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ABSOLUTE FORMULZAE FOR THE MUTUAL INDUCTANCE
OF COAXIAL SOLENOIDS.

By G. R. OLSHAUSEN.

1. Two absolute formule for the mutual inductance of coaxial
solenoids have recently appeared, one by Cohen,' expressed in
terms of elliptic integrals of Legendre and a second by Nagaoka?
involving the p-function and o-function of Weierstrass. The com-
putation of any given case of mutual inductance by Cohen’s formula
necessitates the use of Legendre’s tables of elliptic integrals, while
a computation by Nagaoka's formula does not depend on the use
of these tables, but on the introduction of the #-functions of
Jacobi.

A third formula, due to Kirchhoff, was published for the first
time by Coffin.3 This formula, which is of the same type as that
of Cohen, was found, however, to be incorrect.

It is the object of this paper to derive a general expression from
which the formule of Cohen and Nagaoka, as well as a correct
form of Kirchhoff’s formula may be obtained.

The mutual inductance of any two circuits is given by the ex-
pression

(1) M= ff dsfsl CoS €.

1L.. Cohen, An Exact Formula for the Mutual Inductance of Coaxial Solenoids,
Bull. Bur. Stand., 3, p. 295, 1907.

?H. Nagaoka, Note on the Mutual Inductance of Coaxial Coils, Mathematico-
Physical Soc., Tokyo, Proc., 4, p. 192, 1907. Also L. c., p. 279, 1908.

3]. G. Coffin, Construction and Calculation of Absolute Standards of Inductance,
Bull. Bur. Stand., 2, p. 125, 1906.
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Applying this expression to two coaxial solenoids, it is easy to
deduce
(2) M=gmnn’ [I,—L,—I;+14, !

where # and n’ are the respective numbers of turns per unit of
length of the two coils, and the quantities in the brackets are inte-
grals of the form

T e .2
(3 I= a12a2£ P aszlr: filla prv) v+ a* 4 ¢ — 2a,a cos y.
In this @; and a are the respective radii of the coils and ¢ has the
following values:

c=d+I1+1, for I=1,,

c=d+hL—1for I=1I,,

c=d+1-1 for I =1,

c=d—1-1 for I=1,

where d is the distance between the centers of the coils and 2J; and
2] are their respective lengths.
To evaluate the above integral, let

N cos ¥ = x,
then
1 _ _
o z=@5f =D+ (s=73) i |
4 @ v
+1 x—B J(x-—-l)(x—}-l) (x—g)
where
(5) a=a+a? B=2aa, vy=a?+ta*+cE

In order to reduce this integral to the normal form of Weierstrass,
we let

6) x—vy/B=m(s—e), x—1=m(s—e), x+1=m(s—e3)

and determine the quantities e;, e; and ¢; in such a way that their
sum is zero.

m is a parameter, which can be determined by imposing upon it
any arbitrary condition.

1See L. Cohen, l.c., p. 297.
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From (4) and (6) we obtain

(7) I= (MB)3 eg 4(5'—81)(5—62)(5‘——33) ds ‘
s f (s—es)—l(%+1) Vi(s—e)(s—e)(s—e)
m

Now let
Pu=9u|w, ws)'

be the elliptic function which is determined by e;, e; and e¢; and put

(8) s =Yyu and pw=e3+fln(g+1).

We shall assume that w; and ws/? are real and positive quantities.
We have then

du = ds
V(s —e)(s — &) (s — &)
and
4(s—e)(s—e)(s—e3) =4Pu— ghu—gs=(p'u)?,
where
(9) B=12¢—4(e1—es)(e2—es), gs=4e1265.

On substituting in (7), we get

_ (mp)? f “s 40°u — gVu — g,

d 8 Ju, Pu — pw

du.

Expanding the integrand of this expression and remembering that

(b'w)?=4P%w— ghw—gs,
we obtain

_ (mp)?
T8

I Gy } du.

