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We discuss common difficulties in upper-division electricity and magnetism (E&M) in the areas of

Gauss’s law, vector calculus, and electric potential using both quantitative and qualitative evidence.

We also show that many of these topical difficulties may be tied to student difficulties with mathematics.

At the junior level, some students struggle to combine mathematical calculations and physics ideas, to

account for the underlying spatial situation when doing a mathematical calculation, and to access

appropriate mathematical tools. We discuss the implications of our findings for E&M instruction at the

junior level.
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I. INTRODUCTION

There is a wealth of detailed knowledge about specific
student difficulties in physics at the introductory level (see
McDermott and Redish [1] for a good summary). However,
research into student difficulties at the upper division is just
beginning [2–11]. At the University of Colorado (CU) we
are engaged in a multiyear project to transform some of our
upper-division courses through action research [12–14],
including identification of student difficulties, creation of
learning goals for the courses, and integration of student-
centered instruction [9,10,15–22]. As part of this broader
goal, we have been documenting student difficulties in the
first semester of our junior-level electricity and magnetism
(E&M) course sequence for the past six semesters [9].

In upper-division physics courses, including E&M, it
becomes increasingly important for students to use sophis-
ticated mathematical calculations and concepts and inte-
grate them with physical understanding. We have observed
that achieving this math-physics integration consistently is
a difficult and slow process for many students. Thus, we
aim to document an initial list of common student
difficulties with the goal of providing resources for im-
provement of instruction and for future research. When
identifying such difficulties we define mathematics in a
broad sense as encompassing not just calculations (algebra,
performing integrals, taking derivatives) but also including
thinking about geometry, symmetry, vector calculus, and
integrals (both vector and scalar) and the interpretation of
calculations.

In the present investigation, we focus on student reason-
ing and ideas closer to the scale of concepts rather than the
more fine-grained ideas of resources [23–25]. Concepts are

typically described as stable well-articulated ideas students
have about how the world works, such as that current gets
used up in a circuit. Resources, on the other hand, are more
general and finer grained, such as ‘‘more cause leads to
more effect.’’ Resources can be put together in different
combinations by a student depending on context; for in-
stance, more push means more motion. In this paper our
focus is most closely aligned with ‘‘concepts,’’ since we
believe that by looking at the ways students talk about and
employ mathematical ideas in the context of our upper-
division E&M course, we may identify some persistent
behaviors and common difficulties which will prove valu-
able in ongoing development of instructional strategies and
curricular materials. We seek to identify student responses
and the corresponding student difficulties that appear across
common classroom, homework, and exam problem-solving
contexts, and which are stable across time. Rather than
attempting to provide an exhaustive survey of conceptual
difficulties in junior E&M, this work focuses on the mathe-
matical difficulties that were most prevalent across students
and contexts within our observations.
Other research studies have investigated student diffi-

culties with mathematics in other upper-division courses.
In an upper-level thermodynamics context, Meltzer has
observed that students have difficulty connecting P-V
diagrams of different processes to the work done by the
system during the process [5]. Pollock et al. further showed
that most students who answer these P-V diagram ques-
tions incorrectly are having trouble connecting an integral
to the spatial idea of the area under a curve [4]. In an upper-
level thermodynamics course, Loverude discusses student
difficulties with probability concepts, which are related to
student difficulties accessing an appropriate tool for solv-
ing the problem [6]. In an intermediate mechanics course,
Hayes and Wittmann observed students having difficulty
combining physics ideas with mathematical calculations
when choosing plus and minus signs to set up F ¼ ma
calculations [8]. There is also evidence that students have
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trouble interpreting equations in an upper-division chem-
istry course [26].

Bing and Redish suggest that some of these mathemati-
cal difficulties may arise from issues of epistemological
framing, which cause students to selectively attend to
particular elements of their math knowledge while ignor-
ing other (potentially more useful) elements [27]. Dray and
Manogue point out that some student struggles could be
tied to a gap between how mathematicians, who teach the
math prerequisites for physics classes, and physicists think
about math [28,29]. Redish also observes that even in
physics classes we often focus students’ attention on the
process of solving mathematics and do not emphasize
model making and interpreting results [30].

With this prior work in mind, we focus here on an inves-
tigation of underlying mathematical issues demonstrated by
students in a variety of contexts within six semesters of one
upper-division electromagnetism course. In this paper we
address three research questions, motivated by our interest
in providing resources for improvement of instruction, and
as a base for future research: (1) Do we find evidence of the
same kinds of challenges in mathematics and math-physics
connections as has been observed in lower-division (e.g.,
McDermott and Redish [1], Sec. IV.D, and others [31–34])
and other upper-division physics contexts? (2) What are
some common, recurring ideas and difficulties rooted in
mathematics underpinning the canonical topical areas of a
typical first upper-division electromagnetism course?
(3) Given this preliminary catalog of student difficulties,
can we categorize these difficulties?

In these studies, we concentrate on three topical areas:
Gauss’s law, vector calculus, and electric potential. These
areas span a significant portion of a canonical upper-
division E&M course and form a rich starting point for
observing student use of, and issues with, math and math-
physics connections in this junior-level course. We present
evidence in each of these areas that there are indeed
common math-physics difficulties which can be identified
and categorized. These data then suggest several categories
of common difficulties with mathematics from students at
the junior level:

� Students have difficulty combining mathematical cal-
culations and physics ideas. This can be seen in
student difficulty setting up an appropriate calcula-
tion and also in interpreting the results of the calcu-
lation in the context of a physics problem. (However,
students can generally perform the required
calculation.)

� Students do not account for the underlying spatial
situation when doing a mathematical calculation.

� Students do not access an appropriate mathematical
tool. Students may instead choose a mathematical
tool that will not solve the relevant problem, or may
choose a tool that makes the problem too complex for
the student to solve.

II. COURSE DESCRIPTION AND METHODS

For this study we documented student difficulties in the
first semester of a two-semester E&M sequence at CU.
This course is offered every semester, uses Griffiths’ E&M
textbook [35], and typically enrolls between 35 and 60
students. The material covered in the first semester in-
cludes electrostatics and magnetostatics (the first six chap-
ters of Griffiths’ textbook). We have recently transformed
this course so that it includes many techniques based on
physics education research, such as peer instruction [36],
and weekly tutorials [37]. Of the six semesters we have
been collecting data on this course at CU, five semesters
are of the transformed implementation [15].
For the six total semesters at CU, the course has been

composed of, on average [38], 47%� 5% physics majors,
31%� 4% engineering physics majors, and has been
22%� 3% female. Students typically come into this
course with an average overall grade-point average of
3:12� 0:02. The small standard errors show that the dem-
ographics of this course are consistent across all six semes-
ters. There is, however, a small difference in demographics
between the fall and spring semesters of this course: spring
semesters tend to be larger and to be composed of more
physics majors and fewer engineering physics majors.
We employed a mixed methods approach in our re-

