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PHYSICAL REVIEW.

ON THE MAGNETIC SHIELDING EFFECT OF TRI-
I.AMELLAR SPHERICAL AND CYLINDRICAL

SHELLS.

Bv A. P. WiLr.s.

HE subject of magnetic shielding has already received consid-

erable attention, and, at the present day with the spread of the

trolley system and the consequent increase of disturbing earth cur-

rents, the subject often demands attention from those having to
do with suspended magnetic systems of any sort,

For a long time it was the custom to use extremely thick single

iron shells as a protecting device. A single shell is in a measure

effective, but in most cases one-tenth of the shielding material used

could, if properly distributed, be made to produce many times the

shielding actually produced by the usual distribution.

The advantage to be gained by using concentric shells separated by
unmagnetic inter-spaces has been shown by Professor Rucker and by
Professor du Bois. The former has given a general solution of the

problem of multi-lamellar shielding with spherical shells; the results

of this mathematical paper ' are somewhat difficult to apply in actual

shielding practice partly because there is involved the necessity of
constant interpretation of the not very explicit equations used in the

spherical harmonic analysis. Furthermore the practical advantages

of cylindrical shells are much greater than those of spherical shells.

~ Riicl~er, Phil. Nag. (5), 37, P. 95, r894.
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(Convenient cylindrical shells may be made by rolling up thin sheet

iron strips of proper width. ) Professor du Bois ' has treated the

case of bi-lamellar shielding both for spherical and cylindrical shells

and has, moreover, applied the results of his theoretical and experi-

mental investigations in the construction of multi-lamellar ironclad

galvanometers. ' Experience showed that in cases of considerable

disturbance it was desirable to use three shields instead of two as

a protecting device.

Acting upon the suggestion of Professor du Bois the present

writer has deduced the general explicit formul3 giving the shield-

ing effect of tri-lamellar spherical and cylindrical shells under

conditions to be mentioned later and in such mathematical form as

to be readily interpreted. These general formulz. have then been

applied in the graphical discussion of a particular problem well

adapted to show the great advantage to be gained by introducing

suitable air gaps within the shielding material.

In virtue of the formal analogy in the treatment of the spherical

and cylindrical problems the corresponding equations for the two

cases are given together at each step in the development.

We shall suppose a uniform magnetic field of strength H to be im-

pressed upon the system of shells. We shall deal with the case where

the space swithin the shells is to be shielded against H, . Further we

shall suppose the axes of the cylinders to be perpendicular to the

lines of force; that the spherical and cylindrical shells are concen-

trically arranged; that the permeability is constant and equal for

all shells. This last assumption involves, of course, a restriction in

the values of H, to those not exceeding, say .or C.G.S. units, pro-

ducing small variations in the magnetic condition of the shells su-

perimposed upon their intrinsic magnetization which may be zero or
have a finite residual value. It is true that this limitation invalidates

the discussion for strong fields; but when we remember that the

trouble with galvanometers arises from disturbing fields of the

order of magnitude mentioned we may rest assured that our for-

mulz. are capable of practical application in the designing of shield-

ing apparatus.

& du Bois, Wied. Ann. , 63, p. 348, I897, and 65, p. I, I898. The Electrician, Vol

4o, I898.
&du Bois and Rubens, Verhandl. physik. Gesellsch. Berlin, I7, p. Ioo, I898.



No. y.] cVA GNE TlC SHOVEL DlN'G. 9

Now, suppose a uniform disturbing field JI, to be impressed upon

our tri-lamellar shielding systems, Fig. I representing both the

spherical and cylindrical systems. The letters r„E„r, cY2 p3 E3,

Fig. l.

represent the inner and outer radii of the various shells; the small

letters always referring to the inner radii and the large to the outer.
We shall find a notation similar to that introduced by Professor du

Bois in his treatment of the bi-lamellar problem to be convenient.

It is given below in tabular form:

Spheres. Cylinders.

1r 3

Rs
1r'
2
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2

rs'
P3 8'

R,s
A2 rs

2

2
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y23 ——r3
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r 2
1
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8

R,'
7. 2
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R,
r32

n, =-1—

n, =1—
ns —1—

n„=1—

n28= 1—

r 2
1

R12

r2=2

R22

rs 2

R82

R,s

r 2
2

r 2
8

We shall consider the cylinders as infinitely long; but experi-
ence has shown that the equations to be derived hold in the central
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portion of cylinders whose length is not less than three or four
times the radius.

Now suppose the total resultant field in the direction of H, within

the, innermost shell to be denoted by H, , The ratio of H, to H„y

may be taken as a measure of the effectiveness of the shielding

a.
device. Denote this ratio byg then g =—'. g = oo would, of

t,I

course, mean perfect shielding.

Now it becomes necessary to find an equation expressing the re-
lation existing among the various quantities entering into the prob-
lem, namely, "the shielding ratio" g, the permeability p and the
geometrical data given by the p's and m's in the case of the spher-
ical shells, the q's and n's in the case of the cylindrical shells.

FUNDAMFNTAL EQUATIONS.

Since Fig. r. represents a plan section of our double system of
shells, the axis of the cylindrical system will be perpendicular to
the plane of the paper. The direction of the impressed field is in-

dicated by the arrows. There will be produced upon each of the

six surfaces of separation between iron and air surtace distributions

of "free magnetism. " In the theory of such distributions it is

shown that a distribution upon a spherical or cylindrical surface

produces within the surface, when the impressed force is uniform,

a uniform magnetic field which is coincident with the impressed field

but acting in the opposite direction and of different intensity. If S
denote any one of the surfaces of the spherical system and H, the
field produced within S by the distribution upon S, the theory shows

that at a point without 5, P say, the radial force produced by the
r3

distribution upon S is —2 3
A' cos 8', where r is the radius of 5

and E. the distance from the center of S to the point J'and the tangen-

tial force at P (perpendicular to the radial force) is —,H, sin 0,

where 0 is the angle between the radius to P and the impressed

field. WVith cylindrical shells, for any surface 5 and a point Pwith-
p

2

out S we should have the corresponding forces ——;H, cos r9, and
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~2—--; H sin P. Now considering the surface 5 we may think of the

resultant force within it to be made up of two parts one of which is
due to causes external and the other to causes internal. Call the
first H,'and the second H;. Starting in each case with the inner
surface we may write down the following equations, applying to
both spherical and cylindrical systems.

( H„
H,,
H,,A'& H
H,,
H

H,, + H;, =H, +

H,, + A', , =H, +
H,, +H., =H, +

A'., + H, , + H,;, + H„; + H,;, + H.,
H,, + A',, + H„; + A', + A',,
H:, + H,;, + Fl;, + H,;,
H;, +A', , +H;,
H;, + A',,
H;,

From what has been said above and from Fig r the meaning of
the notation is clear.

We do not require to know the exact distribution of the lines of
force throughout the shells but the quantities A',„H;„A'.„H„., ~.„
H;, must be such as to satisfy the two surface conditions namely:
that at surfaces of separation of iron from air the tangential com-
ponents of the magnetic force must be equal in the two media and
that the normal component of the magnetic induction must be con-
tinuous. The first condition, from what has been already said,
may be seen to be always satisfied whatever the values of H'6 H'y.

But in order that the condition of contirruity in the norma] com-
ponent of the magnetic induction be satisfied we must have the
following equations also satisfied. In these equations p represents
the permeability of the iron. The equations pertaining to the spher-
ical shells are given first. In bot'h sets of equations cos 0 occurs as
a common factor in both members of each equation but is not writ-
ten down.
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The corresponding set of equations for the cylinders is
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TREATMENT OF FUNDAMENTAL EQUATIONS.

From the set of equations jS) we may eliminate the H, 's with the

aid of the set (Rj giving for the spherical shells after combination

and rearrangement of terms the fo11owing set:
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We have now two sets of six linear equations in the six quanti-

ties H;, " H;„one set corresponding to the spherical shells and the

other to the cylindrical shells. We have sufficient equations in

each case to enable us to evaluate H;, " Hi, in terms of thegeo-
metrical data, the permeability and the impressed field,

It will be convenient to treat these equations by means of deter-

minants, and the method used in treating the spherical problem only

will be given; the cylindrical problem is subject to a treatment

mathematically analogous to that indicated for the spherical prob-

lem.

Referring to the set of equations applying to spherical shells, let

the determinant formed by taking in order the coefficients of the H's

in the left-hand member of the first equation for the elements of its

first row, the coefficients, in order, of the H's in the left-hand mem-

ber of the second equation for the elements of its second row and

so on be called 3. Let the determinant which is equal to 3 except

in the first column, where in place of the elements found in the first

column is put in the place of each element the common right-hand

member ot' the system of equations namely —(p —t)H', be called

Let ~2, d3, 34, 3S and 36 be defined in an analogous way.

The determinants thus defined are seen to be of the sixth order,

We shall have then according to Leibnitz's rule for the solution

of simultaneous linear equations the following values of H,;, " H,.~
pertaining to the spherical shells

JI
Hil

d6
H; = —.

io

These are the values to be substituted in the equation

H, , = H +H., y "+H;,
and it will be remembered H, , stands for the field within the inner-

most spherical shell and H for the impressed field. From the

method of formation of JI " 36 it will be seen that each of these

H.
determinants contains H as a factor and the shielding ratio g =—'

H
tR
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is found from the equation just given. Substituting in this equation
the values found for A,, "A",, we get

f I -3r+ dz" 36-
H, =H, ~ r. +a e

and therefore

Red.a„Ja,+ Jr+ 32+-.+36
This then expressed symbolically in determinantal form is the re-

sult sought. It remains now to expand the 3's and reduce the
somewhat complicated resultant expression. It will be sufficient to
illustrate the method usod in expanding the various determinants

to consider one of them only, say 3.
It is in the ordinary notation

(p —I) . (P I) (P——I)

(p —I), (P —I), (P —I)

(P —I)

(P —I),

(P- I),

(p —')

(p ') —( p+ ')

(p + 2) -2(p —I) —' .
1

r,'
,—2(P —I)—r3

2

r'
E82(p —')

2

r'—2(P —I) —,,';

r'
R8 j

,—z(P —I) --'-

E,3
(P —I), -(2P+I) .-2(P-I)„—l-.

8

r' E,'(p+ 2) —2(p —') -'—
8
—'(p —') —'8

3 3

R,'
(p —') (p —') —( p+') (p —')—', —

r2'
8 E3

(p —') (p+ ) —(p —') g3 —2(p —I) ~'5
~ 2 2

r8 E8—2(P —I ) —,—2(P —I)—i
r3

'
r3

8 R,'—2(P—I),—2(P —I)—E3' E,'

Multiply the sixth row by E,', the fifth by r83, the fourth by E,3, the
third by r,8, the second by E,', the first by r,'. To keep the value of
the determinant unchanged we must multiply the resulting form by

I
Now subtract the fifth row from the sixth, the fourth

E,'.. . r,'
from the fifth and so on down to the first row. These operations
have not changed the value of the determinant. Now in the result-
ant form subtract the second column from the first, the third from
the second and so on up to the sixth. Divide the sixth row of the
resultant expression by E,', the fifth by r,' and so on down to the
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first row. To keep the value of the determinant unchanged multi-

ply the resulting form by E,' ... r,'. Employing the pand ie no-
tation explained on page I9) we may write the resulting form of
the determinant 3 as follows:

3 IJ.

(/&+ 2) @VS

0 3P.

3 (p+ 2)m,
—( 21/. + 1 ) m&3

—3'&3
3J'3

0 3p

3 (p+2)m,
—(2(~+ z) m„' —3~A,

3 J'I 0
0 0

—(2@+I)
3Pg

0

As the determinant now stands Laplace's Method of develop-

ment will be found convenient. By this method the determinant d
.is at once seen to be equal an expression with two terms, each of
which is the product of two determinants of the third order. Using

the "criss-cross" method applicable to determinants of the third

order the expansion of these determinants is easily obtained and

thus the expansion of J. In a similar way the expansions of
. . . 36 may be obtained.

We have now to substitute the values found for 3, d I . . . 36
in the expression

Assuming this to have been done and the proper simplifications and

-rearrangement of the terms to have been accomplished we get

(p —t)'
g —I =

9
— I —ApgPg

P

, (2p ~ r)'(p y ~)'
+ 81 p2 pl~'jn~plp22p2~

A similar treatment of the fundamental equations for the cylin-

dricaI shells gives the corresponding formula
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, (P-i)', (P d- i)'
( r —g)gigi) + rs i n)n)snpnns

/2 /2

, (p + r)'
) + ~& [(n,n, ~ n, n,

Equa«ons (A) and (8) are capable of transformation into the
followin)g forms:

g= 9 HEI+ r 9
————1A'+I — M+I

(~')

s(P r) (sP+')(P+2) (sP+ ')lP+2)+ Q
/ 9P 9P

NSPS2'Vl~ PI~ P2~

s (P —')
(nr, m, rn, p„y rn, rn, m, pn) —(nr, «,P„+nr,«, Pis

/'

1/ -0,+I 1 / +I /
Ã, +r

, (P' —i)' (P+i)'(8') +-,'-,
/' 4/' I o P'l 2~23

, (P- i)'
(n,np, g„+n, np, g„)—(n)nits)s+ npipn+ n, n, 7;,Zn)

p

A few experimer tal determinations of the shielding ratio of three

cylindrical shells made of transformer iron have furnished a satisfac-

tory verification of the formula (8').

DrseUssroN op THE EgUATroNs.

Consider, first equations (A) and (8). g is seen to be a function oi"

the geometrical quantities represented by the@'s and the sn's, the q's

and the n's and of the permeability p. In both (A) and (8) the ex-

pression for g is of the third degree in p. In bothy equals unity when.
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p= r and c0 when p= oo. [These remarks apply also to equa-
tions (A') and (8').] If any one of the three shells be allowed to
vanish we have the case of two shells and the form of the resulting
equations is seen to be independent of the shell which we choose to
make vanish. Suppose in the case of three spherical shells we make
the outer one vanish by causing the outer radius to become equal
to the inner ra.dius. Equation (A) then takes the form

(,u —r)2 (~i" + r) (f" + a)
(r —X W)+ ——

p 1 2 &

9p I 2 12
. gal pe m

This is identically the equation given for two spherical shells by
Professor du Bois ' and a similar reduction for the cylindrical case
would give the corresponding formula for two cylindrical shells. If
we suppose the two outer spherical shells to vanish we obtain the
well-known formula expressing the shielding effect of a single shell

, (f" —r)'
(r —pi).

Referring to the equations (A), (B), (A'), (8'), it is to be noticed
that the subscripts r and 3 may be throughout interchanged with-

out changing the equations; that is to say the formul3 are symmet-
rical with respect to the inner and outer shells.

Of course (A') and (B') are capable of discussion in a manner

similar to that given above f'or (A) and (S), difference of form in

the results occurring. The forms (A') and (8') are particularly
adapted to a form of the discussion to be given now.

Suppose the outer shell to have so far expanded that there
is no "magnetic interference" -between it and the middle shell

(p» = o, m„= r) and so far as to be also consistent with the con-
dition that the middle shell may so expand as to cause the mutual
interference between it and the inner shell to vanish (p» —o, m»
= r) and yet the mutual interference between the middle and outer
shell to remain zero. In this assumed expansion the ratio of the
radii of each shell is supposed to remain constant. This means, of
course, that E„r„E„r,„become very large, The Geld within the
outer shell may be now considered to act directly upon the middle

I du Bois, %'ied. Ann. , 63, P, 353. IS98.
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shell as. an impressed field; denote it by H, . Likewise the field

within the middle shell may be considered to act directly upon the

inner shell as an impressed field; denote it by H, . Denote the field

within the inner shell by JJ,. We have now

A' A', A',~=a a a =~3~ ~
3 2 1

and have so expressed what Professor du Bois designates as a mul-

tiplication of shielding ratios, g„g„g, representing the shielding

effect of the outer, middle and inner shell respectively against the
field impressed upon each of them. We have then

A'
(p —3)'

3 ~ 9
—wv +I

P

H, , (p —t)'
iV p

(i1 —r )2g= —=~- —m+I
p 1

for it will be remembered that the form of the expression giving the

(f —t)'
shielding effect of a single spherical shell is g = ~ —m + r.9 p
Now in the expansion of the shells mentioned above it was speci-

fied that the ratio of the inner to the outer radius should remain

constant for each shell. This means p„p2 and p, and therefore mi
and m3 must also remain constant. So we may write equations (A')
and (B') as follows:

, (/ —t)'( f2+ r)(f +s) (2P+ i)(f +a)
O =Z2a2l'a+ 2 9P

, (f2 —r)'
111 111 123 p p ——— (112i112 111 p2 + 113 m m3p 3)P

—(m, 212,p „+ 11m2, p»+ m, m, p» p23)

(f + r)'

4p
—72i 8212P)@2~

R 1! 12+~ ) —(12» 312 + 12 123/ 3

(f2 )2
( ) + +182g3 + 16

, (P—t)'.
+ 2 3~12~ 23)
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(8") being derived for the cylindrical shells in a manner analogous
to that used for (A"). A consideration of (2")and (8")shows that.

the combined effect of the terms following g, g,g„ is strongly sub-

tractive, that is the shielding is much greater when the shells are
very far removed from one another and as we have seen the shield-

ing ratio in this case is equal to gI g, g, We may think then of the
product pI p2 g~ as representing an "ideal " shielding and the terms

following this product as representing the departure from this ideal

case caused by the shells mutually interfering.

If /z is large, say ) too, (8) and (8) may be simplified as follows

.—i = s (/z —2) i(i —A/'z/z) ~ A (/z + t) (P

(A,)

(8,)

+ 2) zniznuzn, znzzznz + s (/z + 2) [(zniznz + zniznz

—zniznzznz) zniz + (zniznz + znzznz —zniznzznz) mzz

—m, z'n,m„m„],'

g —I = g(/z —2)I(I —
gii/zz/z) + is (/z + 2) niniznznzznz

y si (/z y 2) I (n, n., y n, n, —n, n,n,) niz y (n, n, y nzn,

—n, n nz) n„—n, n n„n,z] I.

Similar approximate formul3 might be deduced from the equations

(A'), (8'), (A"), (8") and often prove useful.

GRAPHICAL DISCUSSION OF A PARTICULAR PROBLEM.

Professor Rucker has discussed analytically the question of max-

imum shielding, with reference to the weight of material used, for

several particular problems. Among other things he has shown

that if the radius a of a spherical shielded space be Axed and the
amount of shielding material given the latter is best employed in the

form of a single shell until a limit 8 is reached de6ned by— 3
2p

(approximately) where r denotes the thickness. So for a compar-

atively small shielded space, since p for the best material reaches the

initial value 3oo, it is only for extremely thin shells that the shield-

ing with a single shell is, strictly speaking, most economical as

regards aeight. He has sl own further that with two and three
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spherical shells when the permeability is great the arrangement with

regard to minimum weight of material is best when the radii of the
successive bounding surfaces are in geometrical progression, the
ratio of the innermost to the outermost radius being supposed given.

Professor Rucker's discussion is limited to spherical shells.

Professor du Bois has discussed the bi-lamellar case for both spher-

ical and cylindrical shells when the innermost radius is given, and

has found the best arrangement to be that for which the radial ratio
of the air-gap is I.SS38 for cylindrical shells and I.3815 for spher-

ical shells; strictly speaking these results only hold for two thin sim-

ilar shells (i. e., of equal radial ratios); but the best radial ratios of
the air space, as calculated for other less simple cases in actual prac-
tice, never come out much different from the above values; hence for

designing purposes it may be roughly fixed between I.3 and r.4
for spheres, and between r. ) and t.6 for cylinders.

The following graphical discussion is introduced in the hope of
showing in a manner convincing and easy to understand the advari-

tages of lamination of the shielding material and not with the in-

tent to give the most general possible discussion of the equations

used in plotting the curves. At the same time it is hoped that the

general explicit equations given above and the following illustration

of their applicability to the plotting of shielding curves may be of
use to those who may have occasion to design shielding apparatus.

We shall discuss here the shielding of single, bi-lamellar and tri-
lamellar spherical and cylindrical shells under the supposition that
the permeability of the shielding material is, in all cases, 202, which

is but about two-thirds of that of the best material hithero tested,

and under other conditions to be mentioned later.

Referring to Fig. 2, the curves shown relate to single spherical

and cylindrical shells. The abscissz. represent the radial ratios of
the shells; if the radius of the shielded space should be made equal
to unity (r = t) then the abscissa: would represent the successive

values of the outer radius of the shell. The ordinates of curves I

and 2 represent the shielding ratio, g. Curves t and 2 show how

the shielding increases as the thickness of the shells increases. At
first the gradient of the cylindrical curve is not quite so sharp as

that of the spherical; later as the thickness increases it becomes
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greater and does not reach its asymptotic value so soon as in the

spherical curve. Curve 1 reaches very nearly its asymptotic value

when its outer radius is say three times the inner. The correspond-

ing curve 2 for the hollow cylinder has not quite reached this point
even when the outer radius has become 6ve times the inner. These

ASYMPTOTE

ASYMPTOTE

p =--202

lI
ARBITRARY SCALE

I
/

' +1 N ARBITRARY SCALE

I I

01. 1.25 1.50 1.75 2. 2,25 2.% 2.I5 8. 8.25 8.50 8.I5

Fig. 2.

4. 4.25 4.50 4.75 5. R

SPHERES
CYLINDERS

curves show clearly the futility of increasing the thickness of a
single shielding shell beyond a certain point. Curves 1' and 2',
corresponding to spherical and cylindrical shells respectively, repre-

sent, upon a scale quite arbitrary in each case as regards the ordi-

nates, the way in which the shielding per unit weight of material

varies as the thickness of the shells is increased.
Consider now Fig. 3. ' It refers to the case of two concentric

spherical shells, also to that of two concentric cylindrical shells. If
r and E denote the innermost and outermost radii respectively of

E
either system of shells, a condition imposed is that —shall always

p

equal Ave. The other conditions are that the two shells must be
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!%

r

/

cylindrical shell respectively.
Curves I' and 2' represent

upon scales quite arbitrary as

equal in thickness and that p = 2o2. If the radius of the shielded

space be tak-n equal to unity fr = t) then /c = 5. The Figures

given as the abscissz. in the present case and in the case of three
shells are to be considered on the supposition that r = I. The in-

dependent variable is the thickness of the air-gap. It may vary
between the limits 0 and 4..
The upper of the two rows of 'tioo

abscissa represents the vary- sai

ing air-gap thickness and the 900

lower the corresponding thick-
ness of the shells. The ordi-

nates represent the shielding

lratio g. Curves r and 2 are
without reference to the weight
and refer to spherical and

600

regards the ordinates the way
in which the shielding per unit

weight varies as the air-gap is

increased or decreased.
While graphically it is diffi-

cult to specify the exact posi-
tion of the maximum points,
yet it may be seen that the
maxima for curves 1 and 2

3SO
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1GO tI
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occur for very nearly the same
0 .5 1 1S

value of the air-gap distance s 1.is.1.so.1,~s

and for that value for which
Fig. 3.the thickness of the shells and

the airgap is the same. But the maxima for curves I' and 2' occul
much further to the right when the shells have become notably
thinner; and approximately for the same value of the air-gap thick-
ness and for that value which makes the air-gap thickness about three
times the common thickness of the shells. By means of two shells
arranged as specified above it would be possible, in the case of
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spherical shells, to reduce our impressed Geld to about &00 of its

original value within the space to be shielded. Had all of the
available shielding space been 61led up with iron we should have

obtained but about ~~0 as complete shielding and should have used,

about I.3 as much iron, showing clearly the advantage of using air in-
stead of iron in some parts of the shielding arrangement, and also how

the addition of iron at the wrong place may be decidedly harmful. .

5700 P ==202

i3000

2700

I
/

:2100

1800

;1500

0
4 .8 12 2 AIR

1.33 1.06+ .8P ..-53+ 26+ 0 iRoN~ SPHERES
CYLINDERS

Fig. 4.

In Fig, 4 we have represented the case of three spherical shells-

and also of three cylindrical shells under conditions quite similar to
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those laid down for the bi-lamellar shells. The conditions are: that

p = 202; that the shells have always a common thickness; that
the two air-gaps have the same thickness; that r = l, E = 5, r and

E denoting the innermost and outermost radius respectively 'of the
shells in both cases (spherical and cylindrical). Curves t and 2

refer, without reference to the weight, to the spherical and cylin-
drical shells respectively. Curves I ' and 2' are the corresponding
curves representing the variation in the shielding per unit weight.

The upper of the two rows of absciss3 represents the common

thickness of the two air-gaps and it is the thickness which has been

taken as the independent variable. The second row represents the

corresponding common thickness of the three shells in both cases
i(spherical and cylindrical). Curves t and a reach a maximum very

nearly simultaneously and for that value of the air-gap thickness at
which very approximately, at any rate, the common thickness of
the air-gaps equals that of the shells. Curves I' and 2' whose

ordinates are drawn upon independent arbitrary scales reach their

maximum points nearly simultaneously and for a value of the air-

gap thickness, which makes the thickness of each air-gap about
twice the thickness of each shell. With three spherical shells as
.specified above it would be possible then to reduce an impressed

field to about 6&I&& of its original value within the shielded space.
Had all of the available shielding space been filled up with iron we

,should have obtained but about z&0 as complete shielding and

should have used about r. ) as much iron. The advantages of an

extended lamination of the shielding material are hereby made very
obvious.

As was mentioned above, this graphic discussion is intended

more as an illustrative problem than as one which would allow of
'the deduction of practical rules to cover the most probable condi-

tions which might arise in practice.
In a joint paper by Professor du Bois and the writer the results

~f some experimental investigations with three cylindrical shells

will be published.

I have to express my cordial thanks to Professor du Bois for
his kind assistance during the development of the foregoing dis-

cussion.

BERLIN, April j:5, j:899.