L {4pu+4pw-vu+4pzw—g2+p————u_pw

Integrating term for term, we have

’

§ ’
(10) I= g’”if—)—[pw’h'!' (%2 "pzw)"’1+ Eziv{'ﬂlw_""]% (w) +mri}],

where 7 is an integer due to the many-valuedness of a logarithm.
A method for determining # will be given later.

1The notation employed in this paper is that of the ‘“Formeln und Lehrsaetze zum
Gebrauche der elliptischen Functionen. Nach Vorlesungen und Aufzeichnung des
Herrn K. Weierstrass, bearbeitet und herausgegeben von H. A. Schwarz.”



620 G. R. OLSHAUSEN.

[VorL. XXXI1.

Equation (10) enables us to evaluate the integrals I, I, I; and
I, in all cases. In order to do this, it is only necessary to express
the quantities in brackets in terms of the constants of the problem
and to choose such a form for the parameter m as will facilitate the

computation as much as possible.

2. As the number 7 will be seen to depend on the value of w
which satisfies the known values of pw and p’w, it is advantageous

at this point to evaluate these quantities.
From (6) we find

el—e3=1in(1+;—;), e,—e,=l(:3 I), e, — e

(11)
I2y I ¥ I
“= 3B’ a=5(s "373)’ o=~ (r+
From (5), (8) and (11) we get
(12) _1<1&:r}_12(a1“’+a’)-62
12 bw = m 38 “m 6a,a
and
( I |Ja—vy -
Y
m B 2ma,a
oo Le=8]_(a=0a
(13) pw ez - m{ B } - 2mala ]
w— g = l{a-i-ﬂ} _(a,+a)2
P “=m| B T 2maa
Since
(P'w)?=4(pw—e1) (Pw—e2) (Pw—es),
we have from (5) and (13)
pw | [ = B )(a —y) _ _ ila’ —a¥e
(14) 2 =% \/ - (mB)?

Y
36

7).

= ,

2
m

In this equation we assume that a;>¢ and that m and ¢ are
real and positive, i. e., the absolute value of ¢ is always to be em-

ployed.

It is easily seen that the value of pw is such that

e >Yw> e,
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for we have from (5), (8) and (11)

I

_- 2
el 3m62 3mﬁ2(al +a +C)1
b= G =) = o] 2ei+a) -],
2 2 2
e, = 3m3(35'7) [2(a1 +a)—{3(al—a) +c H

Since pw is real and comprised between the values e; and e, w
must have either the form

(15) w=(2p+1) w1+ (2¢+1t)ws
or
(16) w=(2p+ 1w+ (2¢+1+t)ws,

where p and ¢ are any positive or negative integers, including zero,
and ¢ is a real positive quantity less than unity. If wis of the first
form, p’w is purely imaginary and positive. If whas a value corre-
sponding to the second form, p’w is purely imaginary and negative.

3. The integer #n, which enters into the expression for I, can be
determined for any given value of w as follows:

We have
wg O'(u + ‘ZU) g.: w3
-, pu-— [1 ——:zua('w)]m2

’

o .
= 2nw — 20, (w) + 2nwi.

If in the u-plane we start with any given value of w and let it
vary along a straight line until the nearest value of w having the
form

Wo = (2P+ I)w1+2gw3

is reached, the values of the definite integral and of the expression
'4
[
2w — 20, - (w)

can only change continuously; the number # therefore must remain
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unchanged during this variation of w. When w has the value wy,
the definite integral equals zero, since P’w is then zero, and

' .
2mwW, — 2"’1; (w,) =2gmi-

We have therefore
n=—q.

!
4. By means of the addition theorem of the function %(u),

equation (10) can be transformed into another form from which
Cohen'’s expression for I can be derived.

