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[This paper is part of the Focused Collection on Upper Division Physics Courses.] Partial derivatives are
used in a variety of different ways within physics. Thermodynamics, in particular, uses partial derivatives in
ways that students often find especially confusing. We are at the beginning of a study of the teaching of
partial derivatives, with a goal of better aligning the teaching of multivariable calculus with the needs of
students in STEM disciplines. In this paper, we report on an initial study of expert understanding of partial
derivatives across three disciplines: physics, engineering, and mathematics. We report on the central
research question of how disciplinary experts understand partial derivatives, and how their concept images
of partial derivatives differ, with a focus on experimentally measured quantities. Using the partial derivative
machine (PDM), we probed expert understanding of partial derivatives in an experimental context without a
known functional form. In particular, we investigated which representations were cued by the experts’
interactions with the PDM. Whereas the physicists and engineers were quick to use measurements to find a
numeric approximation for a derivative, the mathematicians repeatedly returned to speculation as to the
functional form; although they were comfortable drawing qualitative conclusions about the system from
measurements, they were reluctant to approximate the derivative through measurement. On a theoretical
front, we found ways in which existing frameworks for the concept of derivative could be expanded to
include numerical approximation.
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I. INTRODUCTION

Thermo is hard. In a recent national workshop on the
upper-division physics curriculum, approximately one-
third of the faculty indicated that they are uncomfortable
enough with the content of thermodynamics that they
would be reluctant to teach it. There are a number of
reasons why thermodynamics is hard. One reason is various
kinds of partial derivative manipulations that need to be
performed to solve many theoretical problems. For in-
stance, our group has analyzed expert problem solving in
this context using a framework of epistemic games [1,2].
Other research groups have identified a variety of other
difficulties, both mathematical and conceptual [3–6].
In this paper, we consider two further issues that make

thermodynamics hard. First, the independent variables in
thermodynamics are measurable (and changeable) physical
variables such as pressure and volume, rather than

immutable background markers such as space and time
[7]. Furthermore, which of these variables are independent
and which are dependent varies with the context. In
particular, the conjugate pair associated with heating,
namely, temperature and entropy, is known to be trouble-
some for students [8].
Second, many important physical quantities in thermo-

dynamics are actually partial derivatives of other physical
quantities. Thermodynamics involves an apparent surfeit of
variables in the sense that extensive variables such as volume
have intensive conjugate pairings such as pressure that have
independent operational definitions and are independently
measurable, and may seem to be independently controllable.
Because of this apparent surfeit of variables, thermodynam-
ics is typically the first time that physics students encounter
scenarios in which the quantities held fixed when taking a
partial derivative are ambiguous. In mathematics courses,
students are taught that when taking partial derivatives, all
the independent variables are held fixed. Nevertheless, we
have found that most students come into our course with a
firm belief that when taking a partial derivative everything
else is held fixed.
Two years ago, one of us (D. R.) developed the partial

derivative machine (PDM), a simple mechanical device of
springs and pulleys as a classroom manipulative. (See
Sec. II for a more complete description of the PDM.)
Classroom activities involving the PDM exhibit many of
the same features as experiments and calculations that
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students encounter in thermodynamics. All the same issues
about independent and dependent, extensive and intensive
variables arise that we described above. And the question of
which variables to hold fixed also arises, but in a somewhat
simpler context in that the variables involved are concrete
and tangible (lengths and forces). Our hope was that
students would benefit from classroom experience with
the PDM, and our classroom experience with the device has
been positive.
However, we have now become aware of a more

fundamental underlying problem. In the first experiment
with the PDM, students were asked to find a partial
derivative from experimental data. Anecdotally, it became
clear that many students did not immediately understand
that a derivative can be effectively approximated by the
ratio of small numerical differences. Furthermore, our
deliberately open-ended prompt revealed important dif-
ferences of interpretation and notation between different
disciplines.
We do not believe that the issues we have observed with

partial derivatives are limited to students. Indeed, we
hypothesize that many of the issues we have observed
are due to the ways in which different disciplines use and
think about derivatives and partial derivatives. In this study,
we conducted small group interviews with experts in
several STEM disciplines. By studying experts’ thinking
about derivatives and partial derivatives, we hoped to obtain
a better benchmark for comparison in the study of students’
thinking about those same ideas. The group setting pro-
vided a means for participants to listen and respond to each
other’s ideas, rather than just the interviewers’. Our overall
research question is in what ways do disciplinary experts in
physics, engineering, and mathematics think about partial
derivatives?. This paper focuses on the aspect of this
general question relating to how disciplinary experts
understand partial derivatives in relation to experimentally
measurable quantities. This aspect leads to additional
subquestions such as how experts use and understand
notation, and how they connect their understanding of
the derivative with the experimental process.
In the course of gaining insight into this question, we

describe how the responses were similar and differed across
disciplines and consider the role and affordances of the
partial derivative machine in the experts’ responses. In the
remainder of this paper, we give a description of the partial
derivative machine, describe the method we used to study
our research question, and give the results of our analyses
from the expert interviews. We close by considering both
the pedagogical and the research implications of our
results.

II. THE PARTIAL DERIVATIVE MACHINE

We have developed and used two versions of the PDM.
The first version of this device is documented in Ref. [9],
and features a central system that is attached to four strings.

The simplified version of this device—which will be
discussed in this paper—is shown in Fig. 1, and consists
of an anchored elastic system, which is constructed of
springs and strings, as shown in Fig. 2. In both versions, the
elastic system may be manipulated using two strings
independently. Each of these two strings has a scalar
position that can be measured with a measuring tape and
a tension that can be adjusted by adding to or removing
weights from a hanger. Detailed instructions for construct-
ing a partial derivative machine, including a parts list and
photographs of additional central systems, are available on
our Paradigms website [10].
The usefulness of the PDM emerges because it is an

exact mechanical analogue for a thermodynamic system.
The system contains a potential energy U (analogous to the
internal energy) that cannot be directly measured. The
system has four directly measurable—and controllable—
state properties: two positions x and y and two tensions Fx
and Fy. These four state properties play roles analogous to
volume, entropy, pressure, and temperature in a thermo-
dynamic system.
Although the PDM has fourmeasurable and manipulable

properties, like its analogous thermal system, it only has 2
degrees of freedom. One cannot independently control the
tension and position of a single string, unless one uses the

FIG. 1. The partial derivative machine. The machine consists of
a system (inside the dotted quadrilateral) which may be manip-
ulated by pulling on two strings. Each string features a flag,
which may be used to measure its position, and a hanger for
weights ranging from 10 to 250 g which may be used to fix the
tension in the string. In addition, thumb nuts may be used to fix
the position of each string independently.
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other string to do so. In the PDM, the 2 degrees of freedom
are physically manifest: each corresponds to one string. We
can choose to manipulate that string either by changing its
position or by changing its tension.
As in thermodynamics, the choice of which properties to

treat as independent variables is context dependent. While
it is experimentally easiest to control the two weights as
independent variables while measuring positions, it is
sometimes theoretically more convenient to view the
positions as the independent variables. Most notably, when
using work to determine the potential energy, the positions
are the “natural” variables, as seen in the total differential
that is analogous to the thermodynamic identity, namely,

dU ¼ Fxdxþ Fydy: ð1Þ

We can relate this total differential to the mathematical
expression

dU ¼
�∂U
∂x

�
y
dxþ

�∂U
∂y

�
x
dy: ð2Þ

By equating coefficients of dx and dy, we can find
expressions for the two tensions as partial derivatives of
the potential energy,

Fx ¼
�∂U
∂x

�
y
; Fy ¼

�∂U
∂y

�
x
; ð3Þ

which enables us to clarify the interdependence of the four
directly observable quantities.
The PDM was developed as a way to provide a

mathematical introduction to thermodynamics prior to
our junior-level course in thermal physics, Energy and
Entropy. This introduction uses seven contact hours, and
covers the range of mathematical topics generally taught in
undergraduate thermodynamics, including total differen-
tials, integration along a path, partial derivatives, chain

rules, mixed partial derivatives, Maxwell relations, and
Legendre transformations. Throughout both this math-
ematical introduction and Energy and Entropy, a focus
is placed on connecting the mathematical expressions with
tangible reality [11], in many cases using the PDM.

III. THEORETICAL GROUNDING

A. Concept images and concept definitions

Thompson [12] argued that the development of coherent
meanings is at the heart of the mathematics that we want
teachers to teach and what we want students to learn.
Focusing on meanings emphasizes one’s thinking, rather
than any normative evaluation of the correctness of
particular approaches or thinking. Thompson argued that
meanings reside in the minds of the person producing it and
the person interpreting it. Given this focus, we hypoth-
esized that we could study experts’ meanings by studying
their images, definitions, and representations for a concept
and using these to model their meaning for an idea. We rely
on Vinner’s [13] language of concept images and concept
definitions as an orienting framework. Vinner described the
concept image as “the total cognitive structure that is
associated with the concept, which includes all the mental
pictures and associated properties and processes” (p. 152).
A concept definition is a verbal definition that accurately
explains the concept in a noncircular way. While we were
primarily interested in experts’ concept images, as illus-
trated by our tasks and method, we also considered their
concept definitions that in some cases underpin those
images. We see both the concept image and concept
definition as a means to operationalize and explore the
meanings that experts had for derivatives.
Vinner’s definition of concept image explicitly allows a

particular concept image to involve many properties and
many mental pictures. We believe that mathematicians,
engineers, and physicists have multifaceted and detailed
concept images for derivative. However, Browne [14]
showed that middle-division physics students did not
necessarily move spontaneously between various facets
even when changing to a different facet might make solving
a particular problem easier for these relative novices. Our
own classroom experience bears out this observation.
Therefore, one of our intentions was to explore which
facets of the concept image of derivative are cued for
different content experts by an open-ended prompt involv-
ing numerical data from the PDM.

