line. (c)-(d) Mean cavity-
photon number for a dot-driven system as a function of QD-laser
detuning (with �cx ¼ 3 meV), for a different number of trun-
cated photon states with (c) T ¼ 4 K and (d) T ¼ 20 K:
one-photon: black dashed line, two-photon: grey solid line,
and three-photon: red darker line.
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FIG. 10. (a)-(b) Relative cavity-mode intensity as a function of
QD-laser detuning for a dot-driven system at two different
temperatures, (a) T ¼ 4 K and (b) T ¼ 20 K, and for different
values of the cw Rabi frequency (�x ¼ 20 �eV: black dashed
line, �x ¼ 40 �eV: grey solid line, and �x ¼ 60 �eV: red solid
line). The cw field drives the QD which is detuned to the right of
the cavity mode by 3 meV (�cx ¼ �3 meV). Note that hBi ¼
0:91 at T ¼ 4 K and hBi ¼ 0:73 at T ¼ 20 K. (c) Normalized
cavity-mode intensity in the presence of only ZPL broadening
with hBi ¼ 1 at T ¼ 4 K. (d) Plot of the x FWHM of the PL
intensity at the QD resonance as a function of �c. The orange
crosses show the FWHM at T ¼ 20 K, the blue circles at T ¼
4 K, and the red inverted triangles show the intensity FWHM
with only ZPL broadening and hBi ¼ 1 (no phonons).
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the relative oscillator strengths of which are qualitatively
determined by their corresponding broadenings.

Without phonon coupling, as shown in Fig. 10(c), an
increasing cw drive causes power broadening of the QD
exciton, which decreases the oscillator strength relative to
the cavity mode and also excites the cavity resonance more.
With phonon-scattering processes [see Fig. 10(a)], the first
major difference we notice is the apparent narrowing of the
QD resonance compared to Fig. 10(c), which is due to the
coherent renormalization of the Rabi frequency—this
manifests in an effective drive whose magnitude decreases
with increasing temperature; in addition, the phonon inter-
actions reduce the dot-cavity coupling through g ! hBig.
Incoherent phonon coupling also introduces significant ad-
ditional broadening of the QD exciton due to the Lð�þÞ
process (see Table I), eventually resulting in a new peak
near the phonon cutoff frequency (i.e., at the peak of
the spectral bath function for phonons, !b ¼ 1 meV). The
mean cavity-photon numbers (and thus Ic) increase in the
presence of phonons due to phonon-assisted processes
whose magnitude also increases with temperature [see
Fig. 10(c), which also has a larger ZPL). Comparing the
cavity PL characteristics in Figs. 10(a)–10(c), we see that
electron-phonon coupling plays a significant role in deter-
mining the PL intensity, with features that are not at all
explained with simple atomiclike MEs.

In Fig. 10(d) we plot the x FWHM of Ic at the QD
resonance as a function of �x, which is a typical measure-
ment in experimental studies [35]. The orange crosses show
the intensity at T¼20K, the blue circles at T¼4K, and the
inverted red triangles show the FWHM in the absence of any
phonon coupling. In spite of a significant reduction of the
effective Rabi frequency due to phonon coupling at high
temperatures (e.g., hBð4 KÞi ¼ 0:91 ! hBð20 KÞi ¼ 0:77),
the x FWHM at T ¼ 20 K is higher than the FWHM calcu-
lated at T ¼ 4 K, which suggests that EID more than com-
pensates for phonon-induced renormalization of the Rabi

frequency. It was earlier noted in Table I that increasing �
(and thus also ���

, as they have the same Lindblad opera-
tors) reduces the mean cavity-photon number. We also note
from Table IV that the primary contribution to the broad-

ening comes from the two scattering terms ��þ
ph and ���

ph ;

these two processes increase with temperature and driving
strength and introduce additional broadening,which reduces
Ic. At a pump rate of �x � 60 �eV, we see a more rapid
increase of the x FWHM with phonon coupling due to
stronger cw laser-phonon coupling. For pump rates greater
than�x � 40 �eV, we also see a more rapid increase of the
x FWHM with phonon coupling.
In Figs. 11(a) and 11(b) we plot the relative cavity-mode

