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Many students in upper-division physics courses struggle with the mathematically sophisticated tools

and techniques that are required for advanced physics content. We have developed an analytical frame-

work to assist instructors and researchers in characterizing students’ difficulties with specific mathemati-

cal tools when solving the long and complex problems that are characteristic of upper division. In this

paper, we present this framework, including its motivation and development. We also describe an

application of the framework to investigations of student difficulties with direct integration in electricity

and magnetism (i.e., Coulomb’s law) and approximation methods in classical mechanics (i.e., Taylor

series). These investigations provide examples of the types of difficulties encountered by advanced

physics students, as well as the utility of the framework for both researchers and instructors.
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I. INTRODUCTION

Previous research has identified a considerable number
of students’ conceptual and mathematical difficulties,
particularly at the introductory level (see Ref. [1] for a
review). Substantial work has also been done to character-
ize student problem solving in introductory physics [2]. In
addition to the significant work at the introductory level,
researchers have recently begun to characterize students’
conceptual knowledge in more advanced physics courses
[3–10]. Furthermore, a small but growing body of research
suggests that upper-division students continue to struggle
to make sense of the mathematics necessary to solve
problems in physics [11–13].

Upper-division physics content requires students to
manipulate sophisticated mathematical tools (e.g., multi-
variable integration, approximation methods, special tech-
niques for solving partial differential equations, etc.).
Students are taught these tools in their mathematics
courses and use them to solve numerous abstract mathe-
matical exercises. Yet, many students still struggle to apply
mathematical tools to problems in physics. This is not
necessarily surprising given that physicists use mathemat-
ics quite differently than mathematicians (i.e., to make
inferences about physical systems) [14,15]. However, per-
sistent mathematical difficulties can undermine attempts to
build on prior knowledge as our physics majors advance
through the curriculum. Upper-division instructors face
significant pressure to cover new content, a task made
more difficult by constantly having to review the relevant

mathematical tools. It is often an explicit goal for advanced
courses to develop students’ ability to connect mathe-
matical expressions to physics concepts. For example, con-
sensus learning goals for upper-division courses at the
University of Colorado Boulder (CU) [16] include
‘‘Students should be able to translate a physical description
of an upper-division physics problem to a mathematical
equation necessary to solve it,’’ and ‘‘to achieve physical
insight through the mathematics of a problem.’’ To improve
student learning in advanced physics courses, we find it
necessary to move away from merely noting students’ con-
ceptual difficulties towards systematically investigating
how students integrate mathematics with their conceptual
knowledge to solve complex physics problems.
In order to address the issues that arise when solving

physics problems that rely on sophisticated mathematical
tools, we must first understand how students access and
coordinate their mathematical and conceptual resources.
However, canonical problems in upper-division courses are
often long and complex, and students’ reasoning is simi-
larly long and complex. Making sense of the difficulties
that arise requires a well-articulated framework for analyz-
ing students’ synthesis of conceptual knowledge and
mathematical tools. We use the term framework to refer
to a structure of guiding principles and assumptions about
the underlying relationship between a physical concept
and the mathematics necessary to describe it. At the
upper-division level, in particular, this relationship can be
strongly dependent on the particular concept in question,
suggesting that a useful framework needs to be adaptable
to a wide variety of physical concepts and mathematical
tools.
We first encountered the need for such a framework

while investigating students’ understanding of approxima-
tion methods (i.e., Taylor series) in a middle-division
classical mechanics course [17] and with integration of
continuous charge distributions (i.e., Coulomb’s law) in
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an upper-division electrostatics course [18]. Our initial
analysis focused on identifying emergent themes in stu-
dents’ work. We quickly identified a multitude of common
difficulties, but, beyond producing a laundry list of errors,
we struggled to organize these issues in a productive way.
This lack of coherence made it challenging to identify
relationships between the difficulties and to produce
actionable implications for instruction or further research.

To provide a suitable organizational structure, we
developed a framework to address students’ activation of
mathematical tools, construction of mathematical models,
execution of the mathematics, and reflection on the results
(ACER). The ACER framework is a tool designed to aid
both instructors and researchers in exploring when and
how students employ particular mathematical tools to
solve canonical problems from upper-division physics
courses. Our goal is to provide a scaffold for describing
student learning that is explicitly grounded in theories of
learning but can still be leveraged by instructors who are
not thoroughly versed in such theories.

This paper serves the dual purpose of describing the
theoretical grounding and development of the ACER
framework (Secs. II and III) as well as presenting the
methods and findings of two investigations of student
difficulties at the upper-division level employing this
framework (Sec. IV). It then closes with a discussion of
limitations and implications for future work (Sec. V).

II. PROBLEM-SOLVING STRATEGIES AND
THEORETICAL FRAMEWORKS

There are two common aspects to understanding the
problems students encounter when utilizing mathematics
in physics. The first is to characterize physicists’ use of
mathematics; such a characterization helps produce
instructional and analytical tools to align students’ problem
solving with experts’ problem solving. The second is to
describe what the students are actually doing, not just in
terms of how it does not make sense to physicists, but in
terms of how it does make sense to the students. Here,
we review some of the previous research using these two
approaches.

The first of these two aspects seeks to better understand
the crossroads between physics and mathematics. Redish
[14] has developed an idealized model of how physicists
use math to describe physical systems. He identifies four
steps that guide this process: (1) map the physical struc-
tures to mathematical ones, (2) transform the initial mathe-
matical structures, (3) interpret the results in terms of the
physical system, and (4) evaluate the validity of the results.
This iterative model makes it clear that the source of
students’ difficulties may not be as simple as not knowing
the necessary mathematical formalisms. While the inten-
tionally broad nature of the model makes it widely appli-
cable, we found it challenging to utilize it to identify
concrete, actionable implications for the instructor or

researcher dealing with mathematical difficulties in the
physics classroom.
It has been well documented that students do not

approach physics problems in a manner consistent with
Redish’s model [14]. In fact, students often approach phys-
ics problems in a way that seems haphazard and inefficient
to experts [19]. Some attempts have been made to address
this at the introductory level by explicitly teaching students
a problem-solving strategy that is more aligned with the
expert approach. Wright and Williams [20] incorporated a
problem-solving strategy into their introductory physics
course that involved four steps: (1) what’s happening?,
(2) isolate the unknown, (3) substitute, and (4) evaluation
(WISE). The WISE strategy was designed as a heuristic
that physics students could use to become more efficient
and accurate problem solvers.
Similarly, Heller et al. [21] developed a strategy to help

their introductory students integrate the conceptual and
procedural aspects of problem solving. This strategy
included five steps: (1) visualize the problem, (2) physics
description, (3) plan the solution, (4) execute the plan,
and (5) check and evaluate. Docktor [22] modified and
extended this strategy to develop a validated physics
problem-solving assessment rubric. With the goal of pro-
viding consistent and reliable scores on problem-solving
tasks, this rubric is scored based on five general processes:
useful description, physics approach, specific application
of physics, mathematical procedures, and logical progres-
sion. Useful description is the process of summarizing a
problem statement by assigning symbols and/or sketching.
Physics approach and specific application of physics
represent the process of selecting and linking the appro-
priate physics concepts to the specifics of the problem.
Mathematical procedures refers to the mathematical op-
erations needed to produce a solution, and logical progres-
sion looks at the focus and consistency of the overall
solution.
The strategies presented above suggest considerable

agreement as to the general structure of expert problem
solving as well as some indication that this structure can be
used as a guide to assess student work at the introductory
level. The prescriptive nature of these problem-solving
strategies lends itself well to the kinds of problems encoun-
tered in introductory physics. However, upper-division
problems are more complex and less likely to respond to
a prescriptive approach. Additionally, problem-solving
strategies are intentionally independent of specific content
so as to be generally applicable, and on their own offer
limited insight into the nature of students’ difficulties with
specific mathematical tools.
The other aspect of understanding the problems students

encounter when utilizing mathematics in physics focuses
on explaining why students solve problems in a particular
way. Tuminaro [23] used videotaped problem-solving ses-
sions with introductory students to develop a theoretical
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framework describing students’ use of mathematics in
physics. This model of student thinking blends three theo-
retical constructs: mathematical resources [24], epistemic
games [25], and frames [26]. Mathematical resources are
the abstract knowledge elements that are involved in
mathematical thinking. Tuminaro [23] includes in the cate-
gory of mathematical resources a student’s intuitive mathe-
matics knowledge and sense of physical mechanism,
their understanding of mathematical symbolism, and the
strategies they use to extract information from equations.
Epistemic games are coherent patterns of activities
observed during problem solving. Each game is character-
ized by different sequences of moves and types of resour-
ces used by the student. The game that a student chooses to
play is governed by the frame they are operating in, which
is determined by their tacit expectations for what kind of
activity they are engaged in.

