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NOTE ON THE RELATION BETWEEN THE TEMPERA-
TURE AND THE RESISTANCE OF NICKEL.

Bv C. F. MARvrx.

HE splendid work of Callendar confirmed and extended by
many others has placed in the hands of physicists that admir-

able and indispensable tool, the platinum resistance thermometer.
All this work demonstrates that the relation between the tem-

perature and the resistance of platinum wires can be represented
over a very wide range of temperature by a parabolic curve, such

as given by an equation of this form:

or in simpler form:
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E= E, + aT—bT'.

This equation is due to Callendar who has pointed out that the
constant ~ depends only on the quality, or purity, of the particular
sample of platinum employed. R, and R», are the resistances of
the thermometer coil at o' and Ioo' C. , respectively.

Probably no other metal can compete with platinum for use at
high temperatures, but it is believed the striking advantages in

nickel wire for the construction of resistance thermometers over

a considerable range of moderate temperatures is not generally

recognized.
Nickel exhibits an inversion point between 35o and 4oo C.,

and sufhcient data to determine its suitability for resistance ther-

mometers at very low temperatures are not at present available.
Its greater resistance, greater change of resistance with temperature,
and its small cost as compared with platinum, all render nickel

better than platinum for thermometric purposes over a consider-
able range of temperatures. While it may possibly be difFicult to
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procure nickel wires of a uniformly high purity, yet the maximum

purity seems unessential since what passes as commercially pure
nickel seems to possess the advantages now in mind. Callendar
has already shown that the temperature resistance curve of platinum
is a parabola. At least three points must be located to define the
parabolic curve.

The nickel resistance curve seems to be very accurately repre-
sented by a logarithmic curve of this form:

Log R =a+ mT.

Table of Obserted and Calculated Resistances of ¹cke/-Resistance Thermometers.

Tem. ' Resistance

—15 11.475
—10 11.700
—5 11.935

0 12.173
+ 5 12.420

10 12.660
15 12.920
20 13.173
25 13.435
30 13.700

,
11.477

' 11.703
11.935
12.173
12.413

' 12.659
12.908
13.163

I 13.423
' 13.689

Obsd. I Calc.

—25 11.030, 11.036
—20 11.250

i
11.254

Dif.
Ob. —
Cal. $.

—.05
—.04

' —.02
,
—.02
~.00

, ~.00
, +,06
; +.01
+.10

' +.08
' +.09

.08

—27.7
—27.6
—24.6
—23.6
—23.6
—18.4
—12.9

7.04
—5.95
+ 8.4

8.8
9.0

Obsd. Calc.

70.72 70.79
70.74 70.82
71.64 71.71
72.34 72.02
71.92 72.02
73.57 73.60
75.39 75.32
77.29 77.20
77.65 77.55
82.42 82.36
82.54 82.50
82.61 82.57

Resistance.
Tem. ~ C.

Dif.
Ob. —

~

Cal. $.

.10

.11
—.10
+.45
—.14
—.04
+.09
+.12

+ 13
+.06
+.05
+.05

0 842
100 12.66
200 17.97
300 24.95
325 27.06

)
350 29.33
37S 31.98
400, 33.67
425', 34.70
450 35.63

9.10 —7.5
12.73 —0.5
1780 + 09
24.90 + 0.2
27.08 —0.1
29.45 —0.4
32.02 —0.1
34.84 —3.5

' 37.87 —8.4
41.19 —15.6

Resistance. I Dif.

O'bsd. Cal c. Cal. $.

3S: 13.965
40 14.240
45 14.520
50 14.800
55' 15.080
60:'15.385
65, 15.690
70 16.000
75 16.320

14.516
14.802
15.093
15.393
15.697
16.007

i 16.323

+.03
—.01

09
—.05

. —.05
'

,
—.04

i —.02

13.959; +.04
14.235 +.04

9.2:82.70 82.64
11.38 83.44 . 83.40
23.76 ' 87.70 87.84
24.05 87.82 87.95

+.07
+.05
—.16
—.15

Weather Bureau for the meas-

.001699t. (4)
B=Data supplied by Leeds 8z Northrup.