We have
a o o’ 1 p'u+pv
a(u—v)— g () = o (v)+2 pu-—pv'
If we let
u=w and v=uw,
we obtain
4 A 1I_¥w
(17) s (W —w) =—(w) mt o= e
where

A=1,2o0r 3.
By means of (17) and the relation
(18) Mws — w1N3 = —21-7ri,

we can easily find three new expressions for I, but, for reasons
which will appear later, we shall only consider the case A=3.

If A=3, we have
w, Yw

o '
(19) mw—e,— @) =mnw— ;) - “’1% (@=—wy) + 7 Pw — e,

+ 4 mi.
Substituting (19) in (10), we get

H o\ 2
I= (mf) ["hpw + { gg — w4+ glU) ! }wl

2 —
(20) 2 y Pw — e,

+%@{m(w — wy) —w,%,(w —wg) + (n+%)ﬂ'}]-

This equation leads to Cohen’s formula, while from (10) Kirch-
hoff’s formula can be deduced.
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If in equation (10) we put
w=w,+ w1,

where w; fulfils the condition
o<w; < wy/t,

then w is of the form (15), the value of # is zero and p'w s positive.!
Since we also have

o . a , .
- (“’1 + 'wﬂ') =+ (wl"')’
o g,

the expression (10) becomes

3
I= @@-[nmw + { gg‘ — p'w } @

2

) . ,
w . .
+ { mwt — w, % (wys) }]

If in (20) we let w have such a value that

W— w3z = w,+'w2i,
or
w= w2+'LU2'i,
where
o< we< wa/’i,

then w is of the form (16), # is —1 and p’w is negative. Since we

also have

’ ’

7 o, .
—(w — w,) = 9+ — (wyza
0'( 3) T 0'1( z)

equation (20) becomes

_ (mg)? {_g_z ) Pw\’ 1 }
1= L {5 v+ () i o

(22) ,
WP

w . [ 1I . ) B

5 | MWt — @ ;l" (wy) — 2™ ]
5. In order to transform (21) and (22) into the corresponding

formule of Kirchhoff and Cohen, we must find the relations between

INagaoka has given p’w the wrong sign in this case; however, in his computation
P’w has the positive sign.
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the integrals of Legendre and the quantities which enter into these
equations.

If in the incomplete integral of the first kind to the modulus ¥

b de
Flp, ¥ =f —
(¢, ') LV

sin® ¢
we let
$=90—Y,
we get
, 1 w2 d‘P
Flp, k) = Z [ e
. n/2—¢\/1 + ("k—) sin’ ¢
where
R+E=1.
Changing the variable again, by letting
t=sin?y
we obtain
1 ! dt
(23) Flo ¥) =5 f _
k
cos’¢‘\}4l(t - 1) ( t+ k_”)

To transform this expression into the normal form of Weier-
strass, let

(24) R R2=m (s—es), t=m'(s—e), t—I=m'(s—e),

ei+e+e=0,
m' being a parameter. From these equations we find
I I k?
€6 — € = vy € — &= m'k'z’ €, — & =mr?
(25)

e, — e 2 € —e
p=0T0% 4 0T
61 - 63 el - 83

From (23), (24) and the second equation of (25) we have

) ) e ds
(26)  Flo, k) =iVe, — e“f, Vals —e)(s —e)(s —e)

where the value of the lower limit is easily determined from the
second equation of (24).
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We have

¢ cos® ¢
(27) s= +e =

ml

+ &, = cos’ ple, — e,) + e,

It is evident that for real values of ¢, s is always real and comprised
between e; and e;.
If we now let
s=Ppu=9(u|w, ws)

be the elliptic function belonging to the quantities e;, e; and e;, as
determined above, we have

du ds

= V(s — e)(s — &) (s — 33)’

and
(8) ) =iva—e du=ive— e~ ),

the lower limit # being determined by (27) for any given value of ¢.
Since s=Ju is real and comprised between ¢, and e;, we may put

u=w1+uli,
o<u1<w3/i,

so that (28) becomes

(29) Flo, k) = mve, — es.

