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Understanding Maxwell’s equations in differential form is of great importance when studying the
electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that
students master the use of vector calculus in physical situations. In this light we investigated the difficulties
second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical
and physical contexts. We have found that they are quite skilled at doing calculations, but struggle with
interpreting graphical representations of vector fields and applying vector calculus to physical situations.
We have found strong indications that traditional instruction is not sufficient for our students to fully
understand the meaning and power of Maxwell’s equations in electrodynamics.
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I. INTRODUCTION

It is difficult to overestimate the importance of
Maxwell’s equations in the study of electricity and magnet-
ism. Together with the Lorentz force law, these equations
provide the foundations of classical electrodynamics. They
can be used to solve problems concerning electromagnetic
phenomena, including those occurring in electric circuits
and wave optics. Moreover, Maxwell’s equations are the
first example of a gauge theory (which is commonly used in
particle physics) and are the starting point for Einstein’s
theory of special relativity, both historically and in many
curricula. It is therefore desirable that students have a
profound understanding of these equations.
For physics education researchers, an electrodynamics

course is an ideal “laboratory” to explore the link between
mathematics and physics since students have acquired
knowledge of the physical concepts in an introductory
electricity and magnetism course, and have learned the
necessary mathematical techniques during instruction on
calculus. To describe more complex electromagnetic phe-
nomena, they will need to apply this advanced mathematics
in the description of the physical reality. This study has
charted some problems our students encounter with physics
and mathematics when using Maxwell’s equations.

Maxwell’s equations can be formulated in differential
or in integral form. In differential form, the four laws are
written in the language of vector calculus that includes
the differential operators divergence and curl. These are
typically expressed using the nabla ∇ symbol to denote
the del operator. The divergence of a vector field (∇ ·A)
is a scalar quantity that measures the magnitude of a
source or sink of the field at a given point. The curl of a
vector field (∇ ×A) results in a vector field that describes
the infinitesimal rotation at any point in the field. Both
quantities are defined locally: they only describe the
characteristics of a vector field at a single point. This is
the most important distinction from Maxwell’s equations
in integral form, which describe the electromagnetic
field in a region of space. For physics majors, the two
formulations are equally important since they have both
certain advantages and limitations in specific contexts.
The research described in this paper focuses on students’
understanding of Maxwell’s equations in differential form
and includes their knowledge and skills concerning vector
calculus.
In Sec. II we provide an overview of the related

literature, including work on the link between mathematics
and physics: research on electromagnetism, vector calcu-
lus, and the combination of the two. This leads to our
research goals, which are described in Sec. III. To formulate
our research questions, we distinguish four kinds of skills
that need to be acquired by the students:
(1) Structural understanding [1,2] of the concepts of

gradient, divergence. and curl.
(2) The interpretation of these operators in the context of

a graphical representation of the field.
(3) Doing calculations that involve vector operators.
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(4) Conceptual understanding of Maxwell’s equations
in differential form.

The educational context and methodology are described in
Sec. IV, followed by the results of our study in Sec. V. This
section contains a discussion of our students’ skills and
difficulties concerning the four topics that are listed above.
The most important findings and possible implications for
teaching are summarized in Sec. VI.

II. RELATED LITERATURE

The majority of physics education research (PER) at the
university level to date concerns introductory courses
(examples can be found in the summary of McDermott
and Redish [3]). These studies have, among other things,
yielded an extensive inventory of conceptual problems in
physics and the finding that many students struggle with the
application of their mathematical knowledge in a physical
context [4–6]. The role of mathematics in physics educa-
tion has been an important topic in recent PER projects
[6–12]. Manogue and Dray went so far as to state that
physicists and mathematicians speak a different language,
but use the same vocabulary [13]. A tendency for students
to focus on equations and calculations rather than on the
physical meaning behind the symbols has been identified as
a recurring issue [14–16]. Another source of difficulties is
the use of multiple representations in physics and math-
ematics. Students have severe difficulties combining the
information in texts, equations, symbols, graphs, and
figures into a single unambiguous story [17–22]. Our work
adds to the investigation of these issues in the context of an
intermediate electrodynamics course.
Introductory electricity and magnetism courses are a

popular setting to learn about student misconceptions
[23–35]. A fair amount of research has been carried out on
the use of integrals in electricity andmagnetism [36–44]. This
research informs the work we present here, since we have
adopted some of the ideas and methodologies in these papers
as a starting point for our own research. At Dublin City
University students’ ideas about integrals were investigated
using an approachbasedon the idea of the concept image, i.e.,
all the mental processes activated when students encounter a
certain concept (e.g., an integral of avector operator) [36]. It is
unique for every person, and therefore differs from the
(formal) concept definition, which is a description that is
accepted by the wider community [45]. One aspect of our
study concerns our students’ concept image of vector
operators, which we relate to the difficulties they encounter
when applying Maxwell’s equations in differential form.
In advanced courses (often called electricity and magnet-

ism2 or electrodynamics) vector calculus plays an important
role. It is known that operations with vectors and vector
fields (e.g., vector addition and the dot product) provide
students with many problems [46–51]. Furthermore, stu-
dents struggle with the use of vectors in different coordinate
systems and the application of appropriate unit vectors

