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Much research in engineering and physics education has focused on improving students’ problem-

solving skills. This research has led to the development of step-by-step problem-solving strategies

and grading rubrics to assess a student’s expertise in solving problems using these strategies. These

rubrics value ‘‘communication’’ between the student’s qualitative description of the physical situation

and the student’s formal mathematical descriptions (usually equations) at two points: when initially

setting up the equations, and when evaluating the final mathematical answer for meaning and plausibility.

We argue that (i) neither the rubrics nor the associated problem-solving strategies explicitly value this kind

of communication during mathematical manipulations of the chosen equations, and (ii) such communi-

cation is an aspect of problem-solving expertise. To make this argument, we present a case study of two

students, Alex and Pat, solving the same kinematics problem in clinical interviews. We argue that Pat’s

solution, which connects manipulation of equations to their physical interpretation, is more expertlike than

Alex’s solution, which uses equations more algorithmically. We then show that the types of problem-

solving rubrics currently available do not discriminate between these two types of solutions. We conclude

that problem-solving rubrics should be revised or repurposed to more accurately assess problem-solving

expertise.
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I. INTRODUCTION

‘‘Alex’’ and ‘‘Pat,’’ two students in an introductory
calculus-based physics course, each thought aloud while
solving the following problem (paraphrased for brevity):
Two balls are released from the same height at the same
time, but one is released from rest while the other is thrown
down at 2 meters per second. Five seconds later, what is the
difference in speeds of the two balls?

Alex started by drawing a diagram and listing the known
values. She selected the equation v ¼ v0 þ at to calculate
the speed of each ball after 5 s. She found those speeds to
be 50 and 52 m=s and subtracted to find the difference
in speeds, 2 m=s. Alex’s methodical solution reflects a
standard approach to problem solving taught in physics
courses (see, e.g., Refs. [1,2]).

By contrast, in his answer, Pat invoked v ¼ v0 þ at
but did not perform algebraic manipulations or plug in
numbers. Instead, he found a shortcut, abridged here but
presented more completely later:

So the acceleration is a constant and that means that
velocity is linearly related to time and they’re both at the
same. . . so the [slope] is the same. . . so the initial

conditions are off by 2 and then the velocities are
changing at the same rate so that should mean they
[the difference in speeds] stay at 2.

Notice how Pat’s reasoning blends an intuitive concep-
tual idea—if two things change by the same amount, the
difference between them stays the same—with mathemati-
cal formalism (a linear relation extracted from an equation,
and slope) in a single, integrated line of reasoning.
Is Pat’s solution more expert than Alex’s? We argue that

it is. What is more, we argue that existing problem-solving
rubrics in the literature overlook this difference in exper-
tise. To be clear, the rubrics (and associated problem-
solving strategies) do emphasize connecting the physical
scenario to a mathematical model when setting up the
equations and when evaluating the results of the mathe-
matical manipulations. And the rubrics do not downgrade
Pat-style reasoning; a coder could give Pat credit for both
appropriate conceptual reasoning and appropriate mathe-
matical manipulations. Furthermore, we do not claim that
the authors of such rubrics would fail to appreciate the
quality of Pat’s reasoning. Our claim is that the rubrics
themselves do not recognize or reward blending of con-
ceptual and formal mathematical reasoning during mathe-
matical manipulations, even though such blending reflects
expertise.
This is important because a problem-solving rubric

helps direct the attention of instructors, researchers, and
students. A rubric helps instructors decide how to teach
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problem-solving strategies, provides researchers with
analytical categories to parse students’ work, and informs
students how their work will be assessed. Therefore, the
lack of explicit emphasis on blending conceptual and
formal mathematical reasoning during mathematical pro-
cessing could lead all three parties to emphasize stepwise
problem-solving approaches at the expense of—rather than
in addition to—the kind of reasoning Pat displays.

To make our case, we first review previous work on
problem-solving expertise and rubrics, to establish that

(1) published rubrics in physics problem-solving
encode a vision of expert problem solving in which
mathematical manipulations is viewed as a separate
step from those involving communication between
conceptual reasoning and mathematics (e.g., ‘‘trans-
lating’’ a qualitative description of the physical
situation into a mathematical model, and checking
the final answer for plausibility), even though

(2) expert scientists or engineers and good students
sometimes use conceptual reasoning during mathe-
matical manipulations.

Then, using a validated and robust problem-solving
rubric in the physics education research (PER) literature
[3], we present a comparative analysis of Alex’s and Pat’s
solutions to the two balls problem presented above. We
show that although Pat’s solution demonstrates greater
expertise, problem-solving rubrics award approximately
equal scores to Alex’s and Pat’s solutions. We will close
with two alternative sets of implications for researchers
and instructors. The first, less radical suggestion, is an
amendment to current problem-solving rubrics. The sec-
ond, more radical option, is a more fundamental rethinking
of what constitutes problem-solving expertise and the role
that globally applicable rubrics can play in assessing it.

II. LITERATURE REVIEW: INSTRUCTION
AND RUBRICS TARGETING PHYSICS

PROBLEM-SOLVING EXPERTISE

Quantitative problem solving plays a central role in the
everyday work of scientists and engineers. For this and
other reasons, improving students’ problem-solving skills
has been a central concern of physics instructors as well as
education researchers [1,3–19]. Researchers often proceed
by (1) describing deficits in students’ problem-solving
behaviors (for example, by comparing novices to experts),
(2) generating instructional strategies that target those
deficits, and (3) evaluating these strategies by measuring
gains in students’ performance, often using a rubric
that closely aligns with how the students were taught to
solve problems. Thus, the development of rubrics for
assessing students’ progress is intertwined with a vision
of expert behavior that researchers and instructors want
students to emulate. So, we start our review with a
brief discussion of the research on physics students’
problem-solving behaviors and on instructional strategies

to improve those behaviors. Then we discuss currently
available rubrics used to evaluate physics problem solving.
We close this section with our claim about what is missing
in current rubrics, a claim supported in subsequent
sections.

A. Expert-novice differences in problem solving:
Diagnoses and interventions

Solving qualitative and quantitative problems on a vari-
ety of introductory and advanced physics topics has been a
topic of much research, with researchers documenting
systematic expert-novice differences in problem-solving
behaviors. Some of this research has explicitly investigated
expert reasoning [12,20]. In other cases, we can infer what
counts as expert reasoning for the researchers based on
what they value in students’ problem-solving behaviors or
choose as instructional targets. In what follows, ‘‘novice’’
refers to learners whose problem-solving behaviors differ
from desired problem-solving behaviors. Some of the main
conclusions of this body of work are as follows:
� Novices tend to start problems by launching directly

into manipulating equations [21], whereas experts are
more likely to begin with a qualitative description of
the situation [12,13].

� Novices tend to categorize problems according to
surface features, such as the presence of inclined
planes, pulleys, or rotating objects,

� whereas experts classify problems according to
‘‘deep structure’’ (the relevant underlying physics
principles), such as conservation of energy [12,22–29].

� Experts’ knowledge is linked in a coherent fashion,
whereas novices’ knowledge is more fragmented or
disconnected [30,31].

� Experts make facile use of sense-making tools such
as diagrams [32,33].

� Novices are less likely to evaluate their solutions than
experts [34–36].

� Novices are slower to abandon an unproductive line
of reasoning and search for an alternative [33,37,38].

� Some researchers argue that novices lack conceptual
understanding [39,40], mathematical skills [41–44],
or the ability to transfer productive knowledge [45],
and that these become barriers to effective problem
solving.

