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Novice problem solvers are rather sensitive to surface problem features, and they often resort to trial

and error formula matching rather than identifying an appropriate solution approach. These observations

have been interpreted to imply that novices structure their knowledge according to surface features rather

than according to problem type categories. However, it may also be the case that novices do know problem

types, but cannot map the problem at hand to a known type, because they fail to create a sufficiently well-

elaborated problem representation. This study aims to distinguish between these explanations. In this

study novice physics students at high and low levels of proficiency completed two problem-sorting tasks

from the domain of electricity and magnetism, one with and one without elaboration support. Results

confirm that these students do distinguish problem types in accordance with their required solution

approaches, and that their problem-sorting performance improves with elaboration support. Therefore, it

was concluded that their major difficulty lies in the process of matching concrete problems to a proper

category. Within-group analysis revealed that the performance of proficient novices clearly improved with

elaboration support, whereas the effect for less proficient novices remained inconclusive. The latter

finding is explained from the less proficient novices’ problem representations being too fragmented to

integrate new information. These results suggest that, in order to promote schema-based problem solving,

instruction in the domain of electricity and magnetism should be based not so much on restructuring the

conceptual knowledge base but rather on enriching situational knowledge.

DOI: 10.1103/PhysRevSTPER.7.010103 PACS numbers: 01.40.Fk

I. INTRODUCTION

It is an often heard complaint that novice problem
solvers will skip most of the problem analysis and start
calculating right away. Many instructors strive to teach
their students more expertlike approaches, [1] such as
analyzing the problem and devising a solution plan [2],
but in general such interventions turn out to be little
effective [3,4].

The experts’ behavior has been explained from their
knowledge being organized in problem schemas, i.e.,
knowledge structures organized around a problem type
with an associated solution approach. Once the right prob-
lem type has been identified, the expert will also know an
outline for a solution approach [5]. It seems worthwhile to

promote the formation of powerful problem schemas
among physics learners. However, in order to do so effec-
tively, one needs to know what exactly is missing from the
novices’ knowledge structure.
The classical problem-sorting experiment by Chi,

Feltovich, andGlaser might be among themost well-known
studies to discriminate between novice and expert knowl-
edge structures [6]. In their study, Chi et al. let several
experts and novices sort a set of mechanics problems. The
experts would spontaneously sort these problems according
to their solution approaches (i.e., second law, conservation
of energy, conservation of momentum), whereas the novi-
ces would sort according to surface features (angular mo-
tion, springs, inclined planes). Although such studies
provide convincing evidence for the quality and structure
of expert problem schemas, the interpretation of the novice
results is much less conclusive [7]. For instance, whereas
Chi et al. [6] concluded that novices did not have their
knowledge organized in problem type schemas, Cooper
and Sweller [8] found that novices already start to induce
problem categories after trying only a few problems.
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Moreover, whereas Chi et al. [6] concluded that novices had
‘‘sufficiently elaborate declarative knowledge about the
physical configurations of a potential problem,’’ many stud-
ies indicate that novices form only limited representations
of the problems they are working on [9–12]. To complicate
matters, there is clear evidence for qualitative differences
between more and less proficient novices [9,13–16], so,
even if they both fail to identify a proper solution approach,
it still may be for different reasons.

It should be noted that studies about problem schemas
were conducted in different domains. For instance, the
experimental task of Chi et al. [6] was drawn from the
domain of mechanics, whereas the studies of de Jong and
Ferguson-Hessler [9] were conducted in the field of elec-
tricity and magnetism. Although studies in both fields
confirm that expert problem solving knowledge tends to
be organized in a limited number of problem solving
schemas, it is not self-evident that more specific findings
about problem schemas generalize across domains. First,
there may be considerable structural differences between
domains: in mechanics the deep features of a problem tend
to be associated with a small number of conservation
principles (conservation of energy, momentum, angular
momentum), which can be sharply distinguished from
superficial features such as spatial symmetries. By con-
trast, in the field of electricity and magnetism, spatial
symmetries are crucial to the choice of an appropriate
solution approach. Moreover, mechanics differs from other
physics topics, such as electricity and magnetism, in its
situational features being more concrete, and in involving
more everyday knowledge [17–19]. On the one hand,
students’ experiences in the physical environment may
help them to develop a clear representation of a mechanics
situation, whereas, on the other hand, their experience-
based expectations may also turn out to be ‘‘misconcep-
tions’’ leading them in the wrong direction [20,21].
Therefore, in order to generalize educational implications,
the experimental findings must be validated across multiple
domains.