B. A framework for student understanding
of derivatives

The framework developed by Zandieh for student under-
standing of derivative is a valuable tool in this work [15].
While it is focused on students’ thinking, many of the
conceptions described in the framework naturally transfer
to experts’ thinking about partial derivatives. This

FIG. 2. The system we used in the PDM for the expert
interviews. The system contains a single spring, attached by
string to an off-center post. The “observable” strings are routed
around two horizontal pulleys towards the front of the machine
where they are measured, and are attached to weights.
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framework is aimed at mapping student concept images for
derivative at the level of first-year calculus. It begins by
breaking the formal symbolic definition of the derivative,
namely,

f0ðxÞ ¼ lim
Δx→0

fðxþ ΔxÞ − fðxÞ
Δx

ð4Þ

into three process-object layers. These three layers are the
ratio layer, in which one finds a ratio of changes, the limit
layer in which one takes the limit as the changes become
small, and, finally, the function layer, in which one
recognizes that this could be done for any value of x,
and thus describes a function. These three layers are each
required in a complete understanding of derivative.
Moreover, each of these layers can be seen both as a
process and as a reified object. As a process, each layer is a
procedure that you could use to find a value. But alter-
natively, one can understand each of these layers as a static
object, which exists independently, and can be and is acted
upon by other processes.
Zandieh identifies an orthogonal dimension of repre-

sentation (or alternatively context) with four possible
representations: graphical, verbal, symbolic, and
“paradigmatic physical.” Each of these representations
exists for each process-object layer. We introduced
Zandieh’s symbolic representation in the previous para-
graph and will here briefly outline the graphical represen-
tation of derivative, which is slope. At the ratio layer, the
graphical representation is the slope of the secant line to a
curve (which itself is the graphical representation of a
function). At the limit layer, one has the slope of a tangent
line. And finally, at the function layer, one recognizes that
the slope of the tangent line is itself a function that could be
visualized as a curve.
This framework is particularly valuable because it makes

explicit the three process-object layers that exist in the
concept of the derivative, and which can be used separately.
In Sec. IV B we will introduce our perspective on the
different representations of the derivative, which is
expanded beyond that considered by Zandieh in order to
explicitly include physical representations at a level beyond
that treated by Zandieh.

IV. BACKGROUND AND LITERATURE

The purpose of this section is threefold. First, we
describe in what ways students and experts have been
shown to think about the concepts of derivative and partial
derivative, and hone in on particular difficulties for stu-
dents. Second, we articulate various meanings for deriva-
tive and partial derivative that come from both research
literature and our own experience working with students
and colleagues. In this subsection, we also briefly elucidate
several language issues that have arisen as we ourselves,
from our different disciplinary perspectives, have discussed

these various concepts of derivative and we detail the
specific language choices that we have made in this paper.
Third, we consider the importance of studying experts’
thinking about derivatives and partial derivatives as a
means to identify important learning goals for students
in physics, mathematics, and engineering. The overarching
purpose of the section is to demonstrate that while
mathematics and physics education research have gained
insight into students’ thinking about derivatives, they have
not fully explored thinking about partial derivatives.
Understanding how experts think about these ideas is a
natural first step to exploring how we might want students
to reason about them.

A. Students’ ways of thinking about derivative

A number of researchers have identified difficulties
students have in thinking about rate of change of one
variable functions. These difficulties range from students
thinking about a graph as representing its derivative,
confounding average and instantaneous rate of change
[16], conceptualizing rate as the slope or steepness of a
graph [17], and inattention to how fast quantities are
changing with respect to one another. Some students
conflate the average rate of change of a function with
the average value of a function and therefore compute
average rate of change by computing an arithmetic mean.
Such students do not distinguish between the graph of the
function and the graph of the function’s rate of change [18].
Researchers have suggested that some of these difficul-

ties might be attributable to students not conceiving of rate
of change as a quotient of two quantities. For instance,
students often discuss the rate of change as a slope but do
not speak of slope as a quotient (the change in a function’s
value being so many times as large as the corresponding
change in its argument). Instead, they talk about slope as
the function’s steepness [15]. As another example, students
often use a tangent line and rely on visual judgments to
sketch the derivative function [19]. In yet another study,
students who were able to correctly rank the slope at points
on a graph were less able to find the sign of the derivative at
those points [20]. While this approach is not necessarily
problematic, thinking about sliding tangent lines does not
necessitate images of variation. Zandieh also argued that
students can answer many standard calculus questions
without needing to think about functions as relationships
between variables nor needing to think about the rate of
change of one quantity with respect to another. For
example, students often respond to the directive “find
the derivative of gðxÞ” by acting on a symbolic expression
using standard rules for differentiation, without thinking
about functions or rates of change. Indeed, researchers have
documented that these issues keep students from thinking
about the derivative as a ratio of changes in quantities
[15,21,22].
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There is only limited literature that addresses how
students think about rates of change in the context of
functions of two variables. In a mathematics setting,
Yerushalmy [23] provides an indication of natural ques-
tions that might arise as students conceptualize rate of
change in multivariable settings. She illustrated students’
struggles with how to think about dependence in a system
with three quantities and how to represent multiple quan-
tities and their changes in a single graph. Her students
struggled to describe the change in a particular direction of
a linear function of two variables. Part of the reason may
have been that there are infinitely many directions in which
to move from a given point at a constant rate, yet, in
general, each direction yields a different slope.
In a physics setting, researchers have investigated mixed

partial derivatives and differentials in thermodynamics
[3,24]. They address students’ ability to translate back
and forth between “physical processes” and partial deriv-
atives, and found that students were more able to go from a
partial derivative to a physical process than the other way
around. Similarly, researchers investigating physical chem-
istry have found that students need help in interpreting
mathematics in a thermodynamics context [25]. The
physics literature also includes discussions of graphical
representations of slope [26,27].
It is clear that students do not necessarily reason about

derivatives and rates of change as we might hope.
Furthermore, very little literature has considered how these
issues extend to functions of more than one variable,
particularly how students might think about partial deriv-
atives. This is surprising, given that many scenarios in
mathematics, physics, and engineering require thinking
about systems or scenarios in which many variables may be
varying simultaneously.

B. Summary of important meanings for derivative
and partial derivatives

1. What is a derivative?

Researchers have identified the need for students to be
fluent in thinking about the derivative using multiple
perspectives. In this section, we articulate these multiple
perspectives and describe why each is important.
Derivatives are commonly described as slopes, as ratios
of small changes, as difference quotients, and as rates of

change, among others. However, these phrases are used in
different ways in different disciplines, and by different
individuals within those disciplines. For instance, the
description of slope as “rise over run” could be either
numerical or symbolic, as well as graphical. This complex-
ity reflects the multifaceted concept images of the deriva-
tive held by experts.
A common framework for multiple representations is the

Rule of Four introduced by the Calculus Consortium (see
Hughes-Hallett et al. [28]), in which key concepts are
presented graphically, numerically, symbolically, and ver-
bally. In recent work [29], we proposed adding a fifth
representation, based on experiment. In order to be clear in
our discussion of the different facets of expert concept
images of the derivative, we will associate each of the
verbal descriptions of derivatives given in the previous
paragraph with just one of these representations, as shown
in Table I. We have based this association on our inter-
pretation of the technical usage of these common descrip-
tions within the mathematics community. The usage may
be unfamiliar to our physics readers, but we hope that this
unfamiliarity will help the reader notice the nuanced
differences in language. In particular, both the use of rate
of change to refer to rates that do not involve time and the
technical term difference quotient are largely limited to
mathematics. We will use the conventions indicated in
Table I throughout this paper, except where explicitly stated
otherwise.
Therefore, we consider five different ways to understand

and think about the concept image of derivative, each of
which is useful in different scenarios.
(1) The slope of the tangent line to a curve. This

representation describes the slope as a geometric
measure of the steepness or slant of a graph of a
function.

(2) A numerical ratio of small changes, by which we
mean an explicit numerical quotient, involving
actual values of the rise and the run. By “small
changes” we mean small enough that the quotient
represents a reasonable estimate of the derivative
(within the physical context of the problem).

(3) The result of algebraic manipulation of a symbolic
expression. Formally, these manipulations involve
the difference quotient ½fðxþ ΔxÞ − fðxÞ�=Δx, but
in practice a memorized set of derivative rules is

TABLE I. Representations of derivatives. Each column describes one form of representation, extending the Rule of Four [28] to
include an experimental representation. Each row corresponds to a separate way of understanding the concept of derivative.

Graphical Numerical Symbolic Verbal Experimental

Slope •
Ratio of small changes •
Difference quotient •
Rate of change •
Name the experiment •
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used instead. (For the purposes of this paper, we will
conflate these two algebraic manipulations.) This
meaning for derivative is a process applied to an
algebraic object, but does not include an image of
that process as measuring how one quantity changes
with respect to another.

(4) The rate of change of one quantity with respect to
another, which is here used to mean a description in
words of that change. (Outside of mathematics, the
word “rate” implies that the second quantity is
assumed to be time, but we will use this term more
generically.) In this representation, the derivative
measures covariation, i.e., how one physical quantity
changes with respect to another.