search, combining quantitative and qualitative [39] data
as described below. Mixed methodology is appropriate
because we seek student ideas that arise in multiple content
areas and across multiple data sources. It is also practical,
since we are performing action research integrated with
course transformation, and have access to student work, the
chance to observe students in course-related settings, but
limited resources to perform in-depth ethnographic studies
of students. We used emergent coding schemes [39] to
analyze student interviews as well as student written ex-
planations on exams and diagnostics. The specific student
difficulties that we focus on in this paper emerged from a
synthesis of the full set of data and observations. We chose
those difficulties that were prevalent, central to the course
learning goals, related to mathematics, and which had
sufficient evidence to warrant deeper analysis.
For each semester, we administered and analyzed results

from the Colorado Upper-Division Electrostatics (CUE)
diagnostic, a conceptual survey of electrostatics (and some
magnetostatics) designed to test learning goals that our
faculty value [17]. The questions are open ended and
graded with a detailed rubric for both correctness and
explanation. We also have CUE results for several E&M
courses at other institutions. We have, additionally, col-
lected midterm and final exam solutions and weekly con-
ceptually focused tutorial pre- and posttests. Midterm and
final exam scores listed in this paper come from grading by
a single grader using a detailed rubric created by us.
We have also taken extensive field notes during inter-

active lectures, homework help sessions, and tutorials.
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Both the homework help sessions and the weekly tutorials
are focused on students working in small groups, so are
ideal to observe student conversations and externalization
of student thinking.

Additionally, we conducted several sets of video-taped,
individual student interviews where students were asked to
solve E&M problems in a think-aloud protocol [40].
Interviews used a semistructured protocol which included
follow-up and clarification questions. Interviews include
three interviews in which students enrolled in a trans-
formed E&M 1 course were asked a series of questions
about Ampère’s law and Gauss’s law, four interviews in
which students who had completed a transformed E&M 1
course in the previous semester were asked a series of
questions about Gauss’s law followed by one question
about electric potential, and 11 interviews in which stu-
dents who were either currently enrolled in a transformed
E&M 1 course or had taken one recently took the CUE
diagnostic while thinking aloud with no interviewer inter-
vention. Think-aloud protocols were chosen because they
have the advantage of providing an opportunity to observe
student behavior similar to that in a relevant context (e.g.,
doing homework) and are able to target student responses
to an area of interest to us as researchers.

III. GAUSS’S LAW

Gauss’s law,
H
E � dA ¼ Qenc=�0, is commonly taught

in both introductory and upper-level physics courses. It has
been shown through student interviews and a diagnostic
exam that, in introductory physics courses, students
struggle with Gauss’s law [41]. Anecdotally, we find
most instructors do not expect that juniors taking an ad-
vanced course in electricity and magnetism will also have
significant difficulties with Gauss’s law. However, Singh
uses the same diagnostic exam to show that traditionally
taught upper-level students do have difficulties with
Gauss’s law similar to the introductory-level difficulties
[41]. Here, we follow up on these results and probe the
upper-division student difficulties further using interviews.
Using evidence from the CUE diagnostic [17], exam ques-
tions, and student interviews, we observe that in both
transformed and traditionally taught courses at CU even
the best juniors still struggle with aspects of Gauss’s law
and that many of these struggles appear to be connected to
the difficulties with mathematics mentioned earlier.

For reference when considering student difficulties, we
review the correct logic for using Gauss’s law. For Gauss’s
law to be directly useful one must (1) be able to determine
from the symmetry of the charge distribution what direc-
tion E points and on what variables E depends so that one
can (2) create a Gaussian surface on which E � dA is
known to be either constant or zero. Once such a
Gaussian surface has been created, one can then (3) solve
for E by pulling it out of the integral.

A. Quantitative evidence that students struggle

Singh presents evidence that both introductory and
upper-level students do poorly on a Gauss’s law diagnostic
which tests understanding of concepts important for
applying Gauss’s law: both score 49% postinstruction
(Nlower ¼ 541,Nupper ¼ 28). In contrast, graduate students,

who can be considered more expert, exhibit better mastery,
scoring 75% (N ¼ 33) [41].
We also see evidence of some students struggling with

Gauss’s law after junior-level E&M 1 in the results of the
CUE diagnostic. Of the 324 total students who took the
CUE after an E&M 1 course, 33% did not recognize a
radially symmetric problem as most easily solved with
Gauss’s law [see Fig. 1(a) for the full problem]. Of the
67% who correctly identified Gauss’s law as the easiest
solution technique, the average score for explanation of
why and how Gauss’s law was used was 59%. The expla-
nation score included points for specifying the correct
Gaussian surface as well as for explaining why using
Gauss’s law was appropriate, for instance, discussing
what symmetries are present in the problem.
In a second CUE question, involving a problem without

sufficient symmetry for Gauss’s law to be directly useful,
students make the opposite mistake, and misidentify direct
application of Gauss’s law as an appropriate technique [see
Fig. 1(b) for the full problem]. Of 324 students, 24%
incorrectly chose Gauss’s law as the easiest technique for
this problem, despite the fact that a Gaussian surface where
E � dA is constant or zero cannot be created. Overall, 46%
of the 324 students who took the exam made at least one of
these two mistakes related to Gauss’s law.
Students also revealed difficulties with Gauss’s law on a

midterm exam question asked in three different semesters
of E&M 1 at CU. This question was as follows:

Suppose I evenly fill a cube (length L on a side) with
electric charges. Then imagine a larger, closed cub-
ical surface neatly surrounding this cube (length 2L
on a side). A) Is Gauss’s law TRUE in this situation?
(Briefly, why or why not?) B) Can one use Gauss’s
law to simply compute the value of the E field at

FIG. 1. Illustrations from CUE diagnostic questions. Students
are asked not to solve the question, but to give ‘‘the easiest
method you would use to solve the problem’’ (half credit) and
‘‘why you chose that method’’ (half credit). (a) ‘‘A solid non-
conducting sphere, centered on the origin, with a non-uniform
charge density that depends on the distance from the origin,
�ðrÞ ¼ �0e

�r2=a2 . Find E (or V) at point P.’’ (b) ‘‘A charged
insulating solid sphere of radius R with a uniform volume charge
�0, with an off-center spherical cavity carved out of it. Find E (or
V) at point P, at a distance 4R from the sphere.’’
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arbitrary points outside this charged cube? (Don’t try,
just tell me if you could, and why or why not?)

In a recent semester of a transformed course, most
students correctly answered ‘‘yes’’ to the first part of the
question, with an average score for that part of 89%
including points for both answer and explanation
(N ¼ 59). However, on the second part of the question
students scored, on average, only 46%, including points for
both answer and explanation. Nearly a third of students
received no points at all for their answer to part (B) of this
question. Some common student responses will be
discussed below in Sec. III B 1.

