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ABSOLUTE FORMULA FOR THE MUTUAL INDUCTANCE
OF COAXIAL SOLENOIDS.

Bv G. R. OmHAUspx.

I. Two absolute formul3 for the mutual inductance of coaxial

solenoids have recently appeared, one by Cohen, ' expressed in

terms of elliptic integrals of Legendre and a second by Nagaoka'

involving the p-function and 0-function of Weierstrass. The com-

putation of any given case of mutual inductance by Cohen's formula

necessitates the use of Legendre's tables of elliptic integrals, while

a computation by Nagaoka's formula does not depend on the use

of these tables, but on the introduction of the 8-functions of

Jacobi.
A third formula, due to KirchhoH, was published for the first

time by Coffin. ' This formula, which is of the same type as that
of Cohen, was found, however, to be incorrect.

It is the object of this paper to derive a general expression from

which the formu13 of Cohen and Nagaoka, as we11 as a correct
form of Kirchhoff's formula may be obtained.

The mutual inductance of any two circuits is given by the ex-

pression

M = 'cosa

'L. Cohen, An Exact Formula for the Mutual Inductance of Coaxial Solenoids,

Bull. Bur. Stand. , 3, p. 295, I907.
'H. Nagaoka, Note on the Mutual Inductance of Coaxial Coils, Mathematico-

Physical Soc., Tokyo, Proc. , 4, p. x92, ?907. Also 1. c., p. 279, ?908.
~J. G. Coffin, Construction and Calculation of Absolute Standards of Inductance,

Bull. Bur. Stand. , 2, p. xa5, r9o6.
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Applying this expression to two coaxial solenoids, it is easy to
deduce

M=4»nn' [Ig Is —Is+—I4], '

where n and I' are the respective numbers of turns per unit of

length of the two coils, and the quantities in the brackets are inte-

grals of the form

(3) I=6)G s 2 +Gg +G +e —2n)icos/.
sin' PdP 2 2 2

a,'+ a —aa,a cos P

In this aj and a are the respective radii of the coils and c has the
following values:

c=d+l+lj for I=I&,
c=d+l& —l for I=I2,
c=d+l —lg for I=I3,
c=d —l —l~ for I=I4,

where d is the distance between the centers of the coils and al~ and

al are their respective lengths.
To evaluate the above integral, let

then
cosP=x,

where

A=a/+a P=2aya, +=ay +a +c

In order to reduce this integral to the normal form of Weierstrass,
we let

(6) x y/P =ns(s eq), —x —s = sn(—s —es), x+ x =ns{s es)—
and determine the quantities e&, e~ and e3 in such a way that their
sum is zero.

m is a parameter, which can be determined by imposing upon it
any arbitrary condition.

'See L. Cohen, 1.c., p. ay7.
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From (4) and (6) we obtain

(mp) ~ 4(s —e,) (s —e,) (s —e,) dS
(7)

~' +, '~ +4( -e,)( -e,)( -e.)
Now let

pu =p(u
~

071, rds)

be the elliptic function which is determined by eq, eg and e3 and put

I as=pu and yw=e, +- -+r ).m P

We shall assume that &u~ and ca&/s are real and positive quantities.
We have then

dS
dQ =

&4(s —e,) (s —e,) (s —e,)

where
4(s e,)(s —e2)(s —es}=4—p'u gspu—gs —(p'u=)',

gs= r2e&' —4(e& —es)(es —e&), g3 =4e~eses.

On substituting in (7), we get

(sup)' "' 4p'u —gpu —g,
PQ —Pzo

Expanding the integrand of this expression and remembering that

(0'te)' =40'w —gskte —gs,
we obtain

(~p)» (p'~)'I = Q'u+ 4&m. pN + 4p'm —g, + dg.
8 Pu —Pm

Integrating term for term, we have

(ro) I = p'te nq+ i
—p te [(u(+ —g(re —ter) (te)+us'4

where n is an integer due to the many-valuedness of a logarithm.