[46,51–53]. However, little is known about situations where
the del operator is applied to scalar or vector fields. Gire and
Price discussed the option to use graphical representations
when teaching about vector fields and vector calculus.
Based on their experience with different types of in-class
activities, they argued that algebraic representations are
useful since they can easily be manipulated, but students
gain more insight into the differences between components
and coordinates when using a graphical approach.
Moreover, they expect that students will benefit from being
able to translate one representation to another [54]. Singh
and Maries report that about half of their graduate students
before instruction, and one out of three after instruction, are
unable to determine where the divergence or curl is (non)
zero when provided with a graphical representation of a
vector field. They argue that physics courses are often a
missed learning opportunity because they strongly focus on
mathematics but fail to develop a functional understanding
of the underlying concepts [55].
While there is quite some physics and mathematics

education research on vector calculus, the amount of
research on vector calculus in the context of electrody-
namics is limited. The educational setting in this context,
however, is different. Manogue and Dray pointed out that in
mathematics the gradient, divergence, and curl are used in a
general and abstract way, while in physics they are mostly
used in certain symmetries (Cartesian, cylindrical, or
spherical) [56]. Research at the University of Colorado
showed that problems arise when asking students to
determine where the divergence of an electric field vanishes
for a given charge distribution. This type of question can be
solved with the differential form of Gauss’s law in a
straightforward way. However, they report that only 26%
of their students were able to give a correct answer [57].
Baily and Astolfi found that what students from St.
Andrews learned about the divergence in one context
(Gauss’s law) often did not translate to their understanding
in other contexts (e.g., the continuity equation) [58].
In summary, the literature reviewed here shows that

students struggle when they have to use their knowledge
from mathematics in a physical context. Clearly, this also
applies to the specific case of applying vector calculus in
electrodynamics. However, there is still a lot of research to be
done on the subject. In the next section, the contributionof our
study is formulated in terms of goals and research questions.

III. RESEARCH DESIGN

This paper gives an account of an exploratory study of
students’ strengths and weaknesses in using vector calculus
in mathematical and physical contexts. The research
extends the previous findings mentioned in Sec. II by
adopting a broader approach to ascertain the knowledge,
skills, and understanding our students have acquired. The
goal of this study is twofold: it aims to provide both
researchers and teachers with insights into the learning
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results of traditional instruction of electrodynamics, and it
is the first stage of a large scale investigation of students’
understanding of Maxwell’s equations in differential form.
In this first stage of the investigation we aim to gain

insight into the difficulties students encounter with vector
calculus in a purely mathematical or physical context. To
this end, we distinguish four different kinds of skills and
competencies students need to acquire: structural under-
standing [1,2] of divergence and curl, graphical interpre-
tation of vector fields, calculation of divergence and curl,
and conceptual understanding of Maxwell’s equations in
differential form. Based on their instruction prior to the
electrodynamics course and results from the literature, we
expect our students to have reasonable facility with the
mathematical techniques needed to carry out calculations
while lacking experience with interpreting graphical rep-
resentations of vector fields. We have investigated our
students’ attainment at the start of the electrodynamics
course and have tried to establish to what extent their
understanding of Maxwell’s equations in differential form
changes while taking the course. We have focused on the
following research questions:

• Did our students acquire a structural understanding
[1,2] of gradient, divergence, and curl from their
introductory and intermediate mathematics courses?
(i) What is their concept image [45] of gradient,

divergence, and curl?
(ii) How do they describe the meaning of the vector

operators?
• Can students interpret a graphical representation of a
vector field in terms of its divergence and curl?
(i) Can they deduce where the divergence and

curl of vector fields are (non)zero in a purely
mathematical context?

(ii) Can they deduce where the divergence and curl
of electromagnetic fields are (non)zero?

(iii) What strategies do they use to interpret these
representations?

• Did our students acquire the necessary mathematical
techniques to perform calculations involving vector
operators with and without a physical context?
(i) What technical difficulties do they encounter?
(ii) Do different kinds of coordinate systems

(Cartesian, cylindrical, spherical) present differ-
ent challenges?

• Do students conceptually understand Maxwell’s equa-
tions in differential form?
(i) Are they able to correctly deduce whether the

divergence and curl of an electromagnetic field
are zero or nonzero in a given situation?

IV. EDUCATIONAL CONTEXT
AND METHODOLOGY

To answer the research questions, we gave written paper-
and-pencil questions to second year university students in a

traditional thirteen week intermediate electrodynamics
course. The students major in physics or mathematics at
the KU Leuven. They use Griffiths’ textbook [59] and are
instructed in one two-hour lecture and one two-hour
problem solving session per week in which they discuss
typical end of chapter problems from the textbook. The
students have already completed an introductory electro-
magnetism course using the textbook of Serway and Jewett
[60] that leads up to Maxwell’s equations in integral form,
and at least two calculus courses [61] that include a chapter
on vector calculus. Therefore, they have encountered the
necessary mathematical tools and physical situations pre-
sented in the electrodynamics course.
To identify the prior knowledge of our students they

were given a pretest before the first lecture in the advanced
electromagnetism course based on Griffiths’ textbook [59].
Since these students had encountered vector calculus
mostly in a mathematical setting, the questions on the
pretest do not contain any physical context. To encourage
students to write down their reasoning, calculations, and
thinking process, all questions were open ended. A post-
test was given after instruction on chapters 1–7 of Griffiths’
textbook [59], during a lecture about halfway through the
semester. The post-test assignments are mostly similar to
those on the pretest; however, a physical context is
introduced in some cases to investigate whether informa-
tion on the physical situation affects the students’ ability to
interpret the divergence and curl of the (electromagnetic)
vector fields. The post-test also comprises questions that
evaluate students’ understanding of Maxwell’s equations.
There were no time constraints for the students to complete
the pre- and post-test.
The analysis focuses on the solution method and think-