B. Insight from interviews

In order to understand why upper-level students struggle
with Gauss’s law we conducted think-aloud interviews in
which four students who had completed an E&M 1 course
in the previous semester were asked a series of questions
about Gauss’s law.

Below we discuss several difficulties observed during the
course of these interviews and connect them to possible
student difficulties with mathematics. Because of the small
sample size of students interviewed (who all got A’s and B’s
in E&M 1), we do not attempt to generalize to the larger
population of upper-division E&M students. However, this
small-scale qualitative approach is complementary to the
larger-scale quantitative results provided by course exams
and the CUE and allows us to describe in detail some of the
possible difficulties of upper-division students.

1. Incorrect inferences about E based
on the flux and an inverse problem

Gauss’s law is more subtle mathematically than many
equations that students have encountered up to this point in
their education in the sense that it is an inverse problem.
Students are accustomed to problems in which it is possible
to use algebra to get the quantity of interest by itself on one
side of the equals sign. For Gauss’s law, the quantity of
interest, the electric field, is embedded inside an integral
and several steps of reasoning are necessary before the
integral can (sometimes) be replaced with an algebraic
expression. The similarly difficult nature of Ampère’s
law as an inverse problem is discussed by Manogue et al.
[42]. The inverse nature of Gauss’s law seems to cause
some student difficulties.

Two of the four students interviewed had the same
difficulty when addressing the problem of an unevenly
shaped insulator of uniform charge density, �. These stu-
dents incorrectly inferred from Gauss’s law that the electric
field at any point on a Gaussian surface inside the insulator
was determined only by the charge enclosed, ignoring the
distribution of the charge. Both students also did not
clearly distinguish between the electric field at a single
point on the surface and the flux through the entire surface
in their explanations. This failure to distinguish the two in

words may indicate that these students also do not clearly
differentiate the ideas of flux and electric field, which may
be partially leading to their struggle to correctly apply
Gauss’s law.
The first student claimed that

. . . the only thing that determines the flux out of it
[the Gaussian surface] is the total enclosed charge.
And so, if we took a sphere, and filled it completely
with a completely uniform charge density in a
spherical shape [draws an isolated solid circle with
arrow’s pointing outwards and spaced uniformly—
see (B) on the left side of Fig. 2], say, then we could
get a flux coming out of that area . . . ’cause then it
would be uniform.

When asked if the electric field would be the same for
the spherical Gaussian surface drawn inside the blob of
insulator as for the isolated sphere she had drawn during
her explanation, this student claimed ‘‘Yes. Because
Gauss’s law shows us that only the enclosed charge, um,
matters.’’ She proceeded to explain that this was the case
because ‘‘E field lines only start and end on charges’’ so the
lines from a point charge external to the Gaussian surface
will pass through ‘‘so the only contributions that matter are
the enclosed . . . charge contributions.’’ It seems that she
has inappropriately inferred that, because the flux depends
only on the enclosed charge, the electric field will be
uniform and radial on any spherical surface inside any
insulator with uniform charge density �. Here she is also
not specific about whether these contributions are to the
flux through the Gaussian surface or to the electric field at
an arbitrary point on the Gaussian surface.
Another student brought up the situation of an uneven

shape of constant � on his own when asked to give ex-
amples of situations where Gauss’s law is and is not useful
for finding E. He used the uneven shape as an example
where you could use Gauss’s law to find the electric field.

FIG. 2 (color online). Student drawing from Gauss’s law inter-
view. After drawing axes and the nonuniform blob of charge, the
student drew the left-hand Gaussian surface, (A), and explained
as detailed in the text. The student next drew the isolated sphere
of charge, (B), to help explain her point, followed by the right-
hand Gaussian surface, (C).
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He explained that ‘‘the E field . . . that passes through a
Gaussian surface is only dependent on theQ enclosed.’’ He
then uses this statement to justify that one can find E using
Gauss’s law for a Gaussian surface inside the shape:

On the inside, once again if it’s [� is] constant, then
that’s fine, because there’s . . . because it doesn’t
matter what the shape is looking like ‘cause we’re
not looking on the outside. We’re only looking . . .
it’s only dependent on the Q enclosed.

Here the student is not clear on what the ‘‘it’’ is that is
only dependent on the Q enclosed—he could be thinking
(correctly) about the flux, or (incorrectly) about the electric
field. This student later states that he thinks that E is the
same throughout a Gaussian surface inside this object, but
expresses some discomfort with his understanding, saying
‘‘’Cause if there’s Q on the outside, the charge, you know,
is making an E field as well . . . and therefore it must affect
the E field at that point [points to a point on the Gaussian
surface] as well. So I’m still . . . I’m still not really happy
with Gauss’s law.’’

That these students do not clearly articulate (or seem to
acknowledge) the difference between flux through a sur-
face and electric field at a point on the surface may indicate
that these students are not accounting for the underlying
spatial situation when using the mathematical formula for
the flux. Were these students thinking about the flux as the
sum of dot products of area vectors with the electric field
across some geometrical surface, it is unlikely that they
would confuse E and a surface integral involving E. A
similar student difficulty has been seen in the context of
Ampère’s law, where students do not interpret a line inte-
gral as a sum [9].

The incorrect inferences that these students make about
the electric field from Gauss’s law’s statement about flux
through a surface further indicate that they are not con-
necting the idea of the integral to a physical situation. The
difficulties are also similar to difficulties discussed by
Singh [41], and by Wallace and Chasteen in regards to
Ampère’s law [9]. In both cases, the authors describe
students incorrectly inferring that because the integral is
zero, the field in the integrand is zero as well. The students
we observe may also be using reasoning in which students
consider the right-hand side of an equation the cause and
the left hand side its effect [43]—in this case thinking that
Qenc is the only cause of the electric field on the Gaussian
surface, without thinking about the fact that the left-hand
side of the equation is an equation for flux rather than
electric field alone.

Our observations of these students discussing Gauss’s
law show that even students who earn A and B grades in the
course may exhibit these difficulties after an E&M course.
It is notable that the two students discussed above were top
students in their E&M course; both received above 95% for
their overall course score. The problem of confusing the
electric field and flux, or making incorrect inferences in the

context of an inverse problem where E cannot be solved
for algebraically, persists even among the best upper-level
students.
We also occasionally observe a more basic problem with

the inverse nature of Gauss’s law. As is common for
introductory students [41,44], a few upper-level students
use Gauss’s law in a rote way by just solving EA ¼
Qenc=�0 without considering symmetry or visualizing the
electric field. This type of solution was seen in one inter-
view (out of four that were focused on Gauss’s law), and in
work for solutions to the exam problem involving a cube,
described in Sec. III A. In 13 out of 59 exams students say
Gauss’s law can be used to find E simply, though in none
do any students write specifically EA ¼ Qenc=�0; when
this exact question was repeated on a second midterm
(given to the same students), 5 out of 51 students said
Gauss’s law can be simply used, and two of these clearly
use logic equivalent to EA ¼ Qenc=�0.
These students are not using an appropriate tool to think

about this integral. In a purely mathematical context, it is
likely that these students are aware of how to treat
functions inside integrals since they have successfully
completed a course in multivariable calculus. However,
for some reason, in the context of Gauss’s law, they do
not apply this knowledge. It may be that students are
applying an algorithm they have used successfully in the
past, rather than first visualizing the problem physically or
geometrically. This would be consistent with the idea that
the difficulty these students are experiencing is one of
epistemological framing [27] where these students are
framing the problem as a calculation, when to correctly
solve it, they must first frame it as a physical mapping. A
similar difficulty has been seen for students calculating the
magnetic field using Ampère’s law: some students try to
solve problems without first visualizing the magnetic field
or drawing an Ampèrian loop [9].