Educational implications are clearly different depending
on which explanation holds true: If novices rely on alter-
native category structures, we may aim to restructure their
knowledge, by teaching knowledge hierarchies [22], or by
inducing cognitive conflicts [23,24]. By contrast, if the
novice categories are created ‘‘on the spot,’’ building on
a poor problem representation, instruction should target
students’ understanding of the situations and of the situa-
tional features that make a solution approach into a useful
one [10,25–27].

The purpose of this study is to find out to what extent
each of both factors (that is, poor representation of the
problem situation and missing knowledge of problem type
schemas) hampers the ability of novices at different levels
of proficiency to identify solution approaches in the do-
main of electricity and magnetism.

A. Identifying a solution approach: Roles of
elaborations and schemas

Every problem solving effort must begin with creating a
representation for the problem, a problem space in which
the search for a solution can take place [28]. First, upon
reading a new problem, one forms a text based representa-
tion [29]. Keywords in the text based representation may
immediately suggest a solution approach, and both experts
and novices make productive use of such keywords to
determine a solution approach [6,30–32].
Starting from the text based representation, information

has to be selected, knowledge from memory has to be

added, and the various elements have to be connected to

form a structured mental representation of the situation

[29,33]. Even if one has gained a correct understanding of

the situation, this may not be the optimal representation:

the same problem may be easy or difficult, depending

on the way we describe it. For good reason, one of

Polya’s famous problem solving heuristics is, ‘‘Could

you restate the problem? Could you restate it still differ-

ently?’’ [34]. Thus, while for some problems a surface

representation of the situation may provide sufficient guid-

ance to find an adequate solution approach, most problems

will require elaborations in order to identify the deep

features of the problem.
Following VanLehn [35], we define an elaboration as

‘‘an assertion that is added to the state without removing
any of the old assertions or decreasing their potential
relevance.’’ In many cases, a series of elaborations will
be necessary before the problem is ‘‘well evolved.’’ Some
elaborations will be made on the basis of common sense
[36], but many will also require domain knowledge, as in
the following problem:
Given two copper cylindersO1 andO2, with radii r1 and

r2, the relation between the radii being given by r2 ¼ 3r1.
Both cylinders are centered along the x axis. O2 is
grounded; O1 carries a charge q1 per meter. Compute the
potential at the surface of O1.
In the mind of a problem solver, this problem can evoke

many potentially relevant elaborations:
The cylinders are concentric—O1 is at the inside of

O2—the situation is symmetric under rotations around
the x axis—the situation has translational symmetry along
the x axis—copper is a conductor—in a conductor the
potential is equal everywhere—at the surface of a conduc-
tor, the field is perpendicular to the conductor—O2 shields
its inside from external fields and vice versa—the potential
at O2 is zero—the total charge enclosed in a surface that
lies completely in the metal of O2 amounts to zero—there
is a surface charge of q1 per meter at the inside of O2—the
potential runs continuously across this surface charge.
Each elaboration considered by itself provides little

direction, and hardly any of them could be identified as
providing the crucial step. However, taken together, these
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elaborations, also called ‘‘construction rules,’’ lead to a
‘‘physics representation’’ [5,37].

In order to build such a representation, one must have a
sense of the features that matter. As Hestenes notes in com-
paring physics problem solving to chess playing, ‘‘the chess
player’s attention is automatically confined to the chess-
board, where the patterns are to be found. But in physics a
student who hardly knowswhat the game is about is likely to
attend to the wrong things’’ [25,38]. Therefore, teaching a
‘‘vocabulary of patterns’’ is a core element of Hestenes’
modeling approach to physics teaching. To a novice, identi-
fying a solution approach for a physics problem can thus be a
real insight problem, in the sense that hewill find few cues as
to whether he is close to seeing the approach, until the
approach has actually been identified [39,40].

In addition, if the newly inferred information cannot be
integrated in a coherent problem representation, working
memory will soon be overloaded with isolated facts. In
many domains, it has been found that experts have a
superior recall of problem situations, which indicates that
they perceive an integrative structure in the situation
[41,42]. While proficient novices were found to develop
a coherent mental model of the situation, less proficient
novices tend to rely on a text based representation of the
problem, which provides little support to integrate elabo-
rations [9,14,15]. In line with this finding, there is clear
evidence that less proficient students are little inclined to
elaborate on the problems they encounter [9,14,15,43], and
that their problem solving performance improves if they
are forced to perform a structured analysis [44].