The framework presented by Tuminaro [23] was devel-
oped for introductory students and relies on students’
explicit discussion of the details of their work. Upper-
division students, on the other hand, tend to work more
quickly and externalize less of their specific steps. To
address this, Bing [27] leveraged the theoretical constructs
of mathematical resources and epistemic framing to ana-
lyze upper-level students’ use of mathematics. Epistemic
framing is the students’ unconscious answer to the question
‘‘What kind of activity is this?’’ Bing argues that a stu-
dent’s framing can be identified by examining the types of
justifications and proof that they offer to support their
mathematical claims, rather than the specific ‘‘moves’’
they make.

There are several limitations to the theoretical frame-
works from Tuminaro [23] and Bing [27]. To understand
student work in terms of epistemic games or epistemic
framing, one must have data on the students’ real-time
reasoning. This largely restricts the potential data sources
to video and audio data, eliminating students’ written
work. Additionally, effective application of either frame-
work requires considerable familiarity with the underlying
theoretical constructs in physics education research (PER).
In practice this will prevent many instructors, particularly
at the upper-division level, from productively utilizing the
frameworks.

Describing experts’ use of mathematics and characteriz-
ing students’ problem solving are complementary aspects
of understanding mathematical difficulties in physics.
The ACER framework leverages ideas from both in order
to target students’ use of mathematics in upper-division
courses.

III. ACER FRAMEWORK

ACER is an analytical framework designed to guide and
structure investigations of students’ difficulties with the
sophisticated mathematical tools used in their physics
classes. When solving upper-division physics problems,

students often make multiple mistakes or take unnecessary
steps which must then be tracked through the solution. This
undermines attempts to pinpoint the fundamental difficul-
ties that cause the students to struggle or to identify rela-
tionships between these difficulties. The ACER framework
provides an organizing structure that focuses on important
nodes in students’ solutions. This removes some of the
‘‘noise’’ in students’ work that can obscure what is going
on. This section provides a general overview of the frame-
work and its development before demonstrating its appli-
cation to specific mathematical tools.

A. Overview

ACER was developed in conjunction with research into
student learning of two topics in upper-division physics:
Taylor series [17] and direct integration [18]. Direct inte-
gration and Taylor series were selected because they are
representative of the kinds of mathematical tools that
upper-division physics students are expected to use.
Additionally, previous work from both math and physics
education suggest that these two topics are challenging for
students [28–33]. The results of applying the framework to
these specific topics will be discussed in detail in Sec. IV;
here, we present the general development and form of
ACER. The ACER framework, like the frameworks pre-
sented by Tuminaro [23] and Bing [27], is fundamentally
cognitive and assumes a resource view on the nature of
knowledge [24].
In order to better understand students’ difficulties, we

performed a modified version of task analysis [34,35] on
canonical problems relating to each topic. Task analysis is a
method used to uncover the tacit knowledge used by experts
when solving complex problems. Our modified use of task
analysis is described in greater detail in Sec. III B; however,
the general process requires a content expert to work
through the problem while documenting and reflecting on
all elements of a complete solution. These elements are then
discussed with several other content experts to reach con-
sensus that all important aspects of the solution have been
identified. After several iterations, we found that these
various problem-specific elements could be organized into
four components that appeared consistently in the solutions
to a number of content-rich problems utilizing sophisticated
mathematical tools. These four components are activation
of the tool, construction of the model, execution of the
mathematics, and reflection on the result. Each component
is described in greater detail below.
In order to solve the back-of-the-book or exam-type

problems that ACER targets, one must determine which
mathematical tool is appropriate (activation) and construct
a mathematical model by mapping the particular physical
system onto appropriate mathematical tools (construction).
Once the mathematical model is complete, there is often
a series of mathematical steps that must be executed in
order to reduce the solution into a form that can be readily
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interpreted (execution). This final solution must then be
interpreted and checked to ensure that it is consistent with
known or expected results (reflection). The four general
components are emergent from experts’ problem solving
and are consistent with previous literature on problem-
solving strategies (see Sec. II). Though the framework
suggests a certain logical flow, we are not suggesting that
all experts or students solve problems in a clearly organ-
ized, linear fashion.

A convenient visualization of ACER is given in Fig. 1.
The framework provides a researcher-guided outline that
organizes key elements of a well-articulated, complete
solution. The framework does not assign value by provid-
ing an ideal solution path towards which the students
should strive. ACER is also not designed to be general
enough to be applied to open-ended problems; however,
its targeted focus means it can be operationalized for a
variety of mathematical tools used in context-rich prob-
lems. Section III B will provide several examples of how
ACER is operationalized for specific tools and topics.
ACER is a tool for understanding and characterizing the
difficulties seen in students’ work, but its structure is not
meant to approximate students’ actual solutions. Instead,
the general structure of ACER was developed to accom-
modate the complex and often iterative solution patterns
characteristic of upper-division problems.

Activation of the tool: A problem statement contains a
number of explicit and/or implicit cues that prime or
activate different resources (or networks of resources)
associated with any number of mathematical tools [24].
These cues can include the goal of the problem (e.g.,
calculate the potential) as well as the language and sym-
bols used. The resources students activate depend on the
individual student and their perception of the nature of the
task (i.e., their epistemic framing [27]).

Construction of the model: In physics, mathematics are
often used to express a simplified picture (i.e., a model)
of a real system. These mathematical models are typically
necessary to solve physics problems. Mathematical models
are generally written in a remarkably compact form
(e.g., �� ¼ �R

GdM=r) where each symbol has a spe-
cific physical meaning, which may be context dependent.
Different representations (e.g., diagrammatic or graphical)
are sometimes necessary to construct or map the elements
of the model [14].

Execution of the mathematics: In order to arrive at a
solution, it is usually necessary to transform the math
structures produced in the construction component (e.g.,
unevaluated integrals) into mathematical expressions that
can be more easily interpreted (e.g., evaluated integrals).
Each mathematical tool requires specific background
knowledge and base mathematical skills (e.g., how to take
derivatives or integrals). The mathematical manipulations
performed in this component are not necessarily context-
free. When employing these base mathematical skills, an
expert maintains an awareness of the physical meaning of
each symbol in the expression (e.g., which symbols are
constants when taking derivatives or integrals) [14].
Reflection on the result: Solutions to problems in upper-

division physics usually result in expressions that are not
merely superficial manipulations of formulas provided in
the textbook or notes. Instead, they are new entities that
offer meaningful insight into explaining or predicting the
behavior of physical systems. Reflecting on these expres-
sions is a crucial part of understanding the system and gain-
ing confidence in the calculation performed (e.g., how dowe
know an expression is the correct one?). At the most basic
level, reflection involves checking expressions for errors
(e.g., checking units) or comparing predictions to established
or expected results (e.g., checking limiting behavior). This
kind of reflection can help to identify mistakes that
occurred in the other components of the framework.
The theoretical constructs that ground the frameworks

presented by Tuminaro [23] and Bing [27] are commensu-
rate with the implicit theoretical constructs that ground
ACER. For example, a problem solver accesses different,
possibly overlapping, networks of resources depending on
the component of the framework in which they are work-
ing. Similarly, certain epistemic frames would be more
useful than others when operating in different components.
Bing identifies four epistemic frames used by upper-
division students: invoking authority, physical mapping,
calculation, and math consistency [27]. Invoking authority
can be a valuable frame while in the activation component.
For instance, appealing to authority (e.g., the book or
notes) is often a good way to identify which mathematical
tool to use. In the construction component, when trying to
map that tool to a specific problem, relying on authority
(e.g., depending on a similar problem in the book) can
easily sidetrack the unwary student. However, a physical
mapping frame would likely be productive for both
the construction and activation components. While we
acknowledge the value of leveraging theoretical constructs
like resources and epistemic frames in conjunction with
ACER,we have intentionally avoided explicit identification
of specific resources or frames as part of the framework. In
this way, it is not necessary to have a strong background in
theories of learning in order to utilize ACER.
The general components of ACER were created by

identifying broad themes that emerged from the modified

Activation 
of the tool

Construction 
of the model

Execution of the 
mathematics

Reflection on the 
results

FIG. 1. A visual representation of the ACER framework.
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task analysis of problems described in the next section.
These components are consistent with Redish’s idealized
model for the way physicists utilize mathematics [14], as
well as the steps in the problem-solving strategies pre-
sented for introductory physics [19–22]. Yet, ACER goes
beyond these broad descriptions by providing a mechanism
to target specific topics and mathematical tools. This
mechanism is described in the following section.