ing process rather than the result. To describe and explain
the variation in students’ conceptions, ideas of phenom-
enography are used. Phenomenography is an empirical
approach that aims to identify and categorize the different
qualitative ways in which different people perceive and
understand phenomena [28,63]. The categories used in the
analysis of our data were established in a bottom-up
approach where one of us proposed a set of categories
based on the answers students gave, the strategies they
used, and the mistakes they made. After an elaborate
discussion with the other collaborators about some specific
student answers, we refined our classification and decided
on a final set of categories. To confirm that our categories
are well defined, we evaluated the interrater reliability
by calculating Cohen’s kappa (κ). For individual questions,
Cohen’s kappa ranged from 0.76 to 1.00, indicating a
substantial to almost perfect agreement. Since the number
of students is limited (N ¼ 30 on the pretest andN ¼ 19 on
the post-test), the percentages should be generalized with
care. Nevertheless, they should give a clear view of the
limitations in our students’ understanding of vector calcu-
lus in electrodynamics.
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V. RESULTS AND DISCUSSION

In this section the results of the pre- and post-test are
presented and discussed. The questions can be found in
Appendixes A and B.

A. Pretest

The pretest shown in Appendix A was given to all 30
students at the beginning of the course to probe their
knowledge and understanding acquired in previous
courses. The first part of the pretest identifies students’
concept images [45] of the operators grad, div, and curl. In
the second part, the students’ calculational skills and their
ability to interpret graphical representations of vector fields
are tested. For this part only, some useful formulas were
attached to the questions (Appendix C).
The three questions on the pretest correspond to the first

three research questions that were discussed above. Since
our students only studied Maxwell’s equations in integral
form during their introductory course, we did not include a
question that assesses their understanding of the differ-
ential form.

1. Concept image of grad, div, and curl

The concept image question serves to get a better
understanding of what students associate with the gradient,
divergence, and curl in a very general sense. Expressions
for grad, div, and curl are given to the students, and they
are asked to write down everything they think of. From
this, we can make some statements about the students’
concept image [36,45,64] of these operators. The students’
responses to the questions are described qualitatively
in Table I. We distinguished three important emerging
categories in the students’ answers: information about
the structural meaning of the vector operators, the scalar
or vector character of the expression, and the name and
symbolic expression that students wrote down. Obviously,
a student can give more than one interpretation and,
therefore, the percentages sum to more than 100%.

We do not suggest that students do not know something
they did not write, but we do think the question reveals
what is cued first and foremost.
Only a few students gave a description of the operators

we deemed conceptual. Some provided a more or less
correct description that resembles the concept definition:

“The curl tells you how strong and which way the vector
field A rotates.”

This student did not make a statement about the local
character of the curl, but does seem to have a rather good
idea about what the curl represents. Others had very
incomplete or incorrect conceptual ideas:

“The divergence is a measure for how the field is
changing.”

“The gradient of A is the vector normal to the plane.”

We also observed that some students misidentified the
vector or scalar character of the expression. More than half
of the students mentioned which operations result in a
vector field, and which produce a scalar field. Sometimes
they explicitly wrote it down, in other cases it could be
derived from their notation. The notation in this student’s
answer, for example, shows he thinks the divergence of a
vector field is a vector:

“In three dimensions this is the divergence and, there-
fore, ~∇ · ~A ¼ ∂ ~A=∂xþ ∂ ~A=∂yþ ∂ ~A=∂z”

One of our students wrote that the gradient of a scalar is
again a scalar. Two students also seemed to think the
divergence of a vector field is again a vector field. We did
not observe a single misidentification of the vector char-
acter of the curl of a vector field. This corroborates the
findings of Barniol and Zavala, who showed that students
have significantly more problems with the vector or scalar
nature of the dot product than of the vector product
[51]. Since the students correctly described A as being a
scalar (field) and A as being a vector (field), we have no
indications that there was a problem with the notation in the
question. About one out of three students did not make any
statement concerning the vector or scalar character in their
answer (e.g., they just named ∇ ·A “divergence,” without
any explanation).
The category “Naming” contains all students who wrote

down the correct name of the expression. No students
remembered names incorrectly or mixed up the terms
gradient, divergence, and curl. Nevertheless, half of the
students did not explicitly identify ∇ ·A as the divergence
and ∇ ×A as the curl of a vector field. Only five of our
students wrote that ∇ is the nabla symbol, and one student
called it the del symbol. About one out of four, however,

TABLE I. Categorization of students’ interpretation of the
expressions ∇A, ∇ ·A, and ∇ ×A.

Category ðN ¼ 30Þ ∇A ∇ ·A ∇ ×A

Correct concept 10% 0% 10%
Incorrect or incomplete concept 23% 10% 7%

Scalar 3% 63% 0%
Vector 60% 7% 53%

Naming 70% 50% 53%
Formula 63% 50% 37%

Other 3% 3% 7%

No answer 3% 10% 10%
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called this symbol the gradient or the Laplacian. In some
cases it was not possible to determine whether students had
the concepts confused, or the names, or both:

“∇ ×A is the vector product between the gradient
and A.”

Furthermore, about half of the students wrote down a
formula from memory, some incorrectly; all of these are
counted in the category “formula.” In the category “other”
there were some correct statements that explained the link
with Stokes’ law, the divergence theorem, or conservative
fields. These students seem to have made connections with
the integral form of Maxwell’s equations.
On the whole, students seemed to feel these vector

operators are a tool to evaluate something. A similar focus
on evaluation was also seen in students’ concept image of
integration. In that particular case, students rather tried to
evaluate an integral that was impossible to calculate than
to describe it as an area under a curve or a sum of
infinitesimal parts [36]. This particular question does not
elicit a structural understanding [1,2] of the gradient,
divergence, and curl. The second part of the pretest is
designed to investigate the students’ ability to interpret
graphical representations of vector fields and their skill at
doing calculations in vector calculus.