The expert’s knowledge is much richer, based on past
experience with similar problems. This is reflected in their
knowledge being structured in problem schemas
[6,31,45,46]. Such a problem schema would be a coherent
body of all knowledge relevant to a particular ‘‘basic
solution approach,’’ which includes relevant theory, proce-
dures, memories of prototypical problems and features, and
conditions that must be met in order to make the approach
useful. If a problem schema is sufficiently rich with proto-
typical problems and situational features, it will be easily
matched when studying a new problem. Once the problem
has been recognized as similar to a known type, the schema
permits a much more targeted analysis, and furthermore
directs the steps to be taken for solving the problem. Of
course, even if one recognizes the appropriate problem
type and the associated solution approach, one may still
fail. That is to say, knowing a schema is not a matter of
black and white. Nevertheless, at least for proficient novi-
ces, it has been found that the identification of a proper
schema leads to better problem solving performance [16].

To sum up, there is clear evidence that experts elaborate
on a problem to build a rich representation, which then
easily matches a known schema. Novices build a much
poorer representation, which does not easily trigger a
schema. Nevertheless, it may be the case that they do

know schemas that might be helpful if they could only
make the right match. Because observations of problem
solving behavior, and even intervention studies such as
Dufresne et al. [44], can provide only limited insight into
participants’ knowledge structures, various experiments
have been conducted to assess these knowledge structure
more directly. In the next section we will review the
evidence on a most basic element of schema knowledge,
namely, whether novices do know problem types according
to their solution methods.

B. Assessment of schema knowledge: Evaluating
the evidence

The most commonly used method to assess subjects’
perceptions of similarities between problems is a sorting
task [47,48]. In comparison to a full problem solving task,
problem sorting provides a more direct test of whether
subjects are able to identify a basic solution approach,
independent of whether they have the skill to execute the
chosen approach. There have been alternative approaches
to assess schema knowledge, such as problem editing [49]
and writing down the first step of the solution under time
pressure [50], but these techniques are more sensitive to the
quality of the schema content, rather than to the category
knowledge per se. Interview techniques have also been
used, but the outcomes of such studies tend to be less
directly linked to problem solving [21,51].
Chi et al. [6] used a problem-sorting task to demonstrate

that novices (i.e., undergraduates who had just completed a
relevant introductory course) categorize problems accord-
ing to a qualitatively different structure than experts do. To
further characterize the difference, they administered a
second categorization task. In this case they deliberately
constructed the set of problems such that the similarities
suggested by the surface features would be at odds with the
deep structure of the problems. The conclusion of this
second experiment was that experts sorted according to
deep structure, whereas the novices attended to the surface
structure of the problems. With due caution, they conclude
that ‘‘although it is conceivable that the categories con-
structed by novices do not correspond to existing internal
schemata, but rather represent only problem discrimina-
tions that are created on the spot during the sorting tasks,
the persistence of the appearance of similar category labels
across a variety of tasks gives some credibility to the reality
of the novices’ categories even if they are strictly entities
related’’ [6]. By contrast, in a study among students of
similar level, de Jong and Ferguson-Hessler [52] found that
proficient students did sort knowledge elements according
to problem types, and that only the less proficient students
tended to sort according to surface features. Hardiman
et al. [31], using a similarity judgment task, found that
novices are able to identify the same similarities experts
see, although they are more easily distracted by salient
surface features, and they often use the wrong principles.
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Hardiman et al. also found proficient novices to be more
likely to base their judgment on physics principles than less
proficient novices. Similar results were reported by
Zajchowski [16], based on think-aloud protocols of a prob-
lem solving task.

The results of de Jong and Ferguson-Hessler [52],
Hardiman et al. [31], and Zajchowski [16] suggest that at
least more proficient novices do know a category structure
based on problem types. For less proficient students, the
evidence is less conclusive. However, even for these stu-
dents, if they fail to demonstrate their category knowledge
in a categorization task, it does not necessarily imply that
they do not have such knowledge. In particular, it should be
noted that both Chi et al. [6] and Hardiman et al. [31]
obtained their results with a set of problems where surface
features and deep structure were crossed. While this is an
effective approach to demonstrate novices’ sensitivity to
surface features, it makes the outcomes less representative
of what happens in a realistic problem solving setting,
where a problem solver finds valuable cues with regard
to the solution approach at all stages of interpreting the
problem.

Given these considerations, we expect that, in the do-
main of electricity and magnetism, novices’ failure to
identify proper solution approaches should be attributed
to a poor problem representation more than to a lack of
category knowledge. In order to test this claim we will use
a problem-sorting task where we manipulate the quality of
the problem representations by providing simple first elab-
orations. Our central hypothesis is that providing novices
with this form of ‘‘elaboration support’’ may lead to a more
expertlike problem-sorting performance. We also expect
that the usefulness of the given elaborations will depend on
the quality of one’s problem representation thus far. If one
has a too incoherent problem representation, elaborations
will remain isolated facts with little added value.
Therefore, our second hypothesis is that the effect of given
elaborations will be stronger for more proficient novices.

