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We propose a dynamical theory of market liquidity that predicts that the average supply/demand profile
is V shaped and vanishes around the current price. This result is generic, and only relies on mild
assumptions about the order flow and on the fact that prices are, to a first approximation, diffusive. This
naturally accounts for two striking stylized facts: First, large metaorders have to be fragmented in order to
be digested by the liquidity funnel, which leads to a long memory in the sign of the order flow. Second, the
anomalously small local liquidity induces a breakdown of the linear response and a diverging impact of
small orders, explaining the ‘“‘square-root” impact law, for which we provide additional empirical support.
Finally, we test our arguments quantitatively using a numerical model of order flow based on the same

minimal ingredients.
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L. INTRODUCTION

Price impact refers to the correlation between an incom-
ing order (to buy or to sell) and the subsequent price
change [1-3]. That a buy (sell) trade should push the price
up (down) is intuitively obvious and is easily demonstrated
empirically (see [3] for a recent review). Such a mecha-
nism must, in fact, be present for private information to be
incorporated into market prices. But it is also a sore reality
for large trading firms for which price impact induces extra
costs. Indeed, large volumes must typically be fragmented
and executed incrementally. However, since each “‘child
order” pushes the price up or down, the total cost of the
“metaorder”' is quickly dominated, as sizes become large
by the average price impact. Monitoring and controlling
impact has therefore become one of the most active
domains of research in quantitative finance since the
mid-nineties. A huge amount of empirical results has
accumulated over the years, in particular, concerning the
relation between the total size Q of the metaorder and the
resulting average price change. These empirical results
come from either proprietary trading strategies (and are
often not published), or from brokerage firms, who execute
on behalf of clients [4-8], or else from the exchanges, who
give exceptional access to identification codes that allow
one to reconstruct the metaorders from some market par-
ticipants [9,10]. Remarkably, although these data sets are
extremely heterogeneous in terms of markets (equities,
futures, FX, etc.), epochs (from the mid-nineties, when
liquidity was provided by market makers, to the present

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOL.

'We call the metaorder (or parent order) the bundle of orders
corresponding to a single trading decision. A metaorder is
typically traded incrementally through several child orders.
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day’s electronic markets), market participants and under-
lying trading strategies (fundamental, technical, etc.), and
style of execution (using limit or market orders, with high
or low participation ratio, etc.), a very similar concave
impact law is reported in most studies. More precisely,
the average relative price change A between the first and
the last trade of a metaorder of size Q is well described
by the so-called “‘square-root” law:

A(Q) = Ya\/é, (D

where o is the daily volatility of the asset and V is the daily
traded volume, and both quantities are measured contem-
poraneously to the trade. The numerical constant Y is of
order unity. Published and unpublished data suggest
slightly different versions of this law; in particular, the
/O dependence is more generally described as a power-
law relation A(Q) « Q°, with § in the range 0.4 to 0.7
[4-9]. For example, using a large data sample of 700 000
U.S. stock trade orders executed by Citigroup Equity
Trading, Almgren et al. [4] extract 6 = 0.6. Moro et al.
[9] report 6 = 0.5 for trades on the Madrid stock exchange
and 0 = (.7 for the London stock exchange. We show in
Fig. 1 our own proprietary data corresponding to nearly
500000 trades on a variety of futures contracts, which
yield 6 = 0.5 for small tick contracts and 6 = 0.6 for large
tick contracts, for Q/V ranging from a few 107 to a few
percent. Our data on stocks is also compatible with § =
0.5, although noisier. We note that all these studies differ
quite significantly in the details of (a) how the price impact
A is defined and measured, (b) how different assets and
periods are collated together in the analysis, and (c) how
the fit is performed: over what range of Q/V, adding an
intercept or not, etc. But in spite of all these differences and
those mentioned above—in particular concerning the strat-
egies motivating the trades—it is quite remarkable that the
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FIG. 1. The impact of metaorders for Capital Fund

Management proprietary trades on futures markets, in the period
from June 2007 to December 2010. Impact is measured here as
the average execution shortfall of a metaorder of size Q. The
data base contains nearly 500 000 trades. We show A/o vs Q/V
on a log-log scale, where o and V are the daily volatility and
daily volume measured the day the metaorder is executed. The
blue curve is for large tick sizes, and the red curve is for small
tick sizes. For large ticks, the curve can be well fit with 6 = 0.6,
while for small ticks we find 6 = 0.5. For comparison, we also
show the lines of slope 0.5 (corresponding to a square-root
impact) and 1 (corresponding to linear impact). We have re-
moved a small positive intercept A/o = 0.0015 for Q =0,
which is probably due to a conditioning effect.

square-root impact law appears to hold approximately in
all cases.

The aim of the present paper is to provide a theoretical
underpinning for such a universal impact law. We first give
a general dynamical theory of market liquidity that predicts
that the average supply/demand profile is V shaped around
the current price. The anomalously small local liquidity
induces a breakdown of the linear response and explains
the square-root impact law. We then study numerically a
stylized model of order flow based on minimal ingredients.
The numerical results fully support our analytical argu-
ments and allow us to get quantitative insights into various
aspects of the problem.

I1. AN INTRIGUING IMPACT LAW

One should first carefully distinguish the total impact of
a given metaorder of size Q from other measures of impact
that have been reported in the literature. One is the imme-
diate impact of an individual market order of size g, which
has been studied by various authors and is also strongly
concave as a function of ¢, i.e., ¢* with @ = 0.2, or even
Ing [3]. Another easily accessible measure of impact is to
relate the average price change A in a given time interval
T to the total market order imbalance Q ; in the same time

period, i.e., the sum of the signed volumes of all market
orders. This quantity is estimated using all the trades in the
market (i.e., those coming from different market partici-
pants) and is clearly different from the impact of a given
metaorder (see below). However, there seems to be quite a
bit of confusion in the literature and many authors unduly
identify the two quantities. If 7 is very short, such that
there are only one or a few trades, one essentially observes
the concave impact of individual orders that we just men-
tioned. But as 7 increases, and as such, the number of
trades becomes large, the relation between A; and Q
becomes more and more linear for small imbalances (see,
e.g., [3], Fig. 2.5), and on time scales comparable to those
needed to complete a metaorder, the concavity has almost
disappeared, except in rare cases when Q ;/V is large—in
any case, much larger than the region where Eq. (1) holds.

A square-root singularity for small traded volumes is
highly nontrivial, and certainly not accounted for in Kyle’s
classical model of impact [11], which predicts a linear
impact A = Q. A concave impact function is often thought
of as a saturation of impact for large volumes. We believe
that the emphasis should rather be placed on the anomalous
high impact of small trades. Numerically, Eq. (1) means
that trading 100th of the daily volume moves the price by a
tenth of its daily volatility, which is indeed a huge ampli-
fication. Mathematically, Eq. (1) implies that the marginal
impact diverges for small volumes as Q~'/2, which means
that the susceptibility of the market to trades of vanishing
size is formally infinite. In most systems, the response to a
small perturbation is linear, i.e., small disturbances lead to
small effects. The breakdown of the linear response often
implies that the system is at, or close to, a critical point,
where very special properties emerge, such as long-range
memory or scale-invariant avalanches, that accompany this
diverging susceptibility. Of course, the mathematical di-
vergence is cut off in practice—for one thing, the volume
QO of a metaorder cannot be smaller than a single lot.
Empirical data will never be in the asymptotic limit
Q/V — 0, but this is irrelevant to our discussion. This is,
in fact, also the case for most physical systems for which
critical behavior is observed. The important point here is
that the proximity of a critical point can lead to strongly
nonlinear effects and extreme fragility. As we will argue in
detail below, and substantiate within a precise numerical
model, we believe that markets operate in a critical regime
where liquidity vanishes. This offers a framework to under-
stand many of the anomalies in the behavior of markets,
including the long-term memory in order flow and the
presence of frequent unexplained jumps in prices, that
are—or so we believe—a consequence of the chronic
lack of liquidity that leads to a micro crisis. The anomalous
high impact of small trades implied by the concave impact
law, Eq. (1), is, in our view, another side of the same coin.

Numerous interpretations have been put forth to explain
a concave impact law, and can be broadly classified into
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three types of mechanisms (which are not necessarily
exclusive): (a) risk-reward optimization of the liquidity
providers and market makers, [12—-16], (b) surprise in the
order flow and decay of impact [3,17], and (c) locally
linear supply profiles [18]. Many of the above stories
require that liquidity providers know the fundamental
value, carefully monitor the order flow, identify metaor-
ders, and adjust their quotes such that they eke out some
profit or at least break even. There is no doubt that a
fraction of market participants strive to achieve such goals
and develop astute algorithms with this aim. However,
liquidity providing is not (anymore) the monopoly of these
market participants, who compete with anyone placing
limit orders as part of an execution strategy. Further, the
concave impact law, in fact, holds even when a substantial
fraction of the metaorder is executed using limit orders.
That individual metaorders can be detected using statistical
methods, as advocated in [17], may well be true for large
metaorders of unsophisticated traders, but it would be
surprising (although not impossible) that our own trades,
which are used to obtain Fig. 1, can be systematically
detected. The universality of the concave impact law sug-
gests that a robust self-organizing mechanism is at play.
Our thesis, that we will substantiate below using both
analytical arguments and numerical simulations, is that
one can indeed build a theory of impact that relies on
minimal assumptions, with no reference whatsoever to
notions such as fundamental prices, market maker profit,
or adverse selection.

III. A DYNAMICAL THEORY FOR LINEAR
SUPPLY/DEMAND PROFILES

An interesting idea is that the supply/demand curve
is a growing function of the difference between the
fundamental value p, and the price. More precisely,
suppose the available volume for sells (respectively, buys)
at price p or above (below) V. (p) is a linear function,
+b.(p — po). The execution of a volume Q of buy orders
must, therefore, take place by moving the price by a
quantity A such that

Pot
Q B

Po

A b
dpVi(p) =5 A% @

and similarly for sells. Therefore, if the supply/demand
profile is linear, the impact is a square root: A, =

20/b+. Tt is indeed tempting to wave hands and argue
that the available volume is proportional to the mispricing
|p — pol, but one soon hits a major impediment: What
exactly is p,? If the above argument is to make any sense,
po is the fundamental value when the metaorder starts
trading, and the assumption is that p, should not vary too
much (compared to A) during the execution of the meta-
order. But this is absurd: There is no equilibrium price

around which the market pauses; prices move all the time,
in a diffusive manner and in such a way that the difference
between p, and the final price pr is in fact much larger
than the impact A we try to account for. If the linear profile
follows the price instantaneously, the above argument
completely falls into pieces since only the locally available
volume would play a role. If the linear profile for some
reason remains centered for some time around a specific
Po, Why should this price coincide with the price at the
beginning of the metaorder?

Still, the basic intuition, that the available volume grows
as price excursions get larger, must somehow make sense.
The aim of the present section is to propose a dynamic
theory of liquidity largely inspired from [19], based on
minimal and plausible assumptions that indeed predicts
that the average supply (or demand) is a V-shaped curve
that vanishes around the current price p,. The square-root
impact then follows from an argument similar to Eq. (2).
These arguments are then tested quantitatively using a
numerical model of order flow based on the same minimal
ingredients.

Our basic idea is that of a ““latent order book,” which, at
any instant of time ¢, aggregates the total intended volume
for sells at price p or above V_(p,t), and the total
intended volume for buys at price p or below V_(p, 1).
We want to emphasize that this is, in general, not the
volume revealed in the real (observable) order book, in
particular, for p, which is remote from the current price p,.
It is rather the volume that would reveal itself in the order
book, or as market orders, if the price came instantaneously
closer to p. But since there is little incentive to reveal one’s
intentions too early, most of the volume is latent and not
revealed. This is obvious from the basic order of magnitude
estimates: Whereas the total instantaneous volume in the
real order book of a typical liquid stock is of the order of
1073 of the market capitalization, the total transaction
volume per day is 1073, which shows that liquidity is a
dynamical process. The empirical analysis of Weber and
Rosenow [20] shows very clearly how the volume appear-
ing in the order book is indeed stimulated by the trades
themselves.

So, our latent volumes V. (p,1) reflect intentions
that do not necessarily materialize. How do these
volumes evolve with time? Between ¢t and ¢ + dt, new
buyers and sellers may become interested at levels
p; *u, at a rate A(u) and with unit volume ¢ = 1;
while existing buyers and sellers at p, = u might
change their price to p, = u’ at rate v(u, u'), or even
disappear temporarily (corresponding to u’ = 00).?
Clearly, V., (p<p,t)=0 and V_(p>p,1) =0,

The following equations would not change if we allow ¢ to
fluctuate, provided the average of ¢ is finite and set to unity
without loss of generality. We furthermore assume complete
symmetry between p > p, and p < p,, i.e., A (u) = A_(u), etc.
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which means that there cannot be an unsatisfied seller
(buyer) below (above) the current price p,.

We now assume that the price process p; is a Brownian
walk,? which is only an approximation since in practice
(a) at short times, microstructure effects play a role and
(b) large jumps are present and, in fact, quite frequent (the
distribution of price changes is well known to be a power
law for large arguments [22]). This approximation, how-
ever, allows us to make precise analytical calculations that
illustrate our main point. Since we are interested in phe-
nomena that take place on time scales of a few minutes to a
few days, drift effects are completely negligible and we
discard them. For the same reason, the difference between
an additive and a geometric Brownian motion is irrelevant.
A simple equation for the latent volume, averaged over

price paths V. (p, 1), can be obtained by working in the
reference frame moving with the price p,, provided an
extra assumption is made on the rates »(u, u’). We assume
that either u’ = oo, with rate v, (u), or that the change of
price is small, and occurs equally, often up or down. We
define D(u) = [du'(u — u')*v(u, u'), where the integral
over u' is rapidly convergent (small jumps); it can be
interpreted as the (squared) volatility of intentions. With
D(u) = D(u) + o, where o is the price volatility, the

final equation for p (i, 1) = V. (p, * u, 1) reads [23]*

2
=) _ L0ty g, 1] — vl (i 1

ot 2 du?
+ Au),
p-(u<0)=0. (3)

Note that all rates are symmetric for buy orders and sell
orders, the long-time, stationary solution p,(u) is the same
for p, and p_. It describes the most probable shape of the
latent order book, and is such that the right-hand side of the
above equation is zero. For arbitrary functions D(u), A(u),
and v (u), the explicit form of p,,(u) is not known, but
provided these functions are regular when # — 0, one can
show that the stationary profile is linear and close enough
to the current price, i.e., py, (1) = bu when u — 0, where b
is a certain finite constant. In fact,

19
J =5 5 IDwpu, )]l—o (4)

is the transaction rate per unit time, i.e., the volume of buy
or sell market orders per unit time. If we choose the unit of

That the price is a diffusive process is a standard assumption
in quantitative finance. It is also very well corroborated by data
down to very short time scales (see, e.g., [21]), at least in liquid
markets. This “statistical efficiency” precludes the existence of
simple arbitrage strategies.

*Here we assume that F(u) = [du'(u — u)v(u, u') = 0 Vu,
but adding a nonzero drift term in the reconfiguration of orders
would not change any of the following conclusions. Only the
value of u* would change.

time to be 1 day, J is precisely what we called V above.
Provided that D(u) is regular at u = 0, the condition
ps() = 0, and J is positive and finite, is enough to impose
that the profile is locally linear with b = 2J/D(0).
Therefore, the hypothesis of a diffusive price with a finite
transaction rate immediately leads on average to a locally
linear order book.

As a simple illustration, consider the case where new
orders appear uniformly, i.e., A(u) = A, and D(u) = D
independent of u. The exact solution is then

pu(u) = pe[1 = e7/], (&)

with po, = A/ve and u™ = /D/2v,,, which leads to b =
Poo/ 1. One sees that even when new orders appear with a
finite density around the current price, they also have a
large probability to be executed and disappear. This even-
tually leads to a liquidity trough at u = 0 and a linear
profile around u = 0; u* can be interpreted as the width
of the linear region. It is reasonable to think that D and o
are comparable, and that 1/v,, which measures the
(volume weighted) average lifetime of an intended order,
is dominated by slow players and is on the scale of a few
days.”’ Therefore, u* is of the order of the daily volatility,
which shows that the trough in the latent order book
extends over a very significant region around the current
price. Note that ;. = 1/v,, is also the persistence time of
the fluctuations of the order book, and the time to reach the
stationary state p,,(u). This time plays a crucial role in the
following.

Note that if A(«) is not constant but decays over a price
range u,, the width of the linear region is still given by u*
provided u* << u,. In the other limit, on the other hand,

one finds u* ~ u, [24]. We believe that u, and \/D/2v.,
are in fact of the same order of magnitude (a few percent);
this means that the players contributing to the true liquidity
of the market are not sensitive to price changes much
smaller than the daily volatility (see also footnote %).

Equation (5) contains the central result of the present
paper. It predicts that the available volume in the immedi-
ate proximity of the current price goes to zero, which is the
reason why we say markets are critical, i.e., they operate in
aregime of vanishing liquidity. This scenario does not arise
by fiat but is rather a natural consequence of the diffusivity
of prices: We believe this is a genuine example of self-
organized criticality [25].

In more concrete terms, the volume at the best quotes
(bid or ask), given by gp.q = bw?/2 (where w is the tick

>Note here that this is where the distinction between latent and
revealed orders is crucial: The average lifetime of orders in the
order book is much shorter than this, but this is a result of high
frequency strategies which are sensitive to minute price changes,
but does not relate to changes of intentions from slow players.
Correspondingly, the average shape of the true order book is
nonmonotonous [23], and thus very different from the linear
prediction, Eq. (5), for the latent liquidity profile.
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size) is ~(w/u*) smaller than the volume p.,w one would
expect in the absence of the above sweeping mechanism.
This is typically small since w ~ 0.05% and u* ~ 2% (for
stocks or futures). One can also compare gy to the total
volume traded in a time 7, whichis V = JT ~ p.u* if one
chooses T = 1.~ 1 day. The ratio iS now @pey/V ~
(w/u*)?, which is very small, as is indeed the case empiri-
cally: The immediately accessible volume is typically a
factor of 1000 smaller than the daily turnover. This small
liquidity compels market participants to fragment their
trades, which leads to the universally observed long-range
correlation in the sign of market orders [21,26]. It
also leads to the square-root impact law, if one trusts
the argument after Eq. (2), where b = p,,/u”. This gives

A= \/% o a\/é, where we have used b ~ J/o?, where
J is the trading rate. This is exactly the square-root
impact law, Eq. (1).

However, this last argument is quite naive since the
average impact A is much smaller (for small Q) than the
typical excursion of the price within the same period.
Furthermore, the diffusive behavior of the price is taken
for granted in the above calculation, whereas, in fact,
it results from a subtle compensation [21] between
a confinement effect created by the linear supply/demand
curve (a price movement in one direction hits larger
opposing volumes and is more likely to revert) and a
correlation effect created by the fragmentation of the trades
[27,28]—itself imposed by the liquidity trough mentioned
above.

Since we are unable, at this stage, to treat these effects
consistently within an analytical framework, we now turn
to a minimal numerical model that captures all the above
effects. We will indeed find a linear demand profile and a
concave impact function, and gain considerable insights
into the mechanisms leading to such behavior.

IV. A NUMERICAL MODEL FOR AN EFFICIENT
MARKET WITH LONG-RANGED ORDER FLOW

The numerical implementation of the above simple
Poisson model for intended order flow is quite simple,
and we follow the framework proposed in [19]—see also
the Appendix below. All orders have a unit volume. Limit
orders are launched at a uniform rate A in a finite (but large)
interval around the current price. Existing limit orders are
individually cancelled at rate v. If market orders are
themselves completely random, with buys and sells drawn
independently with probability % and at rate u, the resulting
price motion is known to be strongly subdiffusive, in the
sense that the lag dependent diffusion constant o({) =
((p; — pi+e)?)/€ decays when € increases (here time is
counted in number of transactions). This was noted in
[19], and is a result of the confining effect of the supply/
demand curve. The price only becomes diffusive on time
scales larger than the memory time 7;¢.. Nothing of that

sort is seen in real price dynamics. However, we know from
empirical data [3,21,26] that the signs of transactions €, are
in fact long-ranged correlated, i.e., that C(€) = (€,€,,¢) is
decaying as a power law, C({) = €77, where y = 0.5
for single stocks and y = 0.8 for futures markets [29].
This persistent direction of trading can counterbalance
the confinement effect and restore diffusion. In fact, if y
is too small, one expects superdiffusion, i.e., 0>({) growing
with €.

We therefore want to upgrade the ‘“‘zero-intelligence”
model of [19] to an ““e-intelligence” numerical model,
which explicitly includes the long-ranged correlated nature
of the trades, reflecting the fact that large metaorders are
fragmented and traded incrementally; see Ref. [27,28]. We
have chosen to work with the Lillo-Mike-Farmer specifi-
cation of the sign process [27], i.e., sequences of + and —
signs (buy and sell market orders) are generated, with
lengths L drawn from a power-law distribution: P(L) ~
L~@*D Tt can be shown that the sign process has an
autocorrelation function that decays asymptotically as
C(€) = €77 with v = @ — 1. We do not expect that the
following results depend much on the precise specification
of the model of signs [30].

At this stage, the model contains four parameters: the
rate of limit orders A, the rate of cancellation v, the rate of
market orders u, and the autocorrelation exponent 7y. In
fact, only three of them are relevant up to a change of time
unit: the ratios A/v, and u/v, and y. As noted above,
the ratio p,, = A/ v, determines the supply depth far away
from the best quotes, whereas the ratio r = u/v,, tells us
whether we are in a “slow” market, where the renewal
time 7y of the supply/demand is much longer than the
time between individual trades (r >> 1), or if the market is
“fast” in the opposite limit » < 1. It is clear that real
markets are in the former limit: If trades take place on a
scale of seconds while the renewal time is of the order of
hours or days, the ratio r is on the order of 10*. As will be
discussed later, » > 1 is a crucial condition for a concave
impact law to hold. On the other hand, x and A X w are of
similar orders of magnitude, which means that, as ex-
pected, markets are also “deep”: po X w > 1.

The problem is that in the limit of deep and slow
markets, the above model is always in the subdiffusive
phase unless 7y is very close to zero (see Fig. 2 below).
We therefore need an extra ingredient to make markets
statistically efficient (meaning that prices are diffusive),
while keeping 7y in the empirical range y ~ 0.5-0.8. When
compared with real markets, the above model is obviously
much too simple. For example, the size of both limit and
market orders is known to be broadly distributed, whereas
we assume, as in [19,31], that all volumes are of unit size.
The direction and the size of market orders are furthermore
strongly conditioned by the volumes at the best quotes
Gresi: The volume of market orders is larger when the
offered volume is larger, and the sign of the next market
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FIG. 2. Map of diffusivity in the plane 7y, { for A = 0.5, u =
0.1, ve = 107%. The large vy, large { region corresponds to
subdiffusion, while the small vy, small ¢ region corresponds to
superdiffusion. The efficient market (diffusive) line determined
numerically is such that £(0.8) = 0.65, £(0.5) = 0.95, and
£(0.3) = 2.5 (crosses). Note that the unit volume limit / — oo
corresponds to y — 0. Without volume fluctuations, deep and
slow markets are therefore always found to be in the subdiffusive
phase.

order is anticorrelated with the volume imbalance
(i.e., when gy;q > ¢, the next trade is most likely to be
a buy and vice-versa).

We have chosen to add one extra parameter both to
make a step toward reality and to solve the efficiency
problem in the following way: The volume of market
orders is chosen to be a random fraction f of the volume
at the opposite best quote, where the distribution of f is
given by P;(f) = {(1 — £)*"! and where { is a parameter
(£ > 0) that determines the typical relative volume of
market orders. For {— 0, the distribution P/(f) peaks
around f =1 and most orders ‘“‘eat” all the available
liquidity; £ = 1 corresponds to a flat distribution for the
fraction of eaten volume. Finally, the limit { — oo corre-
sponds to very small (unit) volumes and recovers the
previous model. The correlation between the volume at
the best quote and the volume of the impinging market
order has been reported in many papers (see [32]). This
makes perfect sense: Since large metaorders must be frag-
mented because of the small available liquidity, one ex-
pects that the executed volume opportunistically follows
the offered liquidity.

With the help of the extra parameter { we can now tune
the model to guarantee diffusive prices for any value of vy,
even in the limit of deep and slow markets. We define a
measure of pure diffusivity as o(€,)/co(€,) for two time
scales €, and €, > €,. Subdiffusion corresponds to ratios
less than 1, superdiffusion corresponds to ratios greater
than 1, and for pure diffusion this ratio must be equal to
unity for all €, €,. In our simulations, we chose A = 0.5,
w=0.1, v, = 10* (corresponding to p, = 5000 > 1
and r = 1000 > 1). We determine the diffusion line in the
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FIG. 3. Comparison of the stationary density of the book with
the expected shape calculated from Eq. (5). The symbols show
the empirical shape of the book from the simulations, while the
solid line shows the predicted exponential form, with u* being
computed from the actual price volatility. In the simulations we
used the parameters, y = 0.8, £ = 0.65, v, = 1074, A = 0.5.
The analytical computations lead to u* = /D/2v4 = 0.49,
while a direct fit to Eq. (5) leads to u™ = 0.48.

plane vy, { that separates the subdiffusion regime from the
superdiffusion regime, by setting ¢, = 10, €, = 1000.°
The result is shown in Fig. 2. As expected, smaller y’s
favor superdiffusion, whereas larger values of { (corre-
sponding to less aggressive market orders) favor subdiffu-
sion. On the boundary between the two regimes we find the
purely diffusive, efficient markets we are looking for. In the
following, we fix the value of {(y) so that it is exactly
diffusive.” Since the value of ¢ is fixed by the condition of
price diffusivity, our model still has three parameters:
depth (p4), inverse speed (r), and trade persistence (7).
To illustrate the tight connection between the dynamical
theory discussed in the previous section and the above
described numerical model, in Fig. 3 we compare the sta-
tionary density of the book to its expected shape calculated
from Eq. (5). The symbols show the stationary density p,,
measured in the simulations, while the solid line is Eq. (5)

with u* = /D/2v,,, with D being the actual measured
price volatility. The latent order book is found to be linear
in the immediate vicinity of the price, as predicted. The
exponential curve with the analytical expression for u*
leads to a very good fit in the whole range of u.

We now have a model such that (i) the order flow has a
long-range memory but (ii) the price is diffusive. We are
thus in a position to test quantitatively our above ideas

SThe results are not sensitive to the precise choice of €, and €5,
provided €, €, < 7j;;.. We have explored a wide range of values
of A, i, vo. Provided that one remains in the limit of deep and
slow markets, the broad picture is unaffected, although the
precise location of the diffusion line in Fig. 2 is changed.

It would be interesting to obtain an analytical form for the
diffusion line, but we have not attempted to make a theory for
this at the present stage.
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about the linear supply function and the impact of meta-
orders. In order to do this, we add to the above order flow
an extra agent who becomes active at a certain (arbitrary)
time ¢, chooses a random sign €, and a random size Q for
his metaorder, which he executes incrementally using mar-
ket orders until all the volume is transacted. We have
considered two execution styles: (a) ““{ execution,” where
the extra agent trades exactly as the rest of the market, by
sending a market order of volume f X g.q, Where f is
chosen according to P,(f) above; (b) “unit execution,”
where the market orders are all of unit volume whenever he
trades. (We also studied limit order execution with similar
results; see [30].) In both cases, he participates to a fraction
® of all market orders. We measure, as the real data shown
in Fig. 1, the impact A as the price paid by the extra agent
compared to the price p, at the beginning of the metaorder,
averaged over many different metaorders of size Q. The
results are shown in Fig. 4, where we show in a log-log
scale A/o on the y axis versus Q/V on the x axis, for
different values of vy, r, and ®, and for both ¢ execution
and unit execution. We also show two straight lines of
slope 8 = 1/2, corresponding to a square-root impact,
and 6 = 1, corresponding to a linear impact. It is clear
that for all cases where the execution time 7' is much
smaller than the renewal time 7y;., the impact is strongly
concave and, in a first approximation, independent of y and
of the participation rate @, which is in agreement with
empirical observations. The exponent § is found to be

0.50

0.20

2
< 1
Q
o
S
o T T T T T T T
0.001 0.005 0.020 0.050
Qlv
FIG. 4. Impact of metaorders on log-log scale. We show A/o

vs Q/V, where o and V are measured over the time scale 7.
The three curves with symbols show the impact for the ¢
execution with high participation rate, ® = 0.3, and three values
of the sign autocorrelation exponent: y = 0.3 (green crosses),
v = 0.5 (black circles), vy = 0.8 (red triangles). The two blue
lines show the impact for low participation rate ® = 0.05, for
the ¢ execution (full line) and unit execution (dashed line), both
for v = 0.5. The purple dots show a case when the time to
complete metaorders is longer than the lifetime of the book
T > 7y In this case we get back a linear impact. The two solid
black lines are of slope 6 = 0.5 and é = 1, for comparison, with
the choice ¥ = 1 for 6 = 0.5.

close to 1/2 for unit execution, and close to 2/3 for
execution. The Y factor, defined in Eq. (1), can be mea-
sured from the data shown in Fig. 4, and is of order unity, as
found empirically. More details about these results will be
given in [30].

Some parameters of the model, however, do influence the
value of the effective exponent 8, which might explain why
empirical data show some scatter around the value § = %
In particular, when the execution time 7 increases and
becomes comparable to the renewal time 7y, the effective
exponent § increases and the impact becomes linear in the
limit 7 > 7};.; see Fig. 4. This is indeed expected since
impact is necessarily additive when all memory of the latent
order book has been erased. It is also a direct proof that the
persistence of the supply/demand is central to explain the
functional form of the impact. The naive prediction for
the price impact, Eq. (2), based on the average slope of
the supply curve, is shown in Fig. 5 (left), together with the
numerical determination of A(Q) already plotted in Fig. 4.
We see that the naive argument indeed leads to the correct
order of magnitude for the impact, but fails to be quantita-
tively accurate: It underestimates the real impact by a factor
of approximately 2. On the same graph, we also show the
global measure of the impact mentioned above, where the
average price change is plotted against the total volume
imbalance Q. We see that the latter is very different from
the impact of a given metaorder. The global impact is linear
in @ (as observed on empirical data for large enough T
and, for small volume imbalances, much smaller than
the impact of an additional metaorder that perturbs the
equilibrium flow.

Another interesting aspect of the problem is the tempo-
ral structure of the impact of metaorders. In Fig. 5 (right)
we show the average difference A, between the price p, of
the first trade of a metaorder and the price p,, at time 7
later, in the direction of the trade. The x axis is in units of
the time needed to complete the metaorder. The exact
shape of the buildup in time depends on the execution
mechanism, which we will discuss in detail in [30]. Here
we focus on the price dynamics after the completion
of the metaorder. Once the metaorder is completed
(i.e., for 7 > T), the impact decays down to smaller values,
and appears to reach a plateau A, such that A, /A,
depends on the value of y, and is approximately 0.75 for
v = 0.5. The cause of the reversion in our model is that,
during the trading of a metaorder, the order book becomes,
on average, unbalanced: Orders on the opposite side be-
come statistically more numerous, as a consequence of the
V-shaped liquidity. This results in a partial reversion of the
price, once the pressure from the metaorder is over.

Interestingly, a similar behavior has also been observed
in [9], and is predicted by the theory of impact recently put
forth in [17], which elaborates on the idea of a “‘fair
execution price.” As emphasized in [9,17], if a metaorder
of size Q has an impact that grows as (gexec/Q)° (Where
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Left: The true impact of {-executed metaorders for y = 0.5, & = 0.3 (black circles), the naive estimate of the impact from

integrating the volume in the average latent order book (blue solid line), and the average price change against the global volume
imbalance in a given period (red triangles). We also show a power-law fit for the metaorder impact, as Y(Q/V)?, with § = 0.7 and
Y = 1.59 (solid black line) and a linear fit for the global measure of impact (solid red line). Right: The decay of impact after the
completion of the metaorder for the unit execution for y = 0.3, 0.5, and 0.8 and @ = 0.5. The x axis is 7/T, the clock time in units of
the time needed to complete the metaorder (with 7 << 7};.), the y axis is the rescaled price change during the metaorder. After the
metaorder, the price appears to relax to a constant level, which is a y dependent fraction of the temporary impact. The dotted horizontal
lines correspond to the actual average execution price of the metaorder, which is found to be = 0.6A; for all three values of 7.

Gexec 1 the volume already executed, i.e., Gexee/Q is
“volume time”),8 then the average execution price of the
metaorderis Ay /(1+ 8). Inthis case, A, /A = 1/(1 + §)
ensures that the average execution price of the metaorder is
equal to the price long after the execution is completed, in
other words, that the execution price is fair. Used together
with the condition that the price should be a martingale and
that the size distribution of metaorders is a power law,
Q"% Farmer et al. [17] obtain a concave impact
A~Q?% with 6 = a — 1 = y.” Using a=3/2 from em-
pirical data on stocks, the square-root impact law is recov-
ered [17], with A, /Ay = 2/3. We see, however, in Fig. 5
(right) that the ““fair price” condition does not hold in
general within our model since the plateau value signifi-
cantly changes with y, whereas the average price paid is
close to 0.6A; in all cases. Nevertheless, for y = 0.5 the
plateau is not far from the value 2/3 predicted by Farmer
etal [17].

V. CONCLUSION

Although some elements of our model are common with
the framework of [17] (broad distribution of metaorders

8Since the impact is A(Q) = Yo (Q/V)?, we expect the impact
to grow as A, =~ A(Q)(Gexec/ 0)° meaning that a metaorder of
size Q stopped halfway through execution impacts the price the
same way as a metaorder of size Q/2, which a priori makes
sense since there is no way to anticipate when a metaorder is
going to stop. Indeed, we find the buildup of the impact in
volume time to be concave.

Note that in the theory of Farmer et al. [17], the exponents &
and y are equal, whereas in our model 6 is, to a large extent,
unaffected by the precise value of 7.

leading to long-range correlation of the order flow and the
efficient price condition), others are very different. The
theory advocated in [17] requires that metaorders can be
identified by market makers, in particular, that the very first
trades can be detected. As the authors openly admit, the
need for market participants to be able to detect the starting
and stopping of a given metaorder is potentially a problem,
and in fact our model does not rely at all on such a strong
assumption. On the contrary, we have shown that the
universally observed concave impact law is a consequence
of some robust, generic assumptions about market dynam-
ics. In particular, we have provided a dynamical theory of
liquidity which leads to a locally linear supply/demand
curve, provided high frequency strategies guarantee price
diffusivity on all time scales. Our story is purely statistical
and does not rely on additional (and sometimes woolly)
notions such as fundamental prices, adverse selection, or
fair pricing. There are no explicit market makers, strategic
players, or optimizing agents in our picture, but rather an
ecological equilibrium of indistinguishable traders that
interact in a way to make the price statistically efficient.
Although our e-intelligence numerical model makes an
important step toward reality (in particular by including
long-range correlations in the order flow and ensuring a
diffusive price dynamics), there are still many assumptions
that are ad hoc. One knows, for example, that the deposi-
tion and cancellation rates of limit orders strongly depend
on the distance from the current price [33], that the as-
sumption of a Poisson process is an oversimplification
[34] (these observations apply to the real order book, but
probably will also hold for the latent order book), that the
volume of limit orders is not at all constant, etc. Building a
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detailed, realistic model of order flow is of course needed
to get fully quantitative predictions for the impact, but was
not the scope of the present work. We instead wanted to
have a simplified model that would allow us to test our
central hypothesis: that the latent order book is locally
linear and that this is the crucial ingredient to explain the
square-root impact law. We believe that this objective has
been reached, and we leave the more ambitious project of
building a full-scale model for future work. We also note
that our central assumption of a latent order book has other,
empirically testable assumptions, which we are currently
investigating.

As we emphasized in the Introduction, understanding
impact has immediate practical implications in terms of
trading costs and capacity of strategies. In our view, the
most important message of the theory presented above
concerns the critical, inherently fragile nature of liquidity.
By necessity, a diffusive price leads to a vanishing liquidity
in the vicinity of the current price. This naturally accounts
for two striking stylized facts: First, large metaorders have
to be fragmented in order to be digested by the liquidity
funnel, which leads to a long memory in the sign of the
order flow. Second, the anomalously small local liquidity
induces a breakdown of the linear response and a diverging
impact of small orders. Furthermore, liquidity fluctuations
are bound to play a crucial role when the average liquidity
is small, and we expect these fluctuations to be at the heart
of the turbulent dynamics of financial markets as postu-
lated in, e.g., [21,35,36].
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APPENDIX

This Appendix summarizes the main steps of the nu-
merical model discussed in the paper. In the model we
consider that the price axis is very large and is discretized
by the tick size (i.e., the minimum increment of price).
The minimum and maximum price are K ticks away, with
K > 1. Time is measured in discrete steps, and in each
time step, three types of events can happen: new limit
orders are placed, market orders are placed, or extant limit
orders are canceled. Many of these events can happen
simultaneously during a single time step.

(i) Limit orders are orders to buy or sell that do not
trigger an immediate trade. According to this, limit
orders are placed on a support of size K that is in
practice infinite, i.e., much larger than all other price
scales in the system. Limit orders placed below the

current midpoint price are considered as limit orders
to buy, while those placed above the midpoint price
are considered orders to sell. All limit orders have a
unit volume in the present version of the model (but
this is in no way an essential ingredient). Limit
orders arrive with a uniform rate A per unit time
per unit price. In practice this means that in each
time step, there is a probability A”e~*/n! that n new
limit orders fall in each of the K bins of the price
axis.

(ii) Market orders are orders that trigger an immediate
transaction (with existing limit orders on the oppo-
site best price level). They arrive with a rate u per
unit time. The sign (direction) of market orders is
generated using the algorithm proposed in [27] with
one active agent at any instant of time. The volume
of market orders is chosen to be a random fraction f
of the volume at the opposite best quote where the
distribution of f is given by P (f) = {(1 — )¢ 1,
where { is a parameter ({ > 0) that determines the
typical relative volume of market orders. When { —
0, market orders take all the prevailing volume on
the opposite best.

(iii) In each time step, each limit order in the book has
the probability v, of being cancelled. This Poisson
process of cancellation defines the typical lifetime

of a limit order (as vg).

The order of the processes in each time step is the
placement of limit orders, followed by the possible execu-
tion of market orders, and finally, the cancellation of some
limit orders. As shown in Fig. 2, with the help of the
parameters y and { we can tune the system to guarantee
diffusive prices for any value of the parameters w, A, and
V. This diffusive market allows us to test the predictions
of our analytical model about the locally linear profile
around the current midpoint price. To do this, we add an
extra ‘“agent” to the model, who wishes to transact a
metaorder that is typically larger than the available volume
on the first level of the book and thus has to be split up and
traded incrementally. It is the price change from the begin-
ning to the end of such a metaorder that we would like to
study in order to compare the predictions of the model to
empirical results. The only remaining point is to define
how the extra agent trades. In the present paper we allowed
two trading strategies for the execution of the metaorder:
(a) { execution, where the extra agent trades exactly as the
rest of the market, by sending a market order of volume
f X @pesi» Where f is chosen according to P,(f) above
and (b) unit execution, where the market orders are all of
unit volume, whenever he trades.

In Fig. 6 we show a segment of the price process for a
simulation run, chosen only for illustration purposes. We
plot the price as a function of time (simulation steps). The
two simulations shown are governed by the same random
seed, however, in one case an extra agent trading a
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FIG. 6. The price process with and without the metaorder
trading, with the same random seed used for the two simulations.
The black curve shows the price dynamics without the meta-
order, while the green curve shows it with the metaorder. Trades
of the metaorder are denoted by blue crosses. In the simulations
we used the parameters, y = 0.8, /= 0.65, v, = 1074
A = 0.5. The participation rate of the metaorder is ® = 0.05.

metaorder to sell is added to the market. The black curve
shows the price dynamics without the metaorder, while the
green curve shows it with the metaorder trades (the meta-
order starts at time O and finishes at time 3000). Blue
crosses indicate the moments when a trade by the extra
agent was made. The agent follows the {-execution strat-
egy in this particular run. For a while the two curves are
identical, then after the first trade of the metaorder the two
curves start to deviate from each other. The coarse-grained
dynamics of the two curves are similar, however, the final
price in case of the green curve is pushed down as a result
of the extra sell metaorder.
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