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A mathematical theory of peer instruction describing the increase of the normalized number of correct
answers due to peer discussion is presented. A simple analytic expression is derived which agrees with class
data. It is shown that our theory is connected to the mathematical learning models proposed by Pritchard et al.
It is also shown that obtained theoretical lines are useful for analyzing peer-instruction efficiencies.
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I. INTRODUCTION

Recently, there has been a growing interest in constructing
mathematical teaching-learning models �1–4�. Although the
ultimate purpose of physics education research is to develop
most effective instruction methods, a mathematical theory of
learning is worth studying as far as the theory provides use-
ful information for analyzing students’ difficulties as well as
improving instructions. Of course, it is unlikely that con-
structing quantitative theories of learning for individuals be-
come possible, at least in the near future, because such theo-
ries would in fact describe student’s history itself. However,
when we consider the learning process for many students it
may become possible to construct a theory that provides cer-
tain quantitative predictions. This is just like the fact that
statistical mechanics based on a few basic laws and variables
describes the properties of macroscopic systems composed
of huge number of atoms and molecules, while in such a
system the motion of individual atoms and molecules is so
complex that it is extremely difficult to predict it in a precise
manner.

In this paper we develop a phenomenological theory of
peer instruction �PI� �5,6�. In contrast to the previous theories
that describe long-term learning gain �1,4�, our theory de-
scribes rather a short-time process of learning. Nevertheless,
as we will show in Sec. III B, our simplified analytic expres-
sion turns out to be connected to the mathematical model
proposed by Pritchard et al. based on the constructivist view
�4�.

In Sec. II we start with a “master equation” describing the
transition of the number of students answering correctly for a
multiple-choice question during PI. We show that the number
of correct answers after peer discussion is approximately
given by a simple function of the number of correct answers
before discussion. In Sec. III we compare our theory with
class data. Also, comparison is made of our theory with
learning models proposed by Pritchard et al. �4�. Applica-
tions of our theory to data analysis are discussed in Sec. IV.
A few concluding remarks are given in Sec. V.

II. THEORY

Although there are variations in implementing PI �7,8�, in
this report we only consider PI based on Mazur’s original
description �5�: students are expected to answer a concept
oriented multiple-choice question �MCQ� individually before
discussion.

We neglect many factors belonging to individual student
such as personality, education, rhetorical abilities, personal
skills, etc. We call them “student parameters.” Under this
condition, we may introduce distribution functions which
represent the normalized number of students choosing the
correct answer before and after discussion for a MCQ. Natu-
rally, besides student parameters, these functions would de-
pend on many variables such as the subjects of the lecture
before posing MCQ, contents and quality of the MCQ,
strength of psychological coupling with neighbors, etc. How-
ever, we consider only the indices of answers for the MCQ
as explicit variables. Then, we may construct a “master equa-
tion” of PI for a MCQ that describes the number of correct
answers before and after discussion. By denoting the normal-
ized number of students choosing the answer a for the MCQ
q before discussion and after discussion as �1�q ;a� and
�2�q ;a�, respectively, �2�q ;a� may be given by

�2�q;c� = �1�q;c� − �
d��c�

Tdc�q��1�q;c� + �
d��c�

Tcd�q��1�q;d� ,

�1�

where c and d represent the correct answer and distractors,
respectively. The second term of the r.h.s. of Eq. �1� repre-
sents the “outgoing processes” in which students who polled
the correct answer before discussion change their responses
to distractors after discussion. The third term represents the
“incoming processes” in which students who polled distrac-
tors before discussion change their responses to the correct
answer after discussion. Tab�q� is the “transition matrix”
which represents the normalized transition rate of students
from answer b to a. In general, such a transition rate is a
function of �1�q ;c�, student parameters, student-student rela-
tionship, contents of posed MCQs, and many other variables.
Tab�q� satisfies the condition 0�Tab�q��1 and, in general,
Tab�q��Tba�q�. It should be noted that �1�q ;c� and �2�q ;c�
do not coincide with the precise numbers of students having
the relevant knowledge. Actually, students choose the correct
answer in variety of confidence levels �5� and sometimes
based on incorrect reasoning.