B. Operationalizing ACER

The utility of ACER as a framework for understanding
students’ use of mathematics in physics comes when
it is operationalized for a specific mathematical tool.
Operationalization is the process by which a particular
problem or set of problems that exploit the targeted tool
are mapped onto the framework. This involves identifying
important elements in each component that together result
in what an expert or instructor would consider a complete
and correct solution.

We used a modified form of task analysis to operation-
alize the framework. Formally, task analysis [34,35] is
accomplished by having a subject matter expert (SME)
solve problems while explaining their steps and reasoning
to a knowledge extraction expert (KEE) who keeps a
record. This method for uncovering the tacit knowledge
used by experts has been exploited to produce example
solutions designed to improve students’ ability to solve
novel problems [36].

Our modified task analysis does not include a KEE. This
was done because such an expert was not readily available
to us, nor did we want the need for a KEE to prevent other
researchers or instructors from utilizing the framework.
Instead, the SME works through the problems, document-
ing their reasoning and mapping the vital elements of their
solution onto the components of ACER. This record is then
shared with several other SMEs to ensure that all important
aspects of the solution are accounted for. Additionally, these
experts come to a consensus in classifying each element
into a specific component (i.e., activation, construction,
execution, or reflection). These preliminary elements are
then applied to student work and the operationalized frame-
work is refined to accommodate patterns of student reason-
ing not present in the SMEs solutions.

Our motivation for removing the KEE was entirely
practical in origin; however, not utilizing a KEE may
have implications for the theoretical foundations of our
modified task analysis. The KEE, as a content novice, helps
to force the SME to fully and clearly justify their steps even
when they include decisions based on procedural and
declarative details the SME no longer thinks about [34].
Removing the KEE from the task analysis process makes it
more difficult to ensure that the important elements identi-
fied in the solution are complete from the point of view of a
novice as well as a SME. For this reason it is important that
the operationalizedACER frameworkwhich is produced by

the modified task analysis remains flexible to modification
based on emergent analysis of student work.
The following sections provide two examples of the

operationalized framework from upper-division electro-
statics and middle-division classical mechanics.

1. Example from electrostatics

Determining the electric potential or electric field from a
continuous charge distribution using the integral form of
Coulomb’s law is one of the first topics that upper-division
students encounter in junior-level electrostatics. For the
remainder of the paper, we use Coulomb’s law to refer
to the integral equation allowing for direct calculation of
the electric field or potential from a continuous charge
distribution:

Eðr*Þ ¼ 1

4��0

Z
V

dq

j r*j2
r̂; (1)

Vðr*Þ ¼ 1

4��0

Z
V

dq

j r*j
: (2)

Here, dq represents the differential charge element and r
*
is

the difference vector r
* � r

*0
between the source and the

observation location (i.e., Griffiths’ script r) [37]. In this
case, the ‘‘tool’’ we refer to is integration, and we describe
its application to problems determining the potential or
electric field from an arbitrary, static charge distribution
via Coulomb’s law. We will focus here only on charge
distributions that cannot easily be dealt with using
Gauss’s law. The element codes below are for labeling
purposes only and are not mean to suggest a particular order
nor are all elements always involved for any given problem.
Activation of the tool: The first component of the frame-

work involves the selection of a solution method. The
modified task analysis identified four elements that are
involved in the activation of resources identifying direct
integration (i.e., Coulomb’s law) as the appropriate tool:

CA1: The problem asks for the potential or electric
field.

CA2: The problem gives a charge distribution.
CA3: The charge distribution does not have appropri-

ate symmetry to productively use Gauss’s law.
CA4: Direct calculation of the potential is more effi-

cient than starting with the electric field.

Elements CA1–CA3 are cues typically present in the
problem statement. Element CA4 is specific to problems
asking for the electric potential and is included to account for
the possibility of solving for potential by first calculating the
electric field. This method is valid but often more difficult.
Construction of the model: Here, mathematical resour-

ces are used to map the specific physical situation onto the
general mathematical expression for Coulomb’s law. The
resulting integral expression should be in a form that could,
in principle, be solved with no knowledge of the physics of
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this specific problem. We identify four key elements that
must be completed in this mapping:

CC1: Use the geometry of the charge distribution to
select a coordinate system.

CC2: Express the differential charge element (dq) in
the selected coordinates.

CC3: Select integration limits consistent with the
differential charge element and the extent of
the physical system.

CC4: Express the difference vector r
*
in the selected

coordinates.

Elements CC2 and CC4 can be accomplished in multiple
ways, often involving several smaller steps. In order to
express the differential charge element, the student must
combine the charge density and differential to produce
an expression with the dimensions of charge (e.g.,
dq ¼ �dA). Construction of the difference vector often
includes a diagram that identifies vectors to the source point

r
*0

and field point r
*
.

Execution of the mathematics: This component of the
framework deals with the mathematics required to com-
pute a final expression. In order to produce a formula
describing the potential or electric field, it is necessary to

CE1: Maintain an awareness of which variables are
being integrated over (e.g., r0 vs r).

CE2: Execute (multivariable) integrals in the
selected coordinate system.

CE3: Manipulate the resulting algebraic expressions
into a form that can be readily interpreted.

Reflection on the result: The final component of the
framework involves verifying that the expression is con-
sistent with expectations. While many different techniques
can be used to reflect on the result, these two checks are
particularly common:

CR1: Verify that the units are correct.
CR2: Check the limiting behavior to ensure it is

consistent with the total charge and geometry
of the charge distribution.

Element CR2 is especially useful when the student
already has some intuition for how the potential or electric
field should behave in the limits. However, if they do not
come in with this intuition, reflection on the results of this
type of problem is a vital part of developing it.

In Sec. IVB, we will apply this operationalization of
ACER to investigate student work on a canonical electro-
statics problem (Fig. 2).

2. Example from classical mechanics

Using Taylor series to construct an analytically tractable
problem, to approximate a complex expression, or to

develop insight into a newly constructed solution are
ubiquitous practices in physics. At CU, physics students
typically first encounter Taylor series from a formal,
mathematical perspective as freshman in calculus and
then again as sophomores in their middle-division classical
mechanics course from an applied physics perspective. We
use Taylor series to refer to the general series approxima-
tion of continuous functions:

fðxÞ ¼ X1
n¼0

1

n!
fðnÞðx0Þðx� x0Þn

¼ fðx0Þ þ f0ðx0Þðx� x0Þ þ 1

2
f00ðx0Þðx� x0Þ2 þ � � � :

(3)

Here, fðxÞ represents some continuous function with con-
tinuous derivatives over the domain of interest. We will
refer to x� x0 as the expansion parameter, to x as the
expansion variable, and to x0 as the expansion point. In this
case, the ‘‘tool’’ we refer to is Taylor series, and its use is to
describe approximations to complex expressions in order
to gain insight about the underlying physics. In this paper,
we will focus only on examples from classical mechanics
though the framework could be applied to Taylor series in
any domain.
Activation of the tool: The first component of ACER

involves selecting Taylor series as an appropriate tool for a
given problem. Our modified task analysis identified three
elements that are likely to activate resources (or a network
of resources) associated with Taylor series:

TA1: The problem asks for a Taylor approximation
directly.

TA2: The problem asks for an approximate expres-
sion to a complex function.

TA3: The problem uses language and/or symbols that
imply one physical quantity is much smaller than
some other physical quantity (e.g., ‘‘small,’’
‘‘near,’’ ‘‘close,’’ or� ).