2. Graphical interpretation of vector fields

We gave our students a two-dimensional representation
of four different vector fields and asked them to indicate
where the divergence and curl are (non)zero. The assign-
ments can be found in Appendix A. The divergence is
nonzero everywhere in Fig. 4 and the curl is nonzero
everywhere in Figs. 5 and 6. The curl in Fig. 7 clearly is
zero everywhere, but determining the divergence is less
straightforward. The field we sketched has 1=s depend-
ence, so that the divergence is nonzero only at the center
of the field. This could, for example, be the electric field of
a charged wire pointing in the z direction. However, if
students saw an unspecified dependence on s and stated

that they could not decide whether the divergence was zero,
we deemed their answer correct.
First the students’ answers were checked for correctness.

Figure 1 shows that our students have severe difficulties
with these graphical representations. For Fig. 4, half of the
students gave a correct answer, but for the other three vector
fields less than one out of four figured out correctly where
the divergence and curl are nonzero. In Fig. 7, just two
students could determine that the divergence is nonzero
only at the center of the field. About 30% of the students
made at least one statement that pointed toward the typical
error [57] of confusing the derivative of the field with its
value (e.g., the derivative is zero when the field is zero). Our
students were easily misdirected, and very inconsistent in
their reasoning. Moreover, a significant number of students
did not answer the question (about 20%–30% for the
divergence and 30%–40% for the curl). It is likely that
these students did not know how to solve these problems,
since they did answer the other pretest questions.
Second, we looked at the strategy students used to obtain

their answer. The prevalence of the strategies is shown in the
second column of Table II. We distinguish five categories:

• Concept based strategy: This category includes ex-
planations from students that show a good under-
standing of the underlying concepts. Their answers are
based on drawings together with the definition and
potentially some derived formulas that link the differ-
ential and integral form. Typically the change in flux
per unit area is determined by drawing a small box
around a point: if there is no net flux in the area
bounded by the box, the divergence is zero as there is
no source or sink in this area. To obtain the curl, a
virtual paddle wheel is placed in the field. If it rotates,
the curl is nonzero at that particular location.

• Formula based strategy: The student mostly relies on
“the formula” for divergence and curl, and uses the
derivatives of x and y to get an answer. Some students
even (try to) obtain an algebraic expression for the
vector field and then apply the definition of the
operator (typically in Cartesian coordinates).

FIG. 1. Results for the question about graphical representations of vector fields on the pretest (N ¼ 30).
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• Description based strategy: The students use a
(correct-incorrect-incomplete) qualitative description
of the divergence and curl to obtain an answer.
Typically the student relies on the common English
definition of the words “divergence” and “curl” and
links this in naive way to the graphical representation
of a vector field. This is illustrated by some examples
for the third vector field (Fig. 6):
(i) False descriptions:

“∇ ·A ≠ 0 because the length of the arrows
increases.”

“∇ ×A ¼ 0 because the field is not rotating.”

(ii) More or less correct descriptions:

“∇ ·A ¼ 0 since nothing is added to the field
anywhere.”

“∇ ×A ≠ 0 because the field is rotating
locally.”

It is, of course, possible that students who wrote down
these descriptions have some conceptual insights as
well, but their answers provided no evidence for this.

• Unclear: The reasoning is not explained or it is
unclear.

• No answer: The student did not answer the question.
Students generally used just one of these strategies to solve
the question. However, some used a different approach to
determine the divergence and the curl of a field.

In the last four columns of Table II, the success rate
for certain strategies is given. The student who used the
concept based technique was very successful in determin-
ing the divergence and curl of the fields. The formula based
technique is useful if the vector function can be found and
calculations are carried out correctly, which may cause
problems for complex cases [e.g., the fourth vector field
(Fig. 7)]. Students who used a description based strategy or
give little or no explanation seem to have a low chance of
being successful in determining the divergence and curl of a
graphical representation of a vector field. There are some
exceptions to these generalizations, like a student who
determined the divergence and curl correctly for every
field, but gave no explanation whatsoever. However, his
answers were probably well considered, as he gave a fairly
accurate description of the divergence and curl in the first
part of the pretest:

“The divergence of A is a scalar field that tells you how
much is added to the vector field A”

“The curl of A is a vector field that tells you how strong
and in which way the field A turns”

This leads us to believe that this particular student used his
conceptual understanding of divergence and curl to tackle
problems concerning the graphical representation of vector
fields.

3. Calculation of divergence and curl

In the last set of questions on the pretest we asked our
students to calculate the divergence and curl of three vector
fields (see Appendix A). Two fields were given in Cartesian
coordinates, the third in cylindrical coordinates. For each of
the 6 calculations, we split answers into four categories:
complete and correct calculations, calculations with minor
mistakes or omissions (e.g., a forgotten minus sign or an
expression is left unsimplified), calculations with major
mistakes (e.g., an error in the use of the formula for div or
curl, an error when taking the derivative or inappropriate
use of unit vectors), or no answers. The results are
presented in Table III.
Exercise (a) required students to make a quite straight-

forward calculation. Nevertheless, only 60% of the students
were able to calculate the divergence correctly, and,
allowing for minor errors, about three-quarters calculated
the curl correctly. One student calculated the Laplacian
instead of the curl. He did not give an answer for the
other parts.
Exercise (b) was more difficult than the first one, since

some challenging algebra is required to evaluate the
expression in Cartesian coordinates. This explains the
higher number of students who make minor errors.
When allowing for minor errors, about 60% of students
gave correct answers. These are mostly students that could

TABLE II. The prevalence and success rate of strategies students
used to determine the divergence and curl of vector fields based on
graphical representations used in the pretest ðN ¼ 30Þ.

