PHYSICAL REVIEW SPECIAL TOPICS - PHYSICS EDUCATION RESEARCH 5, 020103 (2009)

Approaches to data analysis of multiple-choice questions

Lin Ding! and Robert Beichner?
1Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
2Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
(Received 12 February 2009; published 10 September 2009)

This paper introduces five commonly used approaches to analyzing multiple-choice test data. They are
classical test theory, factor analysis, cluster analysis, item response theory, and model analysis. Brief descrip-
tions of the goals and algorithms of these approaches are provided, together with examples illustrating their
applications in physics education research. We minimize mathematics, instead placing emphasis on data inter-

pretation using these approaches.
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I. INTRODUCTION

Multiple-choice tests are increasingly used in physics
education to assess student learning. Appropriate and effec-
tive approaches to data analysis of multiple-choice tests thus
become an important research topic. To facilitate data analy-
sis and interpretation, physics education researchers have
adopted various testing techniques from educational and psy-
chological studies. These techniques benefited many studies
published in this journal and others such as the American
Journal of Physics.

Despite voluminous literature on mathematical theories of
diverse testing techniques, a concise introduction to fre-
quently encountered approaches of data analysis suitable for
physics education research (PER) is much needed. In this
paper, we briefly introduce five approaches to analyzing
multiple-choice test data; these are classical test theory, fac-
tor analysis, cluster analysis, item response theory, and
model analysis (see Table I). Specifically, we introduce the
goals and basic algorithms of each approach, offering ex-
amples to demonstrate how each approach can be used for
data interpretation. Emphasis is placed on applications of

PACS number(s): 01.40.Fk, 01.40.gf, 01.40.G—

these approaches in the context of PER studies. Since it is
not our intention to present comprehensive theories of statis-
tics, we minimize mathematical details and avoid derivations
that can be found in the listed references. We also do not
intend to pursue highly technical issues that are controversial
even among statisticians and psychometricians; therefore no-
tions, terminologies, names, and discussions presented in this
paper are in compliance with conventional norms that are
commonly recognized.

Other related issues not covered herein include the pros
and cons of multiple-choice tests,! various types of test
“validity,”” and pre/post use of multiple-choice tests to gauge
the effectiveness of traditional and reform courses.’

The remainder of the paper is organized into six sections,
five of which are devoted to the five approaches, respectively
(Secs. II-VI), followed by a brief summary (Sec. VII).

II. CLASSICAL TEST THEORY

Classical test theory is an important part of the foundation
of modern measurement theory.* It assumes that a total test
score is made up of two components: true score and random

TABLE 1. Five approaches to analyzing multiple-choice test data.

Goal or purpose

Basic algorithm

Evaluate item or test reliability
and discriminatory power

Classical test theory

Principal component

Factor analysis variables
analysis Common factor Explore underlying
analysis factors

Cluster analysis

Estimate item characteristics
and subjects’ latent abilities

Item response theory

Represent probabilities of
using different models

Model analysis

Reduce the number of

Classify subjects into groups

Perform item analysis
and test analysis

Solve eigenvalue equations for
correlation matrix

Solve eigenvalue equations for
adjusted correlation matrix

Calculate Euclidian distances
and merge/divide subjects

Use logistic functions to
formulate data

Calculate density matrix and
solve eigenvalue equations
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error. Based on this assumption, classical test theory gives
rise to a number of statistical analyses for test evaluation,
including item analysis and test analysis.” The purpose of
these analyses is to examine if a test is reliable and discrimi-
nating. For a reliable test, similar outcomes are expected if
the test is administered twice (at different times), assuming
the examinees’ performance is stable and the testing condi-
tions are the same. For a discriminating test, results can be
used to clearly distinguish those who have a robust knowl-
edge of tested materials from those who do not. In the fol-
lowing, we provide brief introductions to both item analysis
and test analysis. One can follow these analyses to perform
test evaluations.

Item analysis encompasses three measures: item difficulty
level (P), discrimination index (D), and point biserial coef-
ficient (r,y;). Item difficulty is a measure of the easiness of an
item (although it is ironically called “item difficulty” level)
and is defined as the proportion of correct responses,

P=N,/N.

Here N, is the number of correct responses and N is the total
number of students taking the test. Ideally, items with diffi-
culty level around 0.5 have the highest reliability because
questions that are either extremely difficult or extremely easy
do not discriminate between students (since nearly everyone
gets them wrong or right). Practically, item difficulty values
ranging from 0.3 to 0.9 are acceptable.b If items with ex-
tremely low or extremely high difficulty values are detected,
one may consider revising these items to make them easier
(or more difficult).

The item discrimination index measures how powerful an
item is in distinguishing high-achieving students from low-
achieving students. It is defined as the difference in percent-
ages of correct response to an item between the top quartile
and the bottom quartile students,’

D= (Ny—N)/(N/4).

Here Ny and N are the numbers of correct responses in the
top quartile and bottom quartile, respectively, and N is the
total number of students. “Quartile” can be determined by
using either an “internal” criterion (students’ scores on the
test being considered) or an “external” criterion (e.g., stu-
dents’ grade point averages).® The criterion used in most
PER discussions is internal. Occasionally researchers use top
and bottom thirds or some other division of scores, depend-
ing on what best suits their needs. If an item is discrimina-
tive, one can expect the number of correct responses in the
top quartile (Ny;) to be much greater than that (Ny) in the
bottom quartile, thus a high discrimination index. A com-
monly adopted standard® for a satisfactory item discrimina-
tory index is D =0.3. Higher values are better. In case of a
low item discriminatory index, one may need to scrutinize
the item to see if the statement of the question is clear. Some-
times, a poorly worded item can cause strong students to
overthink the question, posing a negative effect on their per-
formance and thus lowering the item discrimination index.
Another possible situation for low item discrimination is
when an item is either too difficult (low difficulty index) or
too easy (high difficulty index). In these cases, the difference
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in performance between the top quartile and bottom quartile
students is small; hence the item discrimination index is low.

The point biserial coefficient is a measure of individual
item reliability and is defined as the correlation between the
item scores and total scores,’

X - Xy ———
rpbi=%\'P(1 —P)

X

Here, X, is the average total score for those who correctly
answer an item, X, is the average total score for those who
incorrectly answer the item, o, is the standard deviation of
total scores, and P is the difficulty index for this item. A
reliable item should be consistent with the rest of the test, so
a fairly high correlation between the item score and the total
score is expected. A satisfactory point biserial coefficient!? is
rppi=0.2. Once again, higher values are better. If an item
shows a low biserial coefficient, it indicates this item may
not test the same material (or may not test the material at the
same level) as other items. Revisions may be considered to
make this item more comparable to the rest of the test.

Test analysis has two measures: Kuder-Richardson reli-
ability index (rg) and Ferguson’s delta (8). These two mea-
sures are used to evaluate an entire test (rather than evaluate
individual items). Kuder-Richardson reliability measures the
internal consistency of a test. In other words, it examines
whether or not a test is constructed of parallel items that
address the same materials. Higher correlations among indi-
vidual items result in a greater Kuder-Richardson index, in-
dicating higher reliability of the entire test. For a multiple-
choice test where each item is scored as “correct” or
“wrong,” the reliability index is calculated as follows:!!2

K (1_2 P,(l—P,-))

Tiest = K-1 0_)2(

This formula is known as KR-20 after the equation number
in the famous Kuder and Richardson paper.'! Here, K is the
number of the test items, P; is the difficulty level for the ith
item, and o, is the standard deviation of total score. A widely
accepted criterion is that a test of reliability higher than 0.7 is
considered reliable for group measurement. An r., Vvalue
greater than 0.8 is the rule of thumb indicating a test is suit-
able for use in assessing individuals.'® If a low reliability
index is detected, one may first consider examining items
with low discrimination index and low point biserial coeffi-
cient. Because these items often are not consistent with other
items, they can negatively impact the reliability of the entire
test.