We include TA1 because Taylor series are often referred
to explicitly in middle-division classical mechanics prob-
lems. The physical quantities that are compared in TA3
must have the same units, and the ratio of these quantities
must be less than 1.
Construction of the model: In this component, mathe-

matical resources are used to map particular physical quan-
tities onto the general expression for Taylor series [Eq. (3)].
After the mapping is complete, the approximation could in
principle be completed with no additional knowledge of the
physics of the problem. For Taylor series, we identify four
key elements to complete this mapping:

TC1: Identify the physical quantities for which the
problem explicitly states or implicitly suggests
a comparison of scale (e.g., length scale, mass
scale, time scale).
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TC2: Determine about which point the comparison is
being made (i.e., expansion point).

TC3: Express the comparison explicitly by con-
structing a dimensionless ratio of physical
quantities (i.e., expansion variable).

TC4: Recast the expression to be expanded in terms
of the expansion variable.

Element TC2 is often neglected because many approx-
imations in physics are computed about zero (i.e., a
Maclaurin series). In most problems, there are several

combinations of physical quantities that could be used to
construct a dimensionless ratio, but one must identify
only those for which a comparison of scale is implied.
Determining the appropriate expansion variable can be

aided by sketching the physical situation and identifying
the relative scales of physical quantities in the problem.

Execution of the mathematics: This component of the
framework is concerned with employing mathematics to
compute a possible solution. Once the appropriate model
has been constructed, the expansion can be computed.
Strictly speaking, executing a Taylor series requires one to

TE1: Maintain an awareness of the meaning of each
symbol in the expression (e.g., which symbols
are constants when taking derivatives).

TE2: Compute derivatives of functions.
TE3: Evaluate the derivatives of nontrivial functions

at the expansion point.
TE4: Manipulate the resulting algebraic expressions

into a form that can be readily interpreted.

Alternatively, one might neglect elements TE2 and TE3,
if one has knowledge of common ‘‘expansion templates’’
(e.g., sinx � x� x3=3!) and how to adapt these templates
to the mathematical models developed previously. Hence,
there are two pathways to execute a Taylor series: a formal
method involving all elements and an abbreviated method
that shortcuts TE2 and TE3. The abbreviated method itself
includes substeps, the details of which are beyond the
scope of this study and thus have not been articulated here.

Reflection on the result: The final component describes
how to verify that the approximate expression is consistent
with expectations. The expressions that result from per-
forming a Taylor series are often novel entities, not super-
ficial manipulations of formula from textbooks or notes,
and these expressions must be checked:

TR1: Verify that the units are correct.
TR2: Check the behavior in the regime where the

approximation applies to ensure it is consistent
with prior knowledge or intuition about the
physical system.

This component is particularly important for Taylor
series because such approximations are used to check or
make sense of solutions to many other problems.

In Sec. IVC, we will apply this operationalization of
ACER to investigate student work on several Taylor series
problems.

IV. APPLICATION OF ACER

To demonstrate the utility and versatility of ACER, we
present findings from two investigations of student diffi-
culties in the advanced physics courses at CU: direct
integration of continuous charge distributions and Taylor
series as an approximation method. These investigations
were conducted independently as part of broader trans-
formation efforts associated with CU’s upper-division
Principles of Electricity and Magnetism 1 (E&M 1) course
[38,39] and middle-division Classical Mechanics and
Mathematical Methods 1 (CM 1) course [40]. Data for
these studies come from analysis of student solutions to
traditional exam questions and formal, think-aloud inter-
views. In both cases, initial data collection and analysis
began prior to the development of the ACER framework.
Application of the framework to initial data motivated a
second round of interviews for both topics. This section
presents the methods and findings of these two investiga-
tions with particular emphasis on how ACER contributed
to the analysis.

A. Background

Data for these studies were collected in association with
the E&M 1 and CM 1 courses at CU. Below, we provide
additional details on the methods for our direct integration
of Coulomb’s law (Sec. IVB1) and Taylor series
(Sec. IVC 1) studies. E&M 1 typically covers the first six
chapters of Griffiths [37], which includes both electrostat-
ics and magnetostatics. CM 1 uses Boas [41] along with
Taylor [42] and covers up to but not including calculus
of variations. The student population for both courses is
composed of physics, engineering physics, and astrophys-
ics majors, with a typical class sizes of 30–70 students.
These courses have been transformed to include a number
of research-based teaching practices including peer
instruction [43] using clickers and tutorials [38,39].
In order to determine the types of difficulties students

have with Coulomb’s law integrals and Taylor series, we
analyzed student solutions to canonical exam problems on
continuous charge distributions (N ¼ 172) and approxima-
tion methods (N ¼ 116) and conducted two sets of think-
aloud interviews (total N ¼ 18) to further probe student
understanding. The specific details of each exam problem
are described in greater detail below. Interviews were
videotaped and students’ written work was captured with
embedded audio. Interviewees were paid volunteers who
responded to an Email request for research participants. All
interviewees had successfully completed E&M 1 or CM 1
one or two semesters prior. Participants in both studies
demonstrated a wide range of abilities and received course
scores ranging from A to D.
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Exams were analyzed by identifying each of the key
elements from the framework that appeared in the students’
solutions. Each element was then coded to identify the
types of steps made by students. These codes represented
emergent themes in the students’ work around each ele-
ment and were not predetermined by the framework. This
coding helped to ensure that the expert-guided framework
did not miss important but unanticipated aspects of student
solutions. The interviews were similarly analyzed by clas-
sifying each of the student’s major moves into one of the
four components of the framework. Exams provided quan-
titative data identifying common difficulties and interviews
offered deeper insight into the nature of those difficulties.

B. Coulomb’s law

1. Methods

Our E&M 1 students are exposed to the Coulomb’s law
integral for the electric field [Eq. (1)] before the analogous
expression for the electric potential [Eq. (2)]. However,
the vector nature of the electric field makes Eq. (1) sig-
nificantly more challenging to calculate, and historically
instructors at CU tend to ask students to compute the
potential on exams. The exam problem examined here
asked students to calculate the electric potential along an
axis of symmetry from a disk with charge density �ð�Þ
(Fig. 2). We selected this problem because it is a recogniz-
able Coulomb’s law question which requires integration
and has been asked on the first midterm exam for multiple
semesters.

Exams were collected from four semesters of the course
(N ¼ 172), each taught by a different instructor. Two of
these instructors were physics education researchers
involved in developing the transformed materials and two
were traditional research faculty. All four semesters uti-
lized some or all of the available transformed materials.
The exact details of the disk question, while similar, were
not identical from semester to semester. One of the PER
faculty asked the students to sketch the charge distribution
and then to calculate an expression for the potential on the
z axis (as in Fig. 2). The other PER faculty asked the
students to calculate the total charge on the disk but only
required them to set up the expression for the potential on
the x axis as the resulting integral cannot be solved easily

by hand. Both non-PER faculty asked for the total charge
on the disk first and then for the potential on the z axis.
Interview data came from two sets of think-aloud inter-

views (N ¼ 10), performed approximately 1 year apart on
different sets of students. The first set of interviews was
structured to probe the preliminary difficulties identified in
the student exams. The students were asked to calculate the
potential from two parallel disks of charge by direct
integration, and they were provided with a diagram of
the charge distribution and Eqs. (1) and (2). In terms of the
ACER framework, this prompt completely bypassed the
activation component. Also, while the first interview proto-
col offered important insight into how students spontane-
ously reflect (or not) on their solutions, it provided no
explicit probe of the reflection component. The second
interview protocol specifically targeted activation by asking
students to find the potential along the z axis outside a
spherical shellwith nonuniformcharge density�ð�Þwithout
providing a diagramor prompting them to solve the problem
in any specific manner. An additional question targeted
reflection by asking students to determine which of three
expressions could represent the potential from a static, lo-
calized charge distribution with total charge Q (see Fig. 3).

2. Results

This section presents the identification and analysis of
common student difficulties with Coulomb’s law integrals
organized by component and element of the operational-
ized ACER framework (see Sec. III B 1).
Activation of the tool: Roughly three-quarters of our

students (73% of 172) correctly approached the exam
question using Eq. (2). The remaining students (27% of

172) attempted to calculate the potential by determining E
*
,

by either Gauss’s law or Eq. (1), and then taking the line
integral (i.e., missing elements CA3 and CA4). Rather than
stemming primarily from a failure to recall Eq. (2), we
argue below that this difficulty likely originated from a
failure to reject these other methods.
Identifying evidence of activation in the exam solutions

was challenging because students did not typically write
out their thought process as they began the problem. In
particular, there was rarely explicit evidence that the

FIG. 3. Three equations presented in the second interview set to
target reflection. Students must determine the units of a, b, and c.

z

x

P
σ(φ) 

a

FIG. 2. An example of the canonical exam problem on con-
tinuous charge distributions.
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students attended specifically to CA1 and CA2 (i.e., the
prompt asked for potential and provided information on the
charge distribution). However, we did not see students
attempting to calculate quantities unrelated to the potential
or attempting to utilize methods inconsistent with the
information provided.