Divergence
Number

of students

Success rate

Figure 4 Figure 5 Figure 6 Figure 7

Concept based 3% 100% 100% 100% 100%
Formula based 23% 71% 57% 57% 0%
Description
based

23% 71% 14% 14% 0%

Unclear 30% 56% 44% 33% 11%
No answer 20% � � � � � � � � � � � �

Curl
Number

of students

Success rate

Figure 4 Figure 5 Figure 6 Figure 7

Concept based 3% 100% 100% 100% 100%
Formula based 23% 100% 57% 71% 57%
Description
based

20% 100% 17% 33% 67%

Unclear 23% 100% 29% 14% 71%
No answer 30% � � � � � � � � � � � �
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also correctly calculate the divergence and curl in the first
exercise. Two students converted the equation to polar
coordinates and then calculated the divergence and curl.
One of them knew the formula for the divergence in two
dimensions [65] (only the formulas for three dimensions
were given), the other student made a mistake at this point.
Both of them noticed that the curl is zero without doing any
calculation at all. Two other students did not calculate the
curl in this part, because they argued that a vector product is
only defined in three dimensions. It may not have occurred
to them that the vector field could be considered three-
dimensional with zero z component. While almost all
students attempted to calculate the divergence, over one-
third of the students did not attempt to calculate the curl.
They may have been discouraged by difficulties they had
when calculating the divergence.
The calculation required in exercise (c) is as straightfor-

ward as that of exercise (a), and a similar fraction of
students calculated the divergence and curl correctly.
Again, this is more or less the same group of students
that could do the calculations in the first two exercises.
However, many more students did not give an answer at
all. It is unlikely that they did not know how to calculate
the divergence and curl in cylindrical coordinates, since
expressions were given to them.
In general, we can see that approximately 60% of the

students are able to calculate the divergence and the curl of
given vector fields, independent of the level of difficulty
and the coordinate system used, if we allow minor errors.
The major errors can be classified in three subcategories: 10
times an error was made when taking the derivative, 11
students used the expressions incorrectly, and in 10 cases
unit vectors were used inappropriately (e.g., unit vectors
were appended to terms in the divergence of a vector field).
Of course a single student could make multiple errors
during one calculation. Concerning the use of unit vectors,
it was striking to see that students used them very
inconsistently in the pretest.
When we compare the results of the calculations to the

number of correct answers in the graphical representation
question, the prior knowledge of these students clearly
shows. They seem to have some difficulties calculating the
divergence or curl, but struggle much more with exercises
that ask for more insight. This confirms what we observed

in the concept image of the students: most of our students
lack a conceptual understanding of the divergence and curl,
and focus on evaluation.

B. Post-test

After instruction up to Chap. 7 in Griffiths’ textbook
[59], we gave the students a post-test questionnaire (see
Appendix B). It comprises two questions concerning
graphical interpretation of vector fields (one with and
one without physics context), two questions where students
have to calculate the divergence and curl after imposing a
condition, and two conceptual questions in which they had
to use the differential form of Maxwell’s equations to
interpret a series of physical situations. Therefore, the
questions on the post-test correspond to the last three
research questions in Sec. III. We did not include a question
that aims to examine the concept image of the divergence,
curl, and gradient because we wanted to exclude the
possibility of a retest effect and to limit the workload for
the students. Since the number of attendants in the non-
mandatory lecture dropped over the semester, only 19
students filled in the post-test. All of these participants also
took the pretest. Based on the pretest data, the population of
students that took the post-test is equivalent to the pop-
ulation of students that took the pretest.

1. Graphical interpretation of (EM) vector fields

Vector fields without physical context.—This question is
similar to the question 1 of part 2 on the pretest. Figures 8
and 9 on the post-test are analogous to Figs. 6 and 4 on the
pretest, respectively (however, the “view” is changed a bit).
The results are summarized in Fig. 2 and are compared to
the answers on the pretest.
It seems that students did better with the first vector field

of the post-test, but made a more or less equal number of
mistakes when interpreting the second vector field. This
was analyzed more profoundly by looking at how many
students’ answers improved (incorrect at pretest; correct
in post-test), disimproved (correct at pretest; incorrect at
post-test), and stayed the same. For the first field, three
students could correctly determine divergence and curl in
the post-test, but not in the pretest. Not a single student
made a “new” mistake. For the second field, four students
improved their answers, but two went from answering
correctly to answering incorrectly. This means that most
students stick to their answers: there is a slight increase in
correct answers, but still only about 50% can determine the
divergence and curl from a graphical representation of a
simple vector field. Note that these percentages are similar
to the results that Singh and Maries found when testing
their graduate students (before instruction) [55].
However, four students made incorrect statements like

“The divergence is zero in the x direction, but not in the
y direction.”

TABLE III. Categorization of students’ calculations of the
divergence and curl of three vector fields in the pretest (N ¼ 30).