If ¢ equals 7/2, F(¢, k') becomes a complete integral to the
modulus &/, i. e.,

F(k') = % Vei—es.

In the same manner it can be shown that the incomplete integral
of the second kind to the modulus %’

L
E(p, k) = -[ v'1—Fk"sin’ ¢ do,

reduces to
E( k’)———i——[e(u— )+ () ]
(Y = \/(Z:ve; 3 W, - U mi,
1 a . .
(30) Sl R |
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From this we find for the complete integral to the modulus &’

)
E(R) = ===, + eyw,].
‘/el —_ 83 3 3%3.

The expressions for the complete integrals of the first and second
kind to the modulus # may be deduced in the same manner, as
that in which the corresponding ones to the modulus 2’ were ob-
tained. We have

(1) F(k) =wV e1—es,

(32) E(R) = :/:I_—e [m + elwl].

!’
. . a1 .
6. If in equation (21) we now express w;, — (wi3), w and
o1

in terms of elliptic integrals of Legendre and g, Yw, P’w, €; and e;
in terms of the constants of the problem, we obtain the correct form
of Kirchhoff’s formula.

If after having fixed the parameter m, we assign to e, e; and e;
in (25) the values given in (11), the moduli k and %" and the param-
eter m' will be definitely determined. If we also let

u=w=w+ws, s=hw,

the value of the amplitude ¢ of the incomplete integrals can be
determined from (27).

From (29), (30), (31) and (32) the following relations can be
easily be deduced:

,

I
w, = ———— Flp, ¥
1 \/61 _ 63 (¢ )

——————— e,
(33) - Ve —e

w=va-o[B® - 2 Fw],

F(p, k'),

w0, = ———— F().

L e, — e,

Substituting these values in (21), we get
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\/el——e3 yw- E(k)+ S {62 ——Pw(pw'l"el)}F(k)

zpw

_ (mp)? [
o
(F®IF (o, ¥) = Elp, ¥)]~ E®Flp, #)} ]

The value of g2/6 in this equation can be obtained from (9),
which, by substituting from (11) and (5), becomes

(35) gg’= 9imz[g“:+3] = 9%2[(0_12’%4__62);3]’

From (5), (11), (12) and (35) we easily find

-1 J32=7
pw“/el"es“(mﬁ)g[ 3 ] ’Y+5

(36) 1 2(e’+ad) —

(mB)g 3 (al + a) + C
and

I Y + 28" — 3a

) { — yw(pw + el)} \/ (mﬁ)g[ 3 ‘/‘Y————-l-ﬁ ]
37

1 [c + 2c%ar + a®) — 2(a — az)z]
(mg)? 3V, +af +¢
Substituting (14), taken with the positive sign, (36) and (37)

in (34), we obtain

[2(1112 +a) - ¢
3

I=}% v(a, + a)’ + ¢ E(k)

¢ + 28(a” + @) — 2(a — @*)’
3V, +a+¢

+ (@ = Al FIF(e, ) = Ele, ¥)] = E@F(s, 1)} ],

(38) + F(k)

which is the correct value of I for Kirchhoff’s formula.
The amplitude ¢ may be obtained from (27). We have

or
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and by (5), (11) and (13) this becomes
Yy—a c
'Y_'B— (al_a)2+cz-
The moduli £ and %’ are obtained from (5), (11) and (25). We
have

(39) sin® ¢ =

4a.a

2 . v
(40) k = (al +a)2 +62’

7. If we now let

k,z _ (a, — a)2 +
B (‘1'1 + a)z + ¢

u=w—w3=w1+w2i,
where
0<1U2<w3/’1:,

and substitute the corresponding values of (33) in (22), we obtain

3 -
= (—"—f—)[%l — eg-yw- E(k) + \/—e}:‘e [ ‘% — Pw(pw + ¢)

1 3

w () e

Pw — &
iw'w
- 22 PO, ¥) = Bl 1)~ E@FG, )+ ]
In this equation p’w/2 is to be taken with its negative sign.