2. Difficulty with symmetry arguments

In order to create a proper Gaussian surface, one must
use the symmetry of the problem to determine what direc-
tion the electric field points and on which variables it
depends. Many of the students interviewed could make
these predictions in highly symmetric situations, but could
not justify one or both of the direction or the dependence of
the electric field.
In general there are two categories of symmetry argu-

ments that experts use to justify the direction and the de-
pendence of the electric field: geometrical symmetry
arguments and superposition symmetry arguments. In
geometrical symmetry arguments, the logic relies only on
the geometry of the charge distribution. One student in the
set of interviews about Ampère’s law and Gauss’s lawmakes
such an argument when describing the electric field around a
long charged cylinder with � ¼ Ks, where s is the radial
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cylindrical coordinate: ‘‘If you rotate the cylinder, theE field
should be the same. So there can’t be any � dependence,’’
and ‘‘if you go up and down it looks the same’’ so there
cannot be any z dependence. This argument can be extended
to include the direction of the electric field by arguing that an
infinite cylinder looks the same looking in the þẑ direction
as in the�ẑ direction, so that an electric field pointing in the
ẑ direction would be contradictory. An analogous argument

can be made to eliminate a �̂ component.
The second type of symmetry argument, based on su-

perposition and Coulomb’s law, can be employed to de-
duce the direction of the electric field. For instance, when
considering the electric field at an arbitrary point above an
infinite line charge, one can imagine that, for every small
piece of the line to the right of the point of interest, there is
another small piece of the line at the same distance from
the point on the left, and that when the electric field from
these two pieces are added at the point of interest, the
horizontal components cancel, leaving only a radial com-
ponent. In Griffiths’ E&M textbook [35], this type of
superposition symmetry argument is fairly common; it is
made directly in a worked example for an infinite line
charge, and several problems are included where this tech-
nique greatly simplifies the solution—for instance, the
electric field on the symmetry axis of rings, squares, and
disks of charge ([35], pp. 62–64). On the other hand,
Griffiths models a geometry-based symmetry argument
only once ([35], p. 70) in the context of Gauss’s law (and
this in a footnote) and the other Gauss’s law examples
simply state the direction with statements like ‘‘by
symmetry’’ or ‘‘symmetry dictates’’ ([35], p. 73).

Perhaps it should not be surprising, then, that the stu-
dents we observe almost exclusively make superposition
symmetry arguments, even when these arguments are un-
productive. All four students who were asked about an
infinite line of charge discussed only the lack of a z
component and made superposition symmetry arguments.
When asked directly about why there was no z dependence
of the electric field in this situation, three of the students
used a superposition symmetry argument that horizontal
components ofE cancel and leave only radial components,
despite the fact that they had been asked about dependence,
not direction. One of these students also tried to use a
similar superposition argument to explain why the electric
field points radially outward from a sphere. While this
argument is possible, the student did not succeed, and
from an expert’s perspective, it may be easier to make
this argument based on geometry rather than superposition
of electric fields. Superposition symmetry arguments are
the predominant type of symmetry arguments students
used in our interviews.

Students also used superposition arguments when not
applicable. For instance, one student discussed the use of
Gauss’s law near an unevenly shaped insulator with
uniform �. He drew a Gaussian surface close to the surface

of the object with the same shape as the object, and was
trying to decide whether it was possible to use Gauss’s law
on that surface. He explains that he is trying to think what
the electric field looks like by mentally adding up the
contributions from the different parts of the shape. This
is a difficult task, and the student ended up incorrectly
deciding that the electric field was perpendicular to the
Gaussian surface and uniform on the Gaussian surface. It is
possible that, as in the case just described, students’ misuse
of superposition arguments when geometrical symmetry
arguments are appropriate is leading to student difficulties
figuring out when to apply Gauss’s law in novel situations.
Intriguingly, none of the students interviewed made a

complete argument for both the dependence and the direc-
tion of the electric field—perhaps because completely
determining both is difficult without employing some
geometry-based symmetry arguments.
Manogue et al. point out in the context of Ampère’s law

that even immediately after explicit instruction in expert-
like geometrical symmetry arguments, students struggle to
recreate them when solving a new problem [42]. This may
indicate that these geometrical symmetry arguments are
difficult and nonintuitive even for upper-division students.
The reliance of these students on superposition argu-

ments to the near exclusion of geometry arguments when
thinking about symmetry is an example of students not
using appropriate mathematical tools and not being able to
set up a problem given a physical situation. To properly set
up and justify the approach to many Gauss’s law problems,
using both types of symmetry arguments is essential; there-
fore, neglecting one type of symmetry argument precludes
using the appropriate tools for the solution.

IV. VECTOR CALCULUS

In junior-level E&M using vector calculus to understand
and work with the electric and magnetic fields is critical.
Students must regularly use vector derivatives and vector
integrals, including line, surface, and volume integrals.
Perhaps, even more importantly, one of our main goals
for this course is for students to understand these opera-
tions as physical expressions about vector fields in space,
rather than as abstract mathematical calculations. We dis-
cuss below student difficulties we have observed with
vector calculus. We first discuss students struggling with
the basic idea of a vector field, then discuss student diffi-
culties with vector derivatives, and finally address student
difficulties with vector integration. Many of these difficul-
ties are examples of students not accounting for the under-
lying spatial situation when performing calculations and
not using appropriate mathematical tools.