(5) Finally, as introduced in our previous work [29],
particular derivatives can be associated with particu-
lar experiments, such as measuring the change of
volume in a piston of gas as weights are added to the
top of the piston. Determining which experiment
might correspond to which derivative provides a
representation of the derivative, which we call name
the experiment.

In the second case, it is most natural to think of the
derivative as a number. One picks a point at which to take
the derivative and computes a numerical ratio. While that
number will be different at other points—making the
derivative actually a function—this aspect of the derivative
may often be ignored. When considering the slope of the
tangent line to a curve, it is clearer that the derivative is a
function, but it is also natural to think of the derivative as a
number, the slope at a single point on the curve. When
using the symbolic approach, the derivative is inherently a
function, and while that function could be evaluated at a
point, its value cannot be determined until after its func-
tional form is known.
Most of these aspects of the concept image of derivative

(namely, 1, 3, 4, 5) find approximate analogues in
Zandieh’s framework [15]. Interestingly, the second aspect,
which is not present in Zandieh’s framework, turned out to
be the most important one in the analysis of our interviews
and is a major theme throughout this paper.

2. What is a partial derivative?

Partial derivatives differ from ordinary derivatives in
important ways. How we understand this difference can
vary with how we understand derivatives.
(1) A tangent line turns into a tangent plane in three

dimensions, and a partial derivative becomes the
slope of the plane in a given direction in the domain,
at a given point.

(2) When considering a ratio of small changes, a partial
derivative requires that we specify not only which
quantities are changing, but also which quantities to
hold fixed.

(3) The algebraic procedure to find a partial derivative
of a symbolic expression is identical to that for an
ordinary derivative, provided there are no interde-
pendencies among the variables in the expression.

(4) The verbal description of derivatives as rates of
change must explicitly mention the independent
variable(s) in order to describe a partial derivative,
for example, the derivative of volume with respect to
pressure would be “the rate of change of volume as
pressure is changed, with either temperature or
entropy held constant.”

(5) The representation of derivatives in terms of experi-
ments is designed precisely to take into account
which physical quantities are controlled, and which
are not. As such, it is particularly well suited to
descriptions of partial derivatives.

In thermal physics, and other areas of mathematics, the
quantities that are being held fixed are context dependent.
In general, one has a set of interrelated variables, of which a
few may be fixed. The number of independent variables is
itself context dependent, and in physical situations we are
seldom provided with symbolic equations connecting the
set of interdependent variables. More often we rely on
physical intuition and argumentation to establish howmany
variables may be controlled independently. “If I fix the
pressure, temperature and number of molecules, I could
measure the volume and the mass, therefore I believe I have
three independent degrees of freedom.”
How we respond to the ambiguity provided by abundant

physical variables depends on our concept of a derivative.
However, if the students’ concept of derivative is not rooted
in an image ofmeasuring how fast one quantity changeswith
respect to one or more other quantities, then it is unlikely
they will understand derivative in the ways we intend.

C. The need to study experts from mathematics,
engineering, and physics

In the previous two sections, we have made the case that
there are a variety of ways to think about derivatives and
partial derivatives, but students have difficulty thinking in
the ways we might intend because of their inability to think
about a derivative as measuring the ratio of small numerical
changes between quantities. This is the case even for
functions of a single variable. Earlier, we also argued that
most real-world scenarios involve reasoning about multiple
quantities and the relationships between them, a goal that
seems especially problematic for students who have diffi-
culty reasoning even about simple systems. Our reasons for
studying the thinking of a variety of experts across
mathematics, engineering, and physics were that (a) we
believed they would be accustomed to working with
situations involving multiple quantities and relationships,
(b) we believed their experience would allow us to observe
sophisticated reasoning patterns that we could only hope to
observe in extremely advanced students, (c) we anticipated
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their ways of thinking about partial derivatives could help
us identify “end goals” for how we want students to think,
and (d) we expected their thinking would vary across
disciplinary areas, allowing us to better understand how
students in these fields might need to reason in different
ways about derivatives and partial derivatives. This last
expectation was motivated in part by the obvious impact
our own diverse disciplinary backgrounds had on our
internal discussions.
As mentioned earlier, the overarching purpose of the

section was to demonstrate that while mathematics and
physics education research have gained insight into stu-
dents’ thinking about derivatives, they have not fully
explored thinking about partial derivatives. Furthermore,
understanding how experts think about these ideas is a
natural first step to exploring howwemight want students to
reason about them. In the subsequent sections, we describe
how we studied experts’ thinking about these ideas.

V. METHOD

A. Design and conduct of the expert interviews

To gain insight into our research question, we performed
three expert interviews, each of which lasted approximately
1 h. We interviewed seven experts in physics, engineering,
or mathematics, divided into three disciplinary groups of
two or three. For the physicists we interviewed one
associate professor and one full professor. Both use
computational methods in their research, which is in
astrophysics and optics. We interviewed three engineers:
one chemical engineer who is a full professor with
considerable research and teaching expertise in thermody-
namics, and two assistant professors who study student
thinking and epistemology in engineering. Finally, we
interviewed two mathematicians who are both assistant
professors and whose research is in mathematics education
at the collegiate level. All of those we interviewed have
doctoral degrees in their disciplinary areas and work in
physics, engineering, or mathematics departments.
These interviews were most closely aligned with the

notion of a clinical interview inwhich one focuses on gaining
insight into another’s thinking through systematic question-
ing and open-ended prompts. At the same time, it is atypical
that clinical interviews occur in group format because of the
difficulty of ascertaining an individual’s thinking. Our use of
groups was purposeful. We believed that the conversations
between the experts and their questioning of each others’
responses would be just as important as the questioning and
prompts from the interview team. Indeed, we saw that some
of the most interesting data we collected came from the
experts debating each others’ responses.

B. Prompts and purpose of task

Our overall research question was to explore in what
ways do disciplinary experts in physics, engineering, and

mathematics think about partial derivatives. Important
subquestions that arise in answering that question include
how experts use notation, how they think about derivatives
and partial derivatives, how they think about the various
variables and which, if any, should be held fixed, and how
they relate those ways of thinking to the PDM. A
pedagogical design feature of the PDM is the lack of
any symbolic expressions relating the given variables. We
exploited this property of the PDM to explore our experts’
understandings of partial derivatives outside the world of
symbolic manipulation.
We began by introducing the experts to the PDM, and

showing them how to manipulate the machine. We then
gave the experts the following prompt:

Find
∂x
∂Fx

;

which was written on a whiteboard. Thus, we asked experts
to “find” a partial derivative for which they are given no
functional form. The PDM allows for measurement of
changes in the positions and tensions at discrete data points
and the prompt was designed in such a way that a ratio of
changes in quantities would be the only easy response.
However, we deliberately asked the prompt in an open-
ended way so that it would not cue a particular aspect of the
concept of derivatives. All parts of the system were chosen
to be visible in order to encourage discussion of the
possibility of finding an analytic expression by which
one could determine the derivative, although the actual
determination of such an analytical expression would have
been prohibitively difficult.
When we provided this prompt, we did not define either

x or Fx, but rather let the interviewees discuss what these
quantitiesmightmean.After they had discussed themeanings
of these terms, and we agreed that their meaning was
sufficiently clear to us, we clarified if necessary that
x was the position of one flag (i.e., one string) and that Fx
was the tension in that string, which was determined by the
weight (and that y and Fy were defined similarly for
the other string). We note that this aspect of the task came at
thecostofnotexplicitlyexploringgraphical representationsof
tabular experimental data with all groups of participants.
One thermodynamic system that the PDM is designed to

mimic is a gas, described by the four variables pressure (p),
volume (V), temperature (T), and entropy (S). The internal
energy U involves these variables through the thermody-
namic identity

dU ¼ pdV þ TdS: ð5Þ

A prompt analogous to ours in this context would be to
find ∂V=∂p, which is related to compressibility, but
which does not have any inherent information about
whether temperature (for isothermal compressibility) or
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entropy (for isoentropic compressibility) should be held
fixed, corresponding to two different physical properties of
the system.
What did we expect? In the absence of a functional

expression for x, we expected the experts to respond to our
prompt by computing ratios of measured small changes in x
and Fx. With two other quantities in the game (y and Fy),
we expected the experts to recognize that the question was
ambiguous, since they were not told which of these two
quantities to hold constant, and ask for clarification. We
also anticipated some notational confusion, due to our use
of x for the independent variable, and perhaps due to our
use of subscripts to label components, which is not standard
in all disciplines.

C. Analytical method

The analysis of the data collected for this study relied on
systematically creating descriptions of experts’ thinking
about rate of change (i.e., their concept images and
definitions). These hypotheses resulted from in-the-
moment observations and short reflections by the research-
ers between interviews. We also created descriptions of
experts’ thinking about derivatives and partial derivatives
from the interviews using retrospective analysis. The
retrospective analyses involved making interpretations
and hypotheses about participants’ thinking by analyzing
videos of the interviews after they were completed. Thus,
we worked from two sets of observations: those formed
during the interviews and those formed from analysis of the
videos as a whole. These analyses helped us to think about
the categories of concept images and definitions we present
in the analyses. This data corpus provided a means to
describe patterns in experts’ thinking, which in turn helped
us focus on various concept images and definitions they
appeared to have for derivative. Differing interpretations
due to our own diverse disciplinary backgrounds were
discussed and resolved as a group.

VI. RESULTS

During the course of the three interviews, a number of
themes emerged, each of which provided insight into the
experts’ concept images and definitions for derivatives and
partial derivatives. These themes were a combination of
issues we noticed as we did the interviews and issues that
emerged as we conducted the data analysis described in the
analytical method section. In the sections below we
describe these themes and articulate how we saw each
group of interviewees in the context of that theme. Where it
is possible, we provide transcript excerpts from the inter-
views to support the claims we make.