The only quantities in this equation, which have not been ex-
pressed in terms of the constants of the problem, are the coefficient
of F(k) of the second term in the square brackets and the am-
plitude .

From (5), (11), (13) and (14) we get

1 (p’w)2 1 _ 1 (@a=p)la—n)
Ve —e\ 2 ) yw—e mB} vyip

_ 1 (@, — a)’¢
(mB) v/ (a, + a)* + ¢
Adding this to (37) and reducing, we get
7, 2
———iz{%—pw(pwwx) +(2) == }

Ve —e 2 ) yw—e,

(42)

1 [c‘ — (a;? — 6a,a + a*) — 2(a,* — az)z]
~ (mp)? 3V (e, +a)} + ¢ .
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Substituting (36), (42) and (14), the latter taken with the negative
sign, in (41), we finally have

=1

[2 (a4 a* —
2

z —————————
. © Ve +a) + CER)

¢t — (e} — 6a,a + d’) — 2(a’ — a*)?
3‘/(‘11 +a)+¢

(43) + F(k)

~ @t =a | PG, 1)~ Elo, 1~ E® Fle, )+ 5],

which is the expression V in Cohen’s formula.
It remains to find the amplitude ¢ for this expression. If in
(27) we let
s=p(w—ws),

and subtract e; from both sides of the equation, we obtain
P(w—ws) —es= cos? p(e;—ez) +(e2—e3) = (e1—e5) — (e1—e2) sin?® o.

Now

(33 - e]) (ea - ez)

’
Pw — e

P(w—w,) —e =
and consequently
.2 e —ePw—e
s ¢_el_“’z bw — e
which by (11), (13) and (5) becomes

(44) sin® ='y+6"""3=(012“!12)2-}-62(a1—-a)2
" Ty —Ba+B (@' —d)+e +a)f

The values of k2 and k' are of course the same as those in Kirch-
hoff’s formula.

8. By letting \ equal 1 and 2 successively in (17) two additional
expressions for I can be derived, but the value of the amplitude ¢
becomes complex in these cases. Nothing new is obtained by
letting

= Wy,
instead of

V=wy,

as was done on page 622 in deriving Cohen’s formula.
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9. The values of gz, m, w1 and w depend on the value of m. If,
for example, we let
(mB)*

2

()
m=\{—}),
a,a

and we then compute the above quantities, we obtain Nagaoka’s
values. His expression for I is obtained from (10) by giving m
this value and letting » equal zero. A convenient value of m for
computing I from (21) is the one for which e;—es=1. We shall
give the special formule for this case later.

10. In addition to the expressions (11), (12), (13), (14), (35) and
(40), two sets of formula are necessary for the computation of I
from (21), one set for negative and another set for positive values of
e;. The series of the first set are more convergent when e, <o, while
those of the second set converge more rapidly when e;>o0.

From (5) and (11) we see that

= 2a,a,

so that

e,Z0 when 6aaZa’+d+

In the following formule all radicals are to be considered as
positive quantities.
Formule for e;<o.

Ve, —e,— Ve, —e, 1—E
= A &= Ya" 6
(45) Ve,— e+ Ve, —e, 1+ VE

and
h=34+23)" 4+ 153)° + 1503D% + - -+,

then w; can be calculated from either of the two expressions

Let

2r
= — 4 h4 hlG _..21
@ (\’e,—e3+\/el—ez)2(l+2 +2hT )
(46)
W, = — e (1 4 2k + 2B 4 2B+« )

, = ——
2 \/e1 — e
To determine 7; we have

( _1_2<I_33h2+53h6__73h12+_.'
47) M =1, I—3h2+5h6—7h12+-'-.
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To find the value of w; which satisfies the values of Yw and p'w
given in (12) and (14), we write

20,1 = (%)214_*_ (;_::3;)213_*_ (1'3'2)2112+ .