A. Vector fields

We observe that several students at the upper division
have trouble with the vector nature of a vector field. We
find that some students do not simultaneously attend to
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both the magnitude and direction of the vector, but rather
concentrate on one aspect at a time, sometimes switching
which aspect they attend to midproblem, or midinterview.
We see these difficulties, in particular, when students are
predicting the results of a sum of several vectors, or the
result of a line, surface, or volume integral in a vector field.
For instance, a student who received an A in E&M 1, and
was interviewed in one 60 min block, attended only to the
magnitude of the electric field when answering one inter-
view question, and attended to only the direction in a later
question. When answering the midterm question about a
cube described in Sec. III A, he thought only about the
magnitude of the electric field. In the context of this ques-
tion he explained that ‘‘In order for us to use this [Gauss’s
law], we need to find a surface that E is constant over this
entire surface.’’ He neglected to explain that the direction
of E compared to dA also needed to be the same every-
where on the surface, even when the interviewer probed
further by asking if there were any other criteria for the
usefulness of Gauss’s law. On the other hand, when asked a
superposition question from Singh’s Gauss’s law diagnos-
tic [41] later in the interview, he thought only about the
direction of the E field. The question asked was as follows:

Three identical point charges þQ are arranged in a
line as shown above. Points A, B, and C are along a
parallel line. You do not know the lengths L and d.
The three charges produce an electric field. Without
knowledge of L and d, what can you infer about the
electric field at points A, B, and C?[41]

In answering this question, the student only discussed
(and drew, as shown in Fig. 3) which direction the electric
field would point and neglected the fact that the electric
field would have different magnitude depending on the
distance from each charge. Later in this same question he
began thinking again about magnitude, when adding the
vectors from the three charges to get a total electric field
(far right of the figure).

This difficulty in simultaneously attending to both the
direction and magnitude of a vector field may again be an
example of students not connecting the math to the physi-
cal geometry—for these students, the concept of a vector
field as a vector with direction and magnitude at every
point in space is still somewhat tenuous and these students
struggle to consistently apply this concept.

B. Vector derivatives

In junior-level electricity and magnetism, students must
connect the vector derivatives (gradient, divergence, and
curl) to their physical meaning in order to better understand
Maxwell’s equations. All students entering junior-level
E&M 1 have some previous experience with vector deriva-
tives from Calculus 3, a required prerequisite taken in the
math or applied math departments. Students entering
E&M 1 can successfully calculate these derivatives in
Cartesian coordinates: When asked to compute the

gradient of ex cosðyÞ and cosðx2 þ y2 þ z2Þ as a pretest in
the first homework of the semester, students in two differ-
ent semesters of E&M 1 (N ¼ 90) scored on average 90�
3%. When asked to compute the divergence and curl of

îðx2 þ yzÞ þ ĵðy2 þ zxÞ þ k̂ðz2 þ xyÞ on the same home-
work, the same students scored on average 90%� 2%.
While students demonstrate calculational success, they
come into the course with less understanding of the physi-
cal meaning of these calculations: on the same pretest
homework the same students averaged 77%� 3% when
asked to identify which out of four drawn vector fields
‘‘have nonzero divergence somewhere’’ and which ‘‘have
nonzero curl somewhere.’’
The interpretation of these vector operations provides an

example of students not accounting for the underlying
spatial situation when performing calculations, and not
using appropriate mathematical tools. We will focus in
this section mainly on student thinking about divergence,
but have made similar observations about student thinking
about the gradient and curl vector operations.
The divergence has to do with the ‘‘sourceness’’ or

‘‘sinkness’’ of the vector field: it tells you if there is a
source or sink at the point where the divergence is calcu-
lated. In electrostatics, sources and sinks come from
electric charges, and the divergence of the electric field is

FIG. 3 (color online). Student drawing from interview.
Portions of the picture in red are from the question statement
which is reprinted with permission from Singh [41]. Dark gray is
the student’s drawing, and explanation of the student’s drawing
are black. After drawing electric field lines radiating outwards
from each charge, the student drew three vectors of equal
magnitude at each measurement point—one for the contribution
to the electric field from each charge. At this point he does not
attend to the magnitude of the vectors. To the right of that the
student then drew the sum of those vectors as the total electric
field. In this stage he attends to the magnitude of the vectors.

OBSERVATIONS ON STUDENT DIFFICULTIES . . . PHYS. REV. ST PHYS. EDUC. RES. 8, 010111 (2012)

010111-7



therefore related to the charge density, �: r �E ¼ �
�0
. A

more visual way to assess whether a particular point on an
electric field line drawing has nonzero divergence is to
draw a small closed surface in the field and determine if
all the electric field lines that enter the circle also leave the
circle. If this is true, the area inside is divergence free, if
not, there is divergence at some point inside the circle.

While an expert connects the math of divergence to the
spatial situation and to the physics of electric fields using
either the visual method described above orr �E ¼ �

�0
, we

find that students struggle with this idea in the context of
electrostatics. For instance, 51 students in a transformed
E&M 1 class at CU were asked the following question on a
midterm exam:

You have a thin, non-conductive spherical shell with
radius R centered at the origin. The shell carries a
total charge�Q, which is uniformly distributed over
the surface of the shell. There are no other charges
anywhere. Where in space (if anywhere) does the
divergence of E vanish?

Only 18% of students gave a full correct and explicit
answer such as ‘‘The divergence of E is proportional to the
charge density at any given point in space. In this system
there is no charge anywhere except on the boundary of the
sphere so the divergence of E vanishes everywhere except
at r ¼ R.’’ Eight percent of students gave the correct, but
less specific answer of ‘‘where there are no charges.’’ The
other 74% of the students did not get this question correct,
and their answers are broken down in Fig. 4. The most
common incorrect answer, given by 31% of the students,
was that the divergence was zero only inside the sphere.
While this is partially correct, these students did not realize
that the divergence is also zero outside the sphere. We see
similar results for the same question asked on a tutorial
posttest in a different semester of this course (N ¼ 18) and
in our field observations.

Though we did not perform student interviews related to
divergence, students were prompted on their exams with
‘‘Explain in words as well as mathematically!’’ A common
explanation for why the divergence was zero inside the
sphere, or at the center of the sphere (a total of 38% of
students), was similar to ‘‘in the interior b=c r � 0 ¼ 0.
Outside the shell r � E � 0.’’ An analogous argument was
made by some students who wrote that the divergence
‘‘would vanish at infinity since as r gets really big grad
dotEwould get really small and effectively vanish.’’ All of
these students were not using appropriate math tools: had
they been using either the appropriate Maxwell’s equation,
or a visual method based on flux, they would not have
made these mistakes, and certainly not given the above
explanations. By not taking advantage of the visual method
to determine divergence, these students are also not ac-
counting for the spatial situation when thinking about the
mathematical calculation of divergence. The 14% of stu-
dents who chose the origin or infinity, where the value of
electric field is zero, may be exhibiting a common
introductory-level difficulty of confusing the derivative of
a function with its value [45,46].
Unlike the previous section, where students do not make

geometry-based symmetry arguments when expected be-
cause they likely do not have the relevant tool, students
here are not using a tool that they do have: r �E ¼ �

�0
.