A method for determining n will be given later.
'The notation employed in this paper is that of the "Formeln und Lehrsaetze zum

Gebrauche der elliptischen Functionen. Nach Vorlesungen und Aufzeichnung des
Herrn K. %'eierstrass, bearbeitet und herausgegeben von H. A. Schwarz. *'
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Equation {Io)enables us to evaluate the integrals I&, I2, I3 and
I4 in all cases. In order to do this, it is only necessary to express
the quantities in brackets in terms of the constants of the problem
and to choose such a form for the parameter m as will facilitate the
computation as much as possible.

2. As the number n will be seen to depend on the value of m

which satisfies the known values of Pm and P'm, it is advantageous
at this point to evaluate these quantities.

From (6) we find

(t t)
I

m3P' ' m & 3Pi '
nz 3P&

From (5), (8) and (tt) we get

(I2}

and

(I3)

Since

I 30. —y
pw =—

m 3P

I
Pm —e =—

m

I'Pe —e=—
2 ns

I 2(a,'+ a') —c'

m 6aa

2—c
28laia

(a, —a)'
2ma, a

{a,+a)'
2tsaia

(It w) —4(pw e,) (Pw er) (Pw ee)

we have from (5) and (t3)

(t4)
( )g

0

In this equation we assume that ai&a and that m and c are
real and positive, i. e., the absolute value of c is always to be em-

ployed.
It is easily seen that the value of Pm is such that

ei &pm&eg,
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for we have from (g), (8) and (xr)

e, = —zy = 2(tt,'+a'+ c'),3' 3'
(3& —V) = 2(oi + tt )

gmP 3'

Since Pm is real and comprised between the values e~ and e~„m

must have either the form

(i5)

(x6)

w=(2p+t) cup+(2ff+t)ru e

w= (aP+r)ra, +(zg+x+t)ru„

where p and q are any positive or negative integers, including zero,
and $ is a real positive quantity less than unity. If m is of the first
form, P'm is purely imaginary and positive. If m has a value corre-

sponding to the second form, P'm is purely imaginary and negative.

g. The integer n, which enters into the expression for I, can be
determined for any given value of zv as follows:

We have

P'w e(tt + w) &r'

dtt = fog —2g (w)„, gtt —Pw e(u —w)

If in the I-plane we start with any given value of m and let it
vary along a straight line until the nearest value of m having the
form

mo = (2p+ r)a)g+2qco3

is reached, the values of the definite integral and of the expression

0'
2gqw —2Glg (w}

mn only change continuously; the number n therefore must remain
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unchanged during this variation of m. When m has the value mo,

the definite integral equals zero, since P'w is then zero, and

We have therefore

4. By means of the addition theorem of the function —(u),0'

equation (ro) can be transformed into another form from which

Cohen's expression for I can be derived.

Ke have

CF o o I pQ+p8—(u —s) = —(a) ——(s) +-
0 0 0' 2 pQ —pV

If we let
u=m and v=au„,

we obtain

(rr)
where

X=I, 2 of $.

By means of (t7) and the relation

(») gy(d3 —Alga =
g X$,1

we can easily find three new expressions for I, but, for reasons

which will appear later, we shall only consider the case ) =g.
If X=g, we have

0' 0 e, )Qr
(&9) np' ~l (w) = rll(w ~s) ~| (w —~g} + + s&&—

3

Substituting (r9} in (to), we get

(ao)

+—
g, (w —ru, ) —(o, —(w —&u,) + (u + p}sf1

This equation leads to Cohen's formula, while from (ro) Kirch-
ho6's formula can be deduced.
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If in equation (to) we put

QJ =Edi+Q/1'b,

where zv1 fu161s the condition

0( 'N z((dg/1,

then w is of the form (r5), the value of n is zero and p'w ~s positive

Since we also have

the expression (Io} becomes

(s r)
O'I+ 'ggwg$ —(dg (we%)

I

If in (zo) we let w have such a value that

VO —GP3 =Mi+ Q)2$)

where
R = (og+702$,

then w is of the form (r6), n is —t and P'w is negative. Since we

also have

equation (ao} becomes

(2z)

5. In order to transform (2i) and (zz) into the corresponding

formula. of Kirchho8' and Cohen, we must find the relations between
'Nagaoka has given p'e the wrong sign in this case; however, in his computation

p'er has the positive sign.
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the integrals of Legendre and the quantities which enter into these

equations.
If in the incomplete integral of the first kind to the modulus &

we let

we get
I

F(y, k') =-
k

tt /2

where
k'+k" = x.