II. METHOD

A. Design

The hypotheses were tested in a within-subjects design
where more and less proficient participants completed two
different problem-sorting tasks, one with and one without
elaborations. Performance on both tasks was judged by
comparison to experts’ problem sorting.

B. Participants

Expert participants were three physics faculty whowere,
or had been, instructors in introductory and/or advanced
electrodynamics courses.
Novice participants were 80 first-year university physics

students who had just completed their first introductory
course on electrodynamics. In The Netherlands, preuniver-
sity education extends until the age of 18, and over 80% of
the physics students are 18 or 19 years old at the beginning
of their first year. The population is rather homogeneous in
other respects as well: there are 80%–90% males, and over
90% are of Dutch ancestry.
Because the population within a single university was

too small to provide a sufficient number of participants,
participants were recruited from two different universities
(hereafter ‘‘University A’’ and ‘‘University B’’). In the
Dutch educational system, there are no major status dif-
ferences between the diplomas of different universities,
and practical factors, such as vicinity, are the dominant
factors in determining students’ choice of university. Both
student populations and curriculum are similar enough
across both universities to regard them as samples from a
single population.
To make sure that the students had spent some time on

the topic, the experiment was conducted after the final test
had been taken. First-year students were randomly selected
from the faculty’s phone directory and approached by
telephone until the desired number of participants was
reached. Participants were paid for their participation.

TABLE I. Mean test scores of more and less proficient groups. Note that all test scores are on a
scale of 1 to 10, higher scores are better, 6 is the threshold between pass and fail.

Test scores

National exam University tests A University tests B

More proficient students

University A M (SD) 8.93 (.59) 7.13 (1.50)

n 15 15

University B M (SD) 8.90 (.66) 7.87 (1.15)

n 20a 21

Less proficient students

University A M (SD) 7.25 (.59) 4.58 (1.07)

n 22 22

University B M (SD) 7.27 (.43) 5.92 (.88)

n 13 13

aOne participant got admittance on a foreign diploma.
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In order to classify the participants as less or more
proficient, test scores were collected both from the national
high school final examination in physics and mathematics
and from their previous university tests for classical me-
chanics, relativistic mechanics, electricity and magnetism,
calculus and algebra. Because university test scores are not
directly comparable across different institutions, each uni-
versity had its own performance subscale (University A: 6
items, Cronbach � ¼ 0:92; University B: 9 items,
Cronbach � ¼ 0:93). The scores on the national high
school examination could be used to rescale the mean
and variance of the university test scores in order to com-
pute an overall student ranking.

Out of the 80 participants, 9 had either omitted a card or
had mentioned a card more than once on one of their
problem-sorting forms. As a consequence, the number of
valid observations for the elaboration effect is N ¼ 71. A
median split on the overall student ranking was used to
create sufficiently different groups of more and less profi-
cient participants, with 36 students remaining in the more
proficient group and 35 students in the less proficient
group. As shown in Table I, the grade level on the univer-
sity test scores differs by about two points on a scale of 10
between the two groups. The less proficient group on
average scored below threshold on the university tests,
whereas the more proficient group scored well above. A
chi-square test confirmed that the distribution of students
from the two universities over proficiency groups was not
significantly skewed, �2ð1; N ¼ 71Þ ¼ 3:19, p ¼ 0:74.

C. Materials

Two sets of 20 problems each were developed. One set
consisted of problems from the field of electricity, the other
of problems on magnetism. Our aim was to construct both
sets in such a way that there would be four essentially
different solution types in each set. Problems that required
a combination of multiple approaches were not included.
We did not include catch problems of types the students
would never encounter in their practice problems, and we
did not manipulate surface features to suggest a systemati-
cally different ordering. Within these constraints, we took
care that the solution type could not be inferred from the
topical area alone. The design procedure started from a
larger set of problems that was presented to several teach-
ing staff. Problems that were classified inconsistently were
removed from the set. After this procedure, a set of 23
electricity problems and a set of 22 magnetism problems
were left. Finally, in order to reduce the problems to two
sets of 20 problems each, and to validate our intended
categories, we had the three expert participants sort both
sets, after which we kept the problems on which agreement
was best. The design of the final sets is presented in
Table II.
In order to test for the effect of elaborations, two ver-

sions were needed for each problem set, one with and one
without elaboration. The elaborations were designed to be
close to the original problem statement and to avoid key-
word patterns that could promote a keyword matching

TABLE II. Distribution of the problems over topics according to the experimenters.