A. Identifying x and Fx

Since the invention of the first partial derivative machine,
we have conducted informal “interviews” with colleagues.

During these interviews, we have noticed that different
individuals interpreted the symbols in the algebraic
expression

∂x
∂Fx

differently and we began to expect that there might be
disciplinary reasons for these differences. Therefore, we
chose, in these interviews, not to tell the interviewees our
own meaning for the symbols (at first) but rather to let them
explore in their groups what these symbols might mean. All
three groups spent significant time thinking about and
debating over how to identify the quantities x and Fx. We
expected that the physicists and probably the engineers
would share our understanding that x was the position of
the pointer on the x measuring tape and that Fx was the
tension in the x labeled string. We expected that the
mathematicians would try to invoke the mathematics
convention that a subscript indicates a partial derivative.
We were surprised by several other unexpected types of
confusion that our notation caused.
The physicists initially identified xwith the elongation of

the spring and then wanted Fx to represent a force in the
same direction as the spring. Their mental focus was clearly
on the internal mechanics of the system and they (at first)
ignored the measuring tapes on the PDM as a potential
method for measuring a position x. When they recognized
that their interpretation of the symbols would lead to a
“total” derivative rather than a partial derivative, they then
switched to an interpretation in which they wanted the two
strings to be perpendicular to each other, even going so far
as to manipulate the PDM to make this true. Presumably,
they were invoking a physics convention that x (and y) are
independent rectangular coordinates and Fx (and Fy) are
perpendicular rectangular components of a single, net force
vector. We might have anticipated some of this interpre-
tation since one of the interviewers has such a strong
connection of the symbol Fx to the x component of a force
that she even referred to Fx in this way in the interview with
the mathematicians.
The engineers immediately showed a preference for

having x represent the horizontal coordinate (the strings
were vertical) but acknowledged, with laughter, that this
must not be the case because it would have trivialized the
problem. Unlike the physicists, they rapidly made use of
the left and right measuring tapes and were happy to invent
their own notation, calling the position of one pointer xL
and the position of the other pointer xR. They did not have
any difficulty identifying Fx as the weight on one of the
strings.
The mathematicians were not only puzzled by the

meaning of the subscript, as we expected, but also expected
the capital symbol F to represent a function rather than
a force.
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1. Physicists

The physicists began the task thinking that the position x
might be the elongation of the spring and Fx a force in the
direction of the spring. They rapidly corrected this one-
dimensional interpretation when they realized that they
were asked to find a partial derivative.

EXCERPT 1 5:00
P2: So we have, probably it’s the elongation of the of

the spring, in this case. So, right, so this is tied here
[points to spring’s anchored string], so if we put
two forces like this [pulls on both strings] we need
to, so, x, if this is x [points to spring], right, we need
to make the forces go on this direction [points in
direction along spring]. So…

P1: But then it’s a partial derivative, right?
P2: Right.
P1: So my feeling is that it cannot be that simple, or it

would be a total derivative.

They continued discussing the possible meanings of x and
~F and moved rapidly to language about balance (of forces)
and perpendicular. Notice the agreement in Excerpt 2
between the two interviewees.

EXCERPT 2 5:57
P2: Or if we, if we… Okay so this is one way [pulls on

right-hand string] or the other way is if we make it
like this [pointing to spring], right, so if there’s a
force, if we can somehow balance it like this
[pointing to spring and strings] and there’s a force
[pointing in the direction of the spring] going this
way because now this is perpendicular [pointing to
right-hand string where it is attached to the spring],
right? So this force will not count in x [still
gesturing around the spring]. Then if we’re able
to balance it with the right weights, then, you know,
if we do like this [pulling on left-hand string], right,
maybe, you know the force that comes from this
side. So here we need to put a force that makes it
[pulling on right-hand string], right.

P1: At a right angle.
P2: Huh.
P1: That sounds like a good idea.
P2: Mhmm, and then, you know, then in this case,

right, then [pulling on weights to make a right
angle] all the force on this [points in direction of the
spring] way is parallel to x, so that would be x in
this case.

P1: Yeah, so then Fx would be just this weight [points
at Fx].

P2: In this case, right.
P2: In the other case we have to do, have to analyze in

two axes as you said, and then figure out, you know,
one of the two, so you have to find the force onone of

the axes and the… So, so so, the idea is to, we need
either to analyze x [points at spring], right, in two
directions and then we’ll have a net force, right, and
analyze it into components in the two axes or we just
make it into one axis and then we have one force
parallel to it, right?

P1: I like your idea. I say if we put some weight at a
right angle [points toward string and spring angle at
top of PDM], then we change both weights [points
at both weights] in order to keep the right angle,
and we measure displacement [points at measuring
tape on left side] and the force and we have…

Immediately after Excerpt 2, the interviewer clarified the
meanings of x, y, Fx, and Fy. From this stage on, the
physicists had no difficulty using this notation.
At the end of this portion of the interview, after the

interviewers interpretation of the symbols has been
explained, P1 volunteers the interpretation that at the
beginning of the interview he was trying to measure
the spring constant, which explains why he was looking
at the internal mechanics of the system.

EXCERPT 3 8:37
P1: Yeah, I was more thinking we wanted to measure

the spring constant.

2. Engineers

The engineers began with the professional but humorous
recognition that there is an interpretation of the symbols
that would make the problem trivial:

EXCERPT 4 3:09
E3: I think it’s easy if x is this way [gestures

perpendicular to the strings].
E1: Yeah, exactly![Laughter]
E3: We don’t know anything about that one, do we?

[Laughter] So we’re done.

They then gave a quick interpretation in words which
seems, like the physicists’ interview, to focus on the
internal mechanics of the system,

EXCERPT 5 3:25
E3: Okay, x is going to be the spring.
E1: Sounds good.
E2: Okay so… ∂x=∂Fx [pronounced d x d F x] is how

much it moves per unit force, sort of, could we do it
that way?

But within 1=2 minute, their attention focused on the
strings and weights:

EXCERPT 6 4:02
E3: Does this [points to the written interview prompt

∂x
∂Fx

] mean F in the direction, the x direction, only?
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E1: So Fx [pronounced F of x], so I think it’s a force in
the x direction… which the question is, does it
matter [points back and forth to each string] which
side you’re on?

They then spent 2–3 minutes discussing how they expected
the system to behave as they added weights, based on the
geometry of the system, especially the angle of the spring.
During this analysis, they discussed whether these symbols
should refer to one side of the PDM or both:

EXCERPT 7 5:48
E2: Do we want to go net, or do we want to pick one to

privilege? Obviously the right one is the real one
and the left is fake.

E1: So we could do each one separately.
E3: Mhmm.
E1: And then verify that… that looks correct.
E3: Mhmm.
E1: In principle, you could do one and figure out how

the other one…
E3: So it would be ∂x=∂Fx for this one [points to x

string] and then figure that out and then do it for
this one [points to y string] and then maybe some
verification by comparing those two?

After they decided to take data and began to construct the
outline of a table, they discussed how to label the columns
of the table. This discussion returned them to the meaning
of the symbols. At this stage, they agreed to add left and
right subscripts to their symbols.

EXCERPT 8 8:07
E1: So I would say… I would propose we do an x left

and an x right for each… but wherever we put the,
the weights.

E2: Okay so we’re going to do two trials.
E1: Because they’re going to move opposite [motions in

opposite direction for the x and y flags] directions,
right?

E3: Okay.Sothis[referencingtableofwtleft xleftwtright and
xright] would capture the thing that you want to do?

3. Mathematicians

From the initial moments of the interview, the two
mathematicians puzzled over the meaning of the subscript
on Fx, noting that “we have not seen this type of notation
before” and “it looks like a derivative but we are unsure
what the symbols are.” While they attended to the position
of the strings, they did not interpret Fx as the force related
to x until the interviewer explicitly suggested this to them
part way through the interview. In Excerpt 9, the mathe-
maticians explain their confusion with the notation and in
doing so, reveal that they often associate a derivative with
the process of differentiating an explicitly defined function.
This was a theme we observed throughout the interview

with the mathematicians, yet only observed briefly in the
other groups.

EXCERPT 9 2:24
M1: I’m not familiar with the notation Fx [pronounced F

sub x].
M2: Me neither.
M1: So, should we talk about what we think that might

mean?
M2: Well, so, it’s a par… So, usually what we say, well,

we…We, I’m saying, my experience has been like
∂x
∂y [pronounced d x d y], right? The partial
derivative of x with respect to the y, right? So,
like y is some function of x or… what’s that… Or
you might have a function like little f of x, y,

fðx; yÞ

um, is equal to some function of x and y, and so
you take, you know potentially that would be the
partial derivative of that function…

M1: With re… like of either x or y with respect to that
variable, yeah.

M2: Yeah.
M1: Um, okay yeah, so I would think similarly, yeah,

like that… That symbol is the partial of x with
respect to some function. So I, do you think that big
F sub xmeans that it’s a function that has x? Has at
least as one of its variables, at least one of its
variables, or do you think it means something else?

M2: Uh, no, I think that’s what it means, that, yeah…

A few minutes later, the mathematicians began to focus on
the meaning of the subscripts and revealed how problem-
atic the notation was for them. In particular, we think their
uncertainty reflects possible disciplinary differences in
notation, an issue we anticipated prior to the interviews.