PL intensity for a dot-driven system, where the exciton
resonance is now detuned to the left of the cavity mode
by 3 meV. We again consider two different temperatures
of the phonon reservoir, (a) T ¼ 4 K and (b) T ¼ 20 K,
for various �x. In Fig. 11(c) we show the normalized
cavity-mode intensity with only ZPL broadening and
hBi ¼ 1. The generic features of Fig. 11 can be understood
exactly along the lines of the arguments presented above for
Fig. 10. However, as discussed earlier, here we obtain a
significant reduction in the mean cavity-photon number
(less cavity feeding) since the cavity is now energetically
higher, which requires absorption of phonons—compare
Figs. 10(a) and 11(a). Moreover, the mean cavity-photon
number is smaller than that in the absence of phonons due
to the renormalized (reduced) dot-cavity coupling which,
however, increases with temperature. In Fig. 11(d) we plot
the x FWHM of the cavity emission as a function of �x

which shows very similar features to the x FWHM data
presented in Fig. 10(d). We remark that the approximate x
FWHM values are extracted numerically by fitting with a
simple Lorentzian model. As it is clear from the plots, the
power-broadening PL intensity in the presence of phonons
is no longer represented by a simple system of coupled
Lorentzians, and we observe pronounced non-Lorentzian
line shapes and clear signatures from the phonon-bath
spectral function. We reiterate the point that there is a
substantial discrepancy at large pumping fields between
the x FWHM from an effective Lindblad solution
(EPME) and a full polaron ME solution (see Table IV).
This highlights a breakdown of the EPME at large pumping
fields, which is not too surprising given the rather coarse
approximations made in its derivation. Finally, we com-
ment that the c FWHM (which can be extracted from the
same PL data) does not show any power broadening, which
is possibly also a result of the reasonably large QD-cavity
detunings.

D. Power broadening through coherent cavity
pumping and exciton emission

In this subsection, we focus on a cavity-excited system,
where the emitted excited intensity (Ix) is detected through
the QD emission, e.g., through (non-cavity mode) radiation
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modes. In Figs. 12(a) and 12(b) we plot the relative exciton
intensity Ix as a function of QD-laser detuning for a cavity-
driven system at two different temperatures, (a) T ¼ 4 K
and (b) T ¼ 20 K, for various values of �c. The cw field
drives the cavity mode, which is now detuned to the right of
the QD exciton by 0.5 meV. In Fig. 12(c) we show Ix with
no phonon interactions and hBi ¼ 1 (i.e., no coherent or
incoherent effects from phonons, apart from pure dephas-
ing). We discern that the power-broadened PL intensity in
the absence of phonons is quite distinct from the case with
finite phonon coupling. On the one hand, we have lost the
resonance at the phonon spectral function since there
is no longer a term that involved incoherent excitation

through the phonon reservoir (��þ
ph process). On the other

hand, we see a clear influence from phonon-induced
exciton-cavity feeding. In particular, without phonon cou-
pling we observe very little emission at the cavity-mode
frequency, which further demonstrates that phonons play a
significant role in the power-broadened PL line shape
through dot-cavity coupling (via cavity feeding). Also
note that the broadening of the QD resonance increases
due to enhanceddot-cavity coupling in the presence of
phonons, which increases with temperature. However,
at higher temperatures the mean exciton number is de-
creased, which is mainly due to phonon-induced reduction
in g ! hBig.

In Fig. 12(d) we plot the c FWHM obtained via exciton
emission (Ix), as a function of �c. The c FWHM in the
presence of phonons at low temperatures (T ¼ 4 K) is very
similar to the case with only ZPL broadening, primarily
because of the absence of EID, as the system is now cavity
driven, though g ! hBig is still temperature dependent.

However, the c FWHM increases with temperature even
though hBig decreases. We also note that the emission at
the QD frequency is suppressed with increasing tempera-
tures. With further increase in temperatures (i.e., above
20 K—not shown), the PL intensity is dominated by emis-
sions at the cavity mode. Similar to the exciton pumped
system, for pump rates of �c � 40 �eV, we observe a
more rapid increase of the c FWHM with phonon coupling.
For cavity excitation, the effective Lindblad solution shown
earlier provides a very goodmatch for the c FWHMfor all�c

pumpvalues studied (seeTableVI). This is primarilybecause
the approximations made for a cavity-driven system are less
restrictive. For instance, there are only two Lindblad terms
(and only one of these is important here), which is unlike the
case of a QD-driven system where four Lindblad terms are
needed (two of which are �x dependent).
In Figs. 13(a) and 13(b) we again plot the relative exciton