Set 1: Electricity Number of problems Set 2: Magnetism Number of problems

Gauss’ law 6 Ampère’s law 6

Image charges 5 Dipole approximation 5

Dipole approximation 5 Induction 5

Coulomb’s law or superposition 4 Biot-Savart’s law 4

TABLE III. Examples of electricity problems from two different problem categories. Note that for each problem there was an
elaborated version and a nonelaborated version. The nonelaborated version only gave the normal printed text, the elaborated version
also gave the italicized text.

Gauss’ law problems Coulomb’s law with superposition

E10 Compute the field between two concentric spherical shells

with the inner shell carrying a uniform charge Q1 and the outer
shell Q2

E5 A point charge q is at the origin and a second point

charge—q is at a distance ~R from the origin. Compute the

net electric field at a point ~rðj ~rj � j ~RjÞ
The field inside a uniformly charged spherical shell does not

depend on the charge on the shell

The net electric field is the sum of all contributions

E17 Compute the field of a planar charge distribution that

extends to infinity

E9 Compute the field at the axis of a charged ring. Charge Q,

radius r
The field of an infinitely large planar charge distribution has a

field component perpendicular to the plane only

At the axis of a charged ring, only the field component along

the axis remains
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strategy. Examples of problem cards with elaborations are
presented in Table III (for full collection of problem cards,
see the Appendix).

D. Procedure

Participants were to sort both sets of problems with
each problem presented on a ‘‘problem card.’’ Half of the
novice participants received elaboration support on the
electricity problems, the other half on the magnetism prob-
lems. The design was counterbalanced to cancel out effects
of order and task version (Table IV).

Before doing the first set, participants read the instruc-
tions. Unlike in the study by Chi et al. [6], our participants
were explicitly instructed that problems were to be sorted
according to solution approach. This was further illustrated
using the example of how a cook might answer when asked
about similarities between several dishes. The explicit
instruction was included because our goal was to find out
whether participants are able to categorize problems ac-
cording to solution approach, not whether they would do so
under all circumstances. The instruction went on with the
request to read all problem cards in the first set, prior to
doing any sorting. When the sorting was done, the partici-
pant would assign a name to each category.

The first set took approximately 50 minutes to complete.
After a short break participants did their second set, which
took about 40 minutes on average.

III. RESULTS

A. Expert validity

To verify the agreement between the experimenters’ sort-
ing and those by the three experts, we recoded the sorting
data into a list of problem pairs. Each pair could have one of
two values: ‘‘together’’ or ‘‘apart’’ (see the Appendix). With

the data in this format, we could compute an inter-rater
reliability. Because we had four raters, we used an intraclass
correlation coefficient [53]. Values were R ¼ 0:77 for the
electricity problems and R ¼ 0:80 for the magnetism prob-
lems (two-way random effects, average value). Finally, with
respect to the number of stacks, the external experts created
about six stacks on average (electricity: M ¼ 5:67,
SD ¼ 1:15; magnetism: M ¼ 6:33, SD ¼ 0:58), while in
the design we had set on four clusters. Looking at the stack
labels the experts gave (see the Appendix), it turns out that
most of the labels could be matched to one of the experi-
menters’ categories, but that some of the experts made
further subdivisions according to geometry or mathematical
technique. For instance, one expert distinguished between
Ampère’s law with surface current and Ampère’s law with
spatial current. These subdivisions did not reveal any con-
sistent pattern across individuals, however.
Taken together, these findings indicate that the com-

bined judgments of experts and experimenters provide a
reliable judgment of problem similarity. For most problem
pairs there is agreement as to whether they ‘‘belong
together’’ or not (see the Appendix for a full overview).
For a few problem pairs, opinions vary. When it comes
to judging the ‘‘expert-likeness’’ of students’ sortings,
these ambiguous combinations will be left out of
consideration.

B. Nature of novices’ categorizations

The next question is whether the novices’ problem sort-
ings reveal the intended category structures. To answer this
question, we considered the numbers of stacks, the clusters
that emerged in a cluster analysis, and the types of stack
names students gave. In order to make the results directly
comparable to those of the experts, only the nonelaborated
sorting tasks were included in this analysis.

TABLE V. Average numbers of stacks for all groups.