This is a tool that most experts turn to immediately when
asked about the divergence of an electrostatic field. It is
likely that many students know this equation, but for some
reason are not choosing it as a solution method for this
problem. Several students with incorrect answers wrote the
above equation as part of their work or explanation (4 out
of 38 wrong answers and 51 total student answer), making
it clear that this is an equation they do know, though they
are not using it appropriately. For instance, one student’s
answer reads
r � E � 0, r � E ¼ �

�0
, Ein ¼ 0

Div E inside is zero as E ¼ 0
Outside Div E � 0 as E is not zero or uniform

E ¼ �kq
r2

r̂

It seems that the equation relating the divergence of the
electric field with � is not consistent with this student’s
idea that divergence is only zero for ‘‘zero or uniform’’
fields. This particular student does not appear to notice the
contradiction, and goes with the idea rather than the equa-
tion when deciding on an answer. He may be exhibiting a
difficulty we have seen consistently when observing stu-
dents where they think about the common English meaning
of the word ‘‘divergence’’ and decide if a field looks
diverging rather than applying a rigorous procedure to
make a determination. For instance, in response to a clicker
question in class about the divergence of a point charge at
the origin, one student explained, ‘‘I think there is diver-
gence everywhere because the lines are spreading out, but

FIG. 4. Student response to a midterm question about a thin
shell of uniform charge. N ¼ 51.
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I’m not sure what happens at the origin.’’ Students who
focus on the English definition of divergence are both
failing to access an appropriate mathematical tool and
failing to account for the physical geometry when perform-
ing a calculation.

In this particular E&M context 74% of junior-level
students have difficulty applying the concept of diver-
gence. Many of these difficulties seem to be, in part, tied
to difficulty accessing all their mathematical tools and
trouble accounting for the physical situation when doing
a calculation.

C. Line, surface, and volume integrals

Many students also have difficulty setting up and cor-
rectly computing line, surface, and volume integrals, a
difficulty we believe is tied to students failing to visualize
the spatial or physical situation when doing an integral.
Similar difficulties have been observed for introductory
physics students doing 1D integrals [34,47]. As pointed
out by Dray and Manogue, in mathematics classes, inte-
grals are viewed very differently than in physics classes
[48,49]. In the mathematics classes students take in prepa-
ration for physics, 1D integrals are nearly always consid-
ered to be the area under a curve, and in 3D, surfaces and
volumes are always considered in terms of the Cartesian
basis vectors and parametrized. On the other hand, in
physics, integrals (in any number of dimensions) are con-
sidered to be sums of little bits of stuff (mass, charge,
E � dA, etc.), and the coordinate system for basis vectors
is chosen based on the symmetry of the problem. We
hypothesize that at the junior level, students are struggling
to transition their thinking from the mathematics class-
rooms’ view of integration to the physicists’ view.

We have observed while watching students solve prob-
lems in homework help sessions and tutorials that students
often have difficulty appropriately defining the infinitesi-
mal volume and surface elements, dV and dA. Rather than
thinking through the specific geometry of the problem, and
visualizing a physical small element of volume or surface,
students often remember or copy from a text something
inappropriate to the particular problem.

For example, when using direct integration to calculate
the electric field from a spherical shell of charge, a group of
students at a homework help session used dA ¼ d�d�
rather than the correct dA ¼ r2 sin�d�d�. It was not im-
mediately obvious to them (by units, for instance) that their
expression was wrong, and they were not familiar with how
to correct it, or how to test if their dA was correct (i.e.,
integrate for a whole sphere and see if the result is A ¼
4�r2). After an instructor explained the correct expression
to one student in the group, she had trouble explaining to
the rest of the group, which may indicate that this concept
is particularly difficult.

Similarly, we find that, when taking a line integral,
students often do not visualize a particular path for the

line integral, but rather try to solve the problem formulai-
cally. For instance, in one semester students were given a

homework question involving the electric field E ¼
cð2xîþ zĵþ yk̂Þ and were asked to ‘‘find the potential
VðrÞ, using the origin as your reference point (i.e., setting
Vð0Þ ¼ 0).’’ During homework help sessions, we observed
students integrate in one direction only (for instance inte-
grate only in dx). One student recognized that the integra-
tion needed to be done in all directions, but wrote one
integral with dxdydz as a product, instead of the sum of
three different integrals, and was then confused because
what he had written looked like a volume integral. We
observed additional confusion among students about what
limits to use in this integration. We observed very few of
these struggling students drawing a specific path for this
line integral, even though the question included the hint
‘‘you must select a specific path to integrate along. It
doesn’t matter which path you choose, since the answer
is path independent, but you can’t compute a line integral
without having a particular path in mind, so be explicit
about that in your solution.’’ Wallace and Chasteen simi-
larly observe that some students do not view the integral in
Ampère’s law as representing a sum [9]. These student
difficulties with line surface and volume integrals likely
stem from students failing to visualize the problem and
account for the spatial situation when calculating the
integral.

V. POTENTIAL

The concept and calculation of the scalar potential V
underlies a significant portion of an upper-division E&M
course, yet is an issue that students continue to struggle
with. Potential is defined as

VðrÞ � �
Z r

origin
E � dl; (1)

but there are many other equations evolving V that are
important in an E&M course at this level:

r2V ¼ �=�0; (2)

E ¼ �rV; (3)

and

VðrÞ ¼ 1

4��0

Z �ðr0Þ
jr� r0j d�; (4)

for example. One can imagine that this wealth of possibly
relevant equations for V may be difficult for students to
navigate, and we find that the topic of potential is one in
which students have particular difficulty.

A. Evidence that students struggle

Midterm results.—The same students discussed in
Sec. IVB were asked the following on a midterm:
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You have a thin, non-conductive spherical shell with
radius R centered at the origin. The shell carries a
total charge�Q, which is uniformly distributed over
the surface of the shell. There are no other charges
anywhere. What is the sign of ðVðRÞ � Vð0ÞÞ?

The correct answer was given by 57% of these students
(N ¼ 51). The following student explanation was one of
the most clear and correct received:

The electric field is 0 everywhere inside the sphere.
Since V is the integral of E, V will be a constant
everywhere inside the sphere. That constant is de-
termined by the boundary condition VðRÞ therefore:
VðRÞ ¼ Vð0Þ, VðRÞ � Vð0Þ ¼ 0.

However, 43% of upper-division students answer this
question incorrectly. A breakdown of student responses is
shown in Fig. 5. Of students who answered incorrectly, the
answers are nearly evenly spit between students who an-
swer ‘‘positive’’ and those who answer ‘‘negative.’’ This
question was also given during student interviews (during
interviews, students were asked the identical question as
above but with a shell of positive charge), and on tutorial
pre- and posttests, all with similar results.

CUE results.—Students both at CU and at other institu-
tions were asked a similar question related to potential on
the CUE diagnostic exam:

You are given a problem involving a non-conducting
sphere, centered at the origin. The sphere has a non-
uniform, positive and finite volume charge density
�ðrÞ. You notice that another student has set the
reference point for V such that V ¼ 0 at the center
of the sphere: Vðr ¼ 0Þ ¼ 0.
What would V ¼ 0 at r ¼ 0 imply about the sign of
the potential at r ! 1?
(a) Vðr ! 1Þ is positive (þ)
(b) Vðr ! 1Þ is negative (�)

(c) Vðr ! 1Þ is zero
(d) It depends
Briefly explain your reasoning.