Research on expert-novice differences has helped
guide the development of instructional strategies to help
students become better problem solvers. Some of these
strategies focus on a particular aspect of problem solving
[22,34,38,46,47], while others provide students with an
entire framework for problem solving [9,15–18,31,46,48–
57]. For example, to help students attend to deep structure,
some researchers advocate making students state the
underlying principles they are relying upon, such as
conservation of energy or force balancing [22,38,46].
Other researchers advocate teaching students a hierarchical

HULL et al. PHYS. REV. ST PHYS. EDUC. RES. 9, 010105 (2013)

010105-2



approach to problem solving: start by outlining the ‘‘big
picture’’ of how to solve the problem, then fill in the
details, with frequent references back to that overall
solution structure [15,16,31,46,48,49].

Several researchers spell out expert problem-solving
procedures [9,15,16,18,50–57] and many researchers rec-
ommend explicitly teaching such strategies and enforcing
their use. As an example, Heller, Keith, and Anderson [9]
recommend teaching the following five-step strategy
(excerpted from Table II, p. 630):

(1) Visualize the problem. Translate the words of the
problem statement into a visual representation.

(2) Describe the problem in physics terms (physics
description). Translate the sketch(es) into a physical
representation of the problem.

(3) Plan a solution. Translate the physics description
into a mathematical representation of the problem.

(4) Execute the plan. Translate the plan into a series of
appropriate mathematical actions.

(5) Check and evaluate: Determine if the answer makes
sense.

These five steps capture the general characteristics of
the physics problem-solving strategies advocated by
most physics education researchers (also see Woods [50]
for a review of problem-solving strategies in physics and
engineering). These strategies embody the idea that expert
problem solving includes the following steps: qualitatively
convert the real-world description of the problem into
something that can be solved mathematically, then carry
out the mathematical manipulations necessary to reach a
solution, and finally evaluate the solution for meaning and
plausibility.

B. Rubrics for evaluating problem solving

These conceptions of expert problem solving and
how to teach it have influenced assessment tools for
evaluating students’ problem-solving skills. Some assess-
ment schemes code for one particular feature that can
indicate a component of problem-solving expertise, such
as correctly identifying the underlying principle [46],
writing a strategy for how to solve the problem [22],
analyzing mistakes and modifying the problem-solving
approach accordingly [48], and drawing diagrams
[32]. Instructors, of course, constantly develop ‘‘whole-
solution’’ rubrics for assessing homework and exam
solutions from start to finish, but these rubrics are mostly
inaccessible to researchers. Searching the articles cited
in this paper and other literature, we could find no
citations to whole-solution rubrics for physics problems
other those developed by the University of Minnesota
[3,9–11,14].

One of the most rigorous scoring schemes for evaluating
students’ problem solving is presented by Heller, Keith,
and Anderson [9] (p. 631), paraphrased here and referred to
later as the 1992 rubric:

(1) Evidence of conceptual understanding. How
well the student’s representation of the problem
(words, diagrams, etc.) indicates an understanding
of the relevant physics concepts and relations.

(2) Usefulness of description. Whether the representa-
tion of the problem, called the ‘‘physics descrip-
tion,’’ includes all the information needed for a
solution.

(3) Match of equations with description. Whether the
student’s equations are consistent with the physical
description.

(4) Reasonable plan. Whether the student had an
appropriate plan for executing the mathematical
manipulations needed to solve the problem.

(5) Logical progression. How well the overall solution
hangs together, from the selection of laws and prin-
ciples to their appropriate application in the problem
situation. This category also rewards students for
performing algebraic simplifications before substi-
tuting in numerical values.

(6) Appropriate mathematics. Whether the mathemati-
cal manipulations and assumptions in the students’
solutions are appropriate.

Detailed rubrics such as this provide a reliable means
of evaluating students’ performance on quantitative
problems. As compared to simply coding for correct
answers, rigorous rubrics help researchers and instructors
attend to details of how students are solving the
problem.1 Over the years, the rubric of Heller et al.
has been adopted, adapted, and built upon [3,10,11,18].
Most recently, Docktor and Heller [3] designed a rubric
to be more easily deployed across a variety of instruc-
tional contexts by other researchers and instructors. Their
rubric includes five scoring categories: ‘‘organizing
problem information into a useful description, selecting
appropriate physics principles, applying physics to the
specific conditions in the problem, using mathematical
procedures appropriately, and the overall communication
of an organized reasoning pattern’’ (p. 4). This new
rubric preserves the basic ideas from the 1992 rubric,
though with some reorganization and streamlining
(e.g., no ‘‘planning the solution’’ as a separate step,
and no extra points for performing algebraic simplifica-
tions prior to numerical calculations). As emphasized
above, these rubrics build on (i) perspectives of problem
solving drawn not only from physics but also from
mathematics and cognitive psychology [16,17,59,60],
and (ii) research studies on differences between expert
and novice problem solvers [12,13,61].

1In this paper, we do not distinguish between authentic ‘‘prob-
lems’’ and standard or routine ‘‘exercises’’ as some researchers
do (e.g., Schoenfeld [58]). We use ‘‘problem’’ to refer to the
kinds of homework and exam questions that students regularly
encounter in a standard physics class and that rubrics are often
applied to.
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C. Missing from the rubrics: ‘‘Credit’’ for integrating
conceptual and formal mathematical reasoning

during mathematical processing

These rubrics were not designed to assess everything.
For example, Docktor and Heller, referring to their rubric
as ‘‘minimal measures,’’ intentionally ignore underlying
epistemological, metacognitive, and affective aspects of
problem solving to focus on conceptual problem-solving
elements. They did so to make the rubric more generally
adoptable and independent of specific pedagogical
approaches [62]. In this paper, however, we want to
draw attention to a conceptual aspect of expert problem
solving that current rubrics do not evaluate or credit:
Pat-style integration of conceptual and formal mathe-
matical reasoning during mathematical processing, what
we call blended processing. We later argue that blended
processing warrants attention in instruction as well as
assessment.

The blended processing we illustrate in this paper builds
on research that identifies students as blending intuitive
knowledge and formal mathematical knowledge in certain
situations. Sherin [63] observed undergraduate students
creating equations about a physical scenario. For example,
in one interview, a pair of students was considering
the amount of rain that would fall on someone outside in
a rainstorm, and they came up with the equation
½total rain� ¼ ½no. raindrops=s� þ C. They explained that
the total rain hitting the person comes from two sources:
the rain falling on the person’s head, indicated by
[no. raindrops=s], and the rain hitting the front of the
person as they walk forward, indicated by ‘‘C’’). In
Sherin’s analysis, these students generated their equation
by drawing, in part, on the intuitive conceptual idea that the
total is composed of the combination of two parts. Similar
examples of students drawing simultaneously on mathe-
matical and intuitive conceptual (nonmathematical)
knowledge to create equations have been documented
for undergraduate physics [64] and 8th grade algebra
students [65].

Pat’s solution to the two rocks problem, presented in
the Introduction, is another example of blending intuitive
conceptual and formal mathematical reasoning. He used
a conceptual idea, that two things changing by the same
amount will maintain their difference, in conjunction
with formal mathematical ideas about linear relationships
and slope. Importantly, this blending of conceptual rea-
soning and formal mathematical ideas did not occur
while Pat was selecting the relevant equation. Rather,
Pat used such reasoning during the ‘‘execute the plan’’
step (in the scheme of Heller, Keith, and Anderson),
when the mathematical equations are typically manipu-
lated to find a solution. We refer to this blending of
conceptual and formal mathematical ideas during the
mathematical processing stage of problem solving as
blended processing.