More easily identified was element CA3, which elimi-
natesGauss’s law as a valid approach.Approximately a tenth
of our students (11%of172) attempted to employGauss’ law

to solve for E
*
and then to calculate V by taking line integral.

These students often justified their answers with comments
such as, ‘‘Since we want the voltage at a point outside the
disk, the E-field we use will appear to be that of a point
charge at the origin.’’ This inappropriate use ofGauss’s law is
consistent with previous research at the junior level [11].
Interestingly, none of the students in the single semester
(N ¼ 25) that were asked to sketch the charge distribution
rather than to calculate total charge attempted to use Gauss’s
law. This suggests that calculation of the total charge likely
activated resources associated with Gauss’s law.

The misapplication of Gauss’s law was also the primary
issue observed in the interviews. Even when the students
were explicitly prompted to use direct integration, one of
five students still attempted to use Gauss’s law. Two stu-
dents in the second set of interviews explicitly considered
using Coulomb’s law but rejected it in favor of using
Gauss’s law or the expression for E from a point charge.
ACER states that there are a number of cues (elements
CA1–CA3) embedded in the prompt of a physics problem
that can guide a student to the appropriate solution method.
For example, if the prompt provides a boundary condition
rather than a charge distribution, this is likely to cue the
student to use separation of variables or method of images.
Elements CA1 and CA2 are identical for questions that can
be solved by Gauss’s law and Coulomb’s law [i.e., it asks

for V or E and provides �ðr*0Þ]. However, our students tend
to be more comfortable with Gauss’s law (i.e., their
Gauss’s law resources are easily activated); therefore,
they must first reject Gauss’s law as appropriate before
they will attempt to use Coulomb’s law.

Even without Gauss’s law, it is still possible to solve for
V by first calculating E using Eq. (1), but this calculation
requires considerably more work (element CA4). Indeed,
of the students who attempted this method (15% of 172)
only a few (N ¼ 3) completed the exam problem success-
fully. One virtue of the electric potential in electrostatics
is to allow for easier calculation of the electric field via

E
* ¼ �r

*

V. However, the students may have jumped to

calculating V from E because they were exposed to E
*
first

and resources associated with the electric field were more
easily activated. This difficulty was not observed in the
interviews.

Construction of the model: For Coulomb’s law integrals,
the largest number of common student difficulties

appeared in the construction component, particularly
when expressing the differential charge element and dif-
ference vector (elements CC2 and CC4). These difficulties
cannot be explained purely by students failing to conceptu-
alize the integral or lacking the mathematical skills to set
up integrals over surfaces and perform vector subtractions.
Rather, students had trouble keeping track of the relation-
ships between various quantities as they adapted the decep-
tively simple general formula [Eq. (2)] to a specific
physical system.
Almost all of the exams (97% of 172, N ¼ 166) con-

tained elements from the construction component (i.e., the
student did more than just write down the equation). Of
these students, only two did not use the appropriate coor-
dinates (i.e., cylindrical), indicating that students at this
level are adept at selecting appropriate coordinate systems
in highly symmetric problems (element CC1). Similarly,
only one of the interview participants started with an
inappropriate coordinate system, and this student eventu-
ally switched after attempting the problem in Cartesian
coordinates. This finding is somewhat surprising given
prior research indicating that even middle-division physics
students often have a strong preference for Cartesian coor-
dinates [13].
The remaining elements of construction proved more

challenging. Nearly half the students (42% of 166) had
difficulty expressing the differential charge element (ele-
ment CC2) and some (14% of 166) failed to provide limits
of integration or gave limits that were inconsistent with
their differential (element CC3). The most common errors
made while expressing the differential charge element (dq)
were (see Table I) performing the integration over a region
of space with zero charge density, using a differential with
the wrong units, and plugging in total charge instead of
charge density.
Initially, we interpreted difficulties with dq as a failure

to conceptualize Eq. (2) as a sum over each little ‘‘bit’’ of
charge. Previous research on student difficulties with the
concept of accumulation as it applies to definite integrals
supports this interpretation [32]. However, the interviews
suggest that the problem was more subtle than that. Even

TABLE I. Difficulties expressing the differential charge ele-
ment (dq). Percentages are of just the students who had difficulty
with dq (42% of 166, N ¼ 69). Codes are not exhaustive or
exclusive but represent the most common themes; thus, the total
N in the table need not sum to 69.

Difficulty N Percent

Not integrating only over charges,

e.g., dq ¼ �drdzrd�
37 54

Differential with the wrong units,

e.g., dq ¼ �drd�
23 33

Total charge instead of charge density,

e.g., dq ¼ Qtotdrrd�
10 14
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those interviewees who failed to produce an appropriate
expression for dq made statements or gestures indicating
they understood the integral to be a sum over the charge
distribution. Additionally, post-test data from the classical
mechanics course at CU shows that more than 80% of our
students can correctly determine the differential area ele-
ment for a cylindrical shell one semester prior to taking
E&M. Thus the problem appeared to be neither that the
students were not conceptualizing the integral as a sum
over the charges nor that they could not construct a differ-
ential area element. Instead, the difficulties appeared when
students were asked to apply these two ideas simulta-
neously to produce an expression for dq consistent with
a specific charge distribution.

The magnitude of the difference vector j r*j must also be
expressed such that it is consistent with the specific charge
distribution (element CC4), and most students (86% of
172, N ¼ 148) attempted to do so. About half of these
(47% of 148) were unable to produce a correct formula for

j r*j. The most common errors included (see Table II) using
a magnitude appropriate for a ring of charge, setting the
magnitude equal to the distance to the source point (r0),
setting the magnitude equal to the distance to the field point
(r), and never expressing the magnitude in terms of given
variables or quantities. It was difficult to distinguish
between the middle two difficulties because students’ no-
tation rarely distinguished clearly between the source and
field variables; these issues are combined in Table II. The
remaining students were distributed over a variety of dis-
tinct, but not widely represented issues.

Students’ spontaneous use of diagrammatic representa-
tion may be an additional aspect of the construction com-

ponent. For example, drawing the vectors r
*
, r
*0
, and r

*
is a

helpful step towards a correct expression for j r*j. We found
that about two-thirds of our students (66% of 148,N ¼ 98)
drew one or more of these vectors on the exams; however,
only half of these students (50% of 98) made explicit use of
this diagram in their solution. It may be that our students
have seen enough of these types of problems to know that
they should draw a diagram but have not internalized how
to use it productively.

Six of the eight interview participants who used
Coulomb’s law also spontaneously drew the difference
vector, and a seventh drew the vector but did not explicitly

identify it as r
*
. However, even those students who were

able to articulate the difference vector as the distance
between the source and field point struggled to produce a
useful expression for it. Only one interview participant
arrived at a correct expression for the difference vector

while the others were either unable to express j r*j or treated
it as a single variable like r or r0. The greater degree of

difficulty with r
*
observed in the interviews may be due to

the time delay between the participants completing the
course and sitting for the interview.

Using Griffith’s ‘‘script-r’’ notation, rather than r
* � r

*0
,

has a number of advantages including making Coulomb’s
law for continuous charge distributions look very similar to
Coulomb’s law for a point charge. However, it may be that

this notation also encourages students to look at r
*

as a
separate entity that they must remember rather than a
quantity they construct. In fact, most students made com-
ments in the interviews about not remembering the formula

for r
*
or which direction it pointed, and few even attempted

to use the source and field point vectors to answer these
questions. Only three of the eight interviewees spontane-

ously drew r
*
and r

*0
, suggesting that the script-r notation

obscured the importance of these two vectors. Failure to
properly distinguish between r, r, and r0 often resulted in
improper cancellations in the execution component.
Execution of the mathematics: Given the high pressure

and individual nature of both exams and interviews, we
expected that many students would make mathematical
errors particularly with element CE3. Yet our data offer no
evidence that mathematical errors with either integrals or
algebraic manipulations (elements CE2 or CE3) were spe-
cific to solving Coulomb’s law problems nor that they rep-
resented the primary barrier to student success on these
problems. More than half the student exam solutions (60%
of 172) contained elements from the execution component.
The significant reduction in numberwas due primarily to the
one of the four classes (N ¼ 55) thatwas only asked to set up
the integral for V. Additionally, not all students progressed
far enough in their solutions to actually evaluate integrals.
We were not able to produce a quantitative measure

of student difficulties with element CE1 from the exams
because the majority of students did not consistently dis-
tinguish between source and field variables (i.e., r vs r0).
However, of the four interview participants who made a
distinction between the source and field point, none con-
sistently used the primed notation. Two of these students
ended up integrating over the r variable as if it were r0.
Overall, half the students’ exams containing elements

of execution (51% of 103, N ¼ 53) made various mathe-
matical errors while solving integrals or simplifying
their expression algebraically (elements CE2 and CE3).