Equation: Log R = 1.90045 -+

C =Data supplied by Bureau of Standards on

garded as impure:

.001818t. (s)
a single specimen of wire re-

Equation: Log R = 0.96145 +- .00145t.

Not included in computation of equation.
A =Thermometer made by Leeds R Northrup for

urement of solar radiation:
Equation: Log R = 1.08539+



[ Vor.. XXX.

Only two points are required to locate such a curve. The coefficient

m depends upon the quality, that is, the purity, and possibly some

other of the physical properties and conditions of the metal.
The data at present available to the writer in support of the

logarithmic curve is conceded to be too scanty and inadequate to
demonstrate anything like a general law, but the conformity is

sufficient for a great many purposes, and is shown in the following

table:
In the two thermometers from Leeds R Northrup the conformity

to the logarithmic equation is really very close, although no great
range of temperature is embraced. The residuals are of about the
same order of magnitude as the probable accuracy of the resist-

ance measurements, viz; one tenth of one per cent.

Fig. 1. Theoretical diagram of Wheatstone's bridge.

The data from the Bureau of Standards are not so well fitted by
a logarithmic curve. The point at zero degrees, especially, is dis-

cordant, but from ioo' to g7) the conformity is much closer.
Admitting that the nickel wire temperature resistance curve is

approximately logarithmic, it remains to point out that resistance
readings of a nickel thermometer on the usual form of slide-wire

bridge, or equivalent, having a scale of equal parts, may also be
made to give gas scale temperatures with a very considerable ac-
curacy.
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The two diagrams, Figs. I and z, show two forms of bridge con-

nections commonly employed in this kind of work. We consider

only in each case a scale of equal parts. Any scale of unequal

parts is an undesirable„ if not an impracticable or impossible, thing.

The relation between resistance and scale reading in the Fig. I

arrangement is strictly linear, and therefore the scale readings show

temperatures on the gas scale only when the resistance of the ther-

Fig. 2. Theoreticai diagram of Wheatstone's bridge.

mometer varies according to a strictly linear law. This arrange-
ment is used extensively with the platinum thermometer, and the
scale readings are the so-called platinum temperatures.

In the arrangement of Fig. z the relation between the scale
readings t' and the resistance R' is given by the equation:

e+ t'R'=& ----- -- —

c when e, =ee+I —t'

The curve represented by this equation between R' and t' is
concave upward as is also the logarithmic curve representing nickel

resistance, viz:
Log R= a+ mt. (3}

I nov wish to show that a section of the R't' curve, representing
a temperature range of say So' to oooo will conform with extreme
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closeness to the logarithmic curve over the same range; that is,
the t' scale of the bridge is then accurately the gas temperature
scale.

Suppose, for example, we want the extreme range of the bridge
scale to embrace too degrees of temperature, say from t, to t, Now,
the R't' curve can be made to intersect the Rt logarithmic curve in

two points determined by the two constants, B and e (I = the re-

sistance of the whole bridge wire, is determined by the range of
temperature embraced, viz: roo degrees in this case). The two
curves will conform most closely over the whole range v hen the
points of intersection lie at certain particular points between the
two extremes t, and t,. as at I'Q, Fig. 3.

0 l0 20 50 40 50 60 70 80 9~ i 00

BRiDGE- SCALE,

Fig. 3.