EXCERPT 10 4:53
M2: So what if, what if we also had like an Fy? So how

would that… be different, you know. So they’re
both capital F, so yeah, boy I wish I could
remember the meaning of the subscript [M1 points
to Fx on whiteboard] like if that already, like the
original functions both F, capital F is a function of
x and y. And then when we see this notation
[pointing to Fx and Fy on whiteboard], F sub x, F
sub y that means you’ve done something to that
original function of x and y. You know, like if
there’s, that means that’s the derivative with respect
to x [points at Fx] and that’s the derivative with
respect to y [points to Fy].

At 5:34 the interviewer interrupted to clarify that F means
“force” and that the x subscript indicates the component of
the force in the x direction. The mathematicians
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immediately grasped that there could then be a y and an Fy,
although—like the engineers—they did not guess that y
would be the position of the other string and Fy the tension
on that string.

B. What is a (partial) derivative?

The prompt to find a partial derivative yielded an
interesting picture of how our experts understood the
concept of derivative. In the end, all of our experts found
an approach to measure the derivative experimentally—
which practically requires application of the ratio layer of
Zandieh [15] (see Sec. III B). Each group immediately
proceeded to explore whether their changes were suffi-
ciently small. This reflects a strong recognition of the limit
layer of Zandieh [15], and a recognition that a measurement
of the derivative must account for this. We saw a large
difference between disciplines in the prominence of the
function layer of Zandieh [15], which we recognize as an
exploration of the dependence of the derivative on the
forces Fx and Fy. And finally, we saw a large difference in
the degree of comfort with a numerical approximation for
the derivative.
The physicists and engineers were very comfortable with

the derivative as a number, and quickly computed this
number as a ratio of small changes, with a ΔF correspond-
ing to 50 or 100 g. In both cases, they took an additional
measurement in order to verify that their changes were
sufficiently small that they were within the linear regime.
Their comfort with a single numerical answer for the
derivative suggests to us that the physicists and engineers
were satisfied with a derivative that omits the function layer
of Zandieh [15]. Both groups did acknowledge and discuss
that there is a functional dependence of the derivative on
the force.
Our mathematicians, in contrast, saw the derivative as a

function, and expressed concern about numerical approxi-
mation. Interestingly, although the mathematicians were
persistent in seeking a symbolic functional form for the
derivative, in the process they were quite comfortable and
creative with drawing conclusions about the derivative
through experimentation, and specifically investigated
the functional behavior of the derivative in how it changes
when different parameters are modified.
Unlike the physicists, the engineers went on to mention

other representations of the derivative in their discussions,
such as the slope of a graph, and a symbolic expression
derived from statics. The mathematicians made use of
essentially every representation for derivative except for the
ratio of small changes.

1. Physicists

After some technical difficulties, at 13:56 the physicists
had collected their first data, which was sufficient to find a
simple ratio of changes. In Excerpt 11, they discussed

whether two values each for x and Fx are sufficient. In
particular, they expressed the idea that “because it is a
derivative” it may need smaller increments.

EXCERPT 11 14:29
P2: The other question is, because it is a derivative,

does it need to have smaller increments?
P1: Umm…
P2: The difference is…
P1: Yeah… unless the system is linear or not.
P2: So maybe we should try…
P1: Try it with fifty.

They went ahead and took an additional data point to verify
that their ΔFx value was small enough that they were
working in the linear regime, which they did in Excerpt 12.
They computed the derivative as a ratio of their Δx and
ΔFx, confirmed that the two sizes of ΔFx gave similar
answers, and concluded that they had made a measurement
of the derivative.

EXCERPT 12 15:48
P1: And, um, and now we have everything, we can do

Δx over ΔT or F [P1 had previously referred to the
force as “tension”]. And because we held constant
Fy, it uses the partial derivative.

P2: Okay.
P1: And that is 1.5 over 100 [pointing to table of x and

Fx values] which is

Δx
ΔF

¼ 1.5
100

:

They proceeded to discuss the possibility that this deriva-
tive might not be a constant, i.e., might depend on the value
of Fx, acknowledging that the derivative is a function,
although they did not feel that this was necessary to explore
this dependence in order to answer the prompt.

2. Engineers

We begin with the engineers at the same stage as we
began with the physicists, after they had taken two
measurements each of x and y (xleft and xright in their
notation) with different values of Fx and the same Fy, and
thus had enough data to compute an estimate of the
derivative as a ratio of changes. In Excerpt 13 the engineers
discussed whether to go on taking more data.

EXCERPT 13 14:17
E1: So shall we put another hundred grams on to see if

it’s linear?
E2: I think so. Yeah.
E3: I’m feeling like we should be writing some huge

equation to describe this and not have to mess with
this, but I’m unwilling to start that procedure.
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Also, in Excerpt 13, E3 suggested that perhaps they ought
to be performing a symbolic calculation, but was reluctant
to do so, and the subject was dropped. On another occasion,
the engineers spent some time discussing the possibility of
using statics to find a symbolic solution, and also dropped
the idea. They clearly recognized the possibility of a
symbolic expression, but were unwilling to pursue it.
At this point the engineers computed values for the

derivative for two values of Fx using a ratio of changes, and
found somewhat different numerical values. In Excerpt 14
they discussed how to interpret these differing ratios.

EXCERPT 14 18:49
E3: Are those the same?
E1: Well so, I would recommend, let’s crank it a bunch

and see if we come up with the same number.
E3: Yeah.
E1: And then if it’s not, we could either, we could either

plot it and take slopes, or we could say, hey is that
good enough.

E3: Right.

After some further discussion they concluded that the two
slopes were the same within their experimental error, and
that they had a good measurement of the derivative. In
checking that the response is linear they addressed the limit
layer in a way that could be surprising: they increased the
size of their change in order to show that it was sufficiently
small. This expert behavior reflected a recognition that
experimental uncertainty would make smaller changes
harder to measure.
The engineers returned to the idea of graphing and

finding the slope much later in the interview. After being
prompted with how they would perform an analysis if
they had sufficient experimental data, the engineers
returned in Excerpt 15 to the idea of the slope of a graph
to explain how they could find the Fx dependence of the
partial derivative.

EXCERPT 15 38:43
E2: I would like to see it, to see them, like what you

said about slope, so like that. So what would the
x…

E1: So we could, I mean we could do a plot, right, of
mass so…

E3: Versus uhh…
E1: Yeah, we would want on the x axis. Well we would

want, um, force, right? [E3 begins making plot of x
and Fx] That’s our independent variable and length
or mass.

E3: And wouldn’t it be like delta, well it would be force
no no, of course not. [Labels plot with x on vertical
axis and Fx on the horizontal axis] Fx and then this
would be…

E1: And that would be x.
E3: x.

E1: And then we could plot that and we could plot
that…we could do a series of graphs set at different
L2’s. [points to the subscript L2 on ð ∂x

∂Fx
Þ
L2

]

E3: Uh huh.
E1: And then just at any value, the slope of that would

be this derivative.
E3: Yeah, I like that, yeah, I do.
E2: So if we wanted, say it was a function, we know

enough to figure out the function, right?

In this discussion the engineers gave a clear description
(without drawing any curves on the graph) of how they
could graphically obtain the derivative as a function of both
Fx and y (which they called L2). The engineers continued
to further discuss how they could obtain the slope from the
graphical data by performing a curve fit.

3. Mathematicians

The mathematicians spent much longer than the phys-
icists or engineers before finding an answer to the prompt
that they were satisfied with. In the process, they used
physical manipulation of the machine to reach several
conclusions regarding properties of x.
Very early on, the mathematicians grappled with iden-

tifying the arguments of the function x. This was in strong
contrast to the physicists and engineers, who did not talk
about x as a function until after having experimentally
found the partial derivative. In Excerpt 16, the mathema-
ticians used physical reasoning to conclude that x is a
function of Fx and Fy. This discussion followed consid-
erable manipulation of the machine.

EXCERPT 16 11:56
M2: So, yeah, so x is our position x [points to x position

marker], like if we decide that x is some position on
here [points to measuring tape on x], um, that’s
going to be a function of the weight we have here
[points to Fx weight], right?

M1: Um hmm.
M2: It seems like x has to be a function of something,

it’s not just… It’s not going to be constant, right?
M1: Right, right.
M2: It’s going to be, it’s going to depend, but doesn’t it

depend on both of these things [pulls on both Fx
and Fy weights], right? Because I can leave this
constant here [lets go of Fx], but then this is
gonna… If I move, if I add weight here [pulls
on Fy], then…

M1: Right, right. Then if we like tie this off [clamps y
string], then maybe x really does just depend on
this guy [pulls Fx weight], whereas if it’s here
[unclamps y string] and on both…

The mathematicians have concluded that by fixing y, x
becomes independent of Fy. This reasoning probably
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reflects an interpretation of Fy as the mass on the hanger,
rather than the tension in the string—an interpretation
that is entirely consistent with the information they
were given, although this was not the interpretation we
intended.
A few minutes later, in Excerpt 17, the mathematicians

discussed the derivative as “rate of change” and addressed
how their understanding of x as a function of the two
forces relates to the partial derivative they were asked
to find.

EXCERPT 17 14:26
M2: Well so [points to ∂x

∂Fx
on whiteboard], um, so you

know, think about derivatives as rates of change,
right? So, if you think about like in this [ ∂x∂Fx

], how I
usually look, you know, if we were looking at this
lowercase f of x, y [points to fðx; yÞ], the deriva-
tive of f with respect of x, that partial derivative is
like the rate of change with respect to x. But now x
is gonna be dependent on these two forces and so
it’s like we’re finding out the rate of change in x
with regard to this particular force [points to ∂x

∂Fx
].