Electricity Magnetism

Experts (n ¼ 3)a M (SD) 5.67 (1.15) 6.33 (0.58)

Proficient students (n ¼ 36) M (SD) 5.97 (1.50) 5.64 (1.51)

Less proficient students (n ¼ 35) M (SD) 5.94 (1.73) 5.69 (1.49)

aThe problem sets presented to the experts originally consisted of 23 problems (electricity) and
22 problems (magnetism), respectively. For this table, in order to make figures comparable
across participant groups, only the problems that were kept in the final design have been taken
into account.

TABLE IV. The experimental setup.

Group A B C D

n 20 20 20 20

First set Electricity, with elaboration Electricity, no elaboration Magnetism, with elaboration Magnetism, no elaboration

Second

set

Magnetism, no elaboration Magnetism, with elaboration Electricity, no elaboration Electricity, with elaboration
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The students, like the experts, on average created more
stacks than the four intended in the design (Table V).
The number of stacks was not significantly different
across participant groups (electricity: Fð2; 71Þ ¼ 0:050,
p ¼ 0:951; magnetism: Fð2; 71Þ ¼ 0:303, p ¼ 0:739).
The number of valid observations is slightly lower than
the number of participants, because some students had
handed in incomplete results, for instance, by omitting a
problem number from their written results.

To reveal patterns across participants, we used a hier-
archical cluster analysis. Based on the sorting data, the
procedure first computes the dissimilarity, or ‘‘distance,’’
between each pair of problems. After that, the two prob-
lems that are closest are taken together to form a cluster. In
the next step the problems or clusters with the next smallest
distances are taken together, and so on, until all problems

are linked together. The analysis was performed using the
statistical software package SPSS. As a distance measure
we used ‘‘Euclidean distance,’’ which is the most com-
monly used. As a linkage method, we used ‘‘between
groups average linkage’’ as a robust multipurpose method
[54]. The outcomes were interpreted using a dendrogram
plot, in which the cluster structure is represented as a
branching tree, with problems that were placed together
more frequently being represented by a more close
connection.
Figures 1(a)–1(d) present hierarchical cluster analyses

for electricity and for magnetism problems, both for more
and less proficient students. For the proficient students,
if we consider the topmost four clusters in both sets,
the clusters are in line with the design, except for two
problems in the electricity set (E14 and E17) and two in

(a) (b)

(c) (d)

FIG. 1. (a) Cluster analysis, electricity, proficient students (n ¼ 19). (b) Cluster analysis, electricity, less proficient students
(n ¼ 16). (c) Cluster analysis, magnetism, proficient students (n ¼ 17). (d) Cluster analysis, magnetism, less proficient students
(n ¼ 19).
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the magnetism set (B7 and B14). For the less proficient
students, the appropriate number of clusters is less evident,
and not all problem categories emerge from the analysis
equally clearly. For the electricity problems, a five cluster
interpretation yields three mismatched problems (E5, E17,
and E18), with the ‘‘Coulomb’’ problems being dispersed
over all clusters and the ‘‘dipole’’ category split in two. For
the magnetism set, a four cluster interpretation yields two
mismatched problems (B7 and B11) and a mix up of
inductance and dipole problems. However, at a lower level
in the tree, subgroups of inductance and dipole problem
emerge as distinct clusters again. Thus, both for more and
for less proficient novices, it turns out that in both sets most
problems that were intended to be similar are linked to-
gether more closely than problems that were intended to be
different.

In order to triangulate the outcomes of the cluster analy-
sis, we looked into the names participants gave their prob-
lem stacks (see Table VI for an example). This analysis
was conducted by two of the authors separately, after
which differences were resolved by discussion. We distin-
guished labels that indicated a solution method (frequent
examples are: Gauss’ law, Gauss’ law in differential form,
image charge, dipole approximation, Ampère’s law, Biot-
Savart’s law, sometimes with added specifications about
symmetry, algebraic procedure. etc.); labels that only men-
tioned objects or quantities (e.g., moving charge, field), a
geometrical property (e.g., planar symmetry), or an alge-
braic procedure (e.g., integration); and noncontent labels
(e.g., insight, difficult, standard problem). In line with the
outcomes of the cluster analysis, the majority of the labels
indicated a solution method. On average the more
proficient participants had a higher proportion of their
labels indicating solution methods (64%) than the less
proficient participants (49%), Fð1; 78Þ ¼ 7:3, p ¼ 0:008,
�2 ¼ 0:086.