Although Eq. �1� is already a simplified expression in that
we have neglected many factors affecting �1�q ;a� and
�2�q ;a�, let us try to simplify it further for the purpose to
find an analytic formula. We assume that the transition rates
from the correct answer to distractors are small, i.e., Tdc�q�
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�1 for all d, and that the transition rates from distractors to
the correct answer do not differ very much, i.e., Tcd�q�
� T̄�q�, for all d. Then Eq. �1� reduces to

�2�q;c� = �1�q;c� + T̄�q��1 − �1�q;c�� , �2�

where we have used the identity �d��c��1�q ;d�=1−�1�q ;c�.
We assume further that T̄�q� can be expanded into the power
series in �1�q ;c� as

T̄�q� = k0�q� + k1�q��1�q;c� + k2�q��1�q;c�2 + ¯

+ kn�q��1�q;c�n + ¯ . �3�

Let us take the linear approximation for Eq. �3�. Since the
transition to the correct answer is negligible when �1�q ;c�
→0, we may assume that k0�q��0. Then we obtain

T̄�q� � k1�q��1�q;c� . �4�

Equation �4� denotes that the transition rate from distractors
to the correct answer due to PI is approximately proportional
to the number of student polling the correct answer before
discussion. Substituting Eq. �4� into Eq. �2�, we obtain

�2�q;c� = �1�q;c� + k1�q��1�q;c��1 − �1�q;c�� . �5�

It is useful to introduce a quantity representing the “peer-
instruction efficiency” �PIE� for a MCQ q,

��q� �
�2�q;c� − �1�q;c�

1 − �1�q;c�
. �6�

It should be noted that PIE resembles the Hake gain �9� in its
definition but not in character. The Hake gain represents the
learning gain for a series of lectures, while PIE represents the
efficiency of students’ discussion for a certain MCQ.

Using Eq. �2�, we obtain,

��q� = T̄�q� . �7�

Now, let us try to simplify Eq. �5� further by ignoring the
dependence on the MCQ �i.e., the parameter q�. For simplic-
ity, from now on we do not write the variable c explicitly.
From Eq. �5�, we observe that �2=1 when �1=1. Therefore,
by considering the condition that for �1→1 the PIE should
approach to unity, we have k1=1. Then Eq. �5� reduces to

�2 = �1 + �1�1 − �1� , �8�

and the PIE becomes

� = �1. �9�

III. COMPARING THEORY WITH DATA AND OTHER
MODELS

A. Comparing with class data

In this subsection, we compare Eq. �8� and �9� with data
obtained from lectures implementing PI �10�. In Fig. 1 we
show the fraction of correct answers before and after peer
discussion. This type of chart was originally given by Mazur
�5,11�. The red solid curves represent the numerical value of

Eq. �8�. The data shown in Fig. 1�a� is obtained from the
stand-alone type of lecture on introductory mechanics con-
ducted by the author at Tokyo Gakugei University �TGU� in
the spring semester of 2009 �12�. The blue broken line rep-
resents the second-order polynomial best fitting curve to data
points by the least-squares method, which is given by �2
=−0.969�1

2+2.08�1−0.062. Taking into account the fact that
Eq. �8� is a result of drastic simplifications, the agreement
between theory and data is well.

Figure 1�b� shows data obtained from high-school physics
courses at Tokyo Gakugei University High School. The vio-
let and blue data points are obtained by two instructors at
2008 and 2009 lectures on mechanics in the physics courses,
respectively �13–15�. The violet and blue broken lines are
best fitting curves to 2008 and 2009 data points, respectively.
Our theory agrees with these high-school data.
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FIG. 1. �Color� The normalized number of correct answers after
discussion versus before discussion for �a� a university course of
introductory mechanics and �b� high-school physics courses. The
red solid lines represent the theoretical curve of Eq. �8�. In �a�, the
blue broken line represents the best fitting curve in the second-order
polynomial approximation. The four green points represent data as-
sociated with Newton’s third law. In �b� the violet and blue points
correspond to the data from 2008 classes and 2009 classes, respec-
tively. The violet and blue broken lines are corresponding best fit-
ting curves.
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In Fig. 2 we compare theoretical line of PIE �Eq. �9�� with
data. The agreement between theory and data are again ob-

served. As seen from Eq. �7�, PIE is equivalent to T̄�q�.
Therefore, the linear dependence of PIE data on �1 indicates

the validity of the linear approximation for T̄.