So originally that notation is like why, “these
physicists are doing it all wrong, they’re putting
it all in the wrong place!” But now I understand
that, now I understand the notation. Does that make
sense?

M1: Uh huh.
M2: So if x is dependent on these two forces [pulls on

Fx and Fy], then, right, which we’re figuring that
out, um, then this notation makes sense.

M1: Mhmm. Mhmm.

After this, the mathematicians began discussing how to
address the prompt. This led to a discussion of what would
happen if they fixed the y string, which appears in Excerpt
28 in the following section.
In the middle of the interview, the mathematicians began

discussing what it is that they are being asked. In Excerpt
18 the interviewer responded by explicitly asking what they
think their task is, and clarified that they were not actually
asked for a symbolic expression for the partial derivative.

EXCERPT 18 28:00
INT: So what do you think your assigned task is?
M2: To find an expression that represents… [points to

the ∂x=∂Fx on the board]
INT: I never said to find an expression, I just said to find

this derivative.
M2: Find that derivative, okay.
M1: And so… I mean I guess this is a dumb question,

but I’m asking it. So like what’s the nature of what
we’re trying to find, like is it a number, is it a
function, is it a, an expression?

M2: Right.

This discussion highlighted their confusion over what it
was they were being asked to find. They continued with a
discussion of how a derivative could both have a numerical
value and be a function at the same time. A few minutes
later, they addressed this question directly in Excerpt 19, in
which M2 remembers from calculus texts how the position
of a ball can be both a number and a function.

EXCERPT 19 43:55
M2: But if position is just like a number, like forty five

or forty four, forty six or forty seven, then any
derivative of the numbers is just going to be zero.

M1: Yeah, well on the position is, I mean, yeah, I see
what you’re saying.

M2: But then, you know, our calculus text, our calculus
texts talk about a position function where a ball is
flying through the air and position is a quadratic
function, so it’s just two times something… Right?
Um, or negative, depending on the coefficient of x
squared, so…

Throughout the interview, the mathematicians returned to
speculation as to the functional form of x. In some cases,
they used hypothetical symbolic expressions to reason
about possible behavior of x. As the end of the time
allocated for the interview approached, the interviewer
began pressing the mathematicians for an explicit answer to
the prompt. In Excerpt 20 one mathematician replied
jokingly with a guess as to a symbolic expression.
When pressed by the interviewer, the mathematicians
ended up describing a process by which they could
find a numeric answer from the slope of a graph of
their data.

EXCERPT 20 44:54
M2: It’s one over x! [Laughs]
INT: Okay, so you don’t know, you don’t know a

functional relationship.
M2: No.
INT: So, what else could you do?
M2: I don’t know… Take a partial derivative to find that

expression? [references ∂x=∂Fx]… Um, well I
know that when, you know, like if I were just,
if it was… I mean to find the slope, right,
between two points to approximate the derivative,
yeah?

INT: I’m giving you my blank interviewer face! [joking]
M2: I know! [Laughter and inaudible joking]
M2: Um, right so, if we didn’t know the function and

one way you approximate the tangent, right,
or the slope at a particular point which is a rate
of change, you just find two points close together
and find slope. So, if we find, if we know change in
the force and the change in the x [points to ∂x

∂Fx
], like

we can take some of our ordered, we can consider
these to be like ordered pairs [referencing table
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of values for Fx, Fy, x, and y] and then just
approximate… Uh, you know come up with a
numerical value.

The mathematicians proceeded to write ordered pairs of
numbers on their board (using data that they had previously
collected), rather than drawing the graph they described.
Like the engineers and physicists, soon after they recog-
nized the existence of a numerical solution, they began
considering whether those changes were small enough. In
Excerpt 21, the mathematicians discussed the accuracy of
their approximation, and concluded that they could
improve it by adding smaller weights.

EXCERPT 21 47:30
M1: Okay so we have those differences, and so these

are, we can think of them as just being points on
our function like whatever that function is.

M2: Actually a really rough approximation…
M1: An approximation. And so, we can just sort of

consider the slope of those.
M2: Mhmm.
M1: Right? And that would be a reasonable approxi-

mation.
M2: Mhmm. Well, I don’t know about reasonable.

[Laughs]
M1: Yeah, but I mean that would be something that

could approximate that…
M2: Cause I mean you know you might want to think

about getting [points at an ordered pair] more fine
grained slope by like just increasing by, you know,
what are these, grams? [looks at weights]

After this, they spent some time adding small weights and
measuring changes in x—although they never did actually
perform a division or write down a ratio.

C. What should be held fixed, and does it matter?

A defining feature of a partial derivative is that
some other variables must be held fixed. As discussed in
Sec. V B, this choice of what to hold fixed has important
implications in thermodynamics, and we were very inter-
ested to see how our experts treated this question. We
therefore believed that the prompt to find ∂x=∂Fx was
ambiguous, and were interested to see how our experts
responded to this ambiguity. We expected that at least some
experts would point out the ambiguity and ask us which
property to hold fixed. Our interview had other results: all
our experts assumed that since we were taking a partial
derivative with respect to one force, then the other force
must be held constant. In this respect, the PDM differs from
thermodynamics.
In further discussion, each group addressed the question

of what would happen if they fixed y instead of Fy. Our
experts felt that clamping the y string would change either
the system or the function x, and thus the derivative would

change. The mathematicians measured how x changed with
and without y fixed, and concluded that it moved less when
y was fixed, although they did not discuss this result in
terms of derivatives.
Also related to this question is whether the derivative

depends on the value of Fy. This is a further level of the
concept of function than we explored in the previous
section. Ordinary derivatives are a function of the single
independent variable, but partial derivatives are functions
of multiple independent variables.

1. Physicists

One physicist decided that Fy must be held fixed when
measuring ∂x=∂Fx, because they were taking a derivative
with respect to Fx. Thus if they took the inverse derivative
∂Fx=∂x, then y would have been held fixed. He stated in
Excerpt 24 that this is “what they taught me.” When he
considered fixing the thumb nut, he stated that this
(physical act?) would change x to be a different function,
a function of Fx and y.
In Excerpt 22, before starting to take data the physicists

began discussing the meaning of the partial derivative, and
what to hold fixed.

EXCERPT 22 10:04
P1: Yeah, is ∂x over ∂Fx? If it was ∂Fx over ∂x, it

would be different.
P2: Right.
P1: Because we are keeping it constant, two different

things.
P2: Right.
P1: So if it is ∂x over ∂Fx, the dependent variable is Fx,

so we need to keep constant Fy.
P2: Right.
P1: Which is simple, it means we assume there is

weight on each side. Then we completely ignore
that part.

P2: Right. What if we just clamp it here though? In this
case there’s no, there’s no, there’s no Fy because
there’s no, I mean this is constant, right? So there’s
no….

At this stage, they spend a minute clarifying which string
was x and which was y. Then in Excerpt 23, they continued
their discussion of what would happen if they clamp the y
string.

EXCERPT 23 11:17
P2: Okay, right. So we need Fy to be constant, so

should we clamp this [points to y clamp]?
P1: Should we clamp… No, I’m going to say no

because if we clamp it [points to y string], then
we do not hold the tension constant. If we clamp it,
we keep y constant, not Fy.

P2: Right.
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P1: But we need to keep Fy constant, so I would let it
move and just make sure we don’t change the
weight here [points to Fy].

Thus, the physicists concluded that they should fix Fy in
order to measure the partial derivative with which they were
prompted.
Later in the interview, the interviewer prompted the

physicists by asking them to measure the derivative
� ∂x
∂Fx

�
y
:

In Excerpt 24, the physicists correctly explained how to
measure this derivative by clamping the other string. They
also explained about why they had assumed that Fy should
be held fixed, andwent on to discuss how a partial derivative
is like a derivative along a path in a multidimensional space.
They end by suggesting that clamping the y string changes
the system itself, creating a different function.

EXCERPT 24 24:27
P1: Now we can clamp that [indicates y string].
P2: Okay… So now…
P1: But that’s the natural expectation if you don’t

specify what you’re holding constant. You’re hold-
ing constant the other. That’s what they taught me.

INT: That’s what…
P1: They taught me. Like when I was a student.

INT: So tell me exactly, what exactly did they tell you
when you were a student?

P1: That when you do a partial derivative of a function
that is a function of, um, more than one indepen-
dent variable, you take, you do the incremental
[pointing to Δx

ΔF on whiteboard], keeping all the
independent variables constant.

INT: Okay.
P1: Now if you’re doing the second thing, it’s real,

funny because you are telling me to keep a
constant, a function constant. Because y [points
to y string] is always a function of the two forces
[points to weights].

P2: Right, so it’s…
P1: So it’s not something that…
P2: So you take the derivative in a different direction in

Fy and Fx plane then you would take it if you were
to keep Fy constant. So the partial derivative, right,
is in the specific direction, so it depends on the
direction.

P1: It seems to me something like a partial derivative
along a path, more than along an axis.

P2: Yeah, exactly. So you do it in a different, along a
different path or a different…

P1: Along a certain path that is not, I don’t know what
to call it.

P2: Right, yeah.

P1: Let’s do it.
INT: But y is not separately independent?
P1: y… well you can if you want, I guess. Say that, I

mean the moment you clamp it [points at clamp on
y side], you change your system. And you can say
now x is not a function of Fx and Fy, it’s a function
of Fx and y. That is a different function.