Changing the variable again, by letting

/=sin' P
we obtain

(~3)

To transform this expression into the normal form of Weier-

strass, let

t+.p/kI& =~'(s —e,), t = m.'{s em), —t t =nt'—(s ei), —
el+eg+e3 =0,

m' being a parameter. From these equations we find

I k'

k'=
el —e,

'
8( —82

e, —e,

Fto~ (g3) (p4) and the second equation of (25) we ha~e

ey ds
F(y, k ) = +&, —&s

&y(s —e,) (s —e,)(s —8,)

where the value of the lower limit is easily determined from the

second equation of (24).
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Ne have

(n)
cos y

s = —,+ e, =, + e, = cos' y(e, —e,) + e,.ns' 7S'

It is evident that for real values of q, s is always real and comprised
between @ and e~.

If we now let
S =pg = p (Q I hip, his)

be the elliptic function belonging to the quantities e~, e2 and e3, as
determined above, we have

ds
du =

&4(s —e,)(s —e,)(s —e,)
'

(28)
ss 1

F(q, k') =i&eI —e, du = i&e, —e,(~I u),

the lower limit Q being determined by {27)for any given value of y.
Since s=gu is real and comprised between e~ and e2, we may put

so that (28) becomes

Q = eui+Qqi,

04 uq(cd/i,

(29) P(q, k') = Qi&e, —e3.

If &p equals x/2, F(y, k') becomes a complete integral to the
modulus k', i. e.,

F(k') = —.&e, —es.

In the same manner it can be shown that the incomplete integral
of the second kind to the modulus k'

E(e, 0') = &t —0"sin'e de,
0

reduces to
0'

Z(e, k') = e,(u —o),) + —(u) —g,&e -e, -'
I

0'

(8o)
a,'—{Q,i) + e,u,i1 3 I

1
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From this we find for the complete integral to the modulus k'

The expressions for the complete integrals of the first and second

kind to the modulus k may be deduced in the same manner, as
that in which the corresponding ones to the modulus k' were ob-

tained. We have

(Sx) j (k) =a)greg —e3,

(3&)
I

E(k) = —s, + e,(u,
&e, —e, - '

6. If in equation (2x) we now express rex, —(xe&e), ~x and sx
Ol

in terms of elliptic integrals of Legendre and g2, Pm, P'm', e~ and e3

in terms of the constants of the problem, we obtain the correct form
of' Kirchho6's formula.

If after having fixed the parameter m, we assign to f.j, eg and e3

in (25) the values given in (xx), the moduli k and k' and the param-

eter m' will be definitely determined. If we also let

Q ='N =%I+'Wjt, S =P'K~

the value of the amplitude y of the incomplete integrals can be

determined from (2p).
From (29), (3o), (3x) and (3z) the following relations can be

easily be deduced:

&e, —e, E(fe)—

I
F(fe)

4 8I —8g

Substituting these values in (zx), we get
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(3+)

(tiip)x I g~I= &e, —e, liw Z(k)+ — —' Pw—(lxw+e, ) F(k)
2 &e, —e,

~ /

(F(k)[F(e, k') —&4, k')1 F(k—)F(e» k')} .

The value of g&/6 in this equation can be obta, ined from (9),
which, by substituting from (xx) and (5), becomes

(36)
g~ 2 'y 2 )~Cg + CP+C

From {5},(xx), (xz) and {35) we easily find

ym &e, —e,. =, &y+P(~P)'-

(ai + a) + c
x z(a,'+ a') —c'

nfl)x

(37)

g2 y' + 2P' —30'

6
—' —pw(pw + e,)

&e, —e, (tixP)' - 3&y+p
x c'+ 2c'(a, '+ a') —s(a, ' —a')'

3 +(ai + a) + c

Substituting {x4), taken with the positive sign, (36) and (37)
in (34), we obtain

(38)

I = g
' &(a, + a)'+ c'E(k)z(a,'+ a') —c'

3
c'+ 2c'(a,'+ a'} —2{a,' —a')'

3&(a, + a)'+ c'

+ (a,' —a')c{F(k)[F(e', k') —Z(y, k')] —Z(k)F(ie, k')}

which is the correct value of I for KirchhoH's formula.

