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Separation of variables can be a powerful technique for solving many of the partial differential equations
that arise in physics contexts. Upper-division physics students encounter this technique in multiple topical
areas including electrostatics and quantum mechanics. To better understand the difficulties students
encounter when utilizing the separation of variables technique, we examined students’ responses to
midterm exam questions and a standardized conceptual assessment and conducted think-aloud, problem-
solving interviews. Our analysis was guided by an analytical framework that focuses on how students
activate, construct, execute, and reflect on the separation of variables technique when solving physics
problems. Here we focus on student difficulties with separation of variables as a technique to solve
Laplace’s equation in both Cartesian and spherical coordinates in the context of junior-level electrostatics.
Challenges include recognizing when separation of variables is the appropriate tool, recalling or justifying
the separated form of the potential and the need for the infinite sum, identifying implicit boundary
conditions, and spontaneously reflecting on their solutions. Moreover, the type and frequency of errors was
often different for separation of variables problems in Cartesian and spherical geometries. We also briefly
discuss implication of these findings for instruction.
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I. INTRODUCTION

Research into student difficulties at the upper-division
level is a growing area of physics education research [1].
Students in upper-division courses are asked to manipulate
increasingly sophisticated mathematical tools as they tackle
more advanced physics content. Because of this, some of
the literature around student difficulties at this level has
focused on the use of mathematical tools and techniques
during physics problem solving [2]. For example, one
mathematical technique that appears repeatedly throughout
the undergraduate physics curriculum is separation of
variables (SOV) as a method for solving partial differential
equations (PDEs).
PDEs appear in multiple contexts in the upper-division,

undergraduate physics curriculum (e.g., waves on a string,
Maxwell’s equations, the Schrödinger equation). One of
the most common approaches to solving PDEs in physics is
to turn them into multiple ordinary differential equations
(ODEs) using a technique known as separation of variables.
Here we use the term SOV to refer to the technique of
guessing a general solution with a functional form that
allows the PDE to be separated into several ODEs and then
solving these ODEs individually with appropriate boundary
conditions. This technique is not to be confused with the
strategy, also conventionally referred to as separation of

variables, used to solve separable ODEs by isolating terms
with the function on one side of the equals sign and the
independent variable on the other side and integrating both.
Some existing work has been done investigating student

difficulties around solving ODEs in both physics and
mathematics. Much of this differential equations literature
focuses on students’ use of graphical techniques to solve
linear ODEs [3–5], or numerical solutions to more complex
differential equations that cannot be solved analytically [6].
However, we are not aware of any existing research
specifically targeting student difficulties with the SOV
technique.
At the University of Colorado Boulder (CU), physics

students encounter SOV several times in their undergradu-
ate courses. The first exposure is often in sophomore
classical mechanics as a technique to solve Laplace’s
equation in Cartesian coordinates, typically in the context
of finding the temperature as a function of position in a
mechanical system with given boundary conditions.
Students may also encounter this technique in a differential
equations course taken from the Math Department. Junior
electrostatics is the next common place where CU’s physics
majors see SOV in the context of solving Laplace’s
equation for the electric potential V in 2D and 3D
Cartesian coordinates and spherical coordinates with azi-
muthal symmetry. Students do not typically encounter
spherical SOV with ϕ-dependent solutions until quantum
mechanics, where it is used to solve the Schrödinger
equation for the hydrogen atom. In discussions with the
physics faculty at CU, some instructors have expressed
concern that students do not begin to demonstrate mastery
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of the SOV technique until they see it for a third time in
quantum mechanics, and sometimes not even then.
In this paper, we focus on students’ use of SOV in

junior-level electrostatics as a technique to solve
Laplace’s equation in both Cartesian coordinates [i.e.,
∇2Vðx; y; zÞ ¼ 0] and spherical coordinates with azimuthal
symmetry [i.e., ∇2Vðr; θÞ ¼ 0]. These types of problems
typically ask for an expression for the voltage in a charge-
free region and provide an expression for the voltage
along the boundary of that region. Given its many possible
uses, we do not claim that the research presented here will
span the space of all possible difficulties with SOV, but
rather will provide a sampling of the types of challenges
students encounter when dealing with the SOV technique in
electrostatics.
In this paper, we utilize an analytical framework [7]

describing the use of mathematical tools in physics problem
solving to structure our investigation and analysis of
student difficulties with SOV (Sec. II). We then present
our findings, including common difficulties we identified in
our student population and a brief discussion of implica-
tions for instruction (Sec. III). We end with limitations and
future work (Sec. IV).

II. METHODS

Problem solving at the upper-division level is often long
and complex, and making sense of students’ work around
these upper-division problems can be difficult. There is a
large variety of potential moves and/or errors that students
can make at different stages of a problem, and these moves
can impact the remainder of their solutions in unpredictable
ways. To help manage this complexity, we make use of an
analytical framework known as ACER (activation, con-
struction, execution, reflection) to scaffold our analysis of
student difficulties with SOV [7].

A. ACER framework

The ACER framework organizes the problem-solving
process into four general components: activation of math-
ematical tools, construction of mathematical models, exe-
cution of the mathematics, and reflection on the results.
These components were identified by studying expert
problem solving [7] and are grounded in both a resources
[8] and an epistemic framing [9] perspective on the nature
of knowledge. However, while the general structure of
experts’ back-of-the-book-style problem solving may be
reasonably context independent, the specific details of how
a particular mathematical tool is used in upper-division
problem solving is often highly dependent on the context in
which that tool is being used. For this reason, the ACER
framework was designed to be operationalized for specific
mathematical tools in specific physics contexts. The opera-
tionalization process results in a researcher-guided outline
of key elements in a correct and complete solution to a

particular problem or set of problems. The process of
operationalizing ACER for SOV will be discussed in
greater detail in Sec. II C, and additional details about
the ACER framework can be found in Ref. [7].

B. Study context

Data for this study were largely collected from the first
half of a two-semester electricity and magnetism sequence
at the University of Colorado Boulder. This course, called
electricity and magnetism 1, typically covers the first six
chapters of Griffiths’ text [10] (i.e., electrostatics and
magnetostatics). Students in this course are junior- and
senior-level physics, astrophysics, and engineering physics
majors with a typical class size of 30–70 students. At CU,
electricity and magnetism 1 is often taught with varying
degrees of interactivity through the use of research-based
teaching practices including Peer Instruction using clickers
[11] and tutorials [12]. We collected data from three distinct
sources for this investigation: student solutions to instruc-
tor-designed questions on traditional midterm exams,
responses to two questions from the multiple-response
Colorado Upper-division Electrostatics (CUE) Diagnostic
[13], and think-aloud, problem-solving interviews.
Ultimately, exams provided quantitative data identifying
common difficulties and interviews offered deeper insight
into the nature of those difficulties
Midterm exam data were collected from 10 semesters of

the electricity and magnetism 1 course (N ¼ 474) taught by
eight different instructors. Of these, six were traditional
research faculty and two were physics education research-
ers. Two of these instructors, including one of the physics
education research faculty members (S. J. P.), taught the
course twice during data collection. Questions on the
exams were developed solely by the instructor for that
semester. In four cases, the instructor asked one or more
SOV questions on both the midterm and final exams; thus,
the following section reports the analysis of 15 distinct
exam questions for a total of N ¼ 744 unique solutions. As
our goal is to identify the presence of common student
difficulties, the remainder of this analysis will report N as
the number of solutions rather than the number of students.
Exam questions requiring the use of SOV in Cartesian or

spherical coordinates are both common at CU. Four of the
exam questions in our sample (N ¼ 235 solutions from
three semesters) provided students with a rectangular pipe
or gutter with given values for the voltage on each side and
asked for an expression for the voltage valid everywhere
inside (see, e.g., Fig. 1). The remaining 11 exam questions
(N ¼ 509 solutions from nine semesters) provide students
with an azimuthally symmetric expression for the voltage
on the surface of a spherical shell and ask for an expression
for the voltage valid inside and/or outside the shell (see,
e.g., Fig. 2).
Student responses to the multiple-response CUE provide

an additional data source. Two questions on the CUE deal
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with SOV: one in Cartesian (Fig. 3) and one in spherical.
The spherical CUE question was a multiple-response
version of a prompt like that in Fig. 2, but, rather than
solving for the potential, students were only asked to select
the appropriate solution method and to justify their choice
(see Ref. [13] for the exact prompt). CUE data were
collected from four semesters (N ¼ 145) of the electricity
and magnetism 1 course at CU; three of these were courses
for which we also have exam data. In addition to the CU
data, we also collected multiple-response CUE data from
nine courses at seven external institutions (N ¼ 161)
ranging from small liberal arts colleges to large research
institutions.
Think-aloud interviews (N ¼ 11) were conducted in two

sets performed roughly two years apart in order to further
probe preliminary difficulties identified in student exams.
The first interview set (N ¼ 4) was designed to target
student difficulties with SOV in Cartesian coordinates and
was conducted prior to the development of the ACER
framework. The students were asked to determine the
voltage inside a semi-infinite plate with one side held at
a constant potential (similar to the question in Fig. 1). The

students were directly prompted to approach this problem
by using the SOV technique to solve Laplace’s equation.
They were also provided with the expression for ∇2 in
Cartesian coordinates along with the solutions to the
relevant ODEs and the integral expression needed to
determine the coefficients in a Fourier series. From the
perspective of the ACER framework, this prompt clearly
targeted the construction and execution components, but
bypassed activation.
The second interview set (N ¼ 6) began with a spherical

SOV problem in which the students were given a spherical
shell with a known voltage on the surface (see Fig. 2). To
directly target activation, the prompt did not specifically
mention Laplace’s equation or prompt the students to use the
SOV technique. Students who were able to complete this
problem in the allotted time (N ¼ 3) were also explicitly
prompted to come up with a way to check their solution in
order to convince themselves their expression was correct
(i.e., reflection). The second interview set ended by asking
students to begin working though the Cartesian question
shown in Fig. 1, though no student had time to fully
complete this question. While the Cartesian prompt also
did not directly prompt SOV, this question providedminimal
insight into spontaneous activation because it came immedi-
ately after a spherical SOV question.

C. Operationalizing ACER

The process of operationalizing ACER is presented in
detail in Ref. [7]. Briefly, in order to operationalize the
framework, a content expert utilizes a modified form of
task analysis [7,14] in which they work through the
problems of interest while carefully documenting their
steps and mapping these steps onto the general components
of the framework. Additional content experts then review
and refine the resulting outline until consensus is reached
that the key elements of the problem have been accounted
for. This expert-guided scheme then serves as a preliminary
coding structure for analysis of student work. If necessary,
the operationalization can be further refined to

FIG. 1. An example of a canonical exam problem targeting
Cartesian SOV. Variations on this question in our data include
providing a nonconstant potential on the fourth side [e.g.,
Voðx; y ¼ aÞ ¼ Vo sin πx=a], placing the nongrounded side at
y ¼ 0 rather than y ¼ a, or placing one of the grounded sides at
infinity.

FIG. 2. An example of a canonical exam problem targeting
spherical SOV. Variations on this question include providing a
simpler or more complex expression for the boundary [e.g.,
VðR; θÞ ¼ Vo cos θ], giving the boundary condition in terms of
Legendre polynomials [e.g., VðR; θÞ ¼ P9ðcos θÞ], or only ask-
ing for the potential inside or outside the sphere.

FIG. 3. The multiple-response CUE question related to the
Cartesian SOV. The prompt has been shortened and paraphrased;
see Ref. [13] for full prompt.
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accommodate aspects of student problem solving that were
not captured by the expert task analysis.
To guide our data collection and analysis, we opera-

tionalized the ACER framework for problems like those in
Figs. 1 and 2. The elements of the operationalized ACER
framework are detailed below. Element codes are for
labeling purposes only and are not meant to suggest a
particular order, nor are all elements always necessary for
every problem. In particular, the elements of construction
and execution are unlikely to occur in the specific order
listed as experts can, and often do, iterate back and forth
between deriving and solving ODEs and identifying and
matching boundary conditions.
Activation of the tool.—The first component of the

framework involves identifying SOV as the appropriate
mathematical technique to solve for the voltage. Because
students are rarely explicit regarding which specific aspects
of a problem prompted them to use a particular method, the
activation component focuses on investigating students’
responses to different types of common prompts. We
identified three elements in the form of cues present in a
prompt that are likely to activate resources associated
with SOV.
A1: The question provides boundary conditions and asks

for separation of variables directly or provides the
expression for the general solution.

A2: The question provides boundary conditions and uses
language associated with separation of variables (e.g.,
infinite sum, Legendre polynomials, Fourier series,
general solution).

A3: The question provides boundary conditions and asks
for the electric potential or voltage in a charge free
region.

For element A1, it is more common for a question to
provide the general solution for the voltage in spherical
geometries than in Cartesian, in part because the functional
form of the general solution in Cartesian depends on the
boundary conditions (element C2).
Construction of the model.—Elements in this component

deal with modifying the general expression for the solution
to Laplace’s equation so that it matches the boundary
conditions. As there is no ambiguity in the signs of the
separation constants for SOV in spherical coordinates due
to the nature of the θ coordinate, the second element of
construction is specific to Cartesian problems.
C1: Express all relevant boundary conditions, both those

explicitly given in theprompt or figure and those implicit
from the physical situation [e.g., Vðr → ∞Þ → 0].

C2: (Cartesian only) Choose the signs of the separation
constants or select the functional forms for the solution
that are appropriate for the boundary conditions.

C3: Apply each boundary condition to the general sol-
utions in order to solve for all unknown constants
(setup only).

Note that these elements do not necessarily occur
sequentially, either with respect to one another or with
respect to elements of the execution component.
Execution of the mathematics.—This component of the

framework deals with elements involved in executing the
mathematical operations related to SOV. As students are
rarely (if ever) asked to actually produce and solve the
ODEs resulting from SOV in spherical coordinates, the first
two elements of execution will only be discussed in relation
to Cartesian problems.
E1: Manipulate the PDE into ODEs using the separated

form of the potential [e.g., Vðx;y;zÞ¼XðxÞYðyÞZðzÞ].
E2: Know or look up the solution to these ODEs given the

signs of the separation constants.
E3: Calculate values for all unknown constants based on

applying the boundary conditions through zero match-
ing, term matching, or “Fourier’s trick” integrals.

E4: Manipulate algebraic expressions and compile an
interpretable expression for Vð~rÞ.

Element E3 can be accomplished using a variety of
strategies sometimes involving several smaller steps
depending on the particular boundary conditions. These
strategies, which we refer to as zero matching, term match-
ing, and Fourier’s trick, are explicitly described in Sec. III A.
Reflection on the result.—The final component includes

elements related to checking and interpreting aspects of
the solution, including intermediate steps and the final
result. While many different techniques can be used to
reflect on a physics problem, the following four are
particularly common when dealing with SOV:
R1: Check the units of the final expression.
R2: Check that the solution matches all boundary conditions.
R3: (Spherical only) Check that the solution has the correct

functional form in known limits.
R4: Confirm that the solution satisfies Laplace’s equation.
Element R3 refers specifically to checking the functional

dependence, rather than the value, of the voltage in known
limits. For example, checking that Vðr → ∞Þ ¼ 0 would
be considered R2 while showing that V goes to zero as 1=r
would be R3. The final element of reflection (R4) was
added to the framework after initial analysis of student
work where we observed that mistakes in the construction
and execution components sometimes resulted in solutions
that did not satisfy Laplace’s equation.
In the next section, we will apply this operationalization

of ACER to investigate student work on canonical SOV
problems in electrostatics.

III. FINDINGS

While we intentionally operationalized the framework
for problems in both Cartesian and spherical geometries,
our analysis found that the type and frequency of errors
was often quantitatively and/or qualitatively different for
the two geometries. For this reason, we report on student
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difficulties with these two geometries separately. Where
appropriate, we also synthesize these findings in Sec. IV.

A. Student difficulties with separation of
variables in Cartesian coordinates

This section presents the identification and analysis of
common student difficulties with the separation of variables
technique in Cartesian coordinates organized by compo-
nent and element of the operationalized ACER framework
(Sec. II C).

1. Activation of the tool

Canonical Cartesian SOV questions (see, e.g., Fig. 1) are
highly distinctive in part because they provide boundary
conditions. Moreover, they do not provide the necessary
information to solve the problem using other common,
analytical methods [e.g., ρð~rÞ]. Elements A1–A3 describe
different types of prompts that can cue students to activate
resources related to SOV, loosely organized according to
the likelihood that they will do so. One of the four exam
questions (N ¼ 69) explicitly prompted students to use
SOV and presented them with the appropriate separated
form for the solution [i.e., Vðx; yÞ ¼ XðxÞYðyÞ]; thus,
these solutions provide minimal insight into activation.
Alternatively, prompts consistent with A2 or A3 require
students to identify SOV as the appropriate technique, and
only one of the 166 solutions to implicit prompts used a
method other than SOV. Because of the distinctive nature of
Cartesian SOV questions, we are hesitant to interpret this
result as evidence that our students have a solid under-
standing of when SOV is the correct approach; however, it
does suggest that they consistently activate resources
related to SOV in response to these canonical questions.

2. Construction of the model

The construction component deals with mapping
between the physics and mathematics of a problem. For
SOV, this process includes identifying all necessary boun-
dary conditions (element C1). Cartesian SOV problems
typically provide these boundary conditions explicitly in
the prompt (see Sec. III B for discussion of implicit
boundary conditions). Consistent with this, only a small
fraction of solutions (5%, N ¼ 12 of 234) used an incorrect
value or expression for the boundary conditions. Common
errors included putting the nonzero boundary condition on
the wrong side (N ¼ 4), including inappropriate implicit
boundary conditions [N ¼ 4, e.g., Vðx → ∞Þ ¼ 0], or
listing the value of the potential at a point (usually a
corner) rather than along a side (N ¼ 2). One interview
participant also listed the boundary conditions at each
corner. This student recognized and corrected the error after
attempting to apply a boundary condition and finding that
this did not help him solve for any unknowns. Thus,
extracting boundary conditions from the prompt or figure

for Cartesian SOV questions was not a significant stum-
bling block for the majority of our students.
After identifying boundary conditions, the next step is to

produce a general expression for the voltage that can satisfy
these boundaries (element C2). For Cartesian SOV ques-
tions, this amounts to deciding which direction (x or y) gets
the exponential dependence. One exam prompt (N ¼ 69)
asked students to select the appropriate general solution
for Vðx; yÞ from the two possible Cartesian solutions to
Laplace’s equation, and all students selected the correct
expression. The multiple-response CUE asked a similar
question but provided two additional response options
which featured sinusoidal or exponential dependence in
both directions (Fig. 3). In contrast to the results on the
exam question, only two-thirds of CU students (66%,
N ¼ 95 of 145) selected the correct expression, while
the majority of the remaining students selected either the
solution with flipped functional dependence (12%, N ¼ 17
of 145) or one of the two response options that did not
satisfy Laplace’s equation (14%, N ¼ 21 of 145). This
trend is even more pronounced in student populations at
other institutions, with almost a quarter of students (23%,
N ¼ 37 of 161) selecting either purely sinusoidal or purely
exponential dependence.
The remaining three exam prompts did not provide

possible expressions for the voltage. In practice, this meant
that students could explicitly work through the process of
separating Laplace’s equation (elements E1, C2, and E2) or
jump straight to a general expression for the potential
without deriving this expression. Using the former strategy,
element C2 requires deciding which separation constant
gets the negative value (and thus which direction gets the
sinusoidal dependence). Roughly two-thirds of the solu-
tions (71%, N ¼ 117 of 165) explicitly commented on the
signs of the separation constants, and most (87%, N ¼ 102
of 117) assigned the negative constant such that it was
consistent with the boundary conditions. Similarly, just
over three-quarters of solutions that jumped straight to a
general expression (79%, N ¼ 38 of 48) also gave a
functional form that was consistent with the boundary
conditions. As with the responses on the multiple-response
CUE, the most common errors included either flipping the
functional form or having sinusoidal solutions (or negative
separation constants) in both directions.
Of the six interview students who progressed far enough

in their solution to begin one of the Cartesian SOV
questions, four derived the general expression directly
from Laplace’s equation. All four correctly identified which
coordinate (x or y) should be given the negative sign and
justified this based on the boundary conditions. The two
remaining students jumped straight to a general expression
for the potential without derivation. One of these two
argued for needing both exponential and sinusoidal
dependence, but used complex rather than real exponen-
tials. The second of these students argued for sinusoidal
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behavior in both x and y directions and justified this by
stating that the boundary conditions in both directions
could be matched by sines. Only when directly asked to
show that this expression solved Laplace’s equation did this
student recognize that one of the two directions must have
exponential dependence. This result suggests that students
who argued for purely sinusoidal or purely exponential
dependence on the exams and CUE may have been
focusing on satisfying the boundary conditions while
failing to consider that, ultimately, the solution must also
satisfy Laplace’s equation.
The final element of construction (element C3) deals

with setting up the equations that are used to solve for
the unknown constants in the general solution in order to
match the boundary conditions (note that algebraic mis-
takes related to solving these equations will be discussed
in relation to the execution component). Almost a third of
the solutions (30%, N ¼ 71 of 234) included issues with
setting up the equations to solve for one or more constants.
The exact details of these errors were often strongly tied to
the nature of the specific boundary conditions in question,
but common issues included (see Table I) inappropriately
arguing that one exponential term should be eliminated,
incorrectly setting up or failing to utilize the nonzero
boundary condition, or setting up an integral (i.e.,
Fourier’s trick) incorrectly. As we might expect, the
majority of these issues centered around setting up the
expression to match the nonzero boundary condition.
In interviews, four students attempted to solve for

unknowns (element C3), and three had difficulty doing
so. Consistent with student performance on exams, the
most common issue was related to using the nonzero
boundary condition to solve for the final constant(s).
None of these three students spontaneously included a
sum in their solution even after applying the nonzero
boundary condition and finding that the resulting
equation could not be solved [e.g., Vðx; y ¼ 0Þ ¼ Vo ¼
A sinðπx=aÞ, where A is a constant]. After being prompted
that they actually had an infinite number of solutions (rather
than just one), all three students recalled that they needed to
introduce a sum of these solutions, but none could clearly
justify how this step helped. One potential explanation for
the increased frequency of this issue relative to the exams is
that, on exams, students may be recalling an algorithm that
includes introducing a sum but have not internalized the
motivation for that sum. If so, it may also be an indication
that students are approaching these SOV problems with an
epistemic frame that does not require them to justify their
steps physically (e.g., invoking authority [9]) but rather
encourages them to map their solution to these problems
onto those of previous problems.

3. Execution of the mathematics

The execution component deals with the procedural
aspects of working through the mathematics of a physics

problem. For Cartesian SOV, this can include the process
of separating Laplace’s equation into ODEs by assuming
the separated form of the potential [element E1, i.e.,
Vðx; yÞ ¼ XðxÞYðyÞ]. Excluding solutions from semesters
where the general solution for the potential was provided,
more than half of the exam solutions (59%, N ¼ 98 of 165)
explicitly included this process and only a small fraction
(10%, N ¼ 10 of 98) had difficulties with it. The most
common error (N ¼ 7 of 10) was using different constants
in the x and y ODEs, resulting in a solution with the correct
functional form that does not satisfy Laplace’s equation.
In interviews, six of seven participants commented on or

attempted to work through this process of separating
Laplace’s equation. Of these, four students spontaneously
suggested assuming the separated form of the potential
(element E1), though one student noted that he did not
understand themotivation formaking this assumption.Of the
remaining two participants, one clearly articulated that the
goalwas to separate Laplace’s equation intoODEs, but could
not recall how to do this on his own. The other student neither
recalled the separated form nor recognized its purpose
without being explicitly told. Additionally, four of the
interviewees either did not recognize that the expression
gðyÞ þ fðxÞ ¼ 0 implies gðyÞ ¼ −fðxÞ ¼ c (where c is a
constant) or attempted to apply this logic before having
fully separated x- and y-dependent terms [e.g., arguing
XðxÞ00YðyÞ ¼ c]. Given that there is little (if any) physical
motivation for assuming Vðx; yÞ ¼ XðxÞYðyÞ, it becomes
particularly important that students understand the math-
ematical motivation for this move. However, interviews
suggest that, even when students correctly use this
assumption in their solution, they may not have a clear
sense of the motivation or justification for this assumption.

TABLE I. Difficulties setting up expressions that match the
boundary conditions (BCs) in Cartesian. To account for the fact
that certain difficulties were not applicable to all exam prompts,
percentages are given with respect to the subset of incorrect
solutions taken from the applicable semesters. Codes are not
exhaustive or exclusive but represent the most common themes;
thus, the total N in the table need not sum to 71.

Difficulty N Percent

Incorrect application of non-zero BC,
e.g., not plugging in a
value for x or y, or using
Yðy ¼ aÞ ¼ VðxÞ

32 20%
(of N ¼ 71)

Missing þ or − exponential term
(box questions only;
excludes gutters)

16 24%
(of N ¼ 66)

Never applied non-zero BC 14 20%
(of N ¼ 71)

Incorrect setup of Fourier’s trick integral,
e.g., missing or extra sum,
not multiplying by sinðn0πx=aÞ

8 12%
(of N ¼ 66)
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The second element in execution (element E2) involves
solving the ODEs that result from separating Laplace’s
equation [e.g., XðxÞ00 ¼ �k2XðxÞ, where k2 is the separa-
tion constant]. More than two-thirds of the solutions (70%,
N ¼ 116 of 165) included an expression for one or more
ODEs either derived from Laplace’s equation or stated
without work. In practice, it is typical for students to simply
write down the solutions to these ODEs either by memory
or from an equation sheet, and just under a fifth of the
solutions (16%,N ¼ 19 of 116) provided a general solution
that was inconsistent with the ODE they were solving.
Common mistakes included providing a solution whose
functional form was inconsistent with the sign of the
separation constant (N ¼ 7 of 19), or using the separation
constant (rather than its square root) in the expression for
the general solution (N ¼ 5 of 19). Thus, solving the
relatively simple ODEs required for Cartesian SOV ques-
tions was not a significant barrier to our students’ success.
The execution component of ACER also deals with the

procedural mathematics of determining values for each of
the unknown constants (element E3) in order to match the
boundary conditions (element C3). Our initial analysis of
both expert and student work suggested that there were
three common strategies used to solve for these constants.
(1) Zero matching: Setting unknown constants to zero

in order to enforce boundary conditions where
V ¼ 0.

(2) Fourier’s trick: The strategy used to solve for the
coefficients in a Fourier series by exploiting the
integral properties of orthogonal functions.

(3) Term matching: The strategy of exploiting the
properties of orthogonal functions to directly match
the coefficients of like terms.

Zero matching is nearly always necessary in Cartesian
SoOV questions, and nearly all of the exam solutions
demonstrated some form of zero matching (94%, N ¼ 220
of 234). Alternatively, whether Fourier’s trick or term
matching is used to solve for the final unknown
constant(s) often depends on the nature of the final
boundary condition. For one of our three exam questions,
the final boundary had a constant voltage (see, e.g., Fig. 1),
making it necessary to solve using Fourier’s trick.
However, the two remaining exams provided a voltage
of the form Vðx; y ¼ aÞ ¼ Vo sinðπx=aÞ. In these cases, it
is possible to use either Fourier’s trick or term matching,
though term matching is considerably simpler. Despite this,
more of our students’ solutions utilized Fourier’s trick
(44%, N ¼ 52 of 117) than term matching (36%, N ¼ 42
of 117). This result may indicate that our students’
Cartesian SOV resources are strongly linked to Fourier’s
trick (rather than term matching) and/or that they have not
internalized the properties of orthogonal functions enough
to see term matching as a viable strategy. Without interview
data on student reasoning for this specific type of boundary

condition, we are not able to distinguish between these two
possible explanations.
When solving for the values of the unknown constants

in their general solution (element E3), roughly half of
the students’ solutions (45%, N ¼ 105 of 234) contained
various mathematical mistakes. Common errors included
(see Table II) losing or gaining a constant factor, incorrectly
executing a Fourier’s trick integral, (when applicable) not
including the constant factor Yðy ¼ aÞ, and not finishing
the calculation. For the two exam questions that could be
solved using either Fourier’s trick or term matching, the
fraction of solutions with mathematical errors was higher in
solutions that utilized Fourier’s trick (77%, N ¼ 40 of 52)
than in those that utilized term matching (33%, N ¼ 14 of
42). This is likely due, at least in part, to the fact that
Fourier’s trick requires the set up and execution of an
integral, and thus is a more mathematically demanding
strategy.
For solutions in which the student finished solving for

the final constant(s) (78%, N ¼ 130 of 166), it was then
necessary to compile all aspects of the solution into a single
expression for the voltage (element E4). Just under a
quarter of the solutions (22%, N ¼ 29 of 130) either did
not compile a final expression or made various mathemati-
cal mistakes not related to previous execution or construc-
tion errors [e.g., incorrectly simplifying exponentials to
hyperbolic trig functions or dropping or adding nonconst-
ant factors such as YðyÞ]. In practice, the interviews
provided limited insight into the procedural aspects of
solving for the unknown constants as students were, at
most, asked to set up the expression for the final
constant(s); however, none of our interview participants
had difficulty with the simple manipulations required to
match the V ¼ 0 boundaries.
Ultimately, roughly a quarter of the solutions (26%,

N ¼ 61 of 235) included only errors related to the elements
in the execution component (i.e., no previous mistakes in

TABLE II. Common difficulties when executing the procedural
mathematics of solving for constants in the general solution.
Percentages are of just the students who exhibited these diffi-
culties (45%, N ¼ 105 of 234). Codes are not exhaustive or
exclusive but represent the most common themes; thus, the total
N in the table need not sum to 105.

Difficulty N Percent

Off by a constant factor or sign,
e.g., factor of 2, Vo, or length a

33 31%

Problems with a Fourier’s trick integral,
e.g., pulling nonconstant terms
out of the integral,
or not collapsing the sum

30 29%

Dropping the Yðy ¼ aÞ factor
in the solution

18 17%

Not finishing the calculation 27 26%
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activation or construction). This number is high relative to
previous research on students’ use of mathematical tools
where the fraction of students who had difficulty only with
execution was less than a tenth for both multivariable
integration (8%) [7,15] and the Dirac delta function (7%)
[15,16]. Investigations of student difficulties with Taylor
series also found that studentsmade relatively few execution
errors [7]. This result suggests that, particularly for problems
involving Fourier’s trick, the procedural mathematics
involved in problems requiring Cartesian SOV can be a
significant barrier for our junior-level electrostatics students.

4. Reflection on the result

The reflection component deals with the process of
checking and/or interpreting the final expression. It is often
the case in Cartesian SOV that mistakes in the construction
or execution components resulted in an expression for the
potential that had the wrong units, did not match the
boundary conditions, or did not satisfy Laplace’s equation
(i.e., elements R1, R2, and R4, respectively). Overall, we
found that very few of our students (N ¼ 2 of 234) made
explicit, spontaneous attempts to reflect on their solution
using any of these checks. This number should be inter-
preted as a lower bound on the frequency of spontaneous
reflections, as it is possible that more of the exam students
made one of these checks and simply did not write it down
explicitly on their exam solution. However, only two of
seven interview participants made spontaneous attempts to
reflect on their solutions, and exclusively by checking that
their general solution satisfied Laplace’s equation (element
R4). One other student executed this check only after being
directly prompted.
Another strategy for understanding reflection involves

looking at the number of solutions where the final expres-
sion included an error that would have been detected by one
or more of these checks. Table III lists this along with the
number of solutions that explicitly included each reflective
check. Overall, these results suggest that an explicit check
of boundary conditions would likely be the most effective
reflective practice for students in terms of detecting errors,
but that our students are rarely executing this (or other)
checks spontaneously.

B. Student difficulties with separation of
variables in spherical coordinates

This section presents the identification and analysis of
common student difficulties with the separation of variables
technique in spherical coordinates organized by component
and element of the operationalized ACER framework
(Sec. II C).

1. Activation of the tool

One instructor exclusively used A1-type prompts on
both the midterm and final exams in his course (N ¼ 138);

thus, these solutions provide minimal insight into activa-
tion. However, of the solutions to exam questions with
implicit prompts (i.e., consistent with elements A2 or A3),
very few (4%, N ¼ 16 of 371) utilized a method other

than SOV [e.g., Coulomb’s law, ~E ¼ − ~∇VðR; θÞ, etc.]. In
contrast, on the multiple-response CUE question (see
Sec. II B) asked at the end of the semester (but before
the final), just under half of our students (41%, N ¼ 59 of
145) did not select SOVas the appropriate solution method.
This trend is slightly increased for other institutions with
just over half the students selecting other methods (60%,
N ¼ 96 of 161). The most common alternatives were
direct integration via Coulomb’s law (26%, N ¼ 40 of
155 incorrect responses, all institutions) and Gauss’ law
(45%, N ¼ 69 of 155 incorrect responses, all institutions).
This may be a reflection of the fact that spherical SOV
questions, while still distinctive from an expert point of
view, are potentially less recognizable to students than their
Cartesian counterparts, and their superficial similarity to
problems that might be solved by Coulomb’s law or Gauss’
law may discourage students from activating their SOV
resources.
The second set of interviews provided additional insight

into activation of spherical SOV through a question like the
one shown in Fig. 2. Of the six interview participants, three
spontaneously brought up Laplace’s equation and sug-
gested SOV as the correct solution method. Of the remain-
ing students, one mentioned Laplace’s equation only after
being prompted to consider the fact that all the charges
would be confined to the surface of the shell, while the
other two needed to be explicitly told to consider Laplace’s
equation. Moreover, these three students suggested using
SOVonly after being reminded that Laplace’s equation is a
nontrivial PDE and asked how we generally deal with
PDEs in physics. This result may suggest that, as we might
expect, the activation of resources related to SOV for these
students was more closely linked to the formal mathematics
of the problem (i.e., solving a PDE), rather than the
physical context (i.e., solving for the voltage).
Students’ overall success at activation on the midterm

and final exam questions seems to contradict the signifi-
cantly lower success rate seen on the CUE and in inter-
views. One potential explanation for this is that students

TABLE III. Number of exam students who explicitly utilized
each of the three possible reflective checks (Nexplicit) along with
the number of solutions that included an error that would have
been detected by this check (Nincorrect). Ntotal represents the total
number of solutions that could have utilized that reflective check.

Reflective check Ntotal Nincorrect Nexplicit

Units (R1) 125 19 0
Boundary conditions (R2) 138 97 1
Laplace’s equation (R4) 154 30 1
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may be simply pattern matching on the exams rather than
internalizing a clear motivation for when and why SOV is
appropriate. The proximity of the exams to classroom
instruction on SOV can make pattern matching a highly
effective strategy. This interpretation is supported by the
following comment made by one of the interview partic-
ipants: “I remember these questions; I used to love these
questions, and I don’t remember how to do them anymore
…. I guess I didn’t understand this problem as well as I
should have; I just remember going through a mathemati-
cal, like, process to get it, and I knew that one really well.”

2. Construction of the model

The construction component dealswithmapping between
the physics and mathematics of a problem. For spherical
SOV, this process includes identifying all necessary boun-
dary conditions (element C1), both those provided explicitly
in the prompt and those that are implicit in the underlying
physics of localized charge distributions [i.e., Vðr → ∞Þ →
0 and Vðr → 0Þ ≠ ∞]. Of the solutions that utilized SOVon
the exams (N ¼ 488), almost two-thirds (61%, N ¼ 298 of
488) included correct expressions for all explicit and implicit
boundary conditions. Of the remaining solutions, more than
half (62%, N ¼ 117 of 190) never expressed the relevant
implicit boundary conditions at r ¼ 0 and/or r ¼ ∞.
Despite this, the majority of these solutions (89%, N ¼
104 of 117) correctly eliminated either the Al (outside) orBl
(inside) terms from the general expression for the potential
[i.e., ðAlrl þ Bl

rlþ1ÞPlðcos θÞ]. This move was often accom-
panied by seemingly axiomatic statements like “Al’s go to
zero outside.” This finding is also consistent with the
hypothesis that some students are using pattern matching
to guide their solution rather than clearly justifying their
steps from the underlying physics. Other issues with
expressing the boundary conditions (element C1) included
using incorrect or inappropriate implicit boundary condi-
tions [12%, N ¼ 22 of 190, e.g., enforcing Vðr → ∞Þ → 0
when solving forVinside a sphere] or incorrectly expressing
the surface boundary condition [22%, N ¼ 42 of 190, e.g.,
arguing VðRÞ ¼ Vocos2θ → VoP2ðcos θÞ].
As upper-division students are rarely (if ever) expected

to derive the general expression for the voltage from
Laplace’s equation in spherical coordinates, the second
element of construction does not typically apply to spheri-
cal SOV questions. Alternatively, the final element of
construction (element C3) deals with setting up the equa-
tions to solve for the unknown constants in the general
solution in order to match the boundary conditions (note
that algebraic mistakes related to solving these equations
will be discussed in relation to the execution component).
Ultimately, just under a fifth of the solutions (19%, N ¼ 90
of 485) included issues with setting up the equations to
solve for one or more constants. The most common issues
included (see Table IV) not plugging in r ¼ R when
matching the boundary condition at the surface, problems

expressing or eliminating Pl terms, and including both Al’s
and Bl’s when matching the boundary condition at the
surface despite previously setting Al or Bl to zero.
In interviews, students tended to move quickly back and

forth between identifying boundary conditions and setting
up equations to match them. For example, all five partic-
ipants who solved the spherical SOV question began by
identifying one of the two implicit boundary conditions
(element C1) and using it to correctly eliminate either the Al
or Bl terms (element C3). All of these students then moved
on to matching the boundary condition at the surface
without commenting on either the second implicit boun-
dary condition or what region their expression would be
valid for. Three interviewees correctly set up an expression
to match the surface boundary condition (element C3). One
of the remaining students did not plug in r ¼ R into his
expression until prompted, while the other student did not
initially isolate like terms when solving for constants.
When asked where their final expression was valid, all
five interviewees initially argued it would be valid every-
where. Once they were specifically directed to consider
limiting values of r, all interviewees recognized their
solution was inconsistent with the remaining implicit
boundary conditions, but only one student spontaneously
considered the possibility of having separate expressions
for VðrÞ inside and outside the sphere. Thus, the interviews
suggest the tendency of both exam and interview students
to not spontaneously acknowledge some or all of the
implicit boundary conditions may discourage them from
recognizing that their solution is valid only for certain
regions of space or vice versa.

3. Execution of the mathematics

The execution component deals with the procedural
aspects of working through the mathematics of a physics
problem. The first two elements of execution address
the process of separating Laplace’s equation into ODEs
by assuming the separated form of the potential [i.e.,

TABLE IV. Difficulties setting up expressions that match the
boundary conditions in spherical. Percentages are of just the
students who had difficulties setting up the boundary conditions
(19%, N ¼ 90 of 485). Codes are not exhaustive or exclusive but
represent the most common themes; thus, the total N in the table
need not sum to 90.

Difficulty N Percent

Not setting r ¼ R for the surface boundary 21 23%
Problems with Pl terms, e.g., expressing
Pl’s incorrectly, dropping
Pl terms inappropriately

16 18%

Including both Al’s and Bl’s in one expression,
ðAlRl þ Bl

Rlþ1ÞPl ¼ VoPl

10 11%

Never applied the surface boundary condition 18 20%
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Vðr; θÞ ¼ RðrÞΘðθÞ]. In spherical coordinates, this process
yields a single, general solution for the potential. Students
in junior electrostatics are typically shown this derivation
once and are rarely (if ever) expected to replicate it. Thus
elements E1 and E2 are not typically necessary for
problems involving spherical SOV.
Once a student has used the boundary conditions to set

up expressions for the unknown constants (element C3),
there are any number of mathematical manipulations that
may be necessary to solve for these constants (element E3).
As described previously, we have noted three common
strategies that can be used in this process (see Sec. III A):
zero matching, Fourier’s trick, and term matching. Of the
exam solutions that showed explicit evidence of execution
(92%, N ¼ 469 of 509), nearly all (97%, N ¼ 455 of 469)
used some form of zero matching to eliminate one set of
constants (Al’s or Bl’s). The majority of solutions also used
term matching (89%, N ¼ 405 of 455) to solve for the
nonzero constants, while only a small fraction (12%, N ¼
56 of 455) used Fourier’s trick. This strong preference for
term matching is appropriate and is likely a reflection of the
fact that nearly all surface boundary conditions given on
exams at CU can be expressed as a sum of 1–3 Legendre
polynomials. Moreover, several of the exam prompts
provide or explicitly ask students to express the boundary
condition VðRÞ in terms of Legendre polynomials.
When solving for the values of the unknown constants

(element E3), roughly a quarter of students’ solutions (27%,
N ¼ 125 of 469) contained various mathematical mistakes.
Common issues included (see Table V) losing or gaining a
constant factor, keeping or losing Pl terms inconsistent
with the boundary condition, and not finishing the calcu-
lation. The fraction of solutions with mathematical errors
was higher in solutions that utilized Fourier’s trick to
determine nonzero constants (60%, N ¼ 34 of 56) than in
solutions that utilized term matching (21%, N ¼ 84 of
405). This is likely due, at least in part, to the fact that
Fourier’s trick represents an inherently more mathemati-
cally demanding strategy.
The final element in execution (element E4) deals with

compiling all aspects of the solution into a single expres-
sion for the voltage. Roughly three-quarters of the solutions
(73%, N ¼ 374 of 509) were completed enough to poten-
tially include a final expression for the voltage, and most
(83%, N ¼ 313 of 374) did so correctly. Common mistakes
included not compiling a final expression (23%, N ¼ 14 of
61), dropping or adding terms (25%, N ¼ 15 of 61), and
not including the r dependence from the general solution
(21%, N ¼ 13 of 61). Ultimately, only a small fraction of
students (8%, N ¼ 43 of 509) had difficulties only with
elements of the execution component (i.e., no mistakes in
activation or construction).
The interviews provided relatively minimal insight into

student difficulties in the execution component, in part
because only two of the five students made mathematical

errors of any kind while solving the spherical SOV problem.
Both of these students initially failed to include the r
dependence from the general solution when compiling their
expression for the voltage. Comments made by these two
students suggested that theywere focusing on how their final
expression matched the boundary condition at r ¼ R. As the
boundary condition does not have r dependence, this may
account for these students leaving the r dependence out of
their final expression. The overall success of the interviewees
with respect to execution may be due in part to both the
simplicity of the given boundary condition [VðRÞ ¼
Voð1þ cos θÞ] and the fact that all of the interviewees used
term matching rather than Fourier’s trick to solve for the
nonzero constants. Thus, the mathematical manipulations
required for this problemwereminimal and purely algebraic.
Overall, analysis of both the interviews and exam solutions
suggest that execution rarely represents the primary barrier to
student success on spherical SOV problems.

4. Reflection on the result

We identified four reflective checks that a student could
use to gain confidence in (or detect problems with) their
solution to problems involving spherical SOV (elements
R1–R4). Only a small fraction of our students made
explicit, spontaneous attempts to check their final expres-
sions (7%, N ¼ 27 of 397), and the majority of these did so
only by checking boundary conditions (70%, N ¼ 19 of
27). In interviews, two of five students made spontaneous
attempts to check their solution, one by looking at units and
the other at boundary conditions. One additional student
suggested checking units after being asked how he might
convince himself his solution was correct.
Two of the exam prompts directly targeted element R3

by asking students to comment on why they might expect
the first term in the potential outside the sphere to behave as
1=r (the given surface voltage was everywhere positive). A
completely correct response requires that the student
recognize that if the voltage is everywhere positive, then
the sphere must have net positive charge on its surface, and
thus would look like a point charge in the limit of large r.

TABLE V. Common difficulties when executing the procedural
mathematics of solving for constants in the general solution.
Percentages are of just the students who exhibited these diffi-
culties (27%, N ¼ 125 of 469). Codes are not exhaustive or
exclusive but represent the most common themes; thus, the total
N in the table need not sum to 125.

Difficulty N Percent

Incorrect term matching, e.g., keeping
too many or not enough Pl’s

32 26%

Off by a unitless constant factor
or sign, e.g., factor of 2

27 22%

Off by a unitfull constant factor
or sign, e.g., Vo or radius R

22 18%

Not finishing the calculation 24 19%
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Of the solutions to these two exams, only a small fraction
(8%, N ¼ 6 of 72) articulated this relatively subtle argu-
ment fully. Common alternative justifications included that
1=r was the dependence for a point charge but made no
comment about the charge on the sphere (46%, N ¼ 33 of
72), or that 1=r goes to zero at infinity, which matches the
boundary condition (13%,N ¼ 9 of 72). Similarly, all three
of the interview students who were asked about limiting
behavior of the potential needed explicit guidance before
recognizing that the overall sign of the potential can be used
to infer the sign of the total charge. If a significant fraction
of our students struggled to produce an expectation for the
behavior of the potential at large r, this likely contributed to
why checks of limiting behavior were so rare.
It is also possible that more of the exam students

performed one of these reflective checks spontaneously,
but did not explicitly write it down on their solution. To
address this, we can also examine the fraction of solutions
that included errors in their final expressions that would
have been detected by one or more of these checks.
Table VI lists this along with the number of students
who explicitly utilized each reflective check. These results
suggest that explicit checks of boundary conditions are
both the most common (though still rare) and potentially
the most effective in terms of catching errors.

C. Implications for instruction

While it was not the goal of this study to investigate the
impacts of different instructional strategies or curricular
materials on the prevalence or persistence of students’
difficulties with separation of variables, our findings do
suggest several implications for teaching SOV in electro-
statics. First, for problems in Cartesian coordinates, both
the introduction of the separated form of the potential and
the infinite sum are critical pieces of the solution that
students have difficulty clearly justifying and/or coming up
with spontaneously. It may be particularly important to
directly target these two issues in order for students to
form a more robust conception of the SOV technique. For
example, getting students to come up with the need for the
infinite sum on their own [i.e., asking them to try solving
for the final nonzero constant(s) without it], rather than
simply telling them it was necessary, seemed to be a
particularly productive exercise for our interview students.
It is also worth acknowledging that solving SOV

problems solely through pattern matching, while undesir-
able in terms of generalizability, is often a highly effective
strategy, in part because there are a finite number of
solvable SOV questions and they are all fairly similar.
However, we have identified several variations on these
canonical questions that may help to discourage students
from purely pattern matching, particularly for Cartesian
questions. For example, placing the nonzero boundary
condition on either the y ¼ 0 or x ¼ 0 sides of a rectangular
box can complicate the simplification of the exponential

term. Alternatively, providing a function rather than a
constant for the nonzero boundary condition [i.e.,
Vðx; y ¼ 0Þ ¼ Vo sinðπx=aÞ] can also force students to
adapt their normal Cartesian SOV procedure. This latter
strategy would also provide an avenue for an explicit
discussion of when Fourier’s trick versus term matching
represents the most efficient strategy for solving for the
unknown constants. For spherical SOV, asking for the
potential between two nested spherical shells may also
discourage pattern matching as neither the Al’s or Bl’s go to
zero in this case.

IV. SUMMARY AND IMPLICATIONS

We investigated upper-division student difficulties
when using the separation of variables technique to solve
Laplace’s equation in the context of junior electrostatics by
examining students’ solutions to exam questions, a con-
ceptual post-test, and think-aloud student interviews. We
found that our students encountered a number of identifi-
able issues when solving SOV problems, and that these
difficulties differed for problems involving spherical and
Cartesian geometries. The ACER framework helped us to
organize and categorize these difficulties within the prob-
lem-solving process.
For Cartesian SOV, we found that our students were

highly successful in terms of recognizing SOV as the
appropriate mathematical technique when presented with
canonical Cartesian SOV questions. Alternatively, a subset
of our students used a general expression for the potential
that did not satisfy Laplace’s equation, possibly because
they were overfocusing on satisfying the boundary con-
ditions. Moreover, despite a relatively high rate of success
on exams, we observed a number of issues in interviews
relating to recalling or justifying the separated form of the
potential [i.e., Vðx; yÞ ¼ XðxÞYðyÞ], applying the correct
logic to separate Laplace’s equation into several ODEs,
and recalling or justifying the need for the infinite sum.
We suspect that this apparent disconnect between student
performance on exams and interviews may be a reflection

TABLE VI. Number of exam students who explicitly utilized
each of the four possible reflective checks (Nexplicit) along with
the number of solutions that included an error that would have
been detected by this check (Nincorrect). Ntotal represents the total
number of solutions that reached a point where they could have
utilized that reflective check. The limiting behavior check applies
only to exams that asked for Voutside, and the two semesters in
which students were directly prompted to consider limiting
behavior are excluded; this accounts for the lower Ntotal.

Reflective check Ntotal Nincorrect Nexplicit

Units (R1) 315 39 2
Boundary conditions (R2) 382 119 22
Limiting behavior (R3) 157 27 5
Laplace’s equation (R4) 365 51 1
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of students pattern matching on exams without being able
to fully justify their steps. Pattern matching, as a less robust
strategy, is unlikely to be as effective in the interviews
which take place after the course was completed.
We also found that when solving for nonzero constants

in Cartesian SOV, our students had a strong preference for
Fourier’s trick over term matching when both strategies
were possible. This preference, while understandable given
the types of boundary conditions students are accustomed
to, may have exacerbated student difficulties with the
procedural mathematics as Fourier’s trick represents a more
mathematically demanding strategy. Finally, very few of
our students made spontaneous attempts to reflect on their
solutions despite the fact that these strategies, particularly
checking boundary conditions, can be highly effective at
detecting errors made earlier in the solution.
For spherical SOV, we found that our students were

sometimes less successful in terms of recognizing SOV as
the appropriate mathematical technique than for Cartesian
SOV. Interviews suggest that this may be due, in part, to a
failure to activate Laplace’s equation as the underlying
equation that needs to be solved. Many of the issues that
arose in Cartesian SOV related to working through the
process of separating Laplace’s equation and solving the
resulting ODEs; however, as students are typically not
required to work through this process in spherical, these
difficulties were not observed for spherical SOV.
We also found that many students did not recognize

and/or spontaneously identify all implicit boundary con-
ditions on the potential in spherical coordinates. As
boundary conditions are typically explicitly given in
Cartesian SOV, this difficulty was not observed in
Cartesian problems. Moreover, we found that, in contrast
to the tendency to use Fourier’s trick for Cartesian SOV, our
students had an appropriate preference for term matching
when solving for nonzero constants in spherical SOV
problems. Students’ tendency to prefer one strategy over
the other is likely a reflection of the canonical kinds of
boundary conditions that are used for these two different

geometries. However, this tendency may also suggest that
students have not explicitly connected term matching and
Fourier’s trick as related strategies, which may be a
symptom of a more fundamental difficulty with under-
standing and generalizing the properties of orthogonal
functions. Consistent with this and the idea that
Fourier’s trick represents a more mathematically demand-
ing strategy, fewer students had difficulty with the pro-
cedural mathematics in spherical problems than Cartesian.
The idea that some students were solving SOV problems

primarily through pattern matching was also supported by
student work around spherical SOV. For example, we
consistently found that students make unjustified simplifi-
cations on spherical exam problems (e.g., setting Al’s to zero
without explanation), and one interview student made
explicit comments about recalling that there was an explicit
procedure for solving these problems but was not able to
reproduce it. Consistent with the results for Cartesian, we
again found that students rarely made spontaneous attempts
to reflect on their final solutions when solving spherical SOV
problems despite making a number of errors that would have
been detected through one or more of these checks.
Additional work is needed to identify student difficulties

when utilizing SOV in other contexts, such as quantum
mechanics, and the ACER framework represents a useful
tool for facilitating comparisons of student problem solving
across contexts and courses. Such investigations could also
provide a longitudinal perspective on the growth of student
understanding over time, allowing researchers and instruc-
tors to focus their efforts on addressing those difficulties
that are most common and most persistent throughout the
physics curriculum.

ACKNOWLEDGMENTS

Particular thanks to the PER@C group and Marcos D.
Caballero for their help and feedback. This work was funded
byNSF-CCLIGrant No. DUE-1023028 and aNSFGraduate
Research Fellowship under Grant No. DGE 1144083.

[1] D. E. Meltzer and R. K. Thornton, Resource letter ALIP-1:
Active-learning instruction in physics, Am. J. Phys. 80,
478 (2012).

[2] M. D. Caballero, B. R. Wilcox, L. Doughty, and S. J.
Pollock, Unpacking students’ use of mathematics in
upper-division physics, Eur. J. Phys. 36, 065004 (2015).

[3] C. L. Rasmussen, New directions in differential equations:
A framework for interpreting students’ understandings and
difficulties, J. Math. Behav. 20, 55 (2001).

[4] C. L. Rasmussen and K. D. King, Locating starting
points in differential equations: A realistic mathematics

education approach, Int. J. Math. Educ. Sci. Technol. 31,
161 (2000).

[5] S. Habre, Exploring students’ strategies to solve ordinary
differential equations in a reformed setting, J. Math. Behav.
18, 455 (2000).

[6] G. Duda and J. Ross, in Proceedings of the Physics
Education Research Conference, Omaha, 2011 (American
Institute of Physics, Omaha, Nebraska, 2012), Vol. 1413,
pp. 183–186.

[7] B. R. Wilcox, M. D. Caballero, D. A. Rehn, and S. J.
Pollock, Analytic framework for students’ use of

BETHANY R. WILCOX AND STEVEN J. POLLOCK PHYS. REV. ST PHYS. EDUC. RES 11, 020131 (2015)

020131-12

http://dx.doi.org/10.1119/1.3678299
http://dx.doi.org/10.1119/1.3678299
http://dx.doi.org/10.1088/0143-0807/36/6/065004
http://dx.doi.org/10.1016/S0732-3123(01)00062-1
http://dx.doi.org/10.1080/002073900287219
http://dx.doi.org/10.1080/002073900287219
http://dx.doi.org/10.1016/S0732-3123(00)00024-9
http://dx.doi.org/10.1016/S0732-3123(00)00024-9


mathematics in upper-division physics, Phys. Rev. ST
Phys. Educ. Res. 9, 020119 (2013).

[8] D. Hammer, Student resources for learning introductory
physics, Am. J. Phys. 68, S52 (2000).

[9] T. J. Bing, Ph. D. thesis, University of Maryland, 2008.
[10] D. J. Griffiths, Introduction to Electrodynamics

(Prentice-Hall, Englewood Cliffs, NJ, 1999), ISBN:
9780138053260.

[11] E. Mazur, Peer Instruction: A User’s Manual, Series
in Educational Innovation (Prentice-Hall, Upper Saddle
River, NJ, 1997).

[12] S. V. Chasteen, S. J. Pollock, R. E. Pepper, and K. K.
Perkins, Transforming the junior level: Outcomes from

instruction and research in E&M, Phys. Rev. ST Phys.
Educ. Res. 8, 020107 (2012).

[13] B. R. Wilcox and S. J. Pollock, Coupled multiple-response
versus free-response conceptual assessment: An example
from upper-division physics, Phys. Rev. ST Phys. Educ.
Res. 10, 020124 (2014).

[14] R. Catrambone, in Proceedings of the 2011 Learning and
Technology Symposium, Columbus, GA, 2011.

[15] B. Wilcox, Ph.D. thesis, University of Colorado Boulder,
2015.

[16] B. R. Wilcox and S. J. Pollock, Upper-division student
difficulties with the dirac delta function, Phys. Rev. ST
Phys. Educ. Res. 11, 010108 (2015).

UPPER-DIVISION STUDENT DIFFICULTIES … PHYS. REV. ST PHYS. EDUC. RES 11, 020131 (2015)

020131-13

http://dx.doi.org/10.1103/PhysRevSTPER.9.020119
http://dx.doi.org/10.1103/PhysRevSTPER.9.020119
http://dx.doi.org/10.1119/1.19520
http://dx.doi.org/10.1103/PhysRevSTPER.8.020107
http://dx.doi.org/10.1103/PhysRevSTPER.8.020107
http://dx.doi.org/10.1103/PhysRevSTPER.10.020124
http://dx.doi.org/10.1103/PhysRevSTPER.10.020124
http://dx.doi.org/10.1103/PhysRevSTPER.11.010108
http://dx.doi.org/10.1103/PhysRevSTPER.11.010108