To be clear, in our definition of blended processing, the
conceptual knowledge or reasoning involved in blending is
intuitive, everyday ideas about the world, not formal phys-
ics concepts. For example, suppose a student is solving for
the forces acting on a sofa sliding with constant velocity. If
the student generates a force equation by starting with
Newton’s second law and the definition of acceleration
(to conclude that a ¼ 0), that’s good reasoning, but it is
not blended processing, because the student relies on for-
mal concepts. By contrast, if the student generates and
processes an equation drawing on the intuitive notions
that the sofa keeps doing what it is doing and hence
competing influences on it must balance out, the seamless
integration of intuitive conceptual ideas (like balancing)
and a mathematical objects (in this case, equations)
constitutes blended processing.
A common feature of the problem-solving rubrics we

have presented is the credit given to formal conceptual
reasoning used to generate equations but the absence of
additional credit for intuitive or formal conceptual reason-
ing used during the mathematical manipulation of those
equations. So, blended processing earns no additional
credit. In Docktor and Heller’s scheme, the category
mathematical procedures does not explicitly look for con-
ceptual reasoning during the mathematical processing.
Similarly, in Heller, Keith, and Anderson’s 1992 rubric,
there is no mention in reasonable plan that students should
think about the conceptual meaning of their mathematical
manipulations. Of course, these problem-solving rubrics
do not penalize students for opportunistically blending
conceptual reasoning with formal mathematical reasoning
during mathematical manipulations. However, they do not
reward such blending either. This lack of reward sends the
implicit message to students and instructors that the oppor-
tunistic use of blended processing is not a crucial compo-
nent of problem-solving expertise.
However, the opportunistic blending of conceptual and

formal mathematical reasoning throughout the problem
solution, including during mathematical processing, is
something done by professional engineers [66,67] and it
can exemplify ‘‘adaptive expertise’’ [68] because it
involves flexibly using available intellectual resources
rather than following a fixed procedure. Furthermore, the
blending of conceptual and formal mathematical reasoning
throughout a solution is an example of connecting meaning
to mathematical formalism, which indicates a deeper
understanding than simply using the formalism, according
to Wertheimer [69], Schoenfeld [58], Redish and Smith
[70], Gainsburg [66], and others. And deeper, connected
understanding is a component of expertise [31]. For all
these reasons, we view the opportunistic blending of
conceptual and formal mathematical reasoning throughout
the solution, not just at the beginning and end, as an
important aspect of expertise in physics problem solving.
Our detailed explication below of Alex’s and Pat’s
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solutions to the two balls problem will further buttress this
argument.

In summary, thus far, we have argued that rubrics
used to assess students’ problem solving do not reward
the opportunistic blending, in a single step, of conceptual
and formal mathematical reasoning during mathematical
manipulations, though such blending is arguably a compo-
nent of expertise. Below, we support this argument empiri-
cally, by (i) summarizing prior analysis of Alex’s and Pat’s
solutions to the two balls problem, to show that Pat’s
solution exhibits greater expertise, and then (ii) showing
that the published problem-solving rubrics do not score
Pat’s work more highly than Alex’s.

III. METHODOLOGY

A. Recruitment, selection, and interview context

From fall 2008 to fall 2011, we interviewed 13 students
at the University of Maryland in an introductory, calculus-
based physics course for engineering students covering
mechanics. Our goal was to probe students’ mathematical
sense making, specifically when and how they make con-
ceptual sense of equations in physics.

We recruited via the course Email list, asking for a
one-hour interview for which participants would receive
$10.00. We interviewed all students who expressed interest
except for three students whose schedules were incompat-
ible with ours.

The two students whose solutions we analyze here, Alex
and Pat, were interviewed one month into the course. They
both took the course during the same semester with the
same instructor. At the time of the interview, the course had
covered kinematics and Newton’s laws, including projec-
tile motion. An analysis of the 13 interviews showed that
Alex’s and Pat’s solutions to the two balls problem (see
below) are characteristic of two common solution paths
[71]. We saw no gender or other obvious demographic
differences between the groups following those two paths.

B. Interview protocol

We designed our interview protocol [72] to investigate
what conceptual and mathematical knowledge students
bring to bear when solving quantitative problems in phys-
ics. Students were prompted to think aloud while reasoning
through problems. To probe their conceptual understand-
ing and reasoning, students were also asked to explain
some equations that they had seen in class, and some
they had not. They were also asked to solve problems using
these equations. In addition, the interview probed students’
stances towards the nature of knowledge and learning and
the use of mathematics in physics with prompts such as
‘‘How do you know when you really understand an
equation?’’

For this paper, only the first two prompts are relevant.
Both focused on the kinematics equation v ¼ v0 þ at. All

subjects said they were familiar with that equation. The
first prompt was as follows:

You have probably seen this equation in class:
v ¼ v0 þ at
Here, v is velocity, v0 is initial velocity, a is accelera-
tion, and t is time. How would you explain this equation
to a friend from your class?

The prompt was printed on paper, with the rest of the
sheet blank. Students had access to a pen. Follow-up
prompts, intended to cue more or less formal explanations
of the equation, included explaining the equation to a
12-year old or on a physics exam.
To investigate how students would apply the equation to

a quantitative problem, we asked the two balls problem:

Suppose you are standing with two tennis balls on the
balcony of a [high] apartment. You throw one ball down
with an initial speed of 2 meters per second; at the same
moment, you just let go of the other ball, i.e., just let it
fall. I would like you to think aloud while figuring out
what is the difference in the speed of the two balls after
5 seconds—is it less than, more than, or equal to 2meters
per second? (Acceleration due to gravity is 10 m=s2.)

The students were instructed to speak aloud as they
think. The interviewer also told interviewees that he was
interested in how they approached the problem, not what
answer they got. If a student brought up air resistance, the
interviewer told the student to neglect it.
We chose the two balls problem because it can be solved

without explicit calculation, as Pat did. We were interested
in seeing whether and how students would implement such
a solution. We asked students to explain the velocity equa-
tion immediately prior to posing the two balls problem in
order to probe students’ ways of thinking about the equa-
tion, and possibly even to prime conceptual reasoning.
Although we did not instruct students to use the equation
in solving the problem, both Alex and Pat did so.

C. Analysis

Our analysis started with a qualitative description of
students’ reasoning in interviews. One member of the
research team watched and roughly transcribed the inter-
views. Then we and another teammember, Brian Danielak,
watched the interviews as a group, forming initial charac-
terizations of how each student solved problems and of
differences in solutions between students. Since Alex’s and
Pat’s explanations of the kinematics equation and solutions
to the two balls problem were starkly different, we selected
those interviews for finer-grained analysis. We rely on this
fine-grained analysis, summarized in the following section
and presented in detail in another paper [71], to make the
case that Pat exhibited a component of expert problem

PROBLEM-SOLVING RUBRICS REVISITED: . . . PHYS. REV. ST PHYS. EDUC. RES. 9, 010105 (2013)

010105-5



solving that is missing in Alex’s step-by-step numerical
solution: blending conceptual and formal mathematical
reasoning during mathematical processing.

Once we had completed this qualitative analysis, we
realized that it held implications for problem-solving
rubrics. We thus began to focus on how existing
problem-solving rubrics would evaluate Alex’s and Pat’s
solutions. To perform these analyses, we needed valid and
reliable rubrics that attend to the students’ entire solutions.
We also needed the rubrics to be explained in sufficient
detail that we could apply them.We found two such rubrics
readily available in published literature [3,9], both from the
same research group. In the main body of this paper, we
apply Docktor and Heller’s [3] rubric because (1) it closely
aligns with the earlier, highly influential research on
problem-solving strategies and problem-solving rubrics;
(2) its reliability, validity, and utility were carefully estab-
lished [14]; and (3) it was designed for ease of use by other
researchers in other instructional settings. In the appendix,
however, we also apply the rubric of Heller et al. [9] to
Alex’s and Pat’s solutions.