The amplitude y may be obtained from (z7). We have

pR —e~
cos y =

e, —e,
or

pm —e,
sin y=I—

e, —e
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and by (5), (xx) and (x3) this becomes

(s9)
~ 2

'j/ Ct c2

y —P (a, —a)'+ c'

The moduli k and k' are obtained from (5), (xx) and (a5). We
have

(go)
4a,a, (a, —a)'+ c'

(a, + a)'+ c" (o, + o)'+ c'

7. If we now let
Q = 'N —4)3 =Goy+QJgZ,

where
o&xee(~,/e,

and substitute the corresponding values of (33) in (zz), we obtain

(mp)x z g,I = &e, —e,. pre E(k) + —' —put(pre+ e,)2 &e, —e,

(4x)

F(k) 7'(e» k') —E«iP'e
k')] —E(k)F(e, k') +—

2

In this equation p'xe/2 is to be taken with its negative sign.
The only quantities in this equation, which have not been ex-

pressed in terms of the constants of the problem, are the coefficient
of F(k) of the second term in the square brackets and the am-

plitude q.
From (5), (xx), (xg) and (x4) we get

(p' )' ( —p)( — )
&e, —e & 2 & Pm —e, (mP)& Q&+P

x (|x —6) c
(~@'&(a,+ a)*+c'

Adding this to (g7) and reducing, we get

&e, —e, 6
—Pw(Pw + e ) + I —,,I &„—

3

'I c —(aI —6aIa + a )c —2(aI —a }
3&(,+ )'+ '
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Substituting (g6}, (42) and (t4), the latter taken with the negative
sign, in (gz}, we finally have

&(a, +a)'+ c'Z(k)
X 2(C,'+ C') —C'

2- 3
c' —(a,' —6a,a + a') c' —2(a,' —a')'

—(a,'—a')c F(k)[t(e, k') —Z(e, k')j —Z(k)F(e, k')+—

which is the expression V in Cohen's formula.

It remains to 6nd the amplitude y for this expression. If in

(zt) we let
S = P(w —&ds),

and subtract t,3 from both sides of the equation, we obtain

P(m —&as) -el = cos' e (e& —e&)+(e&-es) = (e& —ee) —(e& —es) sin' y.

Now

(t,, —t,,)(~, —~,)
u(te —~) —e =

3 3

and consequently
e, —e, Pm —e,

sin q
=-'

~s

which by (rt), (tg) and (5) becomes

~, ~+P 0, —P (~,
' —~') +&'(+, —l2.)'

V —P a + P (a,* —a')' y c'(a, + a)'

The values of k' and k" are of course the same as those in Kirch-
hoH's formula.

8. By letting ) equal x and 2 successively in (rp) two additional

expressions for I can be derived, but the value of the amplitude q

becomes complex in these cases. Nothing new is obtained by
letting

instead of

as was done on page 622 in deriving Cohen's formula.
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9. The values of g~, q~, co~ and m depend on the value of m. If,
for example, we let

(mP)' = 28~St
2

so that
f2&~

m=/ —/,
iC)CJ

and we then compute the above quantities, we obtain Nagaoka's

values. His expression for I is obtained from (Io} by giving m

this value and letting n equal zero. A convenient value of ns for
computing I from (2r) is the one for which e~ —ee=r. We shall

give the special formula. for this case later.
Io. In addition to the expressions (II), (r2}, (I3}, (z4), (g5) and

(4o), two sets of formula. are necessary for the computation of I
from (2 I},one set for negative and another set for positive values of
eg. The series of the first set are more convergent when e2& o, while

those of' the second set converge more rapidly when e2&o.
From (5) and (rr) we see that

8~ ~ 0 when 6cic ~ cl +6 +c.
In the following formula. all radicals are to be considered as

positive quantities.
Formulre for es(o.