Students were graded out of 10 points, 1 of which was
for choosing the correct answer, (b). Out of 324 students
who answered this question after taking a first semester
E&M course, 55% chose the correct answer. A breakdown
of student responses is shown in Fig. 5. The rest of the
points for the above question were given for correctly
explaining the physics of positive charges, the definition
of potential difference, and connecting these to the answer
with reasonable logic. The average overall score on
this question was 40%� 2%.
In student written explanations on the CUE, exams, and

tutorial posttests as well as student explanations during
interviews, we saw two predominant reasons for incorrect
student responses: not accessing appropriate tools for the
solution and difficulty setting up or interpreting the
problem.

B. Not accessing appropriate tools for the solution

Several students did not access an appropriate tool
to answer the midterm exam question described in the
previous section. Rather than choosing an effective tool,
e.g., Eq. (1), these students chose one of the many other
equations involving V. For example, one interview student
approached the problem starting with Laplace’s equation
and then writing down the separation-of-variables solution
in spherical coordinates. He then used the usual separation-
of-variables logic to set the constants for the 1=r‘þ1

term equal to zero, and from the remaining equation
decided, incorrectly, that this would lead to the difference
VðRÞ � Vð0Þ ¼ 0 being positive. He later justified this
by saying that V ¼ kq=r gives a positive value for a
positive point charge. Several students began their solution
on the midterm with some version of Eq. (4) (6 out of 22
incorrect answers and 51 total answers), and two others
began with the equation for the potential of a point charge,
V ¼ kq=r.
Several students in written explanations on the tutorial

posttest seemed also not to access an appropriate mathe-
matical tool, but rather equated the potential to the charge.
For instance, one student wrote ‘‘The potential at R is
negative because there is a negative charge on the surface.
At r ¼ 0, the potential is zero.’’ Another student wrote on a
midterm exam ‘‘VðRÞ ¼ �Q;Vð0Þ ¼ 0.’’ A student in
the CUE validation interviews also simply identified posi-
tive charge with positive potential: ‘‘as I recall it’s a
positive relationship, so if the charge is positive V would
be positive at infinity’’ or ‘‘since the sphere is positive, V is
positive at infinity.’’ This may be similar to the common
introductory E&M student difficulty of associating electric
field magnitude at a point directly with the electric poten-
tial at that point (rather than with how it is changing) [50].
Another student simply recalled that the potential goes to

FIG. 5. Left: Student responses to a midterm question about a
thin shell of uniform charge. Not included in this graph is one
student whose answer was unclear. N ¼ 51. Right: Student
responses to the CUE question about potential described in the
text. N ¼ 324.

PEPPER et al. PHYS. REV. ST PHYS. EDUC. RES. 8, 010111 (2012)

010111-10



zero at infinity, and applied this even though the given
reference point for zero was at the origin.

Other students recalled that there is something arbitrary
about potential, but applied this information incorrectly.
On the tutorial posttest one student wrote, ‘‘It depends on
what point you define as zero. If you could define the origin
as your zero point or you could define infinity each will
give you a different sign,’’ and another explains, ‘‘Because
Vðr ¼ RÞ is negative, and Vðr ¼ 0Þ can be arbitrarily set to
zero, the sign of this equation must be negative.’’ In one of
the individual interviews, a student explained that the sign
of VðRÞ � Vð0Þ is ‘‘a convention thing.’’

Student written justifications of incorrect answers on
the CUE are similar to the student difficulties discussed
above. For instance, two students who thought
‘‘(c) Vðr ! 1Þ is zero’’ justified their answers with the
following explanations:

‘‘The potential is dependent on the E field and as we
move towards infinity, the E field drops off and approaches
0. So this implies the potential does as well.’’

and

‘‘Voltage at r ¼ 1 is 0 because kqq
r ¼ 0 as r ! 1

Integrate from 1 ! r, then r ! 0 to find the potential
everywhere.’’

In the first student explanation, the student may be
confusing the value of the function with its derivative,
and in the second explanation, the student is starting with
the equation for the potential of two point charges—
certainly not an appropriate tool to solve this problem.

C. Difficulty setting up or interpreting
the problem

Other students chose the most effective tool, VðrÞ �
�R

r
origin E � dl, but did not set the equation up correctly

(out of 51 total students, 3 out of the 22 incorrect responses
included this mistake). For instance, in written explanation
on a tutorial posttest, one student wrote ‘‘when you inte-
grate the negative E field from infinity to R the sign of the
result is positive,’’ when the correct setup gives an integral
from 0 to R, not infinity to R. A couple of students on the
exam integrated from infinity to zero. All of these students
realized that they need to do a line integral, but incorrectly
determined the limits of this integral.

Another interview student accessed the most effective
tool, set up the problem correctly, but had difficulty inter-
preting the result, possibly because she had difficulty con-
necting the math to the physical situation. An excerpt of
her written work during the interviews is shown in Fig. 6.
She started by drawing a correct picture of a shell with no
electric field lines in the middle, and electric field lines
pointing radially outward outside the shell and then wrote a
correct equation with the correct limits. She then began to
exhibit difficulties. While she had drawn no electric field
inside the sphere, and as part of a later explanation

explicitly said the field inside the shell was zero, she
explains (and writes) that E and dl are pointing in the
same direction, and thatE is proportional to 1=r2. She may
not be connecting the upper limit of R in her integral to the
physical meaning that the integral is entirely inside the
shell, or she may not be thinking about the physical situ-
ation at all.
Student written work on the midterm exam shows that

other students have a similar difficulty. For instance, one

student wrote ‘‘ðVðr ¼ RÞ � Vðr ¼ 0ÞÞ ¼ �R
R
0
~E � ~dl !

opposite the sign of the E field since the surface charge
is negative, V > 0.’’ Again, this student is setting up the
problem well, but not interpreting the equation correctly,
possibly because he or she is not connecting the equation to
the physical situation. Overall, seven students on the mid-
term exam (32% of the incorrect responses) set up the
correct integral, but failed to interpret it correctly and
came to an incorrect conclusion. During CUE validation
interviews, some students also exhibited the mistakes listed
above (for instance, setting up the line integral correctly,
but misinterpreting the results, or not integrating
correctly).
Overall, in several different contexts, juniors in E&M

still struggle with the concept and calculation of the elec-
tric potential and many of these struggles can be tied to
difficulties accessing an appropriate tool out of the many
available, and difficulty setting up and interpreting calcu-
lations based on physics ideas.

VI. SUMMARYAND DISCUSSION

We show that some upper-level E&M students still
struggle with fundamental concepts, including Gauss’s
law, vector calculus, and electric potential. We further
show evidence that some of these struggles may be tied

FIG. 6 (color online). Student drawing from interview ques-
tion about potential. The student’s sketch is to the left and her
calculations to the right. She originally drew the charged shell as
hollow, and explicitly mentioned that E ¼ 0 there. The scribbles
visible in the shell are part of a later explanation.
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to student difficulties with mathematics: students have
difficulty combining physics ideas with mathematical cal-
culations leading to difficulties setting up and interpreting
calculations, students do not account for the underlying
spatial situation when performing a calculation, and
students do not access an appropriate mathematical tool.