There is one major methodological caveat in our use of
these rubrics: they were designed to assess students’ writ-
ten solutions, not their think-aloud solutions. To generate a
codable written solution for Alex and Pat, we combined
their transcribed verbal utterances with their written work.
Of course, they might have said or written things in the
interview that they would not have written on a homework
assignment or a test. Conversely, on an exam, Alex or Pat
might have included reasoning not present in an interview.
However, for the argument we are making in this paper, it
is not important how precisely Alex’s and Pat’s written
solutions would have matched their interview responses. It
is only important that these two contrasting kinds of solu-
tions could plausibly appear in students’ written work.

Despite being asked to think out loud, Alex and Pat do
not spell out their reasoning in complete detail. In grading
such work, graders tend to project correct reasoning onto a
student solution that is objectively lacking, merely because
the final answer is correct [73]. To try to avoid that ten-
dency and to provide accountability for our application of
the rubric, we explain every decision we made in scoring
both students and discuss what we perceived as relevant for
determining their scores. This allows the reader to follow
and evaluate the nuts and bolts of our decision-making
process.

Initially, two of the authors (Hull and Elby) worked
together to code both solutions on the five categories in
the Docktor and Heller rubric. Then, the second author
(Kuo) independently coded the two solutions. The coders
agreed on all but three codes out of ten (two students across
five categories).2 In order to resolve the disagreements,

we all met to discuss the appropriate codes. The resulting
agreement between coders relied heavily on revisiting the
training examples provided in [14].

IV. PREVIOUS DATA AND ANALYSIS:
ALEX’S AND PAT’S SOLUTIONS TO THE

TWO-BALLS PROBLEM

In this section we summarize our analyses of Alex’s and
Pat’s solutions to the two balls problem [71] to argue that
Pat’s solution shows greater expertise. We present this
qualitative analysis to set up our new, rubric-based
analyses of their solutions reported in Sec. V.

A. Alex’s solution follows a
productive but set procedure

Alex started by drawing a diagram of the two balls and
labeling their speeds. At first, she incorrectly labeled the
initial speed of the dropped ball as ‘‘9:8 m=s.’’ Alex then
decided to use the equation v ¼ v0 þ at, paused to think
about the value of ‘‘a,’’ and then wrote down ‘‘9.8’’ as the
value of a. The interviewer suggested that she is welcome
to use either ‘‘10’’ or ‘‘9.8,’’ and Alex decided that ‘‘10’’
is ‘‘probably easier.’’ She then crossed out the ‘‘9.8’’
she wrote for the speed of the dropped ball and for the
acceleration of the thrown ball and replaced both with
‘‘10.’’ She then explicitly calculated the final velocity for
each of the two balls correctly and wrote down the differ-
ence. When calculating the final velocity of the dropped
ball using the equation, Alex correctly used 0 m=s as the
initial speed. Figure 1 shows all of her written work.
After completing her calculations, Alex explained her

reasoning:

Alex: Ok, so after I plug this into the velocity equation,
I use the acceleration and the initial velocity that’s
given, multiply the acceleration by the time that we’re
looking at, five seconds, and then once I know the
velocities after five seconds of each of them, I subtract
one from the other and get two. So the question asks ‘‘is
it more than, less than, or equal to two,’’ so I would say
equal to two.

FIG. 1. The written component of Alex’s think-aloud solution
to the two balls problem.

2The specific details of the coders’ disagreements are detailed
in a footnote after the results of the rubric coding are presented.
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When then asked if it would have been possible to
answer this question without ‘‘working out the numbers’’
to explicitly calculate the velocities, Alex initially said it
should be possible but could then not think of a way to
do so.

B. Pat’s solution opportunistically blends conceptual
with formal mathematical reasoning throughout

Pat started by referring to v ¼ v0 þ at, but used the
equation differently from the way Alex did.

Pat: Well, the first thing I would think of is the
equations. The velocity, I suppose, is the same equation
as that other one [from the previous interview prompt]
and I’m trying to think of calculus as well and what the
differences do. So the acceleration is a constant and that
means that velocity is linearly related to time and
they’re both at the same. . . so the first difference is the
same. I think it’s equal to two meters per second. So the
first differences are the same, and if the first differences
are the same then the initial difference between the two
speeds should not change.

When asked, Pat explained that the term ‘‘first differ-
ences’’ came from his high school algebra class, where sets
of data points would be analyzed by taking ‘‘delta y over
delta x,’’ which is called the ‘‘first difference.’’ This sug-
gests that ‘‘first difference,’’ for Pat, is similar to the idea of
a slope.

Pat spontaneously went on to say that ‘‘there’s a couple
of methods of attacking [the problem],’’ and that he would
switch to these other methods if he ran into difficulty in
one solution method. Prompted by the interviewer, Pat
provided an alternate reasoning:

Pat: So if I started from thinking about the equations and
I’m not quite sure whether the velocities are changing at
the same rate, then like sometimes I’ll use several and
see if they’re consistent, then I could switch to thinking
about the derivatives of the velocity and I’ll think ok, so
the initial conditions are off by 2 and then the velocities
are changing at the same rate so that should mean they
stay at 2.

Pat then started to explain the situation in terms of
accelerating reference frames but decided this approach
to be inappropriate for the given situation. He then went on
to talk about how he could also solve the problem by
performing more explicit calculations (see Fig. 2):

Pat: I would think about one of them is zero and the
other one is two and since their accelerations are the
same, then I mean if you wanted to attack it on paper
clearly you can subtract these and find that everything
cancels except this two and that would be another way

to attack this problem. But thinking about it in my head,
I would realize that with you, without actually writing
out the subtraction of the equations that the at term will
be exactly the same for both of them since they say
acceleration due to gravity is the same and they’re both
after five seconds.

Although Pat did a calculation here, he did not calculate
the final velocities of the two balls as Alex did. He hinted
that the explicit calculation was not necessary to his rea-
soning when he said, ‘‘if you wanted to attack it on paper
clearly’’ and ‘‘I would realize that. . . without actually
writing out the subtraction of the equations.’’ Pat used
the written work to mathematically communicate his rea-
soning: the ‘‘at’’ terms are identical for both balls and will
cancel out when calculating the difference in final speeds.

C. Analysis: Pat’s solution displays greater
mathematical sense making

Alex’s systematic solution follows the problem-solving
steps described in common physics textbooks [1,2]. She
decided which equation to use, drew a picture to organize
the relevant information, substituted the known quantities
in the equation, and solved for the unknown to arrive at the
answer. She did connect the variables to their physical
meanings. For example, she interpreted the symbol v as
the physical concept of speed. However, she used the
equation as a computational tool, where known values
are plugged in to compute unknown values. She showed
no evidence of making conceptual sense of the equation as
a whole.
By contrast, Pat’s solution, though messier and harder to

parse, relies on conceptual reasoning that allowed him to
minimize calculations. More importantly, his solution con-
nects mathematical formalism (the equation v ¼ v0 þ at)
to that conceptual reasoning—in this case, the idea that if
two things (like velocities) undergo the same change, the
difference between them stays the same. Whereas Alex
connected conceptual interpretations to mathematical for-
malism at the level of individual variables, Pat connected
his conceptual reasoning to the equation as a whole. Pat
saw this conceptual idea as applicable partly because of the
presence in his reasoning of certain mathematical elements
such as the linearity of the equation in time and the equality
of the slopes.