Let

(45)
le, -e, —4e, -e,
4, —e, gee, —e, ryWX'

& = kl+ 2(kl)'+ r5(kl)'+ r5o(kl)" +
then co~ can be calculated from either of the two expressions

(46)
(r+sh+sir'+sh'+ . )'.

2 eg —eg

To determine g~ we have

~' I —3V+ 5V —y'S" + ".
I —gh + 5h' —7k + ~ -.
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To find the value of m~ which satisfies the values of Pm and P'zo

given in (xa) and (x4), we write

0, 2 =

and let

(48)

then

~0, 3 =

PK=S,

1

fI 35 2

~12 + ~ ~

(2 4.6

4, —e, ls —e, —le, —e, ls —e,' = lt,,
Ve, —e, 4s —e, + 4e, —e, 4s —e,

Glg 2 P —I
ut, = —log nat ( tt' —x —t) ——,=,—, , B, ,t

7r ( e, —e, + %e, —e,)'

+~9, ,t + Q, ,t +2'4
3'5

Instead of (48) and (49) the following two formula. "may also be
employed:

le, —s —Ve, —e, 4e, —e,'= lt'
le, —s + le, —e, le, —e,

(dy I
ur, = —'

log nat „,+ 0 it'

(5x)
Ã a(It" —x —t') (le —e + le —e)'I 3 I 2

2'
3'5

If the absolute value of t is less than that of t', it will in general
be better to use (49) to compute teq, in the contrary case it is better
to employ (5I).

It can be shown that t and f' are always negative and that their
absolute values are always greater than unity.

If we now put

g gwsg
1

2COI
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then

(5s)

1a,
%%z +1 (~Is)

1

~i (s —s ') + gh'(z' —s ') + 5h'(z' —z ') ~ ~

(s + z ') + h'(s' + s ') + h'(z' + s ') . .

FornsNAz for e2&o

le, -e, —4, -e, x —Ih

le, —e, + le, —e, x+4k

h, = gl, + s($l, )' + i5(gl, )' + zso(gl, )"+

, (t + 2h, '+ sh,"+ )',(4 —e +le —e)'

(t + zh, + zh, '+ zh, '+ )',
sle, —e,

(54)

mi )& I &( I —gk, +5k —7k + '

The formula which are necessary to determine m» in this case are:

i2& 2 4i i2 4 6l

(56)
~s —e, —le, —e, le, —e,

Vs —e, + ~e, —e, le, —e,

(57) cp = arc tan- t
2 2
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~, ,&,'+ 4~, ,&,
' +—, ,4" +

Now let

2N3

(59)

/

A)K'P —(dg {%OP)

2k' sin 28m' —4k) sin 4vx + 6k, sin 6vx —~ *

= Ar8 —
4 g

403 I 2k' cos 2$7I +2k~ cos 4vÃ 2k~ cos 6M + ' *

Formula corresponding to (48) and (49) could be given for this

case, but the values l~t~ and t~ are complex and make the computation
troublesome.

in the above formule may be either positive or negative; its
absolute value is always less than unity.

In many cases l and l& are small quantities, so that the second

terms of {49), (5I) and (58) can be omitted. The approximate
expressions for s and v are then quite simple.

We have from (49)

(«)
from (5t)

(6I)
and from (58)

(6a)

II. If we let

(63)

so that

S2= &t' —I —t,

c—' = /t (&t"—z t'), —

tt=$—
2m

(a, + a)'+ c'
m= I+- =

P 2u, a

8y —83= I, /2
e2 —e3 ——42, eg —t,2 ——4',

(a, +a)'+c" ' (a,~a)'+c" ' (a,+a)'+c"
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some of the formulae of the last paragraph simplify somewhat.
The other quantities which are necessary to calculate I from (2r)
have the following forms in this case:

(64)

(65)

(66)

mP = (ax+a)'+c'

z z(a,'+ a') —c'

3 (og + s) + &

y'm ~(a,' —a'}c
[(a + a} + c ]g

6 9 (a, + o)' + c' (s, + o)' + c'

2-

Since e~ —e3=i, e2 can be expressed in terms of m alone. We
easily find

I )&4

L tlZ

from which we see that

e, =o when m ~ 4.