C. Quantifying the similarity to expert sorting

In order to quantify the gradual differences between
novice and expert sortings, we had to express the (dis)

similarity of an individual sorting to an expert sorting in a
single number. To this end, the most objective measure is
directly based on combinations of individual problems. If
the experimenters and at least two of the experts had put a
pair of problems together, the combination was judged
expertlike. If neither the experimenters nor any of the
experts had put the two problems together, the combination
was judged expert-unlike. All other combinations, which
were made by some of the experts but not by all, were
neglected in computing the expert-likeness. Thus, for each
participant we had two scores per sorting:
Ni; like: number of expertlike combinations subject

i made,
Ni; unlike: number of expert-unlike combinations subject

i made.
For each set of cards we had two normalization

parameters:
Nmax -like: maximum number of expertlike combinations,
Nmax -unlike: maximum number of expert-unlike

combinations.
For the electricity problems Nmax; like ¼ 32 and

Nmax; unlike ¼ 123, leaving 35 possible combinations to be

neglected. For the magnetism set, Nmax; like ¼ 18,
Nmax; unlike ¼ 131, and 41 to be neglected. The resulting

‘‘expert-likeness’’ scoreE for subject iwas calculated from
the following formula:

Ei ¼ Ni; like

Nmax -like
� Ni; unlike

Nmax -unlike
:

A ‘‘perfect’’ sorting would yield the maximum score,
‘‘1’’, a random sorting should give an outcome close to
zero. To test the score’s sensitivity to random variations,
and to compare the performance of the subjects to chance,
we generated a set of 1000 random sortings. In these
sortings the number of stacks per sorting was distributed
binomially with the average number of clusters set to 5.9,
which corresponds to the average number in the real data
(cf. Table V). Both the scores for real participants and the
artificially generated scores are presented in Table VII.

TABLE VI. Stack labels by a more and a less proficient student.

Electricity Magnetism

More proficient Gauss Dipoles

Image charges Rotations in magnetic field

Dipoles Ampère’s circuit law

Non-Gaussian field computations Biot-Savart integration

Fluxes

Less proficient Coulomb Flux

Dipole Sum field

Capacitor Symmetry

Poisson (integral) Magnetic moment

Gauss Magnetic field

Conductor
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The data confirm that the random variations are small
compared to the real scores for both the electricity and the
magnetism cards, and that both groups of novices do con-
siderably better than chance. To ensure that the assump-
tions underlying the analysis of variance method (ANOVA)
were met, we verified that neither the Kolmogorov
Smirnov test of normality nor the Levene test for the
homogeneity of variances indicated any significant
deviations.

D. Effects of presenting elaborations

We expected problem-sorting performance to depend on
student level, on the presence of elaborations, and on the
interaction between both factors. We had planned to assess
the effects of elaborations within subjects through a
repeated-measures ANOVA. Because the data (Table VII)
suggest that the effects of elaborations might be different
for electricity and magnetism problem sets, a third experi-
mental factor, ‘‘task version,’’ was included in the analysis.
This factor produced significant interactions, which
implies that the two tasks cannot be regarded as parallel
tasks. Therefore, we will provide separate analyses for the
electricity and the magnetism problems.

For the electricity problems, we found a significant
positive main effect for student level, no significant main
effect for the presence of elaborations, and a significant
interaction between student level and the presence of elab-
orations, with a medium effect size (Table VIII). Within-
group analysis revealed a significant positive effect of
elaborations on proficient students’ scores, Fð1; 67Þ ¼
11:6, p ¼ 0:001, and no significant effect on less proficient
students scores, Fð1; 67Þ ¼ 2:92, p ¼ 0:092.

For the magnetism problems we found a significant
positive main effect for student level, a significant positive
main effect for the presence of elaborations, with a me-
dium effect size, and no interaction between student level
and the presence of elaborations (Table IX).

IV. DISCUSSION AND CONCLUSION

Both the cluster analyses and the analysis of stack names
confirmed that, for the domain of electricity and magne-
tism, physics students already start to know solution types
in the initial phases of their studies. Nevertheless, the
expert similarity scores indicate that students quite often
fail to identify a suitable solution approach. The expert-
likeness scores also confirm that the proficient novices did
significantly better than the less proficient novices.
Our central hypothesis was that performance on the

categorization task would improve if participants were
supported to elaborate on the problem by getting a first
elaboration to start with. For the magnetism problems, the
expected main effect was confirmed. For the electricity
problems, the difference was in the same direction,
although the effect was not significant. Because the main
effects were not significantly different across both tasks
(t ¼ 1:28, p ¼ 0:2), we conclude, with some caution, that
the hypothesis was confirmed.
Our final hypothesis was that the gain in performance

would be greater for the more proficient novices, based on
the idea that, in order to be useful, elaborations need to be

TABLE VIII. ANOVA with electricity problem-sorting score
as dependent variable.

df F p �2

Proficiency (P) 1 22.10 <:001 0.248

Elaboration (E) 1 2.26 0.138 0.033

P� E 1 12.50 0.001 0.157

Within cells 67 (Mean square error ¼ 0:032)

TABLE VII. Means and standard deviations of the expert-likeness score per experimental group for real data and for computer-
generated random data.