Exercise (a) Exercise (b) Exercise (c)

Divergence Curl Divergence Curl Divergence Curl

Correct 60% 53% 23% 43% 60% 57%
Minor error 0% 20% 33% 13% 7% 3%
Major error 33% 16% 33% 3% 7% 7%
No answer 7% 10% 10% 40% 27% 33%
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This kind of reasoning was not seen in the graphical pretest
questions, though it did emerge in the calculational pretest
questions. We intend to explore this issue further in the
future; it illustrates in any case that many students still
struggle with divergence.
Looking at the strategies the students used to determine

the divergence and curl (Table IV) we see an increase in
concept based reasoning and formula based reasoning. The
number of unclear answers decreased and every student at
least tried to give an answer this time. This effect might be
due to instruction: in lectures they were told that it is
possible to use a paddle wheel to determine the curl, for
example. However, students were not asked to use this idea
in any exercises, which may explain the many errors they
made. The students did a lot of calculations during the
tutorial sessions and the fields are fairly straightforward,

which may explain that formula based reasoning is more
popular and effective in the post-test.

Electromagnetic fields.—The post-test questions on
graphical representations of electromagnetic fields ask
similar questions in context. Furthermore, the fields are
a bit more “difficult” in the sense that they have a
cylindrical instead of a Cartesian symmetry. The number
of correct answers is very small: only a few students could
correctly determine both the divergence and the curl
(Fig. 3).
To solve this question, students could use the same

strategies as before, but could also use Maxwell’s equations
(physics based reasoning). Because some students used
such an argument to confirm their answer based on another
strategy, it is now possible that they are entered in multiple
categories. The answers are summarized in Table V. The
first part shows the percentage of students that used a
certain approach. Some students used a generic approach
together with a physics based strategy, so the total exceeds
100%. The second part of the Table shows the success rate
when students use a certain strategy.

FIG. 2. Results for the context-free graphical representation of vector fields on the post-test ðN ¼ 19Þ compared to the results on the
pretest ðN ¼ 30Þ. The first vector field on the post-test (Fig. 8) should be compared to Fig. 6 on the pretest, and Fig. 9 to Fig. 4.

TABLE IV. The prevalence and success rate of strategies
students used to determine the divergence and curl of vector
fields based on graphical representations used in the post-test
ðN ¼ 19Þ.

Divergence Number of students
Success rate

Figure 8 Figure 9

Concept based 16% 67% 67%
Formula based 37% 100% 100%
Description based 26% 0% 20%
Unclear 21% 0% 0%
No answer 0% � � � � � �

Curl Number of students
Success rate

Figure 8 Figure 9

Concept based 21% 50% 50%
Formula based 32% 100% 100%
Description based 16% 0% 33%
Unclear 32% 17% 17%
No answer 0% � � � � � � FIG. 3. Percentage of correct answers for the graphical repre-

sentation of electromagnetic fields in the post-test ðN ¼ 19Þ.
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Students tend to change their strategy between questions
(this is why both questions are treated separately) and often
fail to correctly apply the strategies they use. They seem
especially unsure about the use of Maxwell’s equations. To
illustrate this, we analyze the answer of a student for the
magnetic field question (Fig. 10):

Concerning the divergence, this student states correctly
it is zero: “∇ ·B ¼ 0 → there is no magnetic monop-
ole”, which is indeed always true. When looking at the
curl, he writes “∇ ×B ¼ μ0I”, but then crosses out
the right-hand side, and simply writes “nonzero”. In the
end, it is unclear what argument he used to obtain this
incorrect result.

Many students did similar things: they tried to use Ampère’s
law, but failed to apply it correctly. They did not appear to
understand that the curl of a magnetic field is only nonzero
where a current flows, and that it varies from point to point.
Furthermore, they misinterpreted the use of a paddle wheel:
they seemed to think it rotates everywhere, but it does so
only in the center of the field (everywhere else it translates in
a circle around the current carrying wire). Similar mistakes
were made in the case of the electric field (Fig. 11): no more
than three students understood that the divergence is nonzero
only where charges are present. The most occurring mistake
(37%) was that students thought the divergence is nonzero
everywhere because of the appearance of the field:

“All arrows point towards a certain point, so the
divergence is zero nowhere.”

Formula based reasoning is less effective here, because the
students struggle with the use of cylindrical coordinates or

try to set up the equation of the field in Cartesian
coordinates.

2. Calculation of divergence and curl of EM fields

These questions are intended to check if students can do
calculations in an electromagnetism context, which takes
the form of imposing a simple condition. To determine
which field could be a magnetic field, students should
check if ∇ · B ¼ 0 applies; to check whether a field could
be an electrostatic field, they need to verify that ∇ × E ¼ 0.
Recognizing and imposing this condition proved to be

problematic for our students: 74% (14) students were able
to do this for the magnetic field and only 53% (10) for the
electric field. One student did not give answers to any of
these questions. Others used qualitative reasoning that
contained something about the radial or z dependence:

“A magnetic field spreads radially outward from its
point of origin. The first one doesn’t do that because it is
in Cartesian coordinates.”

A few students calculated the divergence of the potentially
electrostatic fields, but then struggled to interpret the result.
Almost all students who obtained the correct condition

calculated the divergence and curl correctly. Some even did
not need to calculate a full expression, but could determine
whether the divergence and curl were (non)zero by sight.
Despite the observation that some students still made
errors, a slight progression could be noticed concerning
the ability to perform calculations. This may be explained
by the huge emphasis on calculations in Griffiths’textbook
[59] and the exercise sessions.