TABLE II. Difficulties expressing the magnitude of the differ-
ence vector (r). Percentages are of just the students who had
difficulties with r (47% of 148, N ¼ 69). Codes are not exhaus-
tive but represent the most common themes; thus, the total N in
the table need not sum to 69.

Difficulty N Percent

Ring of charge,

i.e., j r*j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r02

p 27 39

Distance to source or field point,

i.e., j r*j ¼ r or j r*j ¼ r0
17 25

No expression for j r*j 8 12
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Roughly half of the students with mathematical errors
(49% of 53) made only slight mathematical errors, such
as dropping a factor of 2 or plugging in limits incorrectly.
The remaining students (51% of 53) made various signifi-
cant mathematical errors, such as pulling integration vari-
ables outside of integrals or not completing one or more
integrals. Similar trends were observed with the seven
interview participants who attempted to complete one or
more calculations. Four students made significant mathe-
matical errors, two made only slight mathematical errors,
and one made no errors.

Reflection on the result: In many cases, mistakes in the
construction or execution component resulted in expres-
sions for the potential which had the wrong units and/or
limiting behavior (elements CR1 and CR2). While our
students were able to identify these checks as valuable
when explicitly prompted, we found that they rarely spon-
taneously check these properties to gain confidence in their
solutions.

Only a small number of students (8% of 172) made
explicit attempts to check their work on exams and almost
exclusively by checking limiting behavior. While it is
possible that a greater number of students did perform
one or more checks (i.e., elements CR1 and CR2) but
simply did not write them out, the interviews suggest this
is less likely. When they had not been prompted to check or
reflect on their solutions, half of the interview participants
made no attempt to do so. Two of the remaining students
only made superficial comments about being uncertain
if their solution was correct. One stated that her answer
did not makes sense but was not able to leverage this
realization to correct her earlier work. The final two stu-
dents both mentioned checking the units of their solutions,
though not recalling the units of �o prevented one of them
from actually doing so.

The second set of interviews explicitly targeted reflec-
tion by directly asking the students to determine if three
formulas (Fig. 3) could represent the potential from a
static, localized charge distribution with positive total
charge Q. All five students suggested checking the units
of these expressions, yet all but one had difficulty doing so
because they did not recall the units of �o. This may be part
of why units checks were not more common in the exam
solutions as well. Eventually, all the students were able to
execute a units check once shown a method for getting
around the units of �o by considering the formula for the
potential of a point charge. Additionally, all five students
suggested checking that in the limit as r ! 1 the potential
went to zero. Only two students spontaneously argued that
V would need to fall off as 1=r. The other three made this
argument when their attention was specifically drawn to
the fact that the charge distribution was localized and had
positive total charge.

One of the three expressions for V required an appro-
priate Taylor expansion in order to determine its behavior

at large r (i.e., expression 1 of Fig. 3). Only one of the five
students recognized the need for an expansion without
prompting. Another three argued that the expression
clearly did not fall off like a point charge. However,
when directed to Taylor expand, all three were able to
manipulate the expression in order to isolate the small
quantity and determine the leading term in the series. A
more detailed discussion of student difficulties with Taylor
series through the lens of ACER is given in Sec. IVC.

3. Summary and implications

We found that our junior-level students tended to
encounter two broad difficulties which inhibited them
from successfully solving for the potential from a continu-
ous charge distribution using Coulomb’s law. First, stu-
dents struggled to activate direct integration via Coulomb’s
law as the appropriate solution method. In particular, some
students tried to calculate the potential by first calculating
the electric field by Gauss’s law or Coulomb’s law. For
instructors, this suggests that presentation of Eq. (2) should
be accompanied by explicit emphasis on when and why
Gauss’s law cannot be used as well as the utility of calcu-
lating the electric potential rather than the electric field.
The latter should be aimed at helping students to develop
strong connections between the conceptual idea of the
potential and various mathematical formulas which allow

them to calculate Vðr*Þ. Second, students had difficulty
coordinating their mathematical and physical resources
to construct an integral expression for the potential which
was consistent with the particular physical situation, spe-
cifically when expressing the differential charge element

dq and difference vector r
*
. Instructors may be able to

help by highlighting the relationships between these
quantities to encourage students to view Eq. (2) as a
coherent whole rather than a conglomeration of discon-
nected pieces. We also found that while our juniors were
capable of correct and meaningful reflection when
explicitly prompted, very few executed these reflections
spontaneously. We consider the ability to translate
between physical and mathematical descriptions of a
problem and to meaningfully reflect on or interpret the
results as two defining characteristics of a physicist, yet
these are areas where our students struggled most when
manipulating Coulomb’s law integrals.

C. Taylor series

1. Methods

Our students are formally exposed to Taylor series
expansions [Eq. (3)] in mathematics courses taken prior
to CM 1. In CM 1, students learn to use Taylor series in
problems with physical context. Here, we examine two
exam questions that represent typical problems asked of
our sophomore students with different contexts: motion
and energy. The first problem [Fig. 4(a)] was given prior
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to the development of ACER. It explicitly asks students to
perform a Taylor series expansion on an expression for
the 1D position of a particle moving under linear drag. The
second exam problem [Fig. 4(b)] was written after the
development of ACER to directly target aspects of activa-
tion and reflection. Students must find an approximate
expression for the gravitational potential energy of a
bead sliding inside a frictionless cylinder.

Exams were collected from two semesters of the course
(N ¼ 116), each taught by a different instructor. One
instructor was traditional research faculty and the other
was physics education research faculty involved in the
development of transformed course materials. Both
instructors made use of these transformed materials. In
the first exam study, students (N ¼ 45) solved the linear
drag problem [Fig. 4(a)] on the traditional facultymember’s
first exam. In part i, students were asked to compute the first
two terms of a canonical Taylor expansion about t ¼ 0.
Students needed to clearly state the significance of these
two terms in part ii. Finally, students needed to perform a
Taylor expansion of the same function around t ¼ m=b. For
the second exam study, students (N ¼ 71) were asked to
solve the energy problem [Fig. 4(b)] on the PER faculty

member’s second exam. In the first part of this problem,
students were asked to check the units of the expression for
the potential energy. Then, they computed the approximate
expression for the potential energy in part ii.
Interview data came from two sets of think-aloud inter-

views (N ¼ 8), performed approximately one semester
apart. Both studies asked students to solve a number of
Taylor series problems, which included formal math and
physics questions (see Fig. 4). The first study was per-
formed prior to the development of ACER and asked formal
math questions first. Physics questions, whichwere asked at
the end of the interview, explicitly cued students to use a
Taylor series (e.g., ‘‘perform a Taylor expansion’’) and
included parts i and ii of the drag question [Fig. 4(a)].
After the development of ACER, it was clear that the first
study limited the possibility of observing attempts to pro-
cess implicit cues. In the second study, formal math prob-
lemsweremoved to the end of the interview and the physics
questions contained only implicit cueing (e.g., ‘‘find an
approximate expression’’). Part ii of the energy question
in Fig. 4(b) appeared as part of this study.