FIG. 2. The written component of Pat’s think-aloud solution to
the two balls problem.
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In addition to differences in which aspects of the
equation Alex and Pat physically interpret (the individual
variables versus the equation as a whole), the two students
also differ in when they make their interpretations. Pat’s
solution, unlike Alex’s, involves blended processing, a
blending of conceptual meaning with mathematical for-
malism during the processing of mathematical equations to
reach a solution. As argued above, this blended processing
is a form of mathematical sense making and hence a
component of expertise in quantitative problem solving.
However, this component is not reflected in problem-
solving rubrics, as we now show.

V. RESULTS: CURRENT RUBRICS FAIL TO
DISTINGUISH BETWEEN PATAND ALEX

In this section, we assess Alex’s and Pat’s solutions to
the two balls problem using the rubric developed by
Docktor and Heller [3]. In the appendix, we use the rubric
developed by Heller, Keith, and Anderson [9]. In both
cases, Alex and Pat receive similar scores.

Using the Docktor and Heller rubric, for each of the five
coding categories, we will quote the description of the
category and then grade Alex’s and Pat’s solutions on a
scale of 0–5 within that category, or NA(S) if that step was
not necessary for the solver. Where appropriate, we have
assigned a range of scores. The categories are problem
description, physics approach, specific application of phys-
ics, mathematical procedures, and logical progression. In
addition to the instructions contained in [3], we have used
examples from Docktor’s dissertation [14] (pp. 299–303)
and the training materials contained within the dissertation
as guides for our rubric scoring.

A. Useful description

Category description: ‘‘Useful Description assesses
a solver’s process of organizing information from
the problem statement into an appropriate and useful
representation that summarizes essential information
symbolically, visually, and/or in writing. . . A problem
description could include specifying known and
unknown information, assigning appropriate symbols
for quantities, stating a goal or target quantity, a sketch
or picture of the physical situation, stating qualitative
expectations, an abstracted physics diagram, drawing a
graph, defining coordinate axes, and/or choosing a
system’’ (Docktor and Heller [3], p. 5).

Alex scores a 4 or NA(S)—her description of the prob-
lem is ‘‘useful but contains minor omissions or errors’’
(p. 19 of [3]). She started by organizing all the given
information in a sketch of the two balls. Though she did
not explicitly put in symbols for the quantities she labeled,
her verbal response shows that she understood what vari-
able she was labeling. She did initially make an error in

labeling the initial speed of the dropped ball as ‘‘9.8.’’
However, she quickly crossed this out and instead provided
the acceleration of the ball (‘‘10’’), immediately after
doing so for the thrown ball. What does remain in error
for her useful description, however, are the units attached
to the acceleration of the dropped ball (m=s instead of
m=s2). This error, however, does not propagate to the final
solution. For this error, she could receive a 4. Alternatively,
the grader could decide that Alex simply did not require a
complete technically correct description, since her subse-
quent solution was correct. In this case, Alex would receive
NA(S) for useful description [74].
Pat receives an NA(S) for this category, because he

solved the problem correctly without an explicit descrip-
tion of the problem. Namely, when given the problem, he
jumped into looking at the equation instead of first writing
out the known and unknown values or explicitly describing
the physical situation.

B. Physics approach

Category description: ‘‘The Physics Approach assesses
a solver’s process of selecting appropriate physics con-
cepts and principles to use in solving the problem. Here
the term ‘‘concept’’ is used to mean a general physics
idea, such as the general concept of vector or specific
concepts such as momentum and velocity. The term
’principle’ is used to mean a fundamental physics rule
or law used to describe objects and their interactions,
such as conservation of energy or Newton’s third law’’
(Docktor and Heller [3], p. 5).

A grader might give both Alex and Pat a 5 in this
category. Both of them chose the appropriate equation to
determine the final velocity of an object accelerating with a
constant acceleration, likely supported by the previous
interview question specifically focusing on that equation.
Furthermore, all of the additional concepts that Pat identi-
fied as relevant (e.g., first differences, rates of change, and
accelerating reference frames) can be applied correctly and
productively to this problem. Alternatively, one might give
both Alex and Pat NA(Problem) for this part. Although we
did not instruct students to use the velocity equation in
solving the two rocks problem, it was cued up by the
previous interview prompt, and hence students did not
really need to decide which ‘‘physics approach’’ to use.

C. Specific application of physics

Category description: ‘‘Specific Application of Physics
assesses the solver’s process of applying physics con-
cepts and principles to the specific conditions in the
problem. Specific application often involves connecting
the objects and quantities in the problem to the appro-
priate terms in specific physics relationships. . . This
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category separates the identification of appropriate
principles and concepts in the Physics Approach from
the actual application of those principles to the specific
conditions in the problem’’ (Docktor and Heller [3],
pp. 5 and 6).

Alex and Pat both score a 5 in this category. Both
correctly connected the variables in the velocity equation
(v, v0, a, and t) to the conditions in the two balls problem
where needed.

D. Mathematical procedures

Category description: ‘‘Mathematical Procedures
assesses the solver’s process of executing the solution
with respect to selecting appropriate mathematical
procedures and following mathematical rules to obtain
target quantities’’ (Docktor and Heller [3], p. 6).

Alex scores a 5 here. Alex correctly calculated the final
velocity of each ball and then correctly subtracted the two
values to obtain the difference.

Pat’s scoring here is more complicated. In the first
parts of his solution, Pat arrived at an answer in two
different ways without explicit mathematical calculations
(‘‘. . . if the first differences are the same then the initial
difference between the two speeds should not change’’).
This could be scored NA(S) or a 5, depending on
whether the grader counts the formal mathematical
components of Pat’s blending of conceptual and formal
mathematical reasoning to be ‘‘executing . . . mathemati-
cal procedures.’’

However, when he finally wrote out the velocity equa-
tion for both balls, plugging in the values of v0 for both, he
accurately found the difference in final speeds of the two
balls. For this mathematical calculation, Pat would receive
a 5. For comparison purposes, we will score Pat a 5 in
this section, because even though explicit mathematical

procedures were not central to his reasoning, they were
applied correctly when used.

E. Logical progression

Category description: ’’[Logical Progression] checks
whether the overall problem solution is clear, focused,
and organized logically. The term ‘‘logical’’ means that
the solution is coherent (the solution order and solver’s
reasoning can be understood from what is written),
internally consistent (parts do not contradict), and exter-
nally consistent (results agree with qualitative physics
expectations)’’ (Docktor and Heller [3], p. 6).

Alex would score either a 4 or 5. Overall, her solution is
clear and systematic. Her diagram highlights what she
thinks is relevant in the problem situation, and her verbal
utterances suggest that she had a clear plan of computing
the two final velocities and subtracting one from the other
to get the difference, which is an appropriate solution. Her
solution does not seem qualitatively ridiculous, compared
to typical values in the problem. Although she did make an
error in writing out the initial velocity of the dropped ball,
she remedied this by turning it into an acceleration, and her
end product (verbal and written) does not include that
error. Her correction, however, came without explanation,
and her reasoning about whether ‘‘9.8’’ is the initial veloc-
ity or ‘‘10’’ is the acceleration thus seems inconsistent or at
least unclear. If a point had already been taken off for this
in the useful description section, a score of 5 would be
given here so as not to double count this error. If NA(S) had
been given in the useful description section, 4 points would
be given here [74].
Pat also scores either a 4 or 5. Although a ‘‘cleaned-up’’

restatement of his original solution is logical and consis-
tent, his first solution is hard to follow, because of some
initially undefined terms (i.e., first differences) and lack of
explicit calculations. So, he loses points for clarity, but not

TABLE I. Pat and Alex score similar on the Doctor and Heller [3] rubric. Summary of scores on rubric categories.