B. Comparison with other models

In this subsection we compare our theory with the math-
ematical models of learning developed by Pritchard et al. �4�.

Let us take the r.h.s. of Eq. �3� up to the first order of �1,

i.e., T̄=k0+k1�1. Then substituting �1 and �2 by �t and �t+�,
respectively, we obtain from Eq. �2�

�t+� = �t + �k0 + k1�t��1 − �t� . �10�

Taking the limit �→0 for Eq. �10�, we obtain the nonlinear
differential equation

d�t

dt
= ��0 + �1�t��1 − �t� , �11�

where we have defined that �0=k0 /� and �1=k1 /�. Equation
�11� is equivalent with the differential equation representing
the “connectedness model” �4�. Indeed, if we put �0=0 and
replace �t with KT�t� in Eq. �11�, we obtain the “simple con-
nected model,”

dUT�t�
dt

= − �1UT�t�KT�t� , �12�

where KT�t� and UT�t� are the known and unknown fractions
of a certain test domain T, respectively, which satisfy KT�t�
+UT�t�=1 �4�. Since Eq. �8� is identical to Eq. �10� with k0
=0 and k1=1, Eq. �8� corresponds to Eq. �12�. In this sense
the dynamics of PI expressed by Eq. �8� agrees with the
simple connected model of Pritchard et al. It is worthwhile to
mention that Pritchard et al. noted as “this �simple con-
nected� model would apply to classes that receive instruction
solely by peer to peer interactions” �4�.

On the other hand, if we put �1=0, we obtain,

dUT�t�
dt

= − �0UT�t� , �13�

which is called the “pure memory model” �4�. Naturally this
model is rather different from the learning process of PI.
Indeed, the pure memory model corresponds to the case for

T̄=k0. In this case, as seen from Eq. �7�, PIE becomes con-
stant. This result clearly disagrees with the data shown in
Fig. 2.

IV. DISCUSSION

In this section we illustrate possible applications of our
theory to the diagnostics of students’ difficulties and im-
provement of instruction.

The four green points in Figs. 1�a� and 2�a� are results of
MCQs associated with Newton’s third law. It is remarkable
that, although values of the normalized number of correct
answers before discussion for these points range from 0.23 to
0.74, all of them are placed below the theoretical lines �16�.
This suggests that individual students tend not to change
their views about Newton’s third law by peer discussion. In
other words, students’ naive concept �11� on Newton’s third
law is rather concrete. Of course this is well-known inductive
conclusion in physics education research. We would like to
point out that the simple analysis based on our theory recov-
ers this established knowledge in physics education research.

It should be emphasized that Eq. �8� is derived by neglect-
ing the dependence on MCQs. Obviously, if we use only low
PIE-value MCQs for PI such as green data points in Figs.
1�a� and 2�a�, data points will stay below the theoretical
curve of Eq. �8�. By contrast, if we use only very effective
�high PIE-value� MCQs for PI, data points will beyond the
theoretical curve. In this sense, it may be possible to use the
theoretical curve of Eq. �8� as a certain standard to evaluate
students’ difficulties as well as effective MCQs from practi-
cal data.
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FIG. 2. �Color� The peer instruction efficiency �PIE� versus cor-
rect answers before discussion for �a� the university course and �b�
the high-school courses. The red solid lines represent the theoretical
line of Eq. �9�. The broken lines represent the best fitting lines for
the data. In �b� the violet �blue� points and line represent the 2008
�2009� data. The four green points in �a� represent data associated
with Newton’s third law.
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V. CONCLUDING REMARKS

In this paper, we have presented a theory describing dy-
namics of peer instruction. We have obtained a simple ana-
lytic expression that gives the relation between the rate of
correct answers before and after discussion. The theoretical
curve agrees with data obtained from lectures implementing
PI. It is also shown that our simplified expression corre-
sponds to the simple connected model of Pritchard et al. �4�.
It is indicated that our theoretical results will be useful to
diagnose student difficulties through PI data as well as find-
ing effective concept oriented questions for PI.

Finally, it is worthwhile to point out that all parameters
and functions in Eq. �1� can be determined from PI data
obtained easily by using “clickers.” It is interesting to use the
transition matrix Tab�q� for the analysis of student difficul-
ties, but such tasks are beyond the scope of our present re-
port.
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