2:4:
_ I-3 8 I-3-5 12 .
Lo, = (24)l+(246)l+
I
s = (222) P
and let
Vel—es\/s—ez-—‘}\/el—ep/s—es
8 =3, Py - 2 =lt,
(48) b = s \/el-—eaw/s——e2+\/el—e2\/s—e3
then
2VP —
= t(VE—1—1¢ .4 {2 t
(49) 2 —es+4el—ez>2

+§80,zt3+§i;80,3t5+---}

Instead of (48) and (49) the following two formulz may also be
employed:

«/el—-s—\léf"—-—esw/;_—“

=],
(50) V e, —s + '\lel [ \/61 -
. 1 ST
_on . &t
(51) he! T g na h( ‘/ 2 —t) (‘/el —e+ ‘/31 - 62)2 "

+ 38, " + — 530 ACE }

If the absolute value of ¢ is less than that of ¢, it will in general
be better to use (49) to compute wy, in the contrary case it is better
to employ (51).

It can be shown that ¢ and ¢’ are always negative and that their
absolute values are always greater than unity.

If we now put
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then
’
. g, .
mwt — o, (wy5)
oy

LY [ B
T2 | G4+ +RE )+ )
Formule for e2>0
(s3) I = Ve, — ¢, — \/ez—ee, 1 —Vk

\/el—-e3+ \/e2—e3 1 +\/—k
by = 3L +2(31)° + 15(34)° + 150(30)" +

@3 2 4 16 2
= = : h h e )
i (\/el—es+\/e2—e3)2(l+21+2l +o)

or

— (1 4 2k, + 2h 4 287+ - -)%,

L \fel —e

_ s I
(54) w=_ log nat (hl),

_m 1 I—33h12+53h1“—73h1”+---]
(55 m = g |1 —dlogmat (5 ) T g )

The formula which are necessary to determine w; in this case are:

= (2 (23 (225 e

e (e ()
(3w

4 L Y —
‘fs—ea—— \/el—-eaw/ez—es
\/s—e3+ A’Vel—egi\/ez—es

= lltl,’

'
(57) ¢ = arc tan- -VI , —5Ze=1
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w; (1 (p) 2 \/I . t112
w=<\-—- 4 .
1 \2 T (\/el —e3 + ey —e3)?
(58)
X { 21, ltl, + %‘81,2‘2’3 + 23:—:81’ 3t1,5 + eoe (o
Now let
w1l
v=—,
20,
then
. o’ .
MWt —w; 71 (w,1)
(59)

. 7w,  2h, sin 2vr — 4k, sin 4vr + 6k’ sin 6vr — -
=iry — — .
w; 1— 2k, cos 2vr +2h,* cos 4vr —2h,° cos 6vr + - - -

Formule corresponding to (48) and (49) could be given for this
case, but the values 4t; and ¢; are complex and make the computation
troublesome.

' in the above formule may be either positive or negative; its
absolute value is always less than unity.

In many cases ! and /; are small quantities, so that the second
terms of (49), (51) and (58) can be omitted. The approximate
expressions for z and v are then quite simple.

We have from (49)

(60) 2=vEe—1—1,
from (51)
(61) g2 =h(VIP—1—1),
and from (58)
-1_9%

(62) v=1} Py

11. If we let

2 Y _(@tai+d

(63) m=1+g= 20,0
so that

2
e—e=1, e—e3=Fk, e —ea=k",

(¢, — a)* (¢, +9)

—C
—e= (al+a)2+cz’ §—
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some of the formule of the last paragraph simplify somewhat.
The other quantities which are necessary to calculate I from (21)
have the following forms in this case:

(64) mB = (a:+a)*+c?,

12(a’+d) - ¢

s ST e e
Yw (e’ —a’)c
(66 2 e+

g _E[ al+a + & }z aa }2]
©7 6 9 { (@, 4+ a)*+ ¢ +12 (¢, + a)* + ¢ .
Since e;—e3=1, e; can be expressed in terms of m alone. We

easily find
B )
e, = 3 ( 1),

= =
e,=0 when m=4.

from which we see that

When ¢=0 and a;=a we have from (63)
m=2,

which is the minimum value of m. This is one of the values of m
when the two coils coincide, so that we have self-inductance
instead of mutual inductance. As a very convenient expression
for computing the self inductance of a single layer coil has been
given by Nagaoka,! it is not necessary to give formule for self
inductance here.