Category (from Docktor

and Heller) Alex’s score Pat’s score Justification for deductions

Useful Description 4 or NA(S)a NA(S) Alex first wrote that the speed of the dropped ball is 10 m=s.
Pat did not require a useful description in his solution.

Physics Approach 5 or NA(P) 5 or NA(P)

Specific Application of Physics 5 5

Mathematical Procedures 5 5

Logical Progression 4–5a 4–5 Alex’s solution was not consistent with her saying that

the initial speed is 10 m=s.
Pat’s first solution is hard to follow, because of some

initially undefined terms and lack of explicit calculations.

aAlex loses 1 point, either in Useful Description or in Logical Progression.
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a significant amount since his eventual explicit calculation
is clear.

F. Coding summary

As Table I shows, Docktor and Heller’s rubric awards
approximately the same scores to Pat’s and Alex’s solution
in each category. The 1992 rubric of Heller et al. produced
similar results (see Table II in the appendix). We recognize
that other graders using this rubric may assign scores
differently. Even so, we cannot imagine an application of
this rubric that gives Alex and Pat significantly different
scores.3 More importantly, we cannot imagine an applica-
tion of this rubric that rewards Pat for blending conceptual
and formal mathematical reasoning during the mathemati-
cal procedures by giving him a higher score than Alex in
that category.

Most of the students interviewed, like Alex and Pat, had
little difficulty in solving the two rocks problem correctly.
One could argue that this problem was too simple for us to
expect to see large differences across students’ work. We
argue, however, that even on this ‘‘simple’’ problem, there
is an important difference in expertise between Alex’s and
Pat’s solutions, and the fact that their rubric scores are
similar (on codable categories) is evidence that current
rubrics are not sensitive to the opportunistic use of blended
processing. Even if the problem were more difficult and
current rubrics did yield different scores for the two
students, it would not be for the reason we argue for in
this paper. Our main point is that, on either ‘‘simple’’ or
‘‘difficult’’ problems, current rubrics are not sensitive to
the expertise reflected by blended processing.

VI. DISCUSSION

In this section, we first address some challenges to the
validity and relevance of our results. Then we discuss
implications for researchers and instructors.

A. Considering possible counterarguments

A skeptic could argue that our result is only marginally
relevant for PER because Pat’s solution is idiosyncratic; we
simply should not expect a problem-solving rubric to
‘‘see’’ his emerging expertise, any more than we expect

the math SATs to ‘‘see’’ the difference between the top
math student in a high school and a true math prodigy.
We acknowledge that the details of Pat’s solution

(e.g., ‘‘first differences’’) are idiosyncratic; however,
blending conceptual and formal mathematical reasoning
is common among ‘‘good’’ physics students, although it
may not manifest itself in graded class work (like home-
work and exams). For instance, posing difficult physics
problems to pairs of students enrolled in a third-semester
physics course for engineers at high-ranked State
University, Sherin [63] found that most of them blended
intuitive conceptual knowledge and formal mathematical
knowledge, drawing on knowledge elements that he called
symbolic forms.
A symbolic form is a blend of a conceptual schema with

a symbol template. A conceptual schema is a simple and
intuitive idea about the physical situation. Two examples of
conceptual schemata provided by Sherin are (i) two factors
competing with each other, like an airplane engine com-
peting with a strong headwind, and (ii) a whole consisting
of multiple parts (e.g., conceptualizing the airplane’s total
body as composed of the wings, the cockpit, the hull, etc.).
A symbol template is the general ‘‘form’’ of an algebraic
equation or expression, without attending to the specific
variables or terms. For example, for the equation Ffriction ¼
Fpush, which might describe pushing a box at constant

velocity, the symbol template is h ¼ h. Alternatively,
the first law of thermodynamics, �E ¼ QþW, has a
symbol template ofh ¼ hþh. It is the blending of these
two elements, a conceptual schema and a symbol template,
that constitutes a symbolic form. For example, the baseþ
change symbolic form combines the conceptual schema
that the amount you end up with is the amount you start
with plus the amount you gain with the symbol template
h ¼ hþ �. Other researchers have also used symbolic
forms in modeling how students translate between
mathematical solutions and physical understanding
[64,65,75,76].
In other work, we argue that Pat used this baseþ change

symbolic form when explaining the equation v ¼ v0 þ at;
he linked v0 to the amount (of speed) you start with and at
to the amount (of speed) you gain or lose, and hence their
sum to the amount (of speed) you end up with. We argue
that the use of symbolic forms-based reasoning is part
of the blended processing Pat does in solving the two
balls problem, as discussed above. In doing so, Pat was
not idiosyncratic; 4 of the 13 students we interviewed
exhibited blended processing when solving the two ball
problems and 7 of the 13 interviewed students used sym-
bolic forms-based reasoning when explaining the velocity
equation [71].
In summary, the rarity of Pat-like reasoning on students’

written work may stem more from how physics courses
encourage students to formulate and present their solutions
than from students’ inability to blend conceptual and

3Even for the three initial disagreements of the independent
scores by Hull and Elby and by Kuo, the scores were still close.
On two of the disagreements, the differences were within one
point: Hull and Elby had given Alex 3 or 4 on Logical
Progression, whereas Kuo had given Alex a 4 or 5. Also, Hull
and Elby had given Pat a 5 on Logical Progression, whereas Kuo
had given 4 or 5. The third disagreement was on whether NA(S)
was an appropriate code. Hull and Elby had given Pat a 2 or 3 on
Useful Description, whereas Kuo had given NA(S). Most im-
portantly, however, is that the reasons for these differences in
scoring were not related to our central issue: the blended
processing that we see in Pat’s solution.
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formal mathematical reasoning. Of course, many students
need more instructional support than Pat does to excel at
such blending. But that is our point: helping students learn
to blend conceptual and symbolic reasoning throughout the
solution should be an important target of problem-solving
instruction, because it is a component of quantitative
problem-solving expertise that builds on knowledge stu-
dents already possess (intuitive conceptual schemata and
basic algebraic symbol templates).

In response, a skeptic could acknowledge that helping
students blend conceptual and symbolic reasoning during
mathematical processing is a worthy goal but not a feasible
one; maybe average physics students cannot be taught this
sophisticated skill, given the constraints typical of intro-
ductory physics courses. PER has a long record, however,
of finding ways to help average students do things that only
top students do in traditional courses [77,78]. In the con-
clusion below, we discuss in more detail the feasibility of
instruction that targets blended processing.

In this section, we emphasize the importance of assess-
ment in such instruction. Just as University of Washington
Tutorials succeed partly because exams reward the deeper
conceptual understanding taught by Tutorials [79], and just
as the problem-solving instruction of Heller et al. succeeds
partly because exams reward students for citing the physi-
cal principles they are using to solve a quantitative problem
[9], instruction targeting blended processing will work best
if students get rewarded for such reasoning within the
framework of their physics course. That is why the rubrics
used by researchers—and, ultimately, instructors—need to
reward blended processing if we hope to help more stu-
dents reason like Pat.

B. Options for enhancing assessment rubrics

Before discussing how problem-solving rubrics might
be changed, we want to emphasize that the Docktor and
Heller rubric is very good at what it is designed to do.
It emerges from previous research in problem-solving
expertise and improves upon other, less nuanced assess-
ment schemes. The rubric looks at more than just final
answers, focusing primarily on problem-solving processes
(e.g., on whether a student starts with an understanding of
the physical situation and translates from that physical
description to a mathematical representation).

At the same time, Docktor and Heller recognize a
tension and trade-off between a rubric’s ability to be
applied broadly and its ability to evaluate the full range
of problem-solving processes, such as metacognition and
epistemology. We echo this tension but also point out,
in particular, one specific unexamined dimension of
problem-solving expertise: the opportunistic blending of
symbolic and conceptual reasoning during the mathemati-
cal manipulation stage. Given our case for the importance
of this aspect of problem-solving expertise, how can this
tension be resolved?