The student difficulties that we observe may hamper

student progress on problem solving in multiple areas.
Following a framework of the use of mathematics in sci-

ence developed by Redish[30], we consider that in order to
successfully solve a physics problem students must
(1) map the physical problem to a mathematical problem,

then (2) process and solve the mathematical equations
resulting from that mapping, and then (3) interpret the
mathematical solution in physical terms. Finally, students

must (4) evaluate the final solution to determine if the
initial model was accurate. The student difficulties we
observe with combining physics ideas with mathematical

calculations relate to steps (1) and (3) of Redish’s model.
The student difficulties accounting for the underlying spa-

tial situation when performing a calculation occur in
step (2) of Redish’s model, while the difficulty of not
accessing an appropriate mathematical tool could occur

either in (1) choosing a model or in (2) processing the
mathematics. Thus, these difficulties can impede student
problem solving at a variety of points. These student

difficulties are demonstrated in the three specific contexts
of Gauss’s law, vector calculus and electric potential.

In the context of Gauss’s law we observe the following
upper-division difficulties for some students:

� Students make incorrect inferences about the electric
field based on Gauss’s law. Some students inferred
that the electric field at any point on a Gaussian
surface is determined only by the charge enclosed,
even in nonsymmetric situations.

� Students are unclear in distinguishing flux and elec-
tric field.

� Students struggle to articulate complete symmetry
arguments. They have particular difficulty with the
geometrical symmetry arguments that expert physi-
cists use.

� Students apply Gauss’s law when not appropriate.
In the context of vector calculus we observe the follow-

ing upper-division difficulties for some students:
� Students’ understanding of a vector field as a vector

with direction and magnitude at every point in space
is still somewhat tenuous and students struggle to
consistently apply this concept.

� Students struggle with the concept of divergence.
They do not consistently connect divergence
to a spatial situation, or to the physics of electric
fields using a rigorous procedure, but instead may
confuse the derivative of a function with its value, or
rely on a common English definition of the word
divergence.

� Students have difficulty setting up and correctly com-
puting line, surface, and volume integrals; in particu-
lar, they do not relate the integral to the physical idea
of adding up small pieces.

Regarding the topic of electric potential we observe the
following upper-division difficulties for some students:
� Students struggle to choose an appropriate tool for the

task out of the many equations related to potential.
� Once they have chosen an appropriate tool, some

students struggle to set up or interpret the resulting
line integral calculation.

VII. IMPLICATIONS FOR INSTRUCTION

We have shown that many students have difficulty with
mathematics in a junior-level E&M course, and that these
difficulties can be seen in struggles with Gauss’s law,
vector calculus, and scalar potential. Now that we know
some of the difficulties that students have at the junior
level, how can we improve instruction to help them
succeed?
While we do not know the complete answer to this

question, we have evidence that use of our transformed
course materials significantly improves student learning in
E&M compared with traditionally taught courses as mea-
sured by CUE scores across several semesters of courses
both at the University of Colorado and elsewhere [22]. This
trend also holds true when many of the specific difficulties
brought up in this paper are examined.
For instance, in the CUE question discussed in

Sec. III A, 73% of students in transformed courses recog-
nize a radially symmetric problem as easiest solved using
Gauss’s law versus only 59% of students in traditionally
taught courses.
Similarly, for the CUE question related to potential

discussed in Sec. V, students in traditional courses scored
on average 30%� 3% and students in transformed courses
scored on average 48%� 3%.
Clearly, using transformed course materials and peda-

gogy can improve student learning in E&M. This implies
that the use of interactive student-centered materials in-
volving peer-peer interactions, increased opportunities for
instructor feedback, and targeted at documented student
difficulties is beneficial for upper-division students. Our
transformed courses used learning goals developed by a
faculty working group, used interactive engagement in
classes (in the form of clicker questions with peer instruc-
tion and occasional small-group activities), replaced office
hours with help rooms centered on students helping each
other, added sense-making components to homework, and
added an optional weekly tutorial in which small groups
worked together on conceptually focused worksheets. For
more information on this transformation, see Chasteen
et al. [22], and for access to all of our materials, see the
CU SEI physics website [51].
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While transforming our courses to make them more
interactive and student centered is clearly a step in the
right direction, we still find our students are not completely
meeting our goals for them. For instance, 25% of students
in transformed and 24% of students in traditional classes
incorrectly claim that the electric field around the charge
distribution in Fig. 1(b) can be computed using Gauss’s
law. Even though CUE scores on many questions are
improved in the transformed courses, student response on
many questions is still disappointing. For instance, we are
still not satisfied by the score of 48%� 3% on the CUE
question related to potential. Perhaps even more important
than the raw scores is that, when reading through student
answers on the CUE, we feel that our students should be
able to do better.

This opens the question of why our students are not able
to do what we think they should. We consider below both
the students and our pedagogy.

Regarding the students themselves, we hypothesize the
concepts and mathematical habits of mind discussed in this
paper are difficult and take years to develop and that
instructors may not remember how difficult these skills
are and expect more rapid progress than is reasonable.
Also, many of these concepts in E&M 1 require a combi-
nation of challenging skills: using an appropriate mathe-
matical tool, envisioning the spatial situation and
connecting it to the mathematics, and translating between
physics knowledge and math tools. Each of these is indi-
vidually difficult, so when combined may become over-
whelming even for very good students.

We consider that our pedagogical model may also bene-
fit from some redesign. It is possible that some of the
disappointing outcomes are due to a mismatch between
the model of instruction and the course at hand. We based

our transformations on a successful model from introduc-
tory physics classes, and it is possible that, while this
model shows improved learning, it is not the most appro-
priate for upper-division courses populated by physics
majors. Perhaps it is more appropriate, at the upper divi-
sion, to provide interactivity that allows students to engage
with more open-ended questions than are afforded by
clicker questions and prewritten tutorials. Rather than
punctuating lecture with short clicker questions, and long
(separate) tutorial activities, lecture could integrate short
but focused open-ended group work activities aimed at
helping students identify the key skills and ideas on their
own. Some examples of this are the paradigms curriculum
at Oregon State University (OSU) [52–54] and the OSU
Vector Calculus Bridge Project [49,55].
Another potential pedagogical reason that the trans-

formed courses are not as successful as we had hoped for
is that, while the transformed course materials are based on
observed student difficulties, we had not completed our
investigations of student difficulties before creating them.
We have learned more about junior-level student difficul-
ties with E&M material through the process of course
transformation. These new insights, including the observa-
tions in this paper, have not yet been fed back to further
target the course materials at student difficulties, though
this is a process that is now beginning.
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