2. Engineers

At a point in the middle of the interview, E2 pointed out
that they had been instructed that they could fix y using the
clamp, leading to a discussion of what that would mean and
how it would affect their results.

EXCERPT 25 27:00
E2: They said we could stop [inaudible, points at the

thumb nut for fixing y.]. Does that help us at all?
E3: That would be crazy! [jokingly]

After this the engineers spent a couple minutes discussing
what they would find by performing the same derivative
measurement while the thumb screw holds y fixed. After a
bit of discussion involving how to perform the measure-
ments, E1 concluded in Excerpt 26 that they are now
holding something different constant.

EXCERPT 26 29:06
E1: We’re holding something different constant, and

we could think about, if, once we look at the
numbers and see how they define that.

E3: But it’s sort of like you’re saying, certainly a
different problem holding that [points to y string]
constant.

E1: Yep.

At this point the engineers proceeded to take some data
with y fixed. Then the engineers discussed how to notate
what they just measured with y fixed. E1 (who teaches
thermodynamics) suggests that they use the subscript
convention to notate which quantity is held fixed.

EXCERPT 27 35:58
E1: So that would be a partial derivative, I think that’s

what they asked for.
E3: So that way we want to write…
E1: Partial of x, yeah, with respect to Fx and then put

parentheses around that whole big thing.
E3: This thing?
E1: Yeah… And then write at the bottom, subscript L2.
E3: I’m not very good at subscripts [jokingly], I’ve

heard at this meeting earlier… [continuing earlier
joke] [E3 writes on board:]� ∂x

∂Fx

�
L2

:

E1: That’s awesome.
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The engineers at this stage were using the symbol L2

for the distance we call y. Thus this notation is in complete
accord with our understanding of the problem. We find
this unsurprising, given that E1 is entirely familiar
with thermodynamics. E3, who was writing on the board,
seemed considerably less comfortable with this notation.

3. Mathematicians

We saw in Excerpt 16 a mathematician said that fixing y
would change the system by making x no longer a function
of Fy. This would make x a function of only one variable,
since they did not talk about the value of y as a variable.
A few minutes later, in Excerpt 28, the mathematicians
explored what happens if they fix y by clamping its string.
They observed a smaller change in x, and decided that this
made sense, since the clamp impedes the motion.

EXCERPT 28 17:48
M1: But like if I… if we turn this off [clamps y]…
M2: Oh yeah.
M1: Does the same thing happen… [adds weight to Fx]

So it moved a lot less, but, I mean… Okay, well,
let’s just see what we get, so this is like [takes x
measurement] a little over forty four. [a smaller
change in x]

M1: Which makes sense because… Well, I mean, this
[touches y clamp] seems harder, like this is actually
not allowing it to move at all.

After this, they spent some time discussing what value of
Fx to use for their derivative, not being sure what to
focus on. We believe based on the above quote that they
understood this to mean that the derivative itself was
smaller if y were fixed, although they did not explicitly
state this.

D. How many independent variables are there?

As discussed in Sec. IV B, the number of independent
variables—or the number of degrees of freedom—is a
critical property of a physical system. It determines the
number of parameters we must control in order to deter-
mine the state of that system, and at the same time limits the
number of parameters we can fix when finding a partial
derivative. The PDM has two degrees of freedom, as
discussed in Sec. II.
The existence of two degrees of freedom means that the

derivative ∂x=∂Fx (and the variable x itself) should be
viewed as a function of two variables. This is an expansion
of the layer of function into multiple dimensions. In this
section, we discuss how our experts interpreted the number
of degrees of freedom of the system.
The question of how many independent variables were

present arose in each interview. Both the physicists and
engineers treated this question explicitly (the physicists, at
the prompting of the interviewer), and went through a stage

of talking of x being a function of the remaining three
variables. They then concluded that one could eliminate
one of those three, and that only two were independent. The
mathematicians were not asked this question explicitly, but
addressed the question during their discussion of the
meaning of the partial derivative.
All of our experts were able to discern the number of

degrees of freedom present in the system, but we were
surprised at how long it took the physicists and engineers to
agree upon and express the fact of the interdependence
among the controllable quantities.

1. Physicists

When asked how many independent variables there were
in Excerpt 29 below, the physicists recognized that only
two variables were independent, because they could inde-
pendently control the two forces.

EXCERPT 29 17:21
INT: How many independent variables are there?
P2: So the way that you defined it, it looks like, so this

is the question, you know, what exactly is x and
what is y, right? So if this is, if you’re saying that
this is y [points to y side] and this is x [points to x
side] and there’s only Fx and there’s only Fy, you,
you know, I mean… Uh, otherwise, you know,
there’s also this spring to take into account, so…

INT: So talk to your partner.
P1: Well I would say can could do a way independently

on both sides.
P2: Right.
P1: So Fx and Fy are independent.
P2: Right.
P1: Anything else we can change.
P2: Right, my only question is this spring [points to

spring], right? Because, I mean, there’s also a force
on this side [points to y side], right? So the total Fx
is also has a contribution from the spring [points to
spring], in principle.

P1: Umm… No, because Fx [points towards Fx] is the
tension of this string.

P2: Right, but…
P1: So no matter how much weight I put here [pulling

on weights], the tension on the spring is the same.
Now I can change x [points to x position marker]
by changing Fy [points to y string], um, but then
that’s because F and y are both functions of the
variables.

After some more discussion, they agreed that the derivative
must be a function of the two independent variables Fx
and Fy.
A bit later in Excerpt 30, the physicists pondered how to

understand the possibility of directly controlling y, sug-
gesting that x depends on three variables each of which they
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could control, but they could not control all three inde-
pendently. Based on their gestures leading up to this and the
discussion in Excerpt 29 above, we believe they arrived at
this conclusion based on “physical” reasoning.

EXCERPT 30 27:05
P1: Can we say that x is actually a function of y, Fx,

and Fy, but then these three are not independent.
[writes xðy; Fx; FyÞ on whiteboard]

P2: Exactly.

2. Engineers

Towards the end of their interview (without interviewer
prompting), the engineers discussed their concept image of
a partial derivative. In Excerpt 31 below, the senior
engineer E1 decided to ask his two partners how they
understand the concept of a partial derivative. This led to a
discussion of how many independent variables were
present in the system. At this stage we believe E1 knew
the answers to his questions, and had taken on the role of
interviewer of his younger colleagues, who were less
certain as to how to treat this multidimensional system.
Discussion after the interview confirmed that E1 had been
envisioning the use of the PDM for this purpose in the
context of a class in thermodynamics.

EXCERPT 31 42:19
E1: So, let’s take a step back, what’s your conceptu-

alization of the partial derivative?
E3: Well it’s a great question, E2.
E2: I just had to ask E3 about it, uh… It’s, I think of it

as a, in a multidimensional system watching how
one, um, dimension changes when the others are
fixed.

E1: Okay, so… How does that apply to this then? What
dimensions do we have?

E2: Two… Well we sort of have four.
E1: Yeah you kind of do, kind of don’t, right?
E2: Yeah, I don’t know if we’re going to go relative or…
E1: Well, I mean if you didn’t know the statics [points

to spring system] you could say you have four, but
you really don’t have four because how, how this
side [points to x side] behaves depends on how that
side’s fixed [points to y side]. And that’s what E3
was talking about too, right?

E2: Umm.
E1: So if we’re just doing it empirically, we would just

say we would say we have the length [points to x
string] of this the Fx of this, the length of that
[points to y string] the F, the tension of that, right?

E2: Mhmm.
E1: So then, what would the partial derivative be?
E2: The partial derivative of the length with respect to

force [E1 points at plot of x and Fx], well that’s
helping us.

E1: The partial derivative of the length with respect to
the force, we have, since there’s four parameters,
right? We have our multivariable space.

E3: I mean…
E2: So I guess, well, the problem is adding them up

that… when I think of it as an equation, I see more
clearly how you can manipulate it to more of like
some cover, the situation. [E3 begins writing
equation on board] But when we’re just making
measurements, it seems much more incremental.

E1: What if we said, so the x is, um, the dependent
variable, right? So what if we said, what if we just
stated x as a function? And we would say x here
[points to x string] is a function of Fx, F2 [i.e., Fy],
and L2 [points to y string].

xðFx; F2; L2Þ:

The engineers (like the physicists) concluded by discussing
the quantity x as a function of the three other variables, and
recognized that those three variables are not themselves
independent.

3. Mathematicians

As we described above, the mathematicians were very
quick (once they knew what the variables meant) to
recognize that x depends on Fx and Fy (see Excerpt 16),
indicating that they recognized two independent degrees of
freedom. Moreover, they found in Excerpt 28 that the
derivative ∂x=∂Fx was smaller if they fixed y rather than
fixing Fy, indicating that fixing the third quantity y had
some effect. They did not, however, count the independent
degrees of freedom, nor did we prompt them to do so.
The mathematicians began discussing how to treat the

second side of the system in Excerpt 32. M2 expressed a
tension between a “mathy” understanding and their physi-
cal experimentation which led them to believe that the
partial derivative depended on what was done on the y side
of the PDM.

EXCERPT 32 32:17
M2: But like, ah, I just keep going back to the, you

know, more mathy idea [points to an illegible
derivative on whiteboard], like this idea of a partial
derivative where, you know, when I’m taking the
partial derivative of that with respect to x, you
know y is just… But then we see this like physical
thing where this side does matter [points to y side],
so then…

M1: Well do you want to, I mean, can we… Should we
just focus on that question and just ask ourselves,
like convince ourselves one way or the other?