In an effort to build on the work of Docktor and Heller
and other assessment designers, we will consider two
possibilities: (i) continuing to use a ‘‘global’’ rubric (i.e.,
one meant to apply to all quantitative physics problems)
but modifying it, or (ii) adapting a global rubric to each
given problem, to create problem-specific rubrics that
reward the particular opportunities to demonstrate exper-
tise afforded by each problem.

1. Retain a global rubric

As Docktor and Heller (and others) discuss, retaining a
globally applicable rubric has huge advantages: perform-
ance on different problems can be compared, researchers
and instructors need to master just one scheme, and
instruction can consistently be tied to the rubric. To retain
these advantages, rubric creators could respond to our
argument in this paper by adding an element to the
mathematical procedures category, something like ‘‘when
productive, the student blends conceptual and formal
mathematical reasoning to minimize calculations.’’4

Although we see this addition as an improvement to
current rubrics, rubric developers have at least two good
reasons to reject it. First, there is no clean way to specify
when it is ‘‘productive’’ to blend conceptual and formal
mathematical reasoning. So, our proposed addition to the
rubric calls upon coders to use their professional judgment
about the productivity of a particular heuristic. This goes
against the intent of a rubric, which is to make the coding
as objective as possible, helping to ensure that different
coders reach the same conclusions. Second, blending
conceptual and formal mathematical reasoning is just one
of potentially many heuristics that a good problem solver
could apply to some problems but not others, such as
making appropriate approximations that simplify calcula-
tions, or considering limiting cases to decide on relevant
variables and evaluate solutions. Cluttering up the rubric
with a bunch of heuristics that do not apply to most
quantitative physics problems would make it unwieldy.
So, global rubric creators have good reasons not to

modify their rubrics in response to this paper. In that
case, the main point of our paper is about trade-offs. In
exchange for gaining the advantages of a global rubric,

4Although one may instead consider adding productive
blended processing as its own sixth category in the rubric, we
feel blended processing fits within mathematical procedures
because it is a ‘‘process of executing the solution’’ and ‘‘obtain-
ing target quantities’’ (Docktor and Heller [3], p. 6). Moreover,
we feel that part of expertise with mathematical procedures is
avoiding unnecessary calculations, as Pat demonstrates with his
blended processing. Last, our argument is that the mathematical
processing step should not be divorced from conceptual reason-
ing, as it is typically portrayed in rubrics. Thus, while including
productive blended processing as a sixth rubric category may be
successful in practice, it could be interpreted as reinforcing the
very separation of conceptual reasoning and formal mathemati-
cal reasoning that we argue against.
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researchers and instructors give up something else: a
systematic way to recognize and ‘‘reward’’ the heuristics
that good problem solvers opportunistically use on some
but not all problems, such as blending of conceptual and
formal mathematical reasoning during mathematical
manipulations. This trade-off is consequential: to the
extent that problem-solving rubrics guide instruction and/
or learning, failing to reward blended processing could
implicitly devalue the development of such reasoning.

2. Adapt a global rubric to create problem-specific rubrics

We see a preferable way of facing these trade-offs: treat
rubrics such as that of Docktor and Heller as adaptable
templates rather than as ‘‘finalized’’ rubrics. An example
will illustrate what we mean. Our research on students’
approach to the two balls problem suggests that Pat-style
blended processing is part of expert reasoning on that
problem. So, in creating a rubric for that problem, wewould
start with Docktor and Heller’s rubric but add ‘‘blending of
conceptual and formal mathematical reasoning’’ to the
mathematical procedures category. Other problems might
invite other adaptations to the global rubric. On some
problems, we might add ‘‘uses approximations to minimize
calculations.’’ On another, we might add ‘‘considers limit-
ing cases to narrow down which variables are relevant.’’ On
another, we might add ‘‘generates a non-standard but
appropriate representation that allows the student to
minimize calculations,’’ and so on. This approach has the
advantage of retaining all the insight contained in the
global rubric while also allowing researchers to recognize
and reward the heuristics that experts and good students
opportunistically use on some problems but not others.

Our adaptation approach to rubric creation also hasmany
potential disadvantages, which we now address. First, it
relies on professional judgment to decide which opportun-
istic problem-solving heuristics warrant inclusion in the
rubric for a given problem.However, this is a problem faced
by global rubrics as well. Graders have to make a judgment,
based on the guidelines of the rubric, in order to assign a
numerical score to student work. In addition to a five-point
scale, Docktor and Heller also provide the discretion to
attribute NA(Problem) and NA(solver)—basically, the
grader decides whether a problem needs to have, for ex-
ample, a useful description and even whether a particular
student needs to provide a useful description.

One example of how problem-specific rubrics could
minimize (though not eliminate) this lack of objectivity
is as follows: before deciding to include blending concep-
tual and formal mathematical reasoning during the mathe-
matical procedures step in the two balls problem rubric, we
would show Alex-like and Pat-like solutions to multiple
physics professors, probing if they consider Pat’s solution
to be more expert. To tap into professors’ views about
disciplinary expertise as opposed to their views about
how physics should be taught, we might ask them ‘‘based

on these solutions, which students would you most want
for a summer internship in your lab?’’ or ‘‘which students
would you recruit to grad school?’’ rather than ‘‘which
solution should be graded higher?’’
A second potential disadvantage of creating problem-

specific rubrics rather than using a global rubric is the
apparent need for laborious, problem-by-problem research,
like our exploration of the two balls problem. Such
research need not happen, however, if the researcher or
instructor delays finalizing the rubric until looking through
a representative sample of student responses. For instance,
on the two balls problem, if a sophisticated solution shows
up in that sample, the researcher or instructor could quickly
check with colleagues that the solution does indeed
reflect problem-solving expertise, and modify the rubric
accordingly.

VII. CONCLUSION

In this paper, we contrasted two students’ solutions to a
physics problem in order to argue that current problem-
solving rubrics do not reward an important component of
quantitative problem-solving expertise—the opportunistic
blending of conceptual and formal mathematical reasoning
during the mathematical processing stage. We argued that
researchers and instructors should adapt a global problem-
solving rubric to create problem-specific rubrics that cap-
ture the heuristics opportunistically used by experts and by
good students on particular problems.
Researchers and instructors could question the impor-

tance of our results on the following grounds: for most
students, the main instructional target needs to be learning
to think about physical principles at allwhen solving quan-
titative problems. By this argument, focusing on sophisti-
cated heuristics such as blended processing is toomuch, too
soon; such a focus becomes a feasible and worthwhile
instructional target only after students achieve basic com-
petence in core problem-solving skills such as thinking
through the relevant physical concepts, creating productive
representations to scaffold sense making, and translating
the physical description into equations. Under this view,
Docktor and Heller’s is a sufficient assessment tool.
We agree that, if researchers and instructors must choose

between focusing on these core skills or focusing on
blended processing, they should focus on the core skills.
We argue, however, that thinking conceptually while ma-
nipulating equations is something students can learn to do.
As discussed in this paper and in another article [71], we
have seen some students who already do this with the
velocity equation, in spite of not being explicitly rewarded
for such blending and in spite of not being taught this
behavior. If students received explicit instruction in com-
bining conceptual reasoning with the formalism of mathe-
matical manipulations, we suspect such reasoning would
become more prevalent. Expertise in problem solving in
physics and engineering is not limited to mathematical
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sense making at the start and end of the problem. If the
goal is to develop students’ problem-solving expertise,
problem-solving strategies and rubrics must similarly not
be limited.