It is quite sufhcient to select the two points, I'Q, arbitrarily
for example, at say 43, and -&/. Ke can even pass the 8't' curve

through the points t, and t„or through t, and the middle point
m, or through m and t,. The deviation of the curves one from the
other is smaller, as a rule, than the ordinary errors of observation,
except in work of the highest precision. The general equations for

computing the values of 8 and e giving two intersections inter-

mediate between the extremities of the range comprised by a bridge
scale are:
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P(l —s, ) —BS,
8 —I'

In expressing these equations it is assumed for simplification

that 5, and S, are symmetrically located on the bridge scale so that

S, + S, = l in all cases.
A single example will illustrate the magnitude of the deviations

between the two curves, and, in order to bring this out clearly it
has been necessary to carry out the computation to six figures,

which, of course, represents a much higher order of precision than

obtains in ordinary work.

TABI.E II.
Table of Corrections to Reduce Bridge Scale Readings, t, to Gas Scale TemPeratures, t, with a

¹ichel-resi stance Thermometer:

I equation: Log R = 1.0859391+0.00169881t. S, = 20', S~ = 80', l = 100 .

Bridge Scale t'~ oo xo so go 4o 5o 6o go~

Corrections
to gas scale +.10 +.04 —.00 —.01 —.01 .00 +.01 +.01

80 90 ' oooo

.00 —.04 —.10
t

Suppose we have fixed upon values of 8 and e in the equation

e+ 3'
8 e+ l —t' (IO)

Such that the R't' curve intersects the logarithmic curve at two

points, I'Q. XVe may now imagine the E.'t' curve to slide upward

or downward along the logarithmic curve, and it will still conform

closely to the logarithmic curve. This means that by increasing

or diminishing the resistance 8 we can shift the whole thermometric

scale to a higher or lower range of temperatures, while still retain-

ing the value of e, = e., on the bridge, and without changing the
deviations of the bridge scale from the temperature scale.

' It is a fundamental property of the logarithmic curve that the ratio of any two

ordinates, P —: R& for example, is the same as the ratio, R., —: Q, of any two other or-

dinates which are separated by the same horizontal space; that is, when S, = S'. As

a corollary of this proposition, the middle ordinate between two ordinates is the square-
root of their product. Therefore, in equation (8), B = & PQ is a point on the loga-

rithmic curve. Consequently, the R't curve must always intersect the logarithmic

curve in the middle point as well as at P and Q. The product PQ is a constant for
every pair of ordinates of which B is the middle ordinate.



The data whose examination has called forth the results herein

presented are admitted to be open to uncertainty, but it seems that
easily available samples of nickel wire show a temperature resist-

ance curve very nearly represented by the logarithmic equation,
or, what is nearly the same thing, by the equation (j:o).

It is therefore worth while to bring out the useful mathematical
relations existing between the logarithmic and the bridge scale

equations. The matter is of the greatest practical utility, not only
in scientific investigations, but in a large field of commercial work

demanding a more or less accurate knowledge of moderate tempera-
tures.

In view of the foregoing, we hope those in a position to do so may
investigate more fully the variations of resistance of nickel with

temperature, and especially the determination of the relation be-

tween the composition of the material employed and the character
of the resistance curve.

The practical application of all this theory is very simple. The
maker of bridges sets up the arrangement shown in Fig. z. The
resistance J3 must be accurately adjusted to equal the resistance the
thermometer will have when its temperature is that represented by
the middle point of the bridge scale. The resistances e„and e, must

be accurately egual, but the exact value is not of much importance.
If e is a little greater or smaller it simply shifts the I' and Q points
of intersection either nearer to or farther from the extremities of
the bridge scale. Having approximated the e coils it remains only

to "point" the bridge scale for graduation into equal parts. Put
into the bridge any convenient known resistance equal to the ther-

mometer resistance at some known temperature, preferably near

the I' and Q points of the range. The point at which the bridge
balances corrected for the small errors in table II is the particular
temperature point of the bridge scale, and nothing more is necessary

than to run a scale of equal subdivisions through this point and the
middle point of the bridge. The careful man will probably prefer

to locate another point of the scale near the upper temperature
limit. Any inequalities of resistance of the bridge wire introduce

errors, as is well understood, but which can often be neglected or
corrected for by calibration if necessary.