3. Conceptual understanding of Maxwell’s equations

The last set of post-test questions intends to investigate
students’ conceptual understanding of and insight into
Maxwell’s equations in differential form. To this end they
had to determine whether the curl and divergence are zero
or not in four electric and five magnetic fields [66]. When
Maxwell’s equations in differential form are applied cor-
rectly in every situation, one obtains the following answers:
∇ ·E ¼ 0 always except for the first situation, ∇ ×E ¼ 0
in situations a, c, and d, ∇ · B ¼ 0 always, and ∇ ×B ¼ 0
in the last two situations. We did not give the students a list
of Maxwell’s equations to avoid pointing students in a
particular direction. In our opinion students who under-
stand these laws will be able to reproduce at least the
causality between the fields and sources. However, as
shown in Table VI, students encountered tremendous
difficulties in answering this question.
Only one student did not make a single mistake, while all

other 18 students made at least three errors. We could not
find a correlation between the errors, but some patterns did
emerge:

TABLE V. Strategies students used to interpret the divergence
and curl of graphical representations of electromagnetic fields in
the post-test ðN ¼ 19Þ.

Prevalence
Figure 10 Figure 11

Divergence Curl Divergence Curl

Concept based 5% 16% 0% 0%
Physics based 42% 11% 21% 26%
Formula based 16% 11% 5% 0%
Description based 16% 16% 11% 16%
Unclear 26% 42% 53% 58%
No answer 0% 5% 11% 5%

Success rate
Figure 10 Figure 11

Divergence Curl Divergence Curl

Concept based 100% 0% � � � � � �
Physics based 100% 50% 50% 100%
Formula based 67% 0% 0% � � �
Description based 67% 0% 0% 100%
Unclear 17% 0% 10% 91%
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• Gauss’ law, which states that the divergence of the
electric field is nonzero only where charge is present,
or more conceptually still, that the source (sink) of an
electric field is a positive (negative) electric charge,
elicited most errors. Only one student could correctly
determine where the divergence is nonzero for all five
situations. This confirms some of the findings from
the University of Colorado: students have diffi-
culties applying the divergence in an electromagnetic
context [57].

• At least one mistake was made in the application of
Faraday’s law by 53% (10) of students. Nine students
did not appear to know that the curl of an electric field
is nonzero when there is a changing magnetic field, as
stated explicitly in situation (b).

• Despite the elaborate discussion on the nonexistence
of magnetic monopoles during instruction, 53% (10)
of students did not check every box under ∇ ·B. This
is alarming, since it is a truly elementary law that is
easy to apply.

• Only 21% (4) of students were able to correctly
evaluate Ampère-Maxwell’s law in every situation.
Strikingly, fewer than half of the students could
interpret situation (c), which is the classic textbook
example to show Maxwell’s correction to Ampère’s
law. It was discussed both during the lectures and in
Griffiths’ textbook [59].

These results show that our students did not profoundly
understand Maxwell’s equations in differential form.

VI. CONCLUSIONS AND IMPLICATIONS
FOR TEACHING

We have investigated students’ understanding of diver-
gence and curl in mathematical and physical contexts.
Concerning their initial concept image, we found that they
focused on evaluation, and appeared to pay little attention
to the conceptual meaning of the vector operators.
Furthermore, their conceptual descriptions often were

incomplete and contained incorrect information. Some
students were confused about the vector or scalar character
of the operators, and used incorrect terminology.
Interpreting graphical representations of vector fields is a

difficult exercise for students. Even after instruction, only
half of the students were able to determine where the
divergence and curl of a simple vector field are (non)zero.
When more complex and realistic electromagnetic fields
had to be considered, only a few students succeeded in
solving the question correctly. Moreover, many students
used various strategies inconsistently. This suggests they
lack a structural understanding of the mathematical con-
cepts, and on top of this they are unable to use their
acquired skills in a physical context.
Since we (and many others [54,55,57]) believe that these

graphical representations are helpful when trying to con-
ceptualize the abstract mathematical structures in vector
calculus, we think it would be advisable to put more effort
into this kind of exercise in both physics and mathematics
instruction. In our opinion it would help students to
understand the physical meaning of Maxwell’s equations,
which has applications beyond electricity and magnetism—
e.g., in subsequent problems concerning electromagnetic
radiation, gauge theory, and the introduction to special
relativity.
In Griffiths’ textbook [59] a lot of exercises focus on

complex calculations. We found that students are reason-
ably comfortable with the required algebra, but have
problems when they need to interpret the context of a
calculation. One out of four students was unable to come up
with the condition a vector field should satisfy in order to
be a realistic magnetic field, and only half of them knew
this condition for an electrostatic field. Since understanding
and explaining electrodynamic phenomena is one of the
main objectives of this course, we suggest more attention
should be paid to the interpretation of the equations and
setting up the problem at the expense of doing algebraic
manipulations.
When we investigated the competencies students show

when they encounter situations that can be solved using
Maxwell’s equations in differential form, we observed that
students had tremendous difficulties with the application of
all four laws. This calls for an instruction that puts more
effort in linking mathematics and physics and uses a more
qualitative approach. Some great ideas can be found in
Huang et al. [67], although we think even more graphical
and conceptual examples are needed in order to fully show
students the power and usefulness of Maxwell’s equations
in differential form.
In future work we are planning to conduct student

interviews to gain more insight in the thinking process
of students when they solve problems linked to the differ-
ential form of Maxwell’s equations. This will help us
understand how graphical representation and a better
structural understanding of the mathematical concepts

TABLE VI. The percentage of students who could correctly
determine whether the divergence and curl of the electric
(magnetic) field described in a situation is zero or not ðN ¼ 19Þ.
Electric field ∇ · E ∇ ×E

Situation (a) 47% 95%
Situation (b) 16% 53%
Situation (c) 26% 74%
Situation (d) 95% 95%

Magnetic field ∇ ·B ∇ ×B

Situation (a) 63% 79%
Situation (b) 74% 79%
Situation (c) 74% 42%
Situation (d) 84% 74%
Situation (e) 84% 68%
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can help students to apply their skills in a physical context.
At a later stage the results of these interviews will be used
to create new or improved questions on the pre- and post-
test, and to iteratively design a tutorial that aims to help
students understanding Maxwell’s equations in differen-
tial form.
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APPENDIX A: PRETEST QUESTIONS

The first part was given to the students without any
expressions for div, grad, and curl. After they finished and
turned in Part 1, they were given Part 2 which contained
the expressions given in Appendix C. Some space was left
blank for the students to answer after each question. Figures
are displayed smaller than in the actual test.