Ferguson’s delta measures the discriminatory power of an
entire test. Specifically, it investigates how broadly students’
total scores are distributed over the possible range. Gener-
ally, the broader the score distribution is, the better the test is
in discriminating among students at different levels. The cal-
culation of Ferguson’s delta is given as follows:!*!>

__N-3f
TN =N¥Y(K+1)

Here, N is the total number of students taking the test, K is
the number of test items, and f; is the number of students
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TABLE II. Evaluations of the MIET.

Test statistics MIET values Desired values

Difficulty index Average of 0.49 [0.30, 0.90]
Discrimination index Average of (.38 =(0.30
Point biserial coefficient Average of 0.33 =(0.20
Reliability index 0.74 =0.70
Ferguson’s delta 0.97 =0.90

whose total score is i. Generally, if a test has Ferguson’s
delta greater than 0.90, it is considered to provide good dis-
crimination among students.'®

The above analyses are easy to perform. Once one obtains
basic descriptive statistics such as total scores and item
scores, calculating these indices or coefficients becomes
fairly straightforward. With these analysis results at hand,
one then can evaluate a test regarding its reliability and dis-
crimination. For example, Table II shows the analysis results
of a 33-item research-based energy assessment designed for
the Matter & Interactions mechanics course, namely, the
Matter & Interactions Energy Test (MIET).!” As seen, MIET
is a medium difficult test, and it has satisfactory overall dis-
crimination and reliability for both the individual items and
the entire test. Interested readers can replicate these results
from detailed data in Appendix A by following the afore-
mentioned formulations. More studies using these analyses
for physics assessment evaluation can be found elsewhere,
for example, evaluation of the Test of Understanding Graphs
in Kinematics (TUG-K),'® a Conceptual Survey of Electric-
ity and Magnetism (CSEM),'° a Brief Electricity and Mag-
netism Assessment (BEMA),"> a multiple-choice test of en-
ergy and momentum concepts,”’ and the Determining and
Interpreting Resistive Electric Circuits Test (DIRECT).?!

III. FACTOR ANALYSIS

Factor analysis is a short name for factor analytical tech-
niques, and it includes both principal component analysis
(PCA) and common factor analysis.*”> Generally, factor
analysis is performed when one has a large number of ob-
served variables but wishes to reduce it to conveniently ex-
plain data. For example, one administers a 30-item multiple-
choice physics test among several hundred students; he or
she then collects a data set of 30 variables (each variable
corresponding to an individual item). Going through all 30
variables in detail is time consuming, and the abundance of
data may not clearly reveal the overall picture of the results.
A small number of artificial variables that account for the
most (co)variance in the observed variables can facilitate
data interpretation. Factor analysis is a statistical technique
that constructs a small set of artificial variables through lin-
ear combinations of highly correlated observed variables.
These artificial variables are called “components” in princi-
pal component analysis or “common factors” in common
factor analysis. Although principal component analysis and
common factor analysis share similar features, they serve
fundamentally different purposes.”® The former aims to de-
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FIG. 1. (Color) Vector representation of observed variables: (a)
correlation of two vectors can be represented as the projection of
one vector onto the other; (b) three dimensions are needed to rep-
resent three vectors.

velop components without assuming a causal relationship be-
tween components and observed variables, whereas the latter
explores underlying “factors” which are assumed to impose
causal effects on observed variables. Details can be found in
the following sections.

Here we start with a geometrical view of factor analysis to
help readers visualize this technique. Then we discuss some
basics of PCA and common factor analysis with examples
demonstrating how each approach can be used in multiple-
choice test data analysis. Some practical issues are ad-
dressed, and the underlying differences between PCA and
common factor analysis are emphasized.

A. Geometrical view

Nichols?* described a helpful geometrical analogy to fac-
tor analysis. Imagine each observed variable being repre-
sented by a vector of unit length. The correlation between
any two variables is represented by the cosine of the angle
between the two vectors. (Since we use unit vectors, this is
equivalent to the projection of one vector onto the other [see
Fig. 1(a)]). With two nonparallel vectors, we need two di-
mensions to represent them. If we have a third vector jutting
off the paper, we will need a third dimension [see Fig. 1(b)].
This idea can be extended to any number of vectors in a
multidimensional space. To simplify our analogy without
losing generality, we consider three dimensions by assuming
there are only three factors. The task of factor analysis is to
find three dimensions that best summarize observed variables
represented by blue vectors in Fig. 2.

Y

z

FIG. 2. (Color) A starburst configuration of observed variables
is represented by blue arrows.
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z

FIG. 3. (Color) Sum of the squared projections of the blue arrow
onto the red arrow (through the origin) is maximized. The red arrow
represents factor 1.

To find the first factor, we add a bidirectional vector
through the origin and spin it around until we have maxi-
mized the sum of the squared projections of the blue vectors
onto it. The red arrow in Fig. 3 represents the first factor. The
projections of the variables (blue vectors) onto the factor are
referred to as the factor loadings of factor 1.

Now place a flat screen at the origin, perpendicular to the
first factor (red arrow). Shine a light toward the origin from
beyond each end of the red vector and cast shadows of the
blue vectors onto the screen (see Fig. 4). These shadows are
the residual correlations with the first factor partialled out.

We now place a new bidirectional green vector on the
screen through the origin and perpendicular to the red vector.
We then rotate the green vector until the sum of the squared
projections of the shadows onto it (not the blue vectors, but
their shadows on the screen) is maximal. The green bidirec-
tional vector in Fig. 5 represents the second factor. Since the
green vector is perpendicular to the first factor, factor 1 and
factor 2 are orthogonal.

We now place a third bidirectional orange vector on the
screen through the origin and perpendicular to the red and
green vectors (see Fig. 5). The projections of the shadows on
the orange vector are called the loadings on the third factor.

By finally clearing away all the extraneous representa-
tions, we see how the three factor vectors form a coordinate
system that is more closely aligned with the original vectors
than the x, y, and z axes. Figure 6 shows the view looking
down the factor 1 axis toward the origin. Although impos-

Factor 1
X

FIG. 4. (Color) Cast projections of the blue arrows onto the
green screen perpendicular to factor 1.
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Factor 2

Factor 3

FIG. 5. (Color) The sum of the squared projections of the green
shadows onto the green vector is maximized. The green vector pre-
sents factor 2. The orange vector is perpendicular to both the red
and green vectors, representing factor 3. In a general case of mul-
tiple dimensions, a rotation of all factors probably is desirable and if
needed can still maintain orthogonality among them.

sible to visualize with more than three factors, the math-
ematical approach and meaning are the same regardless of
how many dimensions are involved.

B. Principal component analysis

PCA is a variable reduction procedure. Suppose one ob-
tains a data set of 30 variables from administering a 30-item
multiple-choice test. Usually several items test the same
topic, and thus students’ scores on these items should ideally
display high correlations. PCA groups these highly corre-
lated items together and collapses them into a small number
of components through weighted linear combinations as
shown below:

Ci=b11Q1+D120,+b1303+ -+ + by 300305

Cy=b3101 +bp0s + by303+ **+ + by 30030,

Here C’s are components, Q; represents the ith item in the
test, and b’s are weights of individual items. The main task
of PCA is to optimize the weights (b values) so that these
components constructed as such account for variance in the

Factor 2 Factor 3

z Factor 1

FIG. 6. (Color) Three factors are more aligned with the blue
vectors than the x, y, and z axes. Here, the x axis is too close to
factor 1 and therefore is not labeled in the picture.
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FIG. 7. A “scree plot” for PCA of eight MIET items.

observed data more than components constructed otherwise.
PCA solves eigenvalue equations for the optimal weights
from a correlation matrix.

The following is an example, showing PCA results on
eight selected questions (Q12-QI14, Q16, Q27, and Q31—
Q33) from MIET.!” A correlation matrix for these eight ques-
tions is calculated using 389 students’ responses and is pro-
vided in Appendix A for interested readers to replicate the
results. From the 8 X 8 matrix, PCA first solves for eight
eigenvalues and corresponding eigenvectors (components).
Figure 7 shows a “scree plot”? of these eight eigenvalues.
(The name of the plot refers to the rubble or scree that col-
lects at the bottom of a cliff.)

As seen, the curve drops quickly, and at the third eigen-
value its rate of decrease reduces significantly. Because the
eigenvalues indicate the amounts of variance explained by
each eigenvector (component), it is conceivable that the first
two components may be enough to explain a meaningful
amount of variance in the observed data. Thus, the first two
components are retained. The components obtained hereto-
fore can be further transformed into either correlated or un-
correlated components through orthogonal or oblique
rotations?®?7 at the researcher’s discretion. (Orthogonal rota-
tion rotates all components as a rigid body system, preserv-
ing the orthogonality among them, whereas oblique rotation
does not maintain the orthogonality.) Since either rotation
may generate more sensible components than the other, no
rigid rule exists as for which one is more preferable. Practi-
cally, one may consider trying both rotations to explore
which facilitates data interpretation better. Interested readers
can see Refs. 26,27 for details. For simplicity, we consider
two uncorrelated (orthogonal) components and use SAS to
obtain component loadings in Table III. Here, components
are the eigenvectors of a correlation matrix. Component
loadings are the linear regression coefficients of the compo-
nents for each variable, which are calculated from the afore-
mentioned linear equations in this section.

It is clear from Table III that the first four questions have
large loadings on component 1 and small loadings on com-
ponent 2. Conversely, the last four questions show a reverse
pattern. Thus it is reasonable to conclude that the first four
questions can be summarized by component 1 and the last
four questions by component 2. It is now the researcher’s job
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TABLE III. Component loadings for PCA of eight MIET items.
An asterisk indicates an “important” factor loading as suggested by
Hair et al. (Ref. 28).

Component 1 Component 2 Question content

Energy graph, bound

Q12 0.66* 0.08 or unbound system
Energy graph, bound
Ql13 0.73% 0.03 or unbound system
Energy graph, bound
Q14 0.63% -0.12 or unbound system
Q16 0.54% 0.02 Energy of a bound system
Q27 0.09 0.53% Work-energy theorem
Q31 -0.11 0.63% Work-energy theorem
Q32 0.12 0.59% Work-energy theorem
Q33 -0.06 0.70% Work-energy theorem

to describe what each component means. In this example, a
close inspection of these questions reveals that the first ques-
tions test basic concepts of energy in bound or unbound sys-
tems and the last four questions test the work-energy theo-
rem (see Appendix B for the eight selected questions).
Therefore, it is sensible to name the first component “energy
in bound or unbound system” and the second component
“the work-energy theorem.”

The simple pattern of component loadings in the preced-
ing example is desirable for data interpretation. When judg-
ing the size of component loadings, one may use Hair’s
suggestion®® to consider loadings of 0.3 as minimal, *=0.4
as more important, and *0.5 as significant. That said, there
really is no rigid criterion to follow, and it often relies on the
researcher’s experience to decide what cutoff value to use.
Some software such as SAS?® has built-in functions to flag
significant loadings on a case-by-case basis instead of using
a “one-size-fit-all” criterion.

C. Common factor analysis

Common factor analysis assumes some unmeasured “fac-
tors” as the underlying causes of observed variables.’%3!
Suppose one administers four multiple-choice questions
among students and collects a data set of four variables. With
an assumption that two common factors underlie the ob-
served data, the relations among these two common factors
and four questions can be depicted in Fig. 8. Here, rectangu-

]

Uy U, U, Uy

FIG. 8. Common factors and unique factors in common factor
analysis.
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lar boxes represent observed variables (questions 1-4) and
elliptical circles indicate latent (unmeasured) common fac-
tors. Single-headed arrows signify causal influences on ob-
served variables. As shown, each observed variable receives
influences from not only common factors (factors 1 and 2)
but also its own underlying factor (U). As opposed to the
common factors, these U factors are called unique factors.
The goal of common factor analysis is to identify the com-
mon factors to account for the covariance among observed
variables.

As seen in Fig. 8, each observed variable can be ex-
pressed as follows:

O1=b Fi+bpFr+ Uy,

Q2= by F + bk + Us.

Here Q’s are observed variables, F’s are common factors,
U’s are unique factors, and b’s are regression coefficients
(weights). Similarly to PCA, common factor analysis calcu-
lates optimal weights (b values) by solving eigenvalue equa-
tions of the observed correlation matrix. However, the diag-
onal elements of the correlation matrix are no longer 1’s.
Rather, they are replaced with variances that are accounted
for by common factors. In other words, the portion of vari-
ances explained by unique factors is discarded. This is a
major difference between PCA and common factor analysis.
Here, this new correlation matrix is called adjusted correla-
tion matrix.3? Since the portion of variances due to common
factors cannot be known a priori, it is practical to use esti-
mates for an initial trial. Often commercial software has
functions to generate estimates, followed by iterations to
solve the equations.

In the following we provide an example of common fac-
tor analysis using the same data as for PCA. The purpose of
this example is to uncover the underlying structures of mea-
sured variables. (Here we do not predetermine possible fac-
tors. Such approach is known as exploratory factor analysis.
In cases where common factor analysis is used to confirm
predetermined factors, it is called confirmatory factor analy-
sis. Readers can refer to Ref. 22 for confirmatory factor
analysis.) The initial adjusted correlation matrix is included
in Appendix A for interested readers to replicate the results.
We choose orthogonal rotation and the maximum likelihood
method®® (an iteration method in which parameter estimates
are those most likely to have yielded the observed correlation
matrix) in SAS for common factor analysis. Other iteration
methods include unweighted least squares (minimizing the
sum of squared differences between estimated and observed
correlation matrices) and generalized least squares (adjusting
the unweighted least squares by weighing the correlations
inversely to their unique variables, U’s).?’ Although maxi-
mum likelihood may be the most frequently used method,
there are no dogmatic criteria as for which one is more pref-
erable than others. A rule of thumb is to choose a method that
best facilitates data interpretation. The reason we choose
maximum likelihood is that for our data this method pro-
duces more sensible and easy-to-interpret results. In Table
IV, the final factor loadings for each question are shown. As
previously stated, SAS has built-in functions to flag signifi-
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TABLE IV. Factor loadings for common factor analysis of eight
MIET items.

Factor 1 Factor 2 Content

QI2 0.54*%  0.13
Q13 0.66*  0.08
Ql4 035%  0.12
Q16 0.31 0.02

Energy graph, bound or unbound system
Energy graph, bound or unbound system
Energy graph, bound or unbound system

Energy of a bound system

Q27 0.14 0.33% Work-energy theorem
Q31 0.14 0.35% Work-energy theorem
Q32 0.15 0.44% Work-energy theorem
Q33  0.04 0.53% Work-energy theorem

cant loadings. Loadings with an asterisk in Table IV are con-
sidered significant by SAS.

As seen, the results are very similar to those obtained
from PCA. However, factor loadings in Table IV are gener-
ally lower than component loadings in PCA (Table III). This
is understandable because common factor analysis considers
only the portion of variances explained by common factors,
whereas PCA analyzes the total variances in observed data
without assuming underlying effects. This is why the purpose
of PCA is purely data reduction, while the purpose of com-
mon factor analysis is to understand causes.?>3

Another interesting difference between the above results
and those in Table III is manifested in Q16. Previously, PCA
generates a high loading on component 1 “energy in bound
or unbound system.” Here the loading on factor 1 is barely
above the minimum suggested by Hair et al.?® In fact, SAS
does not even flag this loading as significant. A closer inspec-
tion reveals that Q16 differs from the first three questions in
that it is not formatted in graphical representations. This dif-
ference may have lowered its loading value on factor 1. Put
differently, there may exist factors other than the above two
that can better explain the observed data for question 16.

D. Practical issues

Both of the above two examples yield a simple pattern of
loadings for observed variables; that is, nearly all the ques-
tions have loadings high on one component (or factor) and
low on others. This simple pattern makes it easy to interpret
the meaning of components or factors. In reality, one rarely
obtains such a simple pattern, especially when dealing with
binary data (1 or 0) collected from dichotomously scored
multiple-choice questions. In that case, one can start with
correlations for dichotomous® variables, as suggested by
Heller and Huffman,3 instead of Pearson correlations. An-
other approach is “reduced basis factor analysis™>’ proposed
by Adams et al. In this approach, factor analysis is repeat-
edly performed by adjusting the initial factors so as to maxi-
mally comprise between predetermined results and the re-
sults acquired from real data.

Results obtained from either PCA or common factor
analysis should be used heuristically and not in an absolute
manner. Oftentimes one may find PCA generates results
more interpretable than common factor analysis and vice
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Measurement 2

Measurement 1

FIG. 9. Euclidian distance as a measure of similarity. The dotted
line connects the farthest apart points of two clusters (complete
linkage). The solid line connects the closest points of two clusters
(single linkage). The dashed line connects the centroids (diamonds)
of two clusters. The average linkage is not shown, as it is a math-
ematical average of all pairwise distances between two clusters.

versa, or orthogonal rotation yields loading patterns simpler
than oblique rotation and vice versa. Researchers need to
make decisions based on practical needs for the best inter-
pretation of data. Analysis of factor analysis results is some-
times more art than science.

IV. CLUSTER ANALYSIS

Cluster analysis®® is used when one wants to see if stu-
dents can be classified into different groups with distinctive
characteristics. For example, one administers a 30-item
multiple-choice test to 300 students. In addition to just look-
ing over students’ total scores, you may also want to know if
students display any distinctive response patterns. In this
case, cluster analysis is an appropriate tool to examine the
similarities (or dissimilarities) among students’ responses
and thus to group them into different clusters.

Cluster analysis often uses Euclidian distances to measure
similarities between any two subjects.>**’ [Here, we confine
our discussion to interval (continuous) data. For binary data
(1 or 0), one may consider using other measures, such as
binary Lance and Williams nonmetric distances.*'] Suppose
one has conducted two measurements among dozens of stu-
dents and prepared a scatter plot as shown in Fig. 9. The
similarity between any two students, for example, student A
and student B, is simply the Euclidian distance between the
two dots. Clearly, there are two distinctive clusters in Fig. 9,
one in the upper left corner and the other in the lower right
corner. In determining the distance between the two clusters,
one can use one of the following four measures:*>*3 distance
between the closest points of two clusters (single linkage),
distance between the farthest apart points of two clusters
(complete linkage), average distance of all pairs between two
clusters (average linkage), and distance between two mean
vector locations (centroids, similar to the “center of mass” of
a cluster of equal-mass particles) of two clusters. There is no
superiority of one measure over another. Oftentimes, re-
searchers have to try all of them to finally decide which one
is the best for data interpretation.

The basic algorithm of cluster analysis involves iterations
of assigning subjects into different clusters according to their
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Measurement 2

Measurement 1
FIG. 10. An illustration of the agglomerative method.

distances to each cluster. Three methods are often used: ag-
glomerative, divisive, and K-means.**** The agglomerative
method starts with individual subjects and considers each
subject as a cluster of size 1. Two closest clusters first are
merged to form a new cluster. This new cluster then is
merged with the cluster (of size 1) nearest it.*> This process
continues until all subjects are combined into a single cluster.
Consider a simple case of five data points in a two-
dimensional space as shown in Fig. 10. First, the agglomera-
tive method merges the two closest points A and B into a
cluster (AB). Next, this cluster is merged with the nearest
point C to form a new cluster (ABC). Then this new cluster
is further merged with the nearer point D to form an even
bigger cluster (ABCD). Finally, all points are included. An
analogy of this method is adding leaves to branches and
branches to trunks. The divisive method is just the reverse of
the agglomerative method. It starts with one mother cluster
that includes all subjects. Then it divides into two daughter
clusters in a way that the distance between the daughter clus-
ters is maximized. The dividing continues until every cluster
contains a single subject. This method is similar to trunks
diverging into branches and branches into leaves. K-means is
different from the above two, and it does not form a tree.
K-means requires a predetermined number (K) of clusters.
Once the number K is specified, an initial partitioning is
executed. Each subject then is assigned to a cluster whose
centroid is closest. All subjects are either assigned or reas-
signed until no more movement is needed.

We provide the following example to show how cluster
analysis can be used for grouping students. Results are de-
rived from a data set of 308 students who took the MIET.
Five major topics are covered in this 33-item assessment:
energy definition and representation, system specification,
determination of work and heat, calculation of atomic spec-
tra, and application of the work-energy theorem.!” Our goal
is to classify students into groups of distinctive performances
on these five topics. We started with the students’ scores on
these five topics and used SAS to calculate Euclidian dis-
tances among the 308 students. SAS produces a 308 X 308
matrix, part of which is shown in Appendix A. We then used
the agglomerative method and complete linkage to merge
students. A tree plot of the procedure (also known as
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FIG. 11. A dendrogram for cluster analysis of 308 students. The
horizontal axis represents 308 students (S1-S308); the vertical axis
represents the Euclidian distance among clusters. For instance, the
distance between clusters A and B is the vertical height of the hori-
zontal line connecting A and B, which reads approximately 2.4.

dendrogram*) is depicted in Fig. 11. Here, the horizontal
axis represents the arbitrarily assigned student identity and
the vertical axis shows the Euclidian distance between clus-
ters. As seen, each cluster extends a vertical line upward to
meet and join with others. When two closest clusters merge,
a horizontal line is placed to connect them. The height of the
connecting horizontal line indicates the distance between the
two clusters (see Fig. 11).

Several major clusters emerged in this example, as can be
seen from the top down in Fig. 11. For a quick grasp of the
results, we examine five clusters that are marked A—F in Fig.
11. Here, we focus on five clusters mainly for illustration
purpose. One certainly can choose a different number of
clusters for analysis. For example, one can choose to study
only the two biggest clusters (indicated by the top two ver-
tical lines in Fig. 11) or as many as 308 clusters (correspond-
ing to 308 students). Conceivably, results from too few or too
many clusters are not as informative. Moreover, it is impor-
tant to note that cluster analysis (like any other statistical
technique) only reports how clusters are formed but not why
they are formed as such. It is the researcher’s job to find out
the unique characteristics of the individuals in each cluster
that have caused them to be grouped together. In this ex-
ample, we seek to better understand what has made these five
clusters different. Hence, we further construct Table V to
examine their scores on each topic.

As seen from Table V, cluster E has the least number of
students, but their scores on the “work-energy theorem” and
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“atomic spectra” are the highest. Cluster D has the next least
number of students. Students in this cluster demonstrated
highest scores on “energy definition,” “system specification,”
and “determination of work and heat.” Cluster C is similar to
cluster D but with relatively lower scores. Thus, clusters C
and D merge into one cluster that further joins with E. In
other words, students in clusters C and D are comparable in
the sense that they have fairly high scores on basic energy
concepts and definitions, but their scores on “work-energy
theorem” are significantly lower than those of group E. Stu-
dents in cluster E seem to be at a higher level because they
are not only able to grasp basic concepts but also able to
successfully apply the work-energy theorem. As opposed to
the above three clusters, clusters A and B both have the low-
est scores on all topics. Nonetheless, cluster A differs from
cluster B on the work-energy theorem and “work and heat”
topics. This difference is easily noticed from the great verti-
cal height of the horizontal line connecting A and B (see Fig.
11).

In the above example we used the agglomerative method
to form clusters. We chose this method mainly because it
generates more interpretable results than others. Another rea-
son is that the agglomerative method is more efficient than
the divisive and K-means methods. For the divisive method
it is not feasible to optimize the initial partitioning when a
data set is large since the number of ways to divide N sub-
jects into two groups is 2V 1. As for the K-means proce-
dure, the difficulty lies in the predetermination of the number
of clusters. [Take the simplest situation for example. If we
predetermine to divide students into two clusters on each of
these five concepts (good or poor), then we will have 23
=32 clusters, more than what is manageable.] Nonetheless,
both agglomerative and K-means have been adopted in re-
cent physics educational studies. For example, a work by
Springuel et al.*’ used agglomerative method for cluster
analysis of student reasoning in kinematics; an unpublished
work by Montenegro et al.*® employed K-means to investi-
gate student misconceptions in mechanics.

A final note on differences between cluster analysis and
the aforementioned factor analysis is worth mentioning since
both seem to perform data classifications. First, cluster
analysis is often used to classify subjects, whereas factor
analysis is employed to group variables. Consider the same
example as before, where you administer a 30-item multiple-
choice test among 300 students. If you are interested in ex-
amining how the 30 items interrelate with one another and

TABLE V. Five clusters and their scores (percentages) on different topics covered in the MIET. (Bold
prints indicate the highest scores among the five clusters.)

Cluster
A (n=179) B (n=12) C (n=100) D (n=11) E (n=6)
Energy definition and representation 47 39 71 92 77
System specification 50 37 64 68 50
Determination of work and heat 43 32 56 64 50
Calculation of atomic spectra 68 67 82 82 92
Application of work-energy theorem 34 10 36 45 74
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FIG. 12. An item characteristic curve.

thus reducing the number of variables, factor analysis is ap-
propriate. On the other hand, if you want to know how stu-
dent response patterns differ so as to classify students, cluster
analysis should be considered. Second, cluster analysis often
considers Euclidian distances for measuring similarity, not
correlations as used in factor analysis. Why cannot one use
correlations in cluster analysis? Consider the situation de-
picted in Fig. 9 for example, the two distinctive clusters are
spatially apart but are highly correlated. Had correlations
been used as a measure for similarity, subjects far apart in
measurement space would have been placed into one cluster.

V. ITEM RESPONSE THEORY

Item response theory (IRT) is a modern test theory. It can
be used to estimate item characteristic parameters and exam-
inees’ latent abilities.** Here, item characteristic parameters
include item difficulty and discrimination, which may seem
the same as those in classical test theory but have different
meanings and measures (see below). Examinees’ latent abili-
ties are referred to as examinees’ general knowledge, capa-
bilities, and skills in a specific domain. IRT assumes one
“unidimensional” skill or ability that underlies examinees’
responses to all items. This skill or ability is considered as
latent because it is a nonphysical entity and is not directly
measured. For example, a student’s score on an E&M
multiple-choice test is only an outcome of her understanding
of E&M but is not her understanding itself. Simply put, an
E&M test cannot measure students’ understanding the same
way as a ruler can measure a table length. IRT, however,
intends to provide an estimate of such unmeasurable entities.

The basic task of IRT is to use logistic regression to for-
mulate observed binary data. A graphical representation of
this logistic regression (also known as the item characteristic
curve) is depicted in Fig. 12. Here, the horizontal axis rep-
resents latent ability 6 and the vertical axis shows the prob-
ability P(6) of answering an item correctly. Two parameters
are useful in describing the shape of the curve. One is the
location of the curve’s middle point; the other is the slope of
the curve at the middle point. The middle point is at P(6)
=0.5, and its corresponding value along the ability scale 6 is
defined as item difficulty. In other words, item difficulty is
the ability value at a 50% probability of correct response. So,
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the greater the difficulty value of a particular test item, the
higher an ability level is required to have a 50% probability
of correct response. This is different from the difficulty mea-
sure in classical test theory (Sec. II). As for the slope of the
curve, it has a maximum at the middle point. If the slope is
large, the curve is steeper, indicating that students of high
abilities have a greater probability of correct response than
those of low abilities. Conversely, if the middle point slope is
small, the curve is flatter; students of high abilities have
nearly the same probability of correct response as those of
low abilities. In this sense, the slope at the middle point is a
measure of an item’s discrimination. In IRT, the item diffi-
culty and discrimination parameters are denoted by b and a,
respectively. Using these notions, the mathematical expres-
sion of this logistic model is given by

1

—a(6-b) *

P(6) = l+e

The core of IRT is to determine the item characteristic pa-
rameters a and b and the students’ latent abilities 6.

Three IRT models based on the logistic regression are
frequently used; they are the one-parameter Rasch model, a
two-parameter model, and the three-parameter Birnbaum
model.>! The two-parameter model is identical to the above
logistic regression with both parameters @ and b undeter-
mined. For the one-parameter Rasch model, item discrimina-
tion a is held constant (a=1) for all items, thus leaving the
model with only one undetermined parameter, which is b.
The three-parameter Birnbaum model considers a guessing
effect and introduces a new parameter c. This parameter ¢
represents the probability of guessing a correct response for
those who do not possess the necessary ability to answer it
correctly. Thus, the observed probability of correct response
now becomes

c1-PO]+P(O)=c+(1- C)W.

In this model, three parameters need to be determined.

To demonstrate how IRT can be a useful tool in evaluating
multiple-choice items, we provide the following example us-
ing the three-parameter Birnbaum model calculated via
MULTILOG.>? Results are based on binary data collected from
308 students’ responses to 33 items in the MIET. Recall that
our goal is to estimate the item characteristic parameters a, b,
and c for each of the individual items. For illustration pur-
poses, we show in Fig. 13 item characteristic curves of two
items: Q27 and Q33.

As seen, item 27 has a positive discrimination value
a=0.74, displaying a monotonically increasing “S” curve in
the range of 6 € [-3,+3]. The value along the 6 scale for the
curve middle point is 1.25, meaning its item difficulty is
b=1.25. Simply put, students whose ability value is 1.25
have a 50% probability of correctly answering this item. The
lower left part of the curve shows an asymptote of 0.13,
indicating that students of low abilities have a 13% probabil-
ity of guessing this item correctly. As opposed to item 27,
item 33 displays nearly a flat line (¢=0.04) in the §e[-3,
+3] range, indicating the item fails to distinguish students of
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FIG. 13. Ttem characteristic curves for two MIET items (Q27
and Q33).

high abilities from those of low abilities. The reason for this
may be due to the high difficulty level of this item (b
=22.9). In future revisions, we will consider modifying item
33 to make it easier.

In the above example, the ability scale can be generally
described as students’ knowledge of energy topics in the
M&I mechanics course. The reason is twofold. First, IRT
assumes a unidimensional scale for the entire test. Second,
the MIET solely focuses on energy topics that are covered in
the M&I mechanics course. Of note here is that IRT-
estimated abilities may be correlated with, but are not iden-
tical to, test total scores. A total score may be dependent on
the specific questions used in a test, whereas IRT-estimated
abilities are independent of the questions used in a test. For
an elaborated proof, refer to Ref. 50. Similarly, the item dif-
ficulty and discrimination parameters in IRT are also inde-
pendent of examinees who take the test.

In addition to the above application, IRT can be used to
evaluate the functions of distracters in each item. The basic
idea is to examine trace lines for alternative choices. As an
example, we plot in Fig. 14 alternative-choice trace lines for
one item (Q30) in the MIET using the Bock-Samejima
model>-* (see Appendix B for this question). In this ex-
ample, the correct choice (choice 2) displays a monotonically
1 1
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FIG. 14. Trace lines for alternative choices of one MIET item

(Q30).
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increasing S curve in the 6 € [-3,+3] range. Therefore, stu-
dents of high abilities are more likely to choose the correct
answer than those of low abilities. As for choices 1 and 3, the
trace lines have a reverse trend. So, students of low abilities
are more likely to select choice 1 or 3 than those of high
abilities. Take choice 3 for example; the probability of
choosing this answer is less than 1% for students of an abil-
ity value of +3, but it is as high as 44% for those of an ability
value of —3. As for choice 4, the trace line is relatively flat
and low, suggesting that not many students choose this an-
swer at any ability level. Therefore, alternative choices 1 and
3 seem to function better than choice 4 in distracting students
of low abilities.

In Fig. 14, we once again plot probabilities against latent
abilities, not test total scores. In fact, it is much easier to use
total scores as a substitute for abilities than to perform IRT.
This is particularly true when one lacks adequate knowledge
of IRT or does not have computer software. As a rudimentary
step toward IRT, using total scores as a substitute for 6 can
provide a glimpse of what real IRT curves may look like. A
recent study by Morris et al. used this rudimentary approach
to evaluate Force Concept Inventory items. Conversely, a
paper by Lee et al. employed two-parameter IRT to measure
student latent abilities in answering Newtonian physics ques-
tions in a web-based physics tutoring system
MASTERINGPHYSICS.%¢

Finally, some practical issues of IRT are worth noting.
First, a large sample size generally is recommended for a
good model fit. Since the Rasch model estimates fewest pa-
rameters, a data set of “as few as 100” may be needed for
stable results.’” (Linacre®® suggested 50 for the simplest Ra-
sch model.) For other models, a sample size of several hun-
dred often is required. Also, different study purposes may
call for different sample sizes. For example, calibration of
high-stake test items may require sample sizes over 500 to
ensure accuracy. But for low-stake tests, “one does not need
large sample sizes.™’ Second, prior to IRT one may consider
performing factor analysis to determine if there is a single
prominent factor. The reason for doing so lies in the IRT
assumption that there is one single factor underlying exam-
inees’ responses. If factor analysis yields a single prominent
factor, one then can proceed with IRT. If factor analysis
yields multiple factors, one then can use IRT within each
factor. In fact, recent development in IRT has relaxed such a
constraint on “unidimensionality,” thus allowing researchers
to perform IRT even for data with multidimensional
factors.”® Third, there have been great controversies on IRT
model selections. Though the three-parameter model seems
to be the most complicated and hence the most stringent
model, arguments have been made that it in fact is the most
general model and that the other two models (the Rasch and
two-parameter models) are just special cases of the three-
parameter model with constraints on a’s and ¢’s.®’ Therefore,
it is recommended that the three-parameter should be used as
a start.%? On the other hand, the seemingly simple expression
of the Rasch model continues to attract many researchers. In
either case, one may rely on IRT software to examine
whether a model provides a good fit and then decide which
model to choose.’>! Thorough discussions on these issues
are beyond the scope of the paper. Interested readers can
refer to Refs. 60,61 for more information.
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VI. MODEL ANALYSIS

Model analysis®? is a PER-initiated approach to assessing
student learning dynamics. The goal of model analysis is to
present the probabilities of students’ use of different “mod-
els” in answering isomorphic questions that test the same
underlying concepts but have different surface features.
Here, models are purposefully defined rather vaguely to in-
clude both facets (bits and pieces of irreducible information)
and locally (or universally) coherent knowledge resources.®
For example, when encountering a question where only the
work-energy theorem is applicable, a student may approach
the question by using any of the following knowledge or
information: the work-energy theorem, the impulse-
momentum theorem, or some completely irrelevant formula.
In this example, each approach is considered a model. The
first approach is regarded as a “correct” model, the second
can be conveniently labeled as “impulse-momentum” model,
and the third can be named as “others.”

The basic algorithm of model analysis starts with a linear
vector Q that represents an individual’s probabilities of using
different models in answering a set of questions. For ex-
ample, a student answers four questions, all of which require
an application of the work-energy theorem. Suppose the stu-
dent correctly applies the work-energy theorem in only two
questions but uses the impulse-momentum theorem and
some irrelevant formula in the other two questions, respec-
tively. Then the vector Q for this student is

1 0 0 0.50
0=05010]+0.251]+0.25/0]=(0.25
0 0 1 0.25

Here, the three elements “0.50,” “0.25,” and “0.25” indicate
the frequencies of applying three different models, respec-
tively. Use the square root of each element in Q to form a
new vector V,

v0.50 0.71
v={1025 |=| 050
J025) 1050

Now take an outer product of V with a transpose of itself
V® VT to get a matrix, namely, the “density matrix” for each
individual student. Next, take an average over all the stu-
dents to obtain a class density matrix. Depending on how
students use different models, the class density matrix may
display different patterns. Figure 15 shows three examples as
discussed by Bao and Redish.®® The first matrix has only one

1 00 05 0 0 0.5 0.2 0.1

0 0 0 0 03 0 0.2 03 0.1

0 0 0 0 0 02 0.1 0.1 0.2
(@) (b) (c)

FIG. 15. Examples of class density matrix as appeared in Ref.
54: (a) the entire class uses model 1 consistently, (b) the class con-
sists of three groups of students each with a consistent model, and
(c) students use multiple models inconsistently.
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A point particle of mass m is initially at rest. A constant force is
applied to the point particle during a first time interval, while the
particle’s speed increases from 0 to v. The constant force
continues to act on the particle for a second time interval, while
the particle’s speed increases further from v to 2v. Consider the
work done on the particle. During which time interval is more
work done on the point particle?

(a) The first time interval

(b) The second time interval

(c) The work done during the two time intervals is the same
(d) Not enough information to determine

FIG. 16. One item (Q33) from the MIET.

nonzero element along its diagonal, meaning the entire class
uses the same model consistently. The second matrix has
three nonzero elements along its diagonal, indicating that
although the entire class has three models, each student uses
only one model consistently. The third matrix in Fig. 15
shows a mixed case where students use three models incon-
sistently. Now solve the class density matrix for its eigenval-
ues and eigenvectors. The eigenvector of the largest eigen-
value represents the dominant model used by the class.

In the following example, we use model analysis to study
students’ responses to four questions in the MIET that re-
quire an application of the work-energy theorem. Results ob-
tained herein are derived from 300 students who answered
all four questions. (Eight students with missing responses are
excluded from the analysis.®*) We consider three models for
analysis: (1) work-energy model, (2) momentum or force-
motion model, and (3) others. In Fig. 16 we display one item
(Q33) to illustrate what each model may look like. In this
item, choice (b) is the correct answer, thus representing the
“work-energy” model. Many students answered (c) and ar-
gued during interviews that the work done is the same in

1
0.8 T Region I:
Work-Energy
) Model
°
o
= 067
>
2
]
5
J‘ 0.4+, Region II:
:6 Mixed Model
=
027 7 e e -
................ Region llI:
............ .. Momentum/Force-Motion
e Model ’
0 g0t 1 Sa1 1 1 e
0 0.2 0.4 0.6 0.8 1
Momentum/Force-Motion Model
FIG. 17. A model plot of students’ answering four MIET
items.
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both time intervals because the change in speed is the same.
Apparently, these students focused on motion change instead
of energy change; therefore, their model can be described as
the “momentum or force-motion” model. As for choices (a)
and (d), we label them as others.

We obtain a class density matrix, as shown below, by
averaging individual density matrices,

0.275 0.304 0.06
0.304 0.638 0.121
0.06 0.121 0.085

We then solve its eigenequation and find that the largest ei-
genvalue is N, =0.835 and its corresponding eigenvector is
U=(-0.484,-0.857,-0.177)". According to Bao and
Redish,% the class probability of using the first model (work-
energy model) can thus be calculated as \,,, X U>=0.835
X (—=0.484)%>=0.20. Similarly, the class probability of using
the momentum or force-motion model is 0.61. As for
the third model others, the probability is A, X U%:O.835
X (=0.177)>=0.03, which is negligible. Note that the sum of
the above three probabilities is less than 1, implying that
these probabilities do not form a complete set. In fact, the
probabilities originating from the second and the third eigen-
vectors have not been taken into account. Bao and Redish
considered these additional eigenvectors as “corrections of
less popular features that are not presented by the primary
state.”®® Because of these “corrections,” probabilities from
model analysis are lower than what is calculated from a di-
rect division of the number of students choosing a particular
model by the total number of instances. This is generally true
except for some extreme cases in which, for example, all
students consistently use the same model. Because model
analysis takes into account the kind of inconsistencies, a
class density matrix almost always displays nonzero off-
diagonal elements.

Here, we represent the first two probabilities in a “model
plot” (Fig. 17) proposed by Bao and Redish, in which three
regions are separated by two straight lines passing through
the origin with slopes of 3 and 1/3, respectively.®* The data
point falls into the region of the “momentum or motion-
force” model but is close to the borderline. We thus conclude
that students are likely to use both the work-energy and mo-
mentum or force-motion models although the latter is more
dominant.

For researchers who consider using model analysis, it is
worth noting some requirements this analysis places on us-
ers. First, one needs to have in a test “a sequence of ques-
tions or situations in which an expert would use a single
coherent mental model.”® Simply put, a sequence of ques-
tions that target the same concept or principle is necessary. In
fact, a large number of such questions is strongly preferred
because “the probabilistic character of the student model
state arises from the presentation of a large number of ques-
tions or scenarios.”® Second, these questions ought to have
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distracters that represent similar models. These models must
be predetermined (both identified and categorized) before
performing model analysis. In other words, qualitative stud-
ies of students’ naive conceptions and incorporation of re-
sults into item distracters are a necessary precursor to model
analysis.

VII. SUMMARY AND DISCUSSION

In this paper, we discuss the goals, basic algorithms, and
applications of five approaches to analyzing multiple-choice
test data; they are classical test theory, factor analysis, cluster
analysis, item response theory, and model analysis. These
approaches are valuable tools for PER studies on large-scale
measurement using multiple-choice assessments.

Among them, classical test theory and item response
theory are particularly useful for test evaluations during the
development stage of an assessment. Both approaches can
yield detailed information on difficulty and discrimination of
individual items and thus are regularly employed to identify
problematic items. Classical test theory also gives rise to the
measures of an entire test, revealing the overall reliability
and discrimination of the test. (This is why it is called “test
theory.”) Owing to its simple theoretical framework, classi-
cal test theory has rather straightforward formulations. Thus,
it is easy to carry out. Nevertheless, classical test theory has
some major weaknesses. A prominent one is that results on
item measures are examinee dependent, and examinees’ total
scores are item dependent. Conversely, item response theory
overcomes such weaknesses by assuming a single underlying
“ability” (or “skill”) and using logistic regression to describe
the propensity of correct responses to individual items. As a
result, its estimated item measures and examinee abilities are
mutually independent. Moreover, item response theory can
also be used to examine how alternative choices function.
(Because of its emphasis on individual items, this theory is
named “item response theory.”)

Factor analysis and cluster analysis are good candidates
for grouping data into different categories. However, the
former intends to group variables (test items) into a small
number of components (principle component analysis) or
factors (common factor analysis), whereas the latter intends
to group subjects (test examinees) into different clusters.
Hence, factor analysis reveals information on how test items
are interrelated, while cluster analysis illuminates how stu-
dents’ responses differ. A noteworthy aspect about factor
analysis is the subtle difference between principle compo-
nent analysis and common factor analysis. Principle compo-
nent analysis is a pure data reduction technique and does not
presume underlying “causal structures.” But common factor
analysis assumes some common factors to be the cause of
observed data.

Model analysis is a useful tool for studies on how
consistently students answer isomorphic questions. It utilizes
quantum notations and eigenvalue analysis techniques to
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examine the probabilities of students’ using different mental
models in answering isomorphic questions (given such ques-
tions are readily available). Because model analysis requires
that all questions have alternative choices covering the same

TABLE VI. This table shows detailed item analysis results for
MIET based on 389 data collected from two institutions: North
Carolina State University and Purdue University. The average total
score is 17.4 out of 33 and the standard deviation is 4.9.

Discrimination Point biserial
Item Difficulty index index coefficient
Q1 0.24 0.4 0.39
Q2 0.65 0.57 0.46
Q3 0.39 0.64 0.52
Q4 0.88 0.22 0.24
Q5 0.76 0.25 0.25
Q6 0.79 0.14 0.18
Q7 0.31 0.57 0.50
Q8 0.26 0.41 0.37
Q9 0.82 0.28 0.26
Q10 0.52 0.45 0.37
Q11 0.83 0.27 0.26
Q12 0.72 0.5 0.39
Q13 0.65 0.59 0.42
Q14 0.79 0.42 0.32
Q15 0.43 0.62 0.47
Ql6 0.32 0.47 0.38
Q17 0.73 0.29 0.23
Q18 0.34 0.39 0.35
Q19 0.65 0.30 0.30
Q20 0.66 0.27 0.25
Q21 0.33 0.3 0.26
Q22 0.37 0.39 0.27
Q23 0.43 0.41 0.31
Q24 0.13 0.10 0.15
Q25 0.80 0.37 0.30
Q26 0.59 0.26 0.16
Q27 0.39 0.56 0.47
Q28 0.36 0.18 0.18
Q29 0.67 0.41 0.34
Q30 0.67 0.45 0.36
Q31 0.33 0.32 0.28
Q32 0.29 0.54 0.43
Q33 0.32 0.33 0.29
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mental models, qualitative studies must be performed first to
ensure these questions meet the needs.

All the above approaches are powerful tools for data
analysis of multiple-choice tests. However, none is perfect or
can be exclusively used to answer all research questions. As
discussed before, each has its specific purposes and applica-
tions. Hence, caution must be practiced when selecting
among these approaches. Finally, it is important to note that
our ultimate goal is to make sense of raw data. Therefore,
when encountering two (or more) equally sound choices, one
should always prefer the one that better (or best) facilitates
data interpretation.
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APPENDIX A: DATA

Tables VI and VII show item analysis results for MIET
and student score distribution.

The following is a correlation matrix R for eight items
(Q12-Q14, Q16, Q27, and Q31-Q33) selected from the M&I
Energy Test (MIET). This matrix is symmetric with respect
to its diagonal (R;;=R};); the upper half of the matrix is thus
omitted. We use this matrix R for principal component analy-
sis of these eight items,

TABLE VII. This table shows student score distribution.

Total score No. of students Total score No. of students

0 0 17 39
1 0 18 27
2 0 19 25
3 0 20 17
4 1 21 25
5 0 22 14
6 1 23 14
7 2 24 15
8 2 25 10
9 4 26 3
10 13 27 7
11 17 28 6
12 17 29 4
13 25 30 3
14 39 31 0
15 29 32 1
16 29 33 0
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1 .
0.38537 1
0.20388 0.20578 1 .
0.11881 0.21611 0.20957 1
0.09215 0.13006 0.03928 0.13247 1 .
0.09739 0.03541 -0.00308 0.03355 0.16152 1 .
0.15976 0.12583 0.06139 0.11005 0.13566 0.14278 1
0.06961 0.07763 0.06142 0.03742 0.17751 0.17413 0.25602 1
The following is an adjusted correlation matrix R,g, for the aforementioned eight items. Of note is that the diagonal
elements are no longer 1’s. Instead, they are replaced with SAS estimated variances that are accounted for by the common
factors. We use the adjusted correlation matrix R, for common factor analysis of eight MIET items,
0.182 .
0.385 0.196 .
0.204 0.206 0.090
_| 0.119 0216 0.210 0.091 .
Wt 0,092 0130 0039 0132 0076 .
0.097 0.035 —-0.003 0.034 0.162 0.062
0.160 0.126 0.061 0.110 0.136 0.143 0.105
0.070 0.078 0.061 0.037 0.178 0.174 0.256 0.103
The following is part of the 308 X 308 similarity matrix D for 308 students who took the MIET. Each student forms a
response vector (T,,T,,T5,Ty,Ts), where T; represents his or her score on the ith topic. The scores on each topic display both
order and magnitude and thus can be used as interval data.%> The similarities among students are simply calculated as the
Euclidian distances between their response vectors. Therefore, element D;; in the following matrix represents the Euclidian
distance between the response vector of student i and that of student j. Due to limited space, we only show the Euclidian

distances among ten students. Because this matrix is symmetric with respect to its diagonal, we omit its upper half. This matrix
D is used to perform agglomerative cluster analysis,

0
557 0 .
5.00 3.16 O

490 2.65 3.61 O .
693 1.73 458 346 O

D=
6.71 2.00 4.69 3.87 1.00 0
5.00 529 424 625 640 583 O .
933 583 632 7.81 592 548 529 O
374 436 224 346 583 592 458 781 O
9.75 447 7.07 656 3.32 346 825 548 8.66 0
I
APPENDIX B: SELECTED QUESTIONS FROM MIET (c) Sum of kinetic energy and potential energy
(d) Rest energy
Consider a system that consists of two asteroids in deep (e) None of the above
space. The following ﬁgure plots energy of several different Q13. What do the horizontal lines (IT, TIL, and TV) repre-
states of the two-asteroid system versus distance r between sent?
them. Questions 12-14 refer to this figure (see Fig. 18). (a) Kinetic enerey
Q12. What does the curved line I represent? (b) Potential energy
(a) Kinetic energy (c) Sum of kinetic energy and potential energy
(b) Potential energy (d) Rest energy
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Energy
A
1V
111
>r
0
1 I

FIG. 18. Energy plot of several different states of the two-
asteroid system vs the distance r between them.

-~ -

FIG. 19. Diagram of two stars in deep space orbiting around
each other.

FIG. 20. Diagram of a box of mass M moving at speed v toward
a person along a surface of negligible friction.
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Enter

FIG. 21. Diagram of an electron entering and exiting a box.

(e) None of the above

Q14. Which of the horizontal lines represents a bound
state?

(a) Line I

(b) Line III

(c) Line IV

(d) All of the above

(e) None of the above

Q16. In deep space two stars are orbiting around each
other. Consider the sum of kinetic energy and gravitational
potential energy K+ U of the two-star system. Which of the
following statements is true? (See Fig. 19.)

(a) K+U is positive

(b) K+U is zero

(c) K+U is negative

(d) K+U is either positive or zero

(e) K+U is either negative or zero

Q27. A box of mass M is moving at speed v toward a
person along a surface of negligible friction. A person leans
against a wall with both arms stretched and applies a pushing
force to stop the box. Finally the person brings the box to a
full stop. There is no temperature change in the box at any
time (see Fig. 20). We can conclude that during the process:

(a) The amount of work done on the box by the person
was +%M v?

(b) The amount of work done on the box by the person
was positive, but there is not enough information to deter-
mine the value

(c) The amount of work done on the box by the person
was 0

(d) The amount of work done on the box by the person
was —%MUZ

Top view
Puck 1

o

Puck 2

S

FIG. 22. Diagram of a low-friction table with two pucks
launched by pushing them against two identical springs.
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(e) The amount of work done on the box by the person
was negative, but there is not enough information to deter-
mine the value

Q30. A clay ball moving to the right at a certain speed has
kinetic energy of 10 J. An identical clay ball is moving to the
left at the same speed. The two balls smash into each other
and both come to a stop. What happened to the energy of the
two clay-ball system?

(a) The kinetic energy of the system did not change

(b) The kinetic energy changed into thermal energy

(c) The total energy of the system decreased by an amount
2017

(d) The initial kinetic energy of the system was zero, so
there was no change in energy

Q31. An electron with speed 1X10% m/s enters a box
along a direction depicted in the diagram. Some time later
the electron is observed leaving the box with the same speed
of 1X10% m/s but different direction as shown (see Fig.
21). From this, we can conclude that in the box:

(a) The net force on the electron was nonzero, and the net
work done on the electron was nonzero

(b) The net force on the electron was nonzero, but the net
work done on the electron was zero

(c) The net force on the electron was zero, but the net
work done on the electron was nonzero

(d) The net force on the electron was zero, and the net
work done on the electron was zero

PHYS. REV. ST PHYS. EDUC. RES. 5, 020103 (2009)

(e) Not enough information to determine

Q32. On a low-friction table you launch two pucks by
pushing them against two identical springs through the same
amount. The two pucks have the same shape and size, but the
mass of puck 2 is twice the mass of puck 1. Then you release
the pucks and the springs propel them toward the finish line.
At the finish line, how does the kinetic energy of puck 1
compare to the kinetic energy of puck 2? (See Fig. 22.)

(a) Tt is the same as the kinetic energy of puck 2

(b) It is twice the kinetic energy of puck 2

(c) It is half the kinetic energy of puck 2

(d) It is four times the kinetic energy of puck 2

(e) It is one-forth the kinetic energy of puck 2

Q33. A point particle of mass m is initially at rest. A
constant force is applied to the point particle during a first
time interval, while the particle’s speed increases from 0O to
v. The constant force continues to act on the particle for a
second time interval, while the particle’s speed increases fur-
ther from v to 2v. Consider the work done on the particle.
During which time interval is more work done on the point
particle?

(a) The first time interval

(b) The second time interval

(c) The work done during the two time intervals is the
same

(d) Not enough information to determine
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