12. Cohen’s as well as Kirchhoff’s formula involves ¢*, which
is inconveniently large when one or both coils are long, or when
there is a great distance between their centers. Kirchhoff’s formula
has the further disadvantage that, when ¢ is large compared to
(a1+a), the arguments ¢ and 6 of Legendre’s tables are both near
90°, so that E(y, k') and especially F(e, k') cannot be determined
with sufficient accuracy, unless terms of the fourth and even fifth
order are taken into account in the interpolation.

1H. Nagaoka, Note on the Self-inductance of Solenoides, I. c., p. 314, 1908.
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13. The case computed by Cohen, where
d=o0, 2l=200, 2l,=20, a=10, a;=15,
when calculated by Kirchhoff’s formula, gave
M=4mnn’ 6212.9,

while formula (21), when (61) was used and m was so chosen that
e1—e3=1, gave
M=4mnn’ 6213.77,

seven place logarithms having been employed. The values of M
obtained by Cohen and Nagaoka were
M =4mnn' 6213.4
and
M=4wnn’ 6213.51,

respectively.

A computation by the series given for e; >0, which do not converge
very rapidly for this case, gave

M=4mnn’ 6213.63.

The results of the computation by (21) and (61) are given on the
following page.
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a,=15, a=10, | a,=15, a=10,
c¢=110. c=qo.
12(a?+a?) —c?
log pu = log 3 %150 9,.4770264 | 9,.4542696
g 2 (al’-}-a’—i— c’) ( 2a,a )2]
> _,9[ arLt ) +3 (ot 0.2122382 | 0.2079914
Pw (a,2—a®)c
log % = log (@ta)r+ ol 7.9813160 | 8.1400044
log (mB) = log [(@,+ a)*+ ¢7J# 6.1569867 | 5.9111481
4a,a
2 v
P 0.0471513 |  0.0687679
Bi=1— k2 0.9528487 | 0.9312321
/
log I = 1og —V¥ 7.7808415 | 7.9496612
+VE
log = log (1 +o ) 7.4798115 | 7.6486312
2
log &, = log ————— (14 0.2013483 | 0.2038209
g Wy g RERYLY: (1 )2
71— Opt.
log 1 = 10g 7 { = pe— 9.7136753 | 9.7110910
CT
Vei—s= \/ e 0.9751330 | 0.9635180
log It = log Ve—s—VFk 7.8164572 | 7.9856940
Ve —s+VE
—v 1.085465 | 1.086508
log = log [A(VFE=1— #)]4 1.1709451 | 1.0860006
(z—2)+3h¥(P~5%)+---
log { T TRETE 9.9977951 | 9.9967327
log{ }”—w ’ﬂ—log > {mwﬂ'-wl o (wli)} 8,.1752310 | 8..3328570
1
pw -, —0.1551321 | —0.1463391
w,(% - pzw) 0.1943994 | 0.2030302
! ’
p—;’{mw,i — (wli)} —0.0149703 | —0.0215207
1
Sum = = 0.0242970 | 0.0351704
log = 8.3855527 | 8.5461773
log 21 =log (mB)} - = 4.5425394 | 4.4573254
21 34877.02 | 28663.25
21, — I,) = 2(I, — I,) = 34877.02 — 28663.25 = 6213.77

M = 4mnn’6213.77

WORCESTER POLYTECHNIC INSTITUTE,
August 23, 1910.