Going further, we argue that, in problem-solving instruc-
tion centered around both conceptual and mathematical
sense- making (cf. Ref. [80]), helping students blend con-
ceptual and formal mathematical reasoning during mathe-
matical processing could support students’ development of
core problem-solving skills. First, such blending could
help a student rethink the relevant concepts involved in a
problem even after she has written down equations, thereby
increasing her focus on the underlying concepts. Second,
blended processing could support students’ creation of
representations. For example, as part of his blended
processing during the two balls problem, Pat talked about
how the velocities of both balls linearly increase at the
same rate. He did not draw the corresponding velocity
versus time graphs, but instruction could prompt students
to do so, in which case his blended processing would
support the generation of a productive representation for
the problem at hand.

Our point is that helping students blend conceptual and
formal mathematical reasoning during mathematical pro-
cessing could support rather than interfere with instruc-
tional efforts to develop students’ basic problem-solving
skills such as using conceptual reasoning at all, producing
useful representations, and translating between conceptual
and mathematical ideas. At the very least, the utility of
instruction that helps students blend conceptual and formal
mathematical reasoning during mathematical processing—
and hence the utility of problem-solving rubrics that
recognize and reward such blended processing, when it
is productive—is an empirical issue worth exploring.

We feel future research should be carried out to develop,
implement, and evaluate instructional strategies for help-
ing students learn to opportunistically blend conceptual
and formal mathematical ideas.
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APPENDIX: HELLER, KEITH,
AND ANDERSON RUBRIC

Heller, Keith, and Anderson [9] used the following six
categories to score students’ problem solutions (see p. 631):
(1) Evidence of conceptual understanding: Does the

physics description reveal a clear understanding of
physics concepts and relations? For example, does
the description indicate curvilinear trajectories for
projectiles or incorrect straight-line trajectories?
Does the solution employ unbalanced forces for an
accelerating object, or incorrect balanced forces?

(2) Usefulness of description: Is the essential informa-
tion needed for a solution present? For example,
do the force diagrams include all the relevant
forces? For collision problems, are the momentum
vectors both before and after an interaction clearly
indicated?

(3) Match of equations with description: Are the spe-
cific equations used consistent with the physics
described? For example, are vector equations used
to relate vector quantities? Are the described forces
appropriately included in specific force equations?

TABLE II. Pat and Alex were scored according to two rubrics. Summary of the Heller, Keith, and Anderson rubric assessment [9].
The Docktor and Heller rubric assessment is presented in the body of the paper.

Category (from Heller, Keith,

and Anderson, [9]) Alex (%) Pat (%) Reason for deductions

Evidence of Conceptual Understanding 100 70–100 Pat did not explicitly articulate information about

the direction of the balls’ acceleration relative to the

thrown ball’s initial velocity.

Usefulness of Description 80–100 70–80; 100a No evidence that Alex was thinking of the v0 for the

dropped ball as being zero (as opposed to just forgetting

to put it in).

Match of Equations with Description 100 100

Reasonable Plan 100 100

Logical Progression 80–100 100 Alex’s number substitution occurred before computing

an algebraic expression for the difference

of the two velocities.

Appropriate mathematics 100 100

Overall Score 93–100 95–97

aPat must lose points for the reason above. However, if Pat did not receive a 100% in the first category, he receives a 100% in the
second category to avoid double counting.
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(4) Reasonable plan: Does the solution indicate that
sufficient equations were assembled before the alge-
braic manipulations of equations were undertaken?
Does the solution include an indication of how to
combine equations to obtain an answer?

(5) Logical progression: Does the mathematical solu-
tion progress logically from general expressions of
physics principles to a problem-specific formulation
using defined variables? Are numbers substituted
for variables only after an algebraic solution for
the unknown variable was obtained?

(6) Appropriate mathematics: Aside from minor
mistakes, is the mathematics used reasonable? Or
does the solution employ invalid mathematical
claims in order to obtain an answer (e.g., the mass
is small, so set m ¼ 1)?

The ratings for these six characteristics were equally
weighted in determining an overall score for the problem
(out of 100%).

1. Scoring Alex’s solution based on the Heller,
Keith, and Anderson rubric

(1) Evidence of conceptual understanding: Alex’s
solution reflects a clear description of the problem
situation. The picture she drew correctly depicts
the trajectories of the two balls and important
information about each ball is labeled. However, it
might be a bit confusing because she labeled the
speed as 2 m=s on the left ball but the acceleration
as 10 m=s on the right ball. However, in her numeri-
cal solution she used the ‘‘10’’ as an acceleration,
not as a speed. She treated the two balls as having
the same acceleration due to gravity. Hence, we
score her as 100% in this category.

(2) Usefulness of description: Alex identified the
accelerations of both balls, but only indicated the
velocity of one ball. Even though the other ball has
an initial velocity of zero, this knowledge does not
appear explicitly in her solution. Although her final
answer does not include the initial velocity of the
ball dropped from rest, she did not make clear how
she set up the problem, and hence we have no
evidence that she was thinking of the v0 for that
ball as being zero (as opposed to just forgetting to
put it in). On the other hand, her numerical solution
has no errors. So a strict coder might give her 80%
on this category, while a more lenient coder would
give her 100%.

(3) Match of equations with description: Alex scores a
perfect 100% in this category.

(4) Reasonable plan: Again, Alex scores a perfect
100%. She used the provided equation twice and
then clearly subtracted the two final velocities to
arrive at her answer.

(5) Logical progression: This is perfect with the excep-
tion that she substituted numbers before computing
an algebraic expression for the difference of the two
velocities. On the other hand, her solution was rely-
ing on computing each velocity separately, and she
did write down the equation for that in symbols
before putting in numbers (no further algebra was
needed for her approach). So a grader who is strict
about computing a symbolic expression might
award her 80% in this category; a more lenient
grader would award her 100%.

(6) Appropriate mathematics: Perfect (100%).
Averaging Alex’s scores yields a score of 93%–100%.

2. Scoring Pat’s solution based on the Heller, Keith,
and Anderson rubric

(1) Evidence of conceptual understanding: Pat actually
solved the problem in myriad ways, some of which
are more correct than others. However, to give him
the benefit of the doubt, we will look only at the
parts that would give him the best score. Although
Pat made it clear that he is thinking about balls
accelerating, and even accelerating at the same
rate for the same time, he did not explicitly express
an understanding that the acceleration is in the same
direction as the starting velocity of the one ball,
which is information that a picture would convey.
This is a pretty important point, so he could be
scored as low as 70%. However, it could be argued
that this point was so obvious to him that he did not
feel a need to say it explicitly and that his problem
solving reflects this understanding, so he could get
the maximum credit of 100%.

(2) Usefulness of description: Even giving him the
benefit of the doubt, using this rubric, he must lose
points for not being explicit about the relative direc-
tion of the acceleration. Everything else needed is
presented, however, so he would receive 70%–80%.
Note that the authors write that their rubric is careful
not to take off points twice. Thus, if Pat was penal-
ized in part 1, he would not be penalized again here.

(3) Match of equationswith description: Perfect (100%).
(4) Reasonable plan: Perfect (100%).
(5) Logical progression: Perfect (100%).
(6) Appropriate mathematics: Perfect (100%).
Because Pat did not explicitly articulate, either in writ-

ing or in speaking, the direction of the balls’ acceleration
relative to the thrown ball’s initial velocity, and because
this information is critical in correctly solving the problem,
Pat would score between 95% and 97%, only marginally
higher than the bottom of Alex’s score range and below the
top of Alex’s score range. We argue that Pat clearly per-
formed more expertlike than Alex and that rubrics should
identify this.
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