M2: Whether the y matters.
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After agreeing to explore the dependence on the y side of
the system, in Excerpt 33, the mathematicians concluded
based on experimentation that x is indeed affected by the
value of the other force Fy, confirming that the derivative is
a function of two variables. We note that their language is at
times confusing, as they often use x and y to refer to the two
independent variables (which we call Fx and Fy), and had
written fðx; yÞ on the board to refer to a generic function of
two dimensions.

EXCERPT 33 32:58
M1: Okay, so what would the y mattering look like

for us?
M2: So, I guess, the, if the ymattered, um, the force in y

[Fy] would have an impact, would somehow have
an impact on our x position, you know, as we…
Here [references ∂x=∂Fx], we’re trying, we’re
changing the force in x, so with that regard, does
this force here [points to y side] still have an impact
when we’re just seeing what the change is with
regard to that force.

Thus the mathematicians concluded that the partial deriva-
tive was a function of the two forces.

VII. CONCLUSIONS

In this section, we summarize the experts’ concept
images and definitions for partial derivatives, propose
the need for an extended theoretical framework, describe
differences in the concept of limit between mathematics
with theory and experiment, and discuss the limitations of
our study and the prospects for future work.

A. Concept images of derivative

All three groups of experts assumed that when taking a
partial derivative with respect toFx, Fy can be assumed to be
held fixed. This finding was unexpected, particularly with
regard to those experts who work with thermodynamics in
their research: both physicists andone engineer. This question
merits further study, particularly to probe when and how
experts approach problems in which there is ambiguity in the
choice of “independent” degrees of freedom.

1. Physicists

At first, the physicists thought that they were being asked
to find (the inverse of) the spring constant. Once they
recognized that the spring constant would be represented
by a total derivative rather than a partial derivative, they
spent some time exploring other possible meanings for the
interview prompt. After they were told how to interpret the
prompt, they moved immediately to describing the partial
derivative as a ratio of small numerical changes, collecting
data, and calculating a number. They spent some time
establishing that their ratio was accurate enough and

attended to determining how many independent variables
were in the system and which of them to fix. While they
acknowledged that the derivative was a function, they did
not try to evaluate this function in any way. They did not
mention slope at all, nor did they try to express the
relationship between position and tension analytically so
that they could take a symbolic derivative.

2. Engineers

Like the physicists, the engineers thought of the partial
derivative as something that could be approximated exper-
imentally, and spent a lot of time collecting data so that they
could represent the partial derivative as a ratio of small
numerical changes. They mentioned that the derivative
could be found as a slope and that they could therefore
determine the derivative by graphing their data, although
they did not pursue this approach. They further noted that
their experimentally determined function should match
some sort of theoretical equation. The engineers were
the only ones to state a concept definition, albeit incomplete
and bordering on inaccurate. They defined a partial
derivative as “how one dimension in a multidimensional
system changes when the other dimensions are fixed.”

3. Mathematicians

The mathematicians repeatedly expressed their interest
in determining an algebraic expression for ∂x=∂Fx; they
seemed to interpret the task statement as directing them to
find an explicit function definition. Once they had collected
data, they talked about the derivative as a slope, as a ratio of
small changes, and as a rate of change. Like the physicists,
they recognized the need to fix one quantity, which for
them was connected with the idea of holding a variable
constant when using symbolic differentiation rules for a
multivariable function.

B. Need for an extended framework

In Sec. III B, we gave a brief summary of Zandieh’s
framework for the concept image of derivative. In Sec. IVB,
we gave our own list of five different ways to understand
and think about the concept of derivative, which has
substantial overlap with Zandieh’s framework, but included a
specific numerical category. Throughout our analysis, our
interdisciplinary team found it useful to use elements of both
of these descriptions. In particular, we found ourselves fre-
quently referring to Zandieh’s choice of process–object pairs,
and describing our own list in similar terms.
However, we had deliberately made the choice to embed

our interviews in a task in which the interviewees had easy
access to numerical data, but not to an analytic expression
for the relationship between the physical quantities. This is,
after all, the environment in which most experimentalists
typically find themselves. For this reason, our analysis
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focused on a numerical representation within the concept
image of derivative.
We were surprised that Zandieh’s framework did not

include a numerical representation, even though her intro-
duction made it clear that shewas aware of this possibility. A
careful reading of her paper shows several examples of
students using numbers and these discussions are included in
her analysis. This suggests that she considers numerical
evaluation as a later step in each of her representations rather
than as a representation in its own right. In our own list of five
categories, we are now finding the possible need to distin-
guish between two numerical representations: exact numeri-
cal work (such as would happen when plugging particular
values for the independent variable into an explicit analytical
model for a physical process) and experimental numerical
work (such as data from an experiment, including its
experimental uncertainties). We are currently working on
a paper which further elucidates these issues [30].
We suspect that the lack of an explicit experimental

representation in previous frameworks reflects a more
general absence of this representation in lower-division
mathematics courses, a view which is supported by the
mathematicians’ efforts to reframe the problem in terms of
an analytic representation. It seems clear that the inter-
pretation of experimental data is a topic requiring instruc-
tional intervention; how best to accomplish this, and to
what extent this should be done by mathematicians or
within experimental disciplines themselves, are topics
worthy of further discussion.
It will also be necessary to extend any resulting theo-

retical framework for the concept image of derivative to
elements of the concept of partial derivative that are distinct
from derivative. In particular, we see the need to add a layer
for what is held fixed when finding a particular partial
derivative.

C. Limits and the real world

There were striking differences between the mathema-
ticians and the physicists and engineers. The physicists and
engineers were relatively quick to find the derivative at a
point as the numerical ratio of small changes. In this
process, they were so casual with approximations that they
were willing to give this ratio as their final answer to the
interview prompt asking for a partial derivative without
qualifying their answer with the word approximation. They
did signal that they understood that their answer was an
approximation by checking that the ratio they calculated
was “good enough” by either decreasing (physicists) or
increasing (engineers) the change in the independent
variable. They also demonstrated an understanding of
the function layer but did not bother to find the value of
the derivative at more than one point. On the other hand, the
mathematicians were firmly embedded in the function
layer, pursuing the desire to find an analytic expression
until they were explicitly asked by the interviewer “What

else could you do?” Subsequently, when they were dis-
cussing finding a slope from their numerical data, they
continued to doubt the reasonableness of the resulting
approximation (see Excerpt 21).
We note that, in the idealized world of pure mathematics

(and theoretical physics), the need to approximate rarely
arises, whereas, for experimentalists, a ratio of small
numerical changes is often the best answer that they have
for a derivative, particularly in the absence of a theoretical
model for the process they are studying. So the shorthand of
calling this ratio “the derivative” rather than the more
cumbersome “an approximation to the derivative” makes
cultural sense. Experimentalists can always hope to design
a better measuring apparatus or at least imagine a gedanken
experiment to improve their approximation.
In the extreme case, physicists, in particular, are likely

aware that continuity itself and therefore the ability to take
formal limits in derivatives, are properties of the continuous
models that they use for the physical world and not
properties of the real world itself on atomic scales and
below. The real world imposes a fundamental limitation on
the concept of limit.

D. Limitations of this work

We recognize that we cannot use a single interview with
two or three content experts to make conclusions about every
expert in a given field, nor can we come to definite
conclusions about what these experts may or may not have
been able to do in other settings or contexts. We plan to
interview different types of mathematicians (especially com-
putational and applied mathematicians who may have more
experience with approximation), different types of physicists
(including experimentalists and noncomputational theorists),
and different types of engineers. We would also like to
interview experts in such fields as economics or oceanogra-
phy, whose mathematical cultures may differ substantially
from those already considered (and from each other). In
particular, we hypothesize that thermodynamics experts from
a variety of fields will behave more similarly on this task than
nonthermodynamics experts within a single field.
Another possible limitation of this work arose due to the

relative linearity of the PDM system in the regime explored
by our experts. While they recognized that the system was
nonlinear, this was a small effect that was easily dismissed.
It would be interesting to examine expert responses with the
machine configured to operate in a more nonlinear regime.
This would require the experts to take greater care in their
treatment of the limit layer, and could trigger experts to go
ahead and explore the function layer of the derivative.

E. Other future directions

It would be interesting to ask interviewees how theywould
report their data for the partial derivative (assuming theywere
to take lots of data) if they were to publish this result in a
paper. We are interested to see (a) if they address both
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dimensions of Zandieh’s representation and (b) how they
would represent the result: tables, single or multiple one-
dimensional plots, three-dimensional surfaces, contours, etc.
We would also be interested to explicitly prompt experts

to give us a concept definition, to see how their concept
image (as determined from their approach to this novel
task) relates to their concept definition.
Every group spent some time exploring the physical

system of the PDM. In the future, it would be interesting to
explore this aspect of the interviews and to think about the
pedagogical and research implications of this type of play
as an aspect of expert reasoning. In particular, the math-
ematicians spent more time than other groups exploring the
covariation of the physical quantities by pulling on various
strings and making expertlike observations of how the
system responded.
The notational confusion we observed suggests deep

cultural differences between disciplines, warranting further
study. Although the mathematicians’ specific confusion
regarding Fx is not likely to be present in physics students,
the use of x and y as the two independent position
variables—particularly in variables that are not spatially
orthogonal—has consistently created confusion in both
experts and novices. However, in order to focus more

directly on expert concept images of (partial) derivatives, in
the future we intend to name our four variables x1, x2, F1,
and F2.
Finally, we are interested in pursuing the pedagogical

consequences of this study for classroom learning trajec-
tories. For example, physics students have traