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THE

PHYSICAL REVIEW.

ON THE MAGNETIC SHIELDING EFFECT OF TRI-
LAMELLAR SPHERICAL AND CYLINDRICAL
SHELLS.

By A. P. WiLLs.

HE subject of magnetic shielding has already received consid-
erable attention, and, at the present day with the spread of the
trolley system and the consequent increase of disturbing earth cur-
rents, the subject often demands attention from those having to
do with suspended magnetic systems of any sort.

For a long time it was the custom to use extremely thick single
iron shells as a protecting device. A single shell is in a measure
effective, but in most cases one-tenth of the shielding material used
could, if properly distributed, be made to produce many times the
shielding actually produced by the usual distribution.

The advantage to be gained by using concentric shells separated by
unmagnetic inter-spaces has been shown by Professor Riicker and by
Professor du Bois. The former has given a general solution of the
problem of multi-lamellar shielding with spherical shells ; the results
of this mathematical paper'! are somewhat difficult to apply in actual
shielding practice partly because there is involved the necessity of
constant interpretation of the not very explicit equations used in the
spherical harmonic analysis. Furthermore the practical advantages
of cylindrical shells are much greater than those of spherical shells.

! Riicker, Phil. Mag. (5), 37, p- 95, 1894.
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194 A. P. WILLS. [Vor. IX.

(Convenient cylindrical shells may be made by rolling up thin sheet
iron strips of proper width.) Professor du Bois' has treated the
case of bi-lamellar shielding both for spherical and cylindrical shells
and has, moreover, applied the results of his theoretical and experi-
mental investigations in the construction of multi-lamellar ironclad
galvanometers.? Experience showed that in cases of considerable
disturbance it was desirable to use three shields instead of two as
a protecting device.

Acting upon the suggestion of Professor du Bois the present
writer has deduced the general explicit formule giving the shield-
ing effect of tri-lamellar spherical and cylindrical shells under
conditions to be mentioned later and in such mathematical form as
to be readily interpreted. These general formulae have then been
applied in the graphical discussion of a particular problem well
adapted to show the great advantage to be gained by introducing
suitable air gaps within the shielding material.

In virtue of the formal analogy in the treatment of the spherical
and cylindrical problems the corresponding equations for the two
cases are given together at each step in the development.

We shall suppose a uniform magnetic field of strength /7, to be im-
pressed upon the system of shells. We shall deal with the case where
the space within the shells is to be shielded against /7. Further we
shall suppose the axes of the cylinders to be perpendicular to the
lines of force; that the spherical and cylindrical shells are concen-
trically arranged ; that the permeability is constant and equal for
all shells. This last assumption involves, of course, a restriction in
the values of /7, to those not exceeding, say .01 C.G.S. units, pro-
ducing small variations in the magnetic condition of the shells su-
perimposed upon their intrinsic magnetization which may be zero or
have a finite residual value. It is true that this limitation invalidates
the discussion for strong fields; but when we remember that the
trouble with galvanometers arises from disturbing fields of the
order of magnitude mentioned we may rest assured that our for-
mula are capable of practical application in the designing of shield-
ing apparatus.

1du Bois, Wied. Ann., 63, p. 348, 1897, and 65, p. 1, 1898. The Electrician, Vol,

40, 1898.
2du Bois and Rubens, Verhandl. physik. Gesellsch. Berlin, 17, p. 100, 1898.
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Now, suppose a uniform disturbing field /7, to be impressed upon
our tri-lamellar shielding systems, Fig. 1 representing both the
spherical and cylindrical systems. The letters 7, R, 7,, &X,, 7,, R,

>He

Fig. 1.

represent the inner and outer radii of the various shells; the small
letters always referring to the inner radii and the large to the outer.
We shall find a notation similar to that introduced by Professor du
Bois in his treatment of the bi-lamellar problem to be convenient.
It is given below in tabular form :

Spheres. Cylinders.
7.3 73 7.2 2
—_ 1 —_1— 1 — -] — 1
ﬁl“kg mlil RS gl”—kz nl_‘]‘ R.2

1 1 1 1

7,8 1 753 72 7,2
p — my — 1 — - Py = 55 7y — L — -

2 3 2 53 2 2 2
R,3 Ry R, R2
7P 7P 7 7yt
P3:1\"_g3 m3:1_25_§ %:7?? ng = —Eai
P R 1 R3 R 1 2
= — Myg = 1 — ——~ - — Pyg = L ~— —-

12 3 12 3 712 ) 12
7y 7y 7y 7,2

3 2

? & Mgy = l—fil P =& Py 1_._52,2_
287 3 23 = X Gz = x 23 = 7yl

We shall consider the cylinders as infinitely long ; but experi-
ence has shown that the equations to be derived hold in the central



196 A. P. WILLS. [VoL. IX.

portion of cylinders whose length is not less than three or four
times the radius.

Now suppose the total resultant field in the direction of /4, within
the .innermost shell to be denoted by 77,. The ratio of A, to /,
may be taken as a measure of the effectiveness of the shielding

device. Denote this ratio by ¢ then g = [i{[" g = oo would, of

t1
course, mean perfect shielding.

Now it becomes necessary to find an equation expressing the re-
lation existing among the various quantities entering into the prob-
lem, namely, “the shielding ratio” g, the permeability ¢ and the
geometrical data given by the p’s and #2's in the case of the spher-

ical shells, the ¢’s and #’s in the case of the cylindrical shells.

FuNDAMENTAL EQUATIONS.

Since Fig. I represents a plan section of our double system of
shells, the axis of the cylindrical system will be perpendicular to
the plane of the paper. The direction of the impressed field is in-
dicated by the arrows. There will be produced upon each of the
six surfaces of separation between iron and air surtace distributions
of ‘“free magnetism.”” In the theory of such distributions it is
shown that a distribution upon a spherical or cylindrical surface
produces within the surface, when the impressed force is uniform,
a uniform magnetic field which is coincident with the impressed field
but acting in the opposite direction and of different intensity. If .S
denote any one of the surfaces of the spherical system and /7, the
field produced within S by the distribution upon S, the theory shows
that at a point without S, 2 say, the radial force produced by the

3
distribution upon S is — 2}% H, cos &, where 7 is the radius of S
and R the distance from the center of .S to the point 2 and the tangen-
7,3
K3
where ¢ is the angle between the radius to P and the impressed
field. With cylindrical shells, for any surface S and a point 7 with-

2
out S we should have the corresponding forces — }gz» H, cos &, and

tial force at 2 (perpendicular to the radial force) is — -5 /7, sin &,
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2
— ;2 H sin 4. Now considering the surface S we may think of the
resultant force within it to be made up of two parts one of which is
due to causes external and the other to causes internal. Call the
first A, and the second /7. Starting in each case with the inner
surface we may write down the following equations, applying to
both spherical and cylindrical systems.

’f]t1=[{tz+[{il=[£z+‘H;6+Hi5+f{i4+[{i3+}]iz+H;l
1132=}43+H;2=1Z+f{i6+b’i5+H-i4+H;‘3+]{i2
11;3=f‘{!4+lii3=]{e+[{i6+[{i5+]{i4+}[i3

| }]M=H;5+f{i4=[[e+[{w+ﬁri5+‘bri4
]{t5=lljt(5+}]i5='h’e+[{i6+ﬁ;5
[is=[£7+ﬁcs=[£z+ﬁ%6

From what has been said above and from Fig 1 the meaning of
the notation is clear.

We do not require to know the exact distribution of the lines of
force throughout the shells but the quantities /7, /7, H,, H, H,,
A, must be such as to satisfy the two surface conditions namely :
that at surfaces of separation of iron from air the tangential com-
ponents of the magnetic force must be equal in the two media and
that the normal component of the magnetic induction must be con-
tinuous. The first condition, from what has been already said,
may be seen to be always satisfied whatever the values of /.- H,.
But in order that the condition of continuity in the normal com-
ponent of the magnetic induction be satisfied we must have the
following equations also satisfied. In these equations p represents
the permeability of the iron. The equations pertaining to the spher-
ical shells are given first. In both sets of equations cos  occurs as
a common factor in both members of each equation but is not writ-
ten down.
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The corresponding set of equations for the cylinders is
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QI&IICQQI:.VM z —

®rr CI&!WI\NI«. Qluomlmlt (1 —7) m%ml ‘(1 + 1) = (1 — o)

sl =) — =y =) e
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(=) — = &Ti
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A. P. WILLS.
TREATMENT OF FUNDAMENTAL EQUATIONS.

(e + )+ 515 — )+ PR (L) 4 = ) + (s =)
21 — o) — =g (1 + ) —
a(x — ) + T (x — ) + "a7(1 — ) + g (x — o)+ " (x )

From the set of equations (S) we may eliminate the /s with the
aid of the set (R) giving for the spherical shells after combination

and rearrangement of terms the following set:
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We have now two sets of six linear equations in the six quanti-
ties H, -+ H,, one set corresponding to the spherical shells and the
other to the cylindrical shells. We have sufficient equations in
each case to enable us to evaluate /7 - /7, in terms of the geo-
metrical data, the permeability and the impressed field.

It will be convenient to treat these equations by means of deter-
minants, and the method used in treating the spherical problem only
will be given ; the cylindrical problem is subject to a treatment
mathematically analogous to that indicated for the spherical prob-
lem.

Referring to the set of equations applying to spherical shells, let
the determinant formed by taking in order the coefficients of the /7’s
in the left-hand member of the first equation for the elements of its
first row, the coefficients, in order, of the /s in the left-hand mem-
ber of the second equation for the elements of its second row and
so on be called 4. Let the determinant which is equal to 4 except
in the first column, where in place of the elements found in the first
column is put in the place of each element the common right-hand
member of the system of equations namely—(u — 1)/, be called
d1. Let 42, 43, 44, 45 and 46 be defined in an analogous way.
The determinants thus defined are seen to be of the sixth order.

We shall have then according to Leibnitz’s rule for the solution
of simultaneous linear equations the following values of A - H
pertaining to the spherical shells

A1
="y
C 46
Mo="g

These are the values to be substituted in the equation
Hy=H + Hy + -+ H,
and it will be remembered /7, stands for the field within the inner-
most spherical shell and # for the impressed field. From the
method of formation of 41 - 46 it will be seen that each of these

, . i , H,
determinants contains 7, as a factor, and the shielding ratio g =7{i

th
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is found from the equation just given. Substituting in this equation
the values found for /7, - H we get

I fdr + 42 ... 46
=1, { R B }

and therefore ,
H Hed.

e

E§=H TIAH + 41+ dz + - + 46

This then expressed symbolically in determinantal form is the re-
sult sought. It remains now to expand the 4's and reduce the
somewhat complicated resultant expression. It will be sufficient to
illustrate the method used in expanding the various determinants
to consider one of them only, say 4.

It is in the ordinary notation

(r—1), -1, (@E-1 , (-1 , (@E-1 , —(Ce+1)
(¢=1), (=1 , (k=1 , (k=1 , (£+2) ,-2(/:—1)%1-3

R NI 2 BRI CY ) B R L Sy e

7,3 R3 7,3

(lu_ I)) (# - I) ’ (‘Il + 2) » 2(/1-— I?_Ri;;)_z(lu‘_l) "R‘ig )'—2(#—' I)ikl;:i
R3 7,3 RS 3

(v — 1), —(2p+1) ,—2(p—1) 7732*,—2(/‘—1) ;2'3"“'2(/‘—1)71‘3 —2(p—1) 95
3 3 3 3

. 7,3 R3 7,3 R3 7’3
(v + 2), — 2(n— 1);?3;3,_2(/1— 1)7{?, —2(p—1) R%:,—z(/l— x)k_;?,-—z(y— I) R:S

Multiply the sixth row by &2 the fifth by 7%, the fourth by R}, the
third by 7,2, the second by R}, the first by % To keep the value of
the determinant unchanged we must multiply the resulting form by
I
from the fifth and so on down to the first row. These operations
have not changed the value of the determinant. Now in the result-
ant form subtract the second column from the first, the third from
the second and so on up to the sixth.  Divide the sixth row of the
resultant expression by &2 the fifth by ? and so on down to the

Now subtract the fifth row from the sixth, the fourth
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first row. To keep the value of the determinant unchanged multi-
ply the resulting form by R}?...7° Employing the pand  no-
tation explained on page 195 we may write the resulting form of
the determinant 4 as follows :

4= o o o o 30 —(2p+1)
° ° o —3 (p42)m, 34
o ° 30 —(2nt1)my —30py 0
o =3 (nt2)m, 32, ° °
3 —(2ut1)my  —3pP, o o o
(r42)m, 32 o o o o

As the determinant now stands Laplace’s Method of develop-
ment will be found convenient. By this method the determinant 4
is at once seen to be equal an expression with two terms, each of
which is the product of two determinants of the third order. Using
the “ criss-cross’”’ method applicable to determinants of the third
order the expansion of these determinants is easily obtained and
thus the expansion of 4. In a similar way the expansions of
41 ... 46 may be obtained.

We have now to substitute the values found for 4, 41 ... 46
in the expression

4. H,
S§=UH + dv + 42 ... + 46

Assuming this to have been done and the proper simplifications and
rearrangement of the terms to have been accomplished we get

p— 1)
s—1=3 "2 = pnn)
(2¢ 4 1)* (1 + 2)°
(4) + 5% " I P W P,

2u+ 1)+ 2
(_._’il_)_(_g__*)_ [(7”17”3 + i, — 1721”227”3) "y,

M

-+

ol

+ (myny + mpng, — mmm) my, — my mn iy | } .

A similar treatment of the fundamental equations for the cylin-
drical shells gives the corresponding formula
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(p—1)° ¢+ 1)t
i _l— (I 9172‘73> + 16 ( /IZ ) 727219729 5572

7+ 1)?
. [(22g + 1y — i1ty ) 1,

+ (”1”3 + Nty — ”1”2”3)”23 - ”1”3”12”23] }

Equations (A4) and (5) are capable of transformation into the

following forms :

= {( (/_I)Zm -+ 1)( (/1-—-1)2”2 +I)( (#7 >2m +1)}

(r—1) (2p+1)(p42 2p+1)(p+2
ye ) et 1) ){(’ NE2) s

+3
0 # or o
2 (/A - I)Z
Ty, (gt pry 4 10005900, o) — (077, D1y ~+ 103700 Py
+ 1975 D1y o) } ’
_ (p—1)? ) (/l— (p=1)? (p—1)*
Ut (s [l
(8= 1) f (et 1)?
(B') +4% P ap 71,725755199 23

(p— 1)’
'}I yZ ) <”1”2n%q12 +n.n 3923) - (” Vet Ny73G g5+ 1 1”3712923) -

A few experimental determinations of the shielding ratio of three
cylindrical shells made of transformeriron have furnished a satisfac-

tory verification of the formula (5’).

Di1scUsSION OF THE IEQUATIONS.

Consider first equations (4) and (B). g is seen to be a function of
the geometrical quantities represented by the p’s and the #/'s, the ¢'s
and the 7’s and of the permeability z. In both (4) and (B) the ex-
pression for g is of the third degreein . In both g equals unity when
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ft=1and o when = . [These remarks apply also to equa-
tions (A4’) and (5’).] If any one of the three shells be allowed to
vanish we have the case of two shells and the form of the resulting
equations is seen to be independent of the shell which we choose to
make vanish. Suppose in the case of three spherical shells we make
the outer one vanish by causing the outer radius to become equal
to the inner radius. Equation (A4) then takes the form

(/4 - I)z
©

(2 + 1) (2 +2)
o

§F— 1= % { (1 _plpz) + 7178517 } :

This is identically the equation given for two spherical shells by
Professor du Bois! and a similar reduction for the cylindrical case
would give the corresponding formula for two cylindrical shells. If
we suppose the two outer spherical shells to vanish we obtain the
well-known formula expressing the shielding effect of a single shell

) — 2
s—1=3""V0_p

Referring to the equations (4), (B), (4"), (B’), it is to be noticed
that the subscripts 1 and 3 may be throughout interchanged with-
out changing the equations ; that is to say the formula are symmet-
rical with respect to the inner and outer shells.

Of course (A’) and (B') are capable of discussion in a manner
similar to that given above for (4) and (B), difference of form in
the results occurring. The forms (4’) and (B’) are particularly
adapted to a form of the discussion to be given now.

Suppose the outer shell to have so far expanded that there
is no ‘“magnetic interference” “between it and the middle shell
(#y3 =0, my=1) and so far as to be also consistent with the con-
dition that the middle shell may so expand as to cause the mutual
interference between it and the inner shell to vanish (p,, = o, m,,
= 1) and yet the mutual interference between the middle and outer
shell to remain zero. In this assumed expansion the ratio of the
radii of each shell is supposed to remain constant. This means, of
course, that R, 7,, R,, 7,, become very large. The field within the
outer shell may be now considered to act directly upon the middle

L'du Bois, Wied. Ann., 63, p. 353. 1898.
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shell as.an impressed field ; denote it by /7. Likewise the field
within the middle shell may be considered to act directly upon the
inner shell as an impressed field ; denote it by /7,. Denote the field
within the inner shell by /. We have now

H, Hy, H
g—‘ﬁa'i'ﬁl—g3gzg1

and have so expressed what Professor du Bois designates as a mul-
tiplication of shielding ratios, g,, g, &, representing the shielding
effect of the outer, middle and inner shell respectively against the
field impressed upon each of them. We have then

H, p—1)
g'3=H;=%—( # )_7”3"}'17
H p— 1)
am it s
2
H /l—IZ
g1=ﬁf=2L7' ) m + 1,

for it will be remembered that the form of the expression giving the
shielding effect of a single spherical shell is g = % =1, + 1.

Now in the expansion of ‘the shells mentioned above it was speci-
fied that the ratio of the inner to the outer radius should remain
constant for each shell. This means p,, , and p, and therefore m2,, 7,

and 2, must also remain constant. So we may write equations (4')
and (&) as follows :

@) g=gig+3 oL CrEDEE) { e+ 1) (¢ +2)

@ op op
(p— 1)

, 2 V2T )
77117”27%3p IZp 2379 # (7”11”2”23p 12 + 1”17%21”3? 23)

— (g, Py + Mgy Pog + 11,7705 D1, Pog) }

(= 1) (e 4+ 1)
(B") £=£8&8+1% 1 ) 4 )

777139 199 os
I
“(”1”2”3%2 + ”1”2”3923) - (”1”2%2 + 725723055

+ ﬂ2n3ql 2423) }
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(B'") being derived for the cylindrical shells in a manner analogous
to that used for (4’). A consideration of (A’") and (5'") shows that
the combined effect of the terms following g, ¢, is strongly sub-
tractive, that is the shielding is much greater when the shells are
very far removed from one another and as we have seen the shield-
ing ratio in this case is equal to g, g, &,, We may think then of the
product g, g, g, as representing an ‘“ideal "’ shielding and the terms
following this product as representing the departure from this ideal
case caused by the shells mutually interfering.
If p is large, say > 100, (A)and (5) may be simplified as follows

gF—1= %(/‘ - 2)§(I —P1p21_73> + §4i (/‘ + I) (/‘

+ 2)mngngn, + 2 (1 + 2)[(mon, + mom,
(4)

— )y, + (10 my A L, — LI 1y,

— gy,
E—1= %(/‘ - 2)§<I - qlngs) + Tl’é ?+ 2>2 P
(B) + 1 (1 + 2)[ (92, + 1y —nmgny) myy + (92, + 0y,

— Ty 710y) Mgy — 7105705 ] 3.

Similar approximate formulae might be deduced from the equations
(A", (8", (4"), (B”) and often prove useful.

GRrAPHICAL DiscussioN OF A PARTICULAR PROBLEM.

Professor Riicker has discussed analytically the question of max-
imum shielding, with reference to the weight of material used, for
several particular problems. Among other things he has shown
that if the radius @ of a spherical shielded space be fixed and the
amount of shielding material given the latter is best employed in the

form of a single shell until a limit # is reached defined by ;t« =3

2p
(approximately) where 7 denotes the thickness. So for a compar-
atively small shielded space, since g for the best material reaches the
initial value 300, it is only for extremely thin shells that the shield-
ing with a single shell is, strictly speaking, most economical as
regards weight. He has shown further that with two and three
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spherical shells when the permeability is great the arrangement with
regard to minimum weight of material is best when the radii of the
successive bounding surfaces are in geometrical progression, the
ratio of the innermost to the outermost radius being supposed given.
Professor Riicker’s discussion is limited to spherical shells.

Professor du Bois has discussed the bi-lamellar case for both spher-
ical and cylindrical shells when the innermost radius is given, and
has found the best arrangement to be that for which the radial ratio
of the air-gap is 1.5538 for cylindrical shells and 1.3815 for spher-
ical shells; strictly speaking these results only hold for two thin sim-
ilar shells (7. ¢., of equal radial ratios); but the best radial ratios of
the air space, as calculated for other less simple cases in actual prac-
tice, never come out much different from the above values ; hence for
designing purposes it may be roughly fixed between 1.3 and 1.4
for spheres, and between 1.5 and 1.6 for cylinders.

The following graphical discussion is introduced in the hope of
showing in a manner convincing and easy to understand the advan-
tages of lamination of the shielding material and not with the in-
tent to give the most general possible discussion of the equations
used in plotting the curves. At the same time it is hoped that the
general explicit equations given above and the following illustration
of their applicability to the plotting of shielding curves may be of
use to those who may have occasion to design shielding apparatus.

We shall discuss here the shielding of single, bi-lamellar and tri-
lamellar spherical and cylindrical shells under the supposition that
the permeability of the shielding material is, in all cases, 202, which
is but about two-thirds of that of the best material hithero tested,
and under other conditions to be mentioned later.

Referring to Fig. 2, the curves shown relate to single spherical
and cylindrical shells. The abscisse represent the radial ratios of
the shells ; if the radius of the shielded space should be made equal
to unity (» = 1) then the abscissae would represent the successive
values of the outer radius of the shell.. The ordinates of curves 1
and 2 represent the shielding ratio, g. Curves 1 and 2 show how
the shielding increases as the thickness of the shells increases. At
first the gradient of the cylindrical curve is not quite so sharp as
that of the spherical ; later as the thickness increases it becomes
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greater and does not reach its asymptotic value so soon as in the
spherical curve. Curve I reaches very nearly its asymptotic value
when its outer radius is say three times the inner. The correspond-
ing curve 2 for the hollow cylinder has not quite reached this point
even when the outer radius has become five times the inner. These
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Fig. 2.

curves show clearly the futility of increasing the thickness of a
single shielding shell beyond a certain point. Curves 1’ and 2/,
corresponding to spherical and cylindrical shells respectively, repre-
sent, upon a scale quite arbitrary in each case as regards the ordi-
nates, the way in which the shielding per unit weight of material
varies as the thickness of the shells is increased.

Consider now Fig. 3. "It refers to the case of two concentric
spherical shells, also to that of two concentric cylindrical shells. If
7 and R denote the innermost and outermost radi respectively of

R
either system of shells, a condition imposed is that ~ shall always

equal five. The other conditions are that the two shells must be
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equal in thickness and that # = 202. If the radius of the shielded
space be taken equal to unity (»=1) then R =35. The figures
given as the abscisse in the present case and in the case of three
shells are to be considered on the supposition that » = 1. The in-
dependent variable is the thickness of the air-gap. It may vary
between the limits o and 4.

The upper of the two rows of 1w
absciss® represents the vary- 950

ing air-gap thickness and the oo
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the airgap is the same. But the maxima for curves 1/ and 2’ occur
much further to the right when the shells have become notably
thinner ; and approximately for the same value of the air-gap thick-
ness and for that value which makes the air-gap thickness about three
times the common thickness of the shells. By means of two shells

arranged as specified above it would be possible, in the case of
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spherical shells, to reduce our impressed field to about 4l of its.
original value within the space to be shielded. Had all of the
available shielding space been filled up with iron we should have
obtained but about 5'; as complete shielding and should have used
about 1.3 as much iron, showing clearly the advantage of using air in-
stead of iron in some parts of the shielding arrangement, and also how
the addition of iron at the wrong place may be decidedly harmful.

9
66U0
6300 21X
i
6000
5700 £202
5400 ;(

o
=
8
\*y\
L7

3000

]
S
4"‘/

\ ARBITRARY SCALE

7
l / ;\‘ \ ARBITRARY SCALE

2100

1500 / - /, Y \ X
1200 H— >€.‘ \
[ if| % Nt
1] 7 ALY
900 t ' 17 7 AR ’K
/
600 s /’ N \
274 N\ x6\
300 ; 7!/ \ \‘
OM N
0 4 8 12 1.6 2 AR
1.33 106+ .80 53+ 2+ 0 RON

e SPHERES
---- CYLINDERS

Fig. 4.

In Fig. 4 we have represented the case of three spherical shells:
and also of three cylindrical shells under conditions quite similar to
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.those laid down for the bi-lamellar shells. The conditions are : that
/= 202; that the shells have always a common thickness; that
the two air-gaps have the same thickness; that » =1, R =5, » and
R denoting the innermost and eutermost radius respectively of the
shells in both cases (spherical and cylindrical). Curves 1 and 2
refer, without reference to the weight, to the spherical and cylin-
drical shells respectively. Curves 1’ and 2’ are the corresponding
curves representing the variation in the shielding per unit weight.
The upper of the two rows of absciss® represents the common
thickness of the two air-gaps and it is the thickness which has been
taken as the independent variable. The second row represents the
corresponding common thickness of the three shells in both cases
(spherical and cylindrical). Curves 1 and 2 reach a maximum very
nearly simultaneously and for that value of the air-gap thickness at
which very approximately, at any rate, the common thickness of
the air-gaps equals that of the shells. Curves 1’ and 2’ whose
ordinates are drawn upon independent arbitrary scales reach their
maximum points nearly simultaneously and for a value of the air-
gap thickness, which makes the thickness of each air-gap about
twice the thickness of each shell. With three spherical shells as
specified above it would be possible then to reduce an impressed
field to about g4 of its original value within the shielded space.
Had all of the available shielding space been filled up with iron we
should have. obtained but about ;15 as complete shielding and
should have used about 1.5 as much iron. The advantages of an
extended lamination of the shielding material are hereby made very
obvious.

As was mentioned above, this graphic discussion is intended
more as an illustrative problem than as one which would allow of
the deduction of practical rules to cover the most probable condi-
tions which might arise in practice.

In a joint paper by Professor du Bois and the writer the results
of some experimental investigations with three cylindrical shells
will be published.

I have to express my cordial thanks to Professor du Bois for
his kind assistance during the development of the foregoing dis-
cussion.

BERLIN, April 15, 1899.