Electricity Magnetism

Without elaboration With elaboration Without elaboration With elaboration

Experts M (SD) 0.73 (0.22) 0.83 (0.09)

n 3 3

Proficient students M (SD) 0.36 (0.22) 0.58 (0.21) 0.46 (0.25) 0.57 (0.25)

n 19 17 17 19

Less proficient students M (SD) 0.31 (0.14) 0.23 (0.14) 0.31 (0.20) 0.48 (0.21)

n 16 19 19 16

Random data M (SD) 0.0012 (0.08) 0.0019 (0.10)

N 1000 1000

TABLE IX. ANOVAwith magnetism problem-sorting score as
dependent variable.

df F p �2

Proficiency 1 6.24 0.015 0.085

Elaboration 1 7.20 0.009 0.097

P� E 1 0.37 0.546 0.005

Within cells 67 (Mean square error ¼ 0:047)
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integrated in a coherent problem representation. The hy-
pothesis was confirmed for the electricity problems, where
the proficient students performed better with elaboration
than without, whereas for the less proficient students there
was no such effect. However, for the magnetism problems
the interaction effect was not significant and the trend was
in the opposite direction. Findings with regard to the
interaction effect were significantly different across both
tasks (t ¼ 2:40, p ¼ 0:02). Taken together, in this study
proficient students performed significantly better with
elaborations, regardless of task version, whereas for the
less proficient students the evidence is inconclusive.

As a limitation of the current study it should be noted
that, although the problem-sorting method is suitable to
establish the effects of given elaborations, it provides only
little insight into the ways these elaborations affect the
reasoning process, and why one elaboration might be
more effective than another. Nevertheless, given the sig-
nificant difference between both task versions, we turned to
our stimulus materials again in search of an explanation.
Upon close inspection we found that in the magnetism
problem set some elaborations contained words that might
have supported a keyword strategy (for instance, elabora-
tions for the ‘‘induction’’ problems containing the word
flux). In the electricity set, we had been more successful in
avoiding such keywords. As a consequence, we speculate
that the electricity elaborations would only be useful if they
could be integrated in a coherent problem representation.
An alternative explanation for the effect of giving elabo-
rations might be that they do not so much provide new
information, but rather stimulate a greater depth of pro-
cessing. To test this hypothesis a follow-up study could
provide ‘‘placebo elaborations’’ (e.g., repeating informa-
tion already present in the problem) or distracting elabo-
rations (suggestive of an unproductive solution approach).

In this study both more and less proficient students
turned out to know solution types, but they had difficulties
matching problem situations to the right type. Furthermore,
proficient students seem to induce a mental model of the

situation that can be used to integrate elaborations, whereas
less proficient students may only benefit if they can extract
a keyword that is directly linked to a proper solution
approach.
Both the differences between our two tasks, and the

differences between this study and some of the studies
discussed in the Introduction, clearly illustrate how novi-
ces’ performance strongly depends on domain and task
format. It therefore remains to be seen how these findings
translate into different domains, such as mechanics.
Furthermore, because failure as well as successful per-
formance can occur for many reasons, performance data
alone are not sufficient to gain insight into students’ knowl-
edge and reasoning processes. Further research is needed
to address the ways more or less proficient novices elabo-
rate on situational features in their problem representa-
tions, and the ways this reasoning develops. This could
be done, for instance, through think-aloud protocols and
microgenetic approaches.
With respect to educational practice, our findings

suggest little reason to have instructional strategies
targeting a fundamental restructuring of knowledge.
Rather, instruction should be aimed at students’ under-
standing of the situations and of the situational features
that make a solution approach into a useful one. Promising
approaches to this end are to present more context-rich
and open-ended problems where a situational analysis
cannot be avoided [55,56], to have the teacher act as a
model demonstrating how particular elaborations can be
helpful in the domain [57,58], and to have the students
reflect on worked out solutions [25,59,60]. For many teach-
ers, this could imply a shift in their selection of practice
problems [61].

APPENDIX: FULL OVERVIEW OF PROBLEM
CARDS AND EXPERT SERVINGS

See separate auxiliary material for full collection of
problem cards and expert servings.
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