intensity (Ix) as a function of QD-laser detuning for a
cavity-driven system, but now with the cavity-mode
detuned to the left (lower energy) of the QD exciton by
0.5meV. In Fig. 13(c) we show the normalized cavity-mode
intensity with only ZPL broadening of the exciton and
hBi ¼ 1. We highlight the significant difference in the QD
emission at the cavity-mode energy for the two detunings at
low temperature [Fig. 12(a) and 13(a)]—the cavity-mode
resonance is more pronounced with a positive �cx. This
difference is due to the asymmetry in the phonon absorption
and emission probability; at higher temperatures, however,
the line shapes becomes more similar. In Fig. 13(d) we plot
the c FWHM obtained through exciton emission as a func-
tion of the cw laser Rabi frequency (�c), which is very
similar to that in Fig. 12(d). For these studies, the c FWHM
is mostly independent of the detuning of the dot-cavity
system. We also mention that x FWHM (which can be
extracted from the same PL data) only shows marginal
power broadening, though it may increase with reduced
QD-cavity detuning.
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FIG. 12. As in Fig. 10, but for the exciton intensity obtained in
the presence of a cavity pump. The cw drive strengths are �c ¼
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T ¼ 20 K, the blue circles at T ¼ 4 K, and the inverted red
triangles show the FWHM with only ZPL broadening and hBi ¼
1. The cavity-exciton detuning is �cx ¼ 0:5 meV.
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E. Integrated photoluminescence

Finally, we study the IPL. In Figs. 14(a) and 14(b) we
plot the IPL line shape for a dot-driven system as measured
through the cavity, for the positively detuned cavity mode
(�cx ¼ 3 meV). The total IPL of the cavity and exciton
intensities of a dot-driven system plotted in Fig. 14(a) does
not saturate with increasing drives—unlike the IPL over
the Lorentzian centered at the exciton resonance frequency
plotted in Fig. 14(b) (i.e., the integrated x FWHM, emitted
via the cavity mode), which shows clear saturation. The
Lorentzian line shape at the QD exciton resonance is
computed by subtracting off the background phonon side-
bands from the PL intensity. The lack of saturation of the
IPL of the total cavity and QD intensity is attributed to the
increasing excitation of the background phonon continuum
with increasing cw drives, which is also enhanced at higher
temperatures. These theoretical trends are consistent with
the experimental results of Ates et al. [35].

In Figs. 14(c) and 14(d) we show the IPL of the cavity-
driven system (with �cx ¼ 0:5 meV) as measured via
the QD exciton emission. For our chosen parameters,
neither the total IPL of the cavity and exciton intensity of

a cavity-driven system plotted in Fig. 14(c), nor the IPL
over the Lorentzian centered only at the cavity resonance
frequency plotted in Fig. 14(d) (i.e., the integrated c
FWHM, emitted via the QD) show any saturation.
Furthermore, significant power broadening is found, which
increases with the temperature of the phonon bath because
of enhanced phonon-mediated coupling between the dot
and the cavity mode.

V. CONCLUSIONS

We have presented a detailed analysis of the PL intensity
power broadening of a semiconductor cavity-QED system
under the coherent excitation of either the QD exciton or the
cavity mode. In particular, we have included the interaction
of the QDwith an acoustic-phonon environment at a micro-
scopic level, while also accounting for exciton-cavity
coupling in the regime of cavity-QED. We utilized a time-
convolutionless ME approach in the polaron frame to study
the cavity-QED dynamics. The interaction of the phonon
reservoir with the QD is nonperturbative and is limited
mainly by the validity of the IBM (and the single exciton
picture) at high temperatures. This approach enables us to
treat the coherent interaction between the QD, cavity, and
the cw laser field to all orders. Central to this approach is the
need to account for the internal coupling effects, which
preserves the detail balanced condition on the system den-
sity operator. Our theory also points out some major flaws
and restrictions of atomiclike MEs for modeling coherent
excitation regimes in semiconductor QD-cavity systems.
Using material parameters close to those measured in

related semiconductor experiments, various PL intensity
line shapes were studied as a function of the excitation
pump rate, for different temperatures of the phonon bath.
We computed the full PL intensity line shape over a range of
frequencies and extracted approximate Lorentzianlike line-
widths of the c=x FWHM of the power-broadening PL
intensity for both the QD-driven and cavity-driven systems.
The interaction of the QD with the phonon reservoir is seen
to introduce qualitatively different features in the PL inten-
sity, especially at higher temperatures, and is quite distinct
from the case of a typical power-broadening line shape of a
two-level atom.We found a significant narrowing of the QD
resonance due to the coherent renormalization of the Rabi
frequency resulting in a reduced effective drive. The inter-
actionwith the phonon reservoir also reduced the dot-cavity
coupling due to the renormalization of g ! hBig. Phonon
coupling further introduces additional broadening of the
QD exciton due to EID and results in highly non-
Lorentzian line shapes for the PL intensity; by way of
incoherent excitation from the phonon bath, clear signa-
tures of the phonon-bath spectral function appear in the
exciton-driven PL. For a cavity-driven system, the mean
cavity-photon number (which is proportional to the cavity-
mode intensity) was also found to change in the presence of
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FIG. 14. Integrated PL for a dot-driven system, (a) and (b), as
measured through cavity emission, and the IPL of a cavity-
driven system, (c) and (d), as measured via QD emission; both
as a function of the square of the cw drive for two different
temperatures of the phonon reservoir (T ¼ 4 K: blue circles,
T ¼ 20 K: orange crosses); also plotted are the IPL line shape in
the presence of only ZPL broadening and hBi ¼ 1 (inverted red
triangles)—the corresponding �0 ¼ 2 �eV (at 4 K). (a) The IPL
of the total cavity and QD intensity of a dot-driven system as
measured through cavity emission; �cx ¼ 3 meV and the PL
intensity are shown in Fig. 11. (b) IPL of the cavity-mode
intensity over the Lorentzian centered at the QD resonance
frequency. (c) IPL of the QD exciton and cavity intensity of a
cavity-driven system as measured through the QD; here �cx ¼
0:5 meV and the intensity line shapes are shown in Fig. 13.
(d) The IPL of the QD mode intensity over the Lorentzian
centered at the cavity resonance frequency.
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phonon-assisted processes, which depended sensitively on
dot-cavity detuning and the temperature of the phonon bath.

To help explain the underlying physics of electron-
phonon scattering in these cavity-QED systems, we de-
rived an effective phonon ME (EPME) of the Lindblad
form, which facilitates a very simple numerical solution to
the full ME and also allows the extraction of various
phonon-induced scattering rates in a physically meaning-
fully way. In particular, we identified specific phonon-
mediated processes which cause the EID of the QD exciton
resonance and incoherent exciton pumping. We identified
Lindblad superoperators that mediate incoherent interac-
tions between the QD and the cavity mode, resulting in
exciton-cavity feeding—a phenomenon that is becoming
more familiar in semiconductor cavity-QED (e.g., see
Refs. [13,18,20–22,24–27,29,40]). We also studied the
regimes of validity of the effective Lindblad solution and
found that, for relatively large QD-cavity detunings, the
effective Lindblad solution produces a very good fit to the
full polaron ME solution. However, discrepancies can
occur for exciton pumped systems with increasing drives,
where one requires the full polaron ME. Using these polar-
onic ME formalisms, we found that phonon-induced EID
and incoherent coupling between the QD and the cavity is
fundamental to obtaining a complete picture of power
broadening in these semiconductor systems. In particular,
our results demonstrate that the cavity-emitted QD-driven
PL intensity can display quite profound signatures of the
phonon-bath spectral function. A cavity-driven system also
contains clear signatures of the phonon bath, containing
power-broadened features that are significantly different
from those obtained in atomic QED. We have also dem-
onstrated that the pure dephasing of the ZPL, frequently
cited as being responsible for phonon-scattering effects
such as cavity feeding, actually only plays a very minor
role here; the physics of the phonon-scattering processes
that we identity are manifestly different to the physics of

coupled Lorentzian oscillators, either with or without the
pure dephasing of the ZPL.
The results presented in this paper should be of broad

interest to those interpreting current and future experimen-
tal data from semiconductor cavity-QED systems. A more
rigorous analysis would use the full polaron ME and a less
rigorous approach would use the EPME; the latter approach
allows for a simple and intuitive picture of the underlying
physics and can be accurate in certain excitation regimes.
Our power-broadening results were chosen to highlight new
regimes where phonon effects are more readily visible and
can serve to direct experimental focus in those regimes. For
this work, we have also focused our studies to the domain of
cw excitation, but the extension to pulsed systems is
straightforward and will be presented elsewhere.
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APPENDIX: EFFECTIVE LINDBLAD MASTER
EQUATIONS WITH SIMPLIFIED ELECTRON-

PHONON COUPLING

In this Appendix we provide some technical details into
the derivation of our effective Lindblad master equation,
Eq. (15). We exemplify the relatively simple case

of a cavity-driven system, where X̂g ¼ @gðây�̂� þ �̂þâÞ
and X̂u ¼ i@gð�̂þâ� ây�̂�Þ. The case of a dot-driven
system can also be derived using similar steps but
with a few additional approximations discussed at the
end of this Appendix. The integrand inside the phonon

integral in Eq. (11),
R1
0 d�

P
m¼g;ufGmð�Þ½X̂m;e

�iH0
sys�=@X̂m�

eiH
0
sys�=@	ðtÞ�þH:c:g, can be approximated (e.g., for m¼g)

as follows:

Ggð�Þ½X̂g;e
�iH0

sys�=@X̂ge
iH0

sys�=@	ðtÞ�þH:c:

’@2g2Ggð�Þðây�̂�þ�̂þâÞðây�̂�e�i�cxtþ�̂þâei�cxtÞ	ðtÞ�@
2g2Ggð�Þðây�̂�e�i�cxtþ�̂þâei�cxtÞ	ðtÞðây�̂�þ�̂þâÞ

þ@
2g2G�

gð�Þ	ðtÞðây�̂�e�i�cxtþ�̂þâei�cxtÞðây�̂�þ�̂þâÞ�@
2g2G�

gð�Þðây�̂�þ�̂þâÞ	ðtÞðây�̂�e�i�cxtþ�̂þâei�cxtÞ;
(A1)

where we have used

e�iH0
sys�=@X̂me

iH0
sys�=@ ’ e�iH0

0
�=@X̂me

iH0
0
�=@; (A2)

with H0
0 ¼ @�xL�̂

þ�̂� þ @�cLâ
yâ. This corresponds

to approximating H0
sys with H0

0 in the exponential phase
and is expected to be valid only when the dot-cavity
detuning is large compared to g. It follows that

e�iH0
0
�=@ây�̂�eiH0

0
�=@ ¼ e�i�cxtây�̂�; (A3)

e�iH0
0
�=@�̂þâeiH0

0
�=@ ¼ ei�cxt�̂þâ: (A4)

Consequently, this allows us to write an effective

Lindblad ME that can (e.g., see Figs. 3–5) reproduce

the full polaron ME solution over a range of dot-laser

and cavity-exciton detunings. The major advantage of

this approach (used on its own or as a compliment) is

that it is significantly simpler than the full polaron ME

approach and allows one to extract various, physically

meaningful, scattering processes associated with

electron-phonon interactions. Equation (A1) can subse-

quently be rewritten as
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Ggð�Þ½X̂g; e
�iH0

sys�=@X̂ge
iH0

sys�=@	ðtÞ� þ H:c:

’ @
2g2½Ggð�Þe�i�cxt�̂þâây�̂�	ðtÞ þGgð�Þei�cxtây�̂��̂þâ	ðtÞ� � @

2g2½Ggð�Þe�i�cxtây�̂�	ðtÞ�̂þâ

þGgð�Þei�cxt�̂þâ	ðtÞây�̂�� þ @
2g2½G�

gð�Þe�i�cxt	ðtÞây�̂��̂þâþG�
gð�Þei�cxt	ðtÞ�̂þâây�̂��

� @
2g2½G�

gð�Þe�i�cxt�̂þâ	ðtÞây�̂� þG�
gð�Þei�cxtây�̂�	ðtÞ�̂þâ�; (A5)

which can be further simplified to

Ggð�Þ½X̂g; e
�iH0

sys�=@X̂ge
iH0

sys�=@	ðtÞ� þ H:c:

’ @
2g2Re½Ggð�Þe�i�cxt�ð�̂þâây�̂�	ðtÞ þ 	ðtÞ�̂þâây�̂� � 2ây�̂�	ðtÞ�̂þâÞ þ @

2g2Re½Ggð�Þei�cxt�ðây�̂��̂þâ	ðtÞ
þ 	ðtÞây�̂��̂þâ� 2�̂þâ	ðtÞây�̂�Þ þ i@2g2Im½Ggð�Þe�i�cxt�ð�̂þâây�̂�	ðtÞ � 	ðtÞ�̂þâây�̂�Þ
þ i@2g2Im½Ggð�Þei�cxt�ðây�̂��̂þâ	ðtÞ � 	ðtÞây�̂��̂þâÞ: (A6)

Using
P

m¼g;uGmð�Þ ¼ hBi2ðe�ð�Þ � 1Þ, the defined scat-
tering rates become

��þa=ay��
ph ¼2hBi2g2Re

�Z 1

0
d�e�i�cx�ðe�ð�Þ�1Þ

�
; (A7)

while the frequency shifts,

��þa=ay��
ph ¼hBi2g2Im

�Z 1

0
d�e�i�cx�ðe�ð�Þ�1Þ

�
; (A8)

which are used in the Lindblad operator Lphð	Þ and the
effective Hamiltonian defined in Eq. (16).

For the case of a dot-driven system, we have an addi-
tional complication due to the coherent term driving
through the exciton-phonon bath. Using similar steps as
above, and also neglecting contributions involving cross
terms between operators �̂þ (�̂�) and �̂þâ (ây�̂�), which
scale as g�x, we again obtain an effective Lindblad form of
the ME.We evaluate the exponential phase terms involving
the full system Hamiltonian by replacing H0

sys with H0
0.
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