When c=o and a&=a we have from {63)

f7$2 f

which is the minimum value of m. This is one of the values of ns

when the two coils coincide, so that we have self-inductance

instead of mutual inductance. As a very convenient expression
for computing the self inductance of a single layer coil has been

given by Nagaoka, ' it is not necessary to give formula. for self
inductance here.

I2. Cohen's as well as KirchhoR's formula involves c', which

is inconveniently large when one or both coils are long, or when

there is a great distance between their centers. Kirchho6's formula

has the further disadvantage that, when c is large compared to
(aj+a), the arguments q and 8 of Legendre's tables are both near

90, so that E{y, k'} and especially F(q, k') cannot be determined
with sufficient accuracy, unless terms of the fourth and even fifth

order are taken into account in the interpolation.
'H. Nagaoka, Note on the Self-inductance of Solenoides, l. c., p. 3x4, xyo8.
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I3. The case computed by Cohen, where

d=o, 21=200, 2ly =20, 8= IO, Qy= I5,

when calculated by Kirchho6's formula, gave

M =4~ne' 62I2.9,

while formula (zr), when (6r) was used and m was so chosen that
ey —e3= I, gave

M =4m'ss 62 I3.77,

seven place logarithms having been employed. The values of M
obtained by Cohen and Nagaoka were

3f=4m'1M 62 I3.4

3I=4m'till 62 I3.5I,
respectively.

A computation by the series given for e2 &o, which do not converge
very rapidly for this case, gave

M =4+en' 62I3.63.

The results oi the computation by (2r) and (6z) are given on the
following page.
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cE g =I5q C= IO~
C=I IO.

4Ci=1$~ Q=IO)
C=QO,

1 2(a,'+ a') —c'
log PVO = log 3 ( )~

g, 2 ( a,'+a'+c' i'
3 j 2a,a6,9 i(a, +a)'+e') ((a,pa)'+c')

y'm (aP —a~)c
2c ((a,+ a)&+ c']S

log (mP) 5 = log t(a, +a)'+ c']8
4a1a

(a„+a)'+ c'
k"= 1 —k'

1 —y'k'
log/ = log ——--=

1+y'k'

log h = log —+
2'

log ~, ~ log (1+. )'
(1+v'k')'

1 —9h'
12~, 1 —3h'.

l

V {a,+a}'+c'
v'e, —s —V'k'

log u'= log
ge, —s+ v'k'

—t'

log z = log fh(y't" —1 —t')]-k

1 ~ (z —z ')+3h'(z' —z ')+
(z+ z-') + h'(z'+ z-') + ~ ~

P Ql ~$
log —' —= log —g & 4 —~ —('N 1)1O

PII'

——p zv

y'u
q mi —~ —'-(mi)1 1 10 1

1

Sum= &

log Z

log 2I= log (mP)8. Z
2I

9~.4770264 9~.4542696

0,2122382 0.2079914

7.9813160 8.1400044

6.1569867 5.9111481

0.0471513 0.0687679

0.9528487 0.9312321

7.7808415 7.9496612

7.4798115 7.6486312

0.2013483 0.2038209

9.7136753 9.7110910

0.9751330 0.9635180

7.8164572 7.9856940

1.085465 1.086508

1.1709451 1.0860006

9.9977951 9.9967327

8~.1752310 8n. 3328570

—0.1551321 —0.1463391

0.1943994 0.2030302

—0.0149703 —0.0215207

0.0242970 0.0351704
8.3855527 8.5461773
4.5425394 4.4573254

34877.02 28663.25

2(I1 II) = 2(I4 Is) = 34877 02 28663 25 = 6213 77
M = 4' nn'6213. 77
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