2. Results

This section presents the analysis of student work and
the identification student difficulties with Taylor series
organized by component and element of the operational-
ized ACER framework (see Sec. III B 2).
Activation of the tool: TA1–TA3 are cues embedded in

the problem statement that can lead a student to activate
resources associated with Taylor expansions, and in some
sense they are organized by the likelihood that they will
do so. The first exam study and think-aloud interview
study [Fig. 4(a)] targeted students’ responses to explicit
cueing. Almost all students in the exam study (93% of 45)
attempted a Taylor series on part i of the problem, and most
students (87% of 45) did so again on part iii. Those
students who did not attempt a Taylor expansion used
some inappropriate form of the binomial expansion [e.g.,
ðaþ bÞn rather than ð1þ �Þn] or skipped part iii. We saw
similar success in the first interview study, where no stu-
dent failed to start the problem with a Taylor expansion
when explicitly prompted.
From the point of view of ACER, the first exam and

interview studies limited investigations of activation to
element TA1. The second exam study [Fig. 4(b)] was
initially designed to target element TA2 by asking students
to ‘‘[f]ind an approximate expression’’ in part ii. However,
the instructor felt this cueing was too vague, so additional
wording was added to the problem statement [the italicized
text in Fig. 4(b)]. In this study, most students (87% of 71)
attempted a Taylor expansion. Those who did not typically
misconstrued the problem by constructing some sort of
differential equation (6% of 71) or left the problem unan-
swered (6% of 71). This indicates that students have little
trouble activating Taylor series when cued explicitly or

FIG. 4 (color online). Students’ solutions to these Taylor series
exam problems were analyzed using the ACER framework.
(a) Motion problem developed prior to ACER. (b) Energy prob-
lem developed after ACER and used as part of interview studies.
Italicized text did not appear on interview documents.

WILCOX et al. PHYS. REV. ST PHYS. EDUC. RES. 9, 020119 (2013)

020119-12



implicitly; however, we suspect that the addition of the
italicized text in Fig. 4(b) made the cueing more explicit
than originally intended.

The second interview study offered a clearer view of
students’ responses to implicit cueing (TA2) with a ques-
tion nearly identical to the problem in Fig. 4(b), but with-
out the italicized text. Two of the four interviewees
immediately plugged in the given value [i.e., � ¼ 0 in
Fig. 4(b)] to determine the approximate expression [e.g.,
Uð�Þ � 0]. Later in the interview, after working through
the formal math problems, both participants asked to return
to the physics problems and solved them again using
Taylor approximations. This suggests that these formal
math problems primed the student’s resources associated
with Taylor series expansions allowing them to connect
these resources back to the physics. A recent study of
students’ use of Taylor series approximations in the context
of statistical mechanics also indicates that upper-division
students have difficulty knowing when to use a Taylor
expansion when not explicitly prompted to do so [29].

Construction of the model: In both the exam and inter-
view studies, the mathematical representation of the physi-
cal model was constructed for the students [i.e., xðtÞ and
Uð�Þ in Fig. 4]. However, to compute the Taylor expansion
of each function, the physical quantities in each equation
had to be mapped onto the general expression for Taylor
series [Eq. (3)]. Identifying elements TC1–TC4 in a stu-
dents’ written solution was a challenge because students
rarely documented their thought process while performing
this mapping. When coding for these elements, we focused
on how students treated the symbols appearing in each
problem. The analysis was holistic, taking into account
the full solution that students provided. From this view,
nearly all of the exams (study 1, part i—93% of 45,
N ¼ 42; study 1, part iii—89% of 45, N ¼ 40; study
2—89% of 71, N ¼ 63) contained elements from the
construction component (i.e., the student did more than
superficially manipulate the expressions).

In all studies, every student who attempted a Taylor
expansion identified the appropriate symbol as the expan-
sion variable (TC1). Moreover, when determining the ex-
pansion point (TC2), most students in the first (93% of 42)
and second (97% of 63) exam studies had no trouble when
this point was zero (i.e., a Maclaurin series). Students often
demonstrated their identification of the variable and expan-
sion point throughmathematicalmanipulations (e.g., taking
derivatives and constructing functions) or their use of ca-
nonical symbolic forms [e.g., xðtÞ � aþ btþ ct2][44].

While most students correctly identified the expansion
around zero, a substantial fraction (47% of 40, N ¼ 19) of
students failed to properly identify nonzero expansion
points [i.e., t � m=b in part iii of Fig. 4(a)]. Most of these
students (84% of 16) simply responded to part iii with their
answer for the expansion around t ¼ 0 (part i). Students
who correctly identified m=b as the expansion point (53%

of 40, N ¼ 21) had coefficients in their Taylor expansion
that were consistent with evaluating the function and its
derivatives at t ¼ m=b. Two-thirds of these students (67%
of 21) also had the correct functional dependence [i.e.,
ðt�m=bÞn]. The remaining one-third (33% of 21) used
the form for an expansion around zero (i.e., tn). Difficulties
with constructing an expansion around a nonzero expan-
sion point are summarized in Table III.
Given the specific questions used, our exam studies

provided little insight into how students compare the scales
of physical quantities (TC3) or how students recast expres-
sions (TC4). All students in the first exam study who
attempted a Taylor expansion maintained the already-
constructed dimensionless ratio (i.e., bt=m) throughout
their work. The expression in Fig. 4(a) was constructed
such that the dimensionless ratio appeared in the exponen-
tial. In the second study, the expansion variable � can be
compared to a number directly because it is technically
dimensionless. However, follow-up questioning of inter-
viewees provided evidence that students do not have a
strong grasp of comparative scales. Only one student in
eight clearly articulated that for an expansion to be ‘‘good’’
it must be performed over dimensionless variables that are
smaller than 1. The other seven students believed their
expansion was a ‘‘good’’ approximation to the original
expressions if the variable (e.g., t) was ‘‘small compared
to 1’’ regardless of the expression under consideration or
the presence of a natural comparative scale. Mathematics
education researchers have also observed that some stu-
dents struggle to identify the range in which an approxi-
mation is ‘‘good,’’ even in purely mathematical problems
with no inherent comparative scale [28].
Execution of the mathematics: Elements TE2–TE4 pro-

vide opportunities to capture the type and nature of the
mathematical errors made while computing Taylor expan-
sions. While the data presented below provide evidence
that students made a number of mathematical mistakes, we
did not find that such mistakes were the primary barrier to
student success.
Almost all students in the exam studies (study 1—93%

of 45, N ¼ 42; study 2—89% of 71, N ¼ 63) performed
some mathematical manipulation captured by the

TABLE III. Difficulties constructing an expansion around a
nonzero expansion point–part iii in Fig. 4(b). Percentages are
of the students who had difficulty with the nonzero expansion
point (65% of 40, N ¼ 26). Codes are not exhaustive but
represent the most common themes; thus, the total N in the
table need not sum to 26.

Difficulty N Percent

Used answer to part i,

i.e., xðtÞ � vx0tþ vx0
b
m t

2

16 62

Incorrect functional dependence,

i.e., xðtÞ � vx0m
b ð1� 1

eÞ þ vx0

e t� vx0b
em t2

7 27
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execution component (TE1–TE4). Identifying constants
and variables (TE1) in the given expressions was only a
significant barrier to one student in part i of the first exam
study and three students in the second exam study. Students
typically demonstrated an awareness of the nature of each
symbol by taking derivatives or using an expansion tem-
plate with the appropriate variable [e.g., t in Fig. 4(a)].
Interview participants often explicitly pointed to symbols
and clearly identified them as constants.

Students computed Taylor expansions through both
formal and abbreviated methods [e.g., working through
Eq. (3) versus using ‘‘expansion templates’’ like cosx �
1þ x2=2!]. Those who used expansion templates shortcut
elements TE2 and TE3 even though these templates stem
from taking derivatives of the associated function and
evaluating those derivatives around the expansion point.
Of students who showed evidence of the execution com-
ponent, a significant fraction used expansion templates
when the expansion was around zero (study 1, part i—
67% of 42; study 2—90% of 63). The remaining students
computed derivatives of the associated functions.

For part iii of the first exam study, fewer students overall
were coded in TE2 and TE3 (57% of 42, N ¼ 24) because
a substantial fraction (Table III) used their answer for
the expansion around t ¼ 0 (part i). Of the remaining
students, more than two-thirds (71% of 24) used formal
methods to compute their Taylor expansion. This suggests
that students are more familiar with templates of Maclaurin
expansions. We observed similar trends in our interviews.
When confronted with simple functions or expressions,
interviewees overwhelmingly elected to use or ask for
expansion templates. When simple functions were
embedded in more complicated expressions, seven of eight
interviewees employed formal methods; only one student
used an expansion template.

The broad ACER framework (Sec. III B 2) does not
capture all the nuances of students’ mathematical errors;
hence, we found it constructive to create a number of
subcodes to capture more details. Considering all coded
instances of execution, about one-third (34% of 147,
N ¼ 50) contained some mathematical error. Some of
these students made only slight algebraic manipulation
errors (44% of 50) such as forgetting a minus sign or
dropping numerical factors. More than half of the students
with mathematical errors (56% of 50, N ¼ 28) made more
serious mistakes, which occurred primarily in part iii of the
first exam study. More than half of these students (54% of
28) made serious expansion mistakes, such as appending
variables to ‘‘patch up’’ their solutions. That is, students
would produce a solution that did not depend on t [e.g.,
xðtÞ ¼ a0 þ a1m=bþ � � � ] and in the next line append a t
[e.g., xðtÞ ¼ a0 þ a1m=btþ � � � ]. This was not observed
in the interviews, so it is unclear if patching up an expres-
sion represents an error in construction or execution, or,
possibly, a ‘‘success’’ in reflection. About a quarter

(29% of 28) computed the derivative of the associated
functions incorrectly. The remaining students struggled to
perform any of the necessary mathematics. Mathematical
errors were more prevalent in our interview studies, but
few were serious. Of the eight participants, seven made
some mathematical mistake, but only one participant com-
puted derivatives incorrectly.
Once the computation is complete, it is typical to organ-

ize terms in increasing order (TE4). This practice makes
the interpretation of the solution somewhat simpler because
terms with similar orders are grouped together and their
effect can be discussed together. Most students successfully
organized their solution in this way (study 1, part i—83%of
42; study 1, part iii—70% of 40; study 2—97% of 63).
Similarly, all interview participants spontaneously organ-
ized their solutions in order of increasing power. However,
the practice of organizing solutions did not mean students
could readily interpret their solution. As discussed below,
many students struggled to make meaningful statements
about the physics of their proposed solutions.
Reflection on the result: Once a solution has been

constructed, it should be checked for errors and an inter-
pretation should be made. As we discuss below, students
rarely offered checks or spontaneously interpreted their
solution. When prompted in the second exam study, stu-
dents checked the units of a solution successfully, but in
the first exam study students struggled to interpret solu-
tions meaningfully.
In the first exam study, no student spontaneously

checked their solution to part i or part iii for errors. A
check of the units (TR1) would have helped a small frac-
tion of students on part i (10% of 42), but on part iii it could
have clued more than a third of students (33% of 40) that
something was incorrect about their solution. Part ii of the
first exam study [Fig. 4(a)] forced students to interpret their
solution and to connect it to their prior knowledge about
motion (TR2). Most students offered little substance in
their interpretation. Common responses for the linear
term included ‘‘it’s the initial v times t’’ and ‘‘it’s the
velocity.’’ Only a quarter of students (25% of 40) men-
tioned something similar to ‘‘the distance covered in vac-
uum.’’ For the quadratic term, the same fraction of students
mentioned that it was the ‘‘drag term’’ or the ‘‘correction,’’
but not a single student mentioned the sign difference
between the linear and quadratic terms. In our interviews,
no student clearly connected a solution to this problem to
the underlying physics.
In the second exam study, students were prompted to

check the units of the expression prior to starting the
problem [Fig. 4(b)] and most students did this correctly
(80% of 71). Students in the first exam study were not
asked to reflect on their solution directly. Eventually, all
four participants in the second think-aloud study produced
a solution to the problem that depended on �2. They were
then asked to discuss any physics that could help them
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interpret their solution. Only one of the four students made
an interpretation of the solution. This student suggested
that the system ‘‘looks like a harmonic oscillator,’’ and
gestured to indicate the oscillation around the bottom of
the cylinder. Even with additional prompting by the inter-
viewer, the other three participants expressed only super-
ficial reflections, ‘‘yeah, that looks different [from the
original expression].’’

3. Summary and implications

We found that sophomore-level students encountered
several challenges when solving Taylor approximation
problems. These challenges limited the production of com-
plete, well-articulated solutions. First, knowing when to
use Taylor approximations is challenging to students when
prompts are less explicit. This difficulty is likely under-
represented in our data because we have not explored how
students grapple with minimal cueing (TA3). Processing
implicit cues is a skill that will follow students throughout
their physics careers. Instructors should be aware of what
cues they include in problems and how these cues impact
student success on Taylor approximations. Second, while
students are relatively adept at performing expansions
around zero (i.e., Maclaurin series), they struggle to per-
form Taylor expansions around nonzero expansion points.
Difficulties here ranged from failing to demonstrate under-
standing of expansions around points other than zero to
expanding around appropriate points but not producing the
correct functional form (Table III). Not all Taylor expan-
sions in physics occur around zero, and students must be
prepared to solve general expansion problems. Third, soph-
omore students (like juniors) rarely reflect spontaneously
on their solutions. We have commonly observed this chal-
lenge for students in all upper-division courses. Checking
solutions for errors and constructing meaningful interpre-
tations are practices that are equally important to using
mathematics. Yet, these practices are underemphasized in
our current upper-division courses. Problems and activities
should be designed to develop students’ skills with reflec-
tive practices.

V. SUMMARYAND DISCUSSION

We have presented an analytic framework, ACER, that is
specifically targeted towards characterizing student diffi-
culties with mathematics in upper-division physics. The
ACER framework provides an organizing structure that
focuses on important nodes in students’ solutions to com-
plex problems by providing a researcher-guided outline
that lays out the key elements of a well-articulated, com-
plete solution. To account for the complex and highly
context-dependent nature of problem solving in advanced
undergraduate physics, ACER is designed to be operation-
alized for specific mathematical tools in different physics
contexts rather than as a general description. We have
utilized the operationalized ACER framework to inform

and structure investigations of student difficulties with
Coulomb’s law and Taylor series. This has allowed us to
more clearly identify prevalent difficulties our students
demonstrated with each of these topics and to paint a
more coherent picture of how these difficulties are
interrelated.
As with any expert-guided description, it should not be

assumed a priori that the operationalized ACER frame-
work will span the space of all relevant aspects of actual
student problem solving. It is intended to provide a scaffold
from which researchers and instructors who are less
familiar with qualitative analysis can ground an analysis
of what students actually do when solving mathematically
demanding physics problems. However, additional
research comparing the operationalized framework, as
produced by the expert task analysis, to interviews and
group problem-solving sessions will be necessary to
explore the limitations of ACER in terms of capturing
emergent aspects of students’ work.
There are several important limitations to the ACER

framework. The framework was designed to target the
intersection between mathematics and physics in upper-
division physics courses, and it is not well suited to
describing student reasoning around purely conceptual or
open-ended problems. Additionally, the framework inher-
ently incorporates some aspects of representation because
the translation between verbal, mathematical, graphical,
and/or pictorial representations is almost always required
to solve physics problems; however, the exact placement
of multiple representations within the framework is likely
to be highly content dependent. Furthermore, we have not
commented on the integration of prediction and metacog-
nition into the framework, in part because we rarely
observe our students showing explicit signs of either with-
out prompting. Application of ACER to additional topics
and tools will clarify how the framework can shed light on
these aspects of problem solving.
Ongoing projects with ACER include its use to frame

investigations of upper-division students’ difficulties with
delta functions and complex exponentials. Future work will
include analysis of students’ difficulties with separation of
variables in the context of Laplace’s equation. Each of these
projects will facilitate further validation and refinement of
ACER as a tool for understanding student difficulties. Future
work will also involve leveraging ACER to investigate the
evolution of students’ difficulties with specific mathematical
tools over time. Specifically, Newton’s law of gravity for
extended bodies is mathematically very similar to the use of
Coulomb’s law for continuous charge distributions but is
typically encountered in sophomore physics. By identifying
students’ difficulties with gravitation in sophomore classical
mechanics and comparing them to difficulties with direct
integration in junior electrostatics, we will be able to inves-
tigate how these difficulties change (or not) as students
advance through the curriculum.
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The ACER framework was designed to be a tool not only
for researchers but instructors as well. We have already
discussed a number of suggestions for instructors that
may help students avoid or overcome the difficulties we
identified. However, ACER can also be used to critique and
design problems. Examining the prompt of a question can
identify which components of the framework the problem
targets and which ones it might short-circuit (e.g., bypass-
ing activation by instructing the student to use a Taylor
series to approximate a function). This can help instructors
to produce homework sets and exams that offer a balanced

and complete assessment of all aspects of students’ prob-
lem solving.
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