1. Part 1

(1) Interpret (i.e., write down everything you think of
when you see) the following operations.
(a) ∇A
(b) ∇ ·A
(c) ∇ ×A

2. Part 2

(1) Indicate where the divergence and/or curl is (non)
zero for the next vector fields in the x; y plane. The z
component is zero everywhere. Explain and show
your work (Figs. 4–7).

(2) Calculate the divergence and curl of the following
vector fields.
(a) va ¼ x2êx þ xêy − 2xzêz

(b) vb ¼ xêxþyêy
ðx2þy2Þ3=2

(c) vc¼ðr=2;rθ;−zÞ (Hint: cylindrical coordinates)

APPENDIX B: POST-TEST QUESTIONS

The expressions of Appendix C were appended to these
questions. Some space was left blank for the students to
answer after each question. Figures are displayed smaller
than in the actual test.

x

y

FIG. 4. Pretest field 1.

x

y

FIG. 5. Pretest field 2.

x

y

FIG. 6. Pretest field 3.

x

y

FIG. 7. Pretest field 4.

x

y

FIG. 8. Post-test field 1.
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(1) Indicate where the divergence and/or curl is (non)
zero for the following vector fields in the ðx; yÞ
plane. The z component is zero everywhere. Explain
and show your work (Figs. 8 and 9).

(2) For the following physical situations, explain where
the divergence and/or curl of the field are (non)zero.
The z component of the fields is zero everywhere.
Show your work (Figs. 10 and 11).
(a) The magnetic field of an infinite current carrying

wire along the z axis.
(b) The electric field of a charged infinitely long

cylinder with radius R. In the figure, the cross
section in the x; y plane is given.

(3) Which of these equations could represent a realistic
magnetic field (B0 is a constant with the appropriate
units)? Explain.
(a) Ba ¼ B0½4xyx̂ − y2ŷ þ ðx − 2yzÞẑ�
(b) Bb ¼ B0½r̂þ 4r2θ̂ − 2 sinðθÞϕ̂�

(4) Which of these equations could represent a realistic
static electric field (E0 is a constant with the
appropriate units)? Explain.
(a) Ea ¼ E0½ðz − xÞx̂þ ðzþ xÞŷ þ xẑ�
(b) Eb ¼ E0½sð2þ sin2ϕÞŝþ s sinϕ cosϕϕ̂þ 3zẑ�

(5) Check the box(es) if ∇ ·E and/or ∇ ×E are equal
to zero.

∇ ·E¼0 ∇×E¼0

(a) The electric field at a distance r<R
from the center of a uniformly
charged sphere with radius R.

□ □

(b) The electric field generated by a
changing magnetic field.

□ □

(c) The electric field at a distance r
from a pure electric dipole.

□ □

(d) The electric field inside a charged
conductor.

□ □

(6) Check the box(es) if ∇ ·B and/or ∇ ×B are equal
to zero.

∇ ·B¼0 ∇×B¼0

(a) The magnetic field generated by a
changing electric field

□ □

(b) The magnetic field at a distance
r < R from the axis of a
cylindrical conductor with radius
R carrying a steady current.

□ □

(c) The magnetic field between the
plates of a charging capacitor.

□ □

(d) The magnetic field inside a
solenoid with a steady current
passing through it.

□ □

(e) The magnetic field at a distance r of
a large conducting plate carrying a
steady surface current density K.

□ □

APPENDIX C: FORMULAS

This section contains the formulas that were handed to
the students with the pretest (part 2) and post-test. In the
pretest, these equations were given using the notation the
students learned in their calculus courses. In the post-test
we used Griffiths’ notation [59]. Only the latter are
presented here.

• ∇ · v ¼ ∂vx∂x þ ∂vy
∂y þ ∂vz∂z

• ∇ × v ¼ ð∂vz∂y − ∂vy
∂z Þx̂þ ð∂vx∂z −

∂vz∂x Þŷ þ ð∂vy∂x − ∂vx∂y Þẑ
• ∇ · v ¼ 1

r2
∂
∂r ðr2vrÞ þ 1

r sin θ
∂
∂θ ðsin θvθÞ þ 1

r sin θ
∂vϕ
∂ϕ

• ∇× v¼ 1
r sinθ ½ ∂∂θ ðsinθvϕÞ− ∂vθ∂ϕ �r̂þ 1

r ½ 1
sinθ

∂vr∂ϕ −
∂
∂rðrvϕÞ�

θ̂þ 1
r ½ ∂∂rðrvθÞ− ∂vr∂θ �ϕ̂

• ∇ · v ¼ 1
s
∂
∂s ðsvsÞ þ 1

s
∂vϕ
∂ϕ þ ∂vz∂z

• ∇×v¼½1s∂vz∂ϕ−
∂vϕ
∂z �ŝþ½∂vs∂z −

∂vz∂s �ϕ̂þ1
s½ ∂∂sðsvϕÞ−∂vs∂ϕ �ẑ

x

y

FIG. 9. Post-test field 2.
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y

FIG. 10. Post-test field 3.

x

y

FIG. 11. Post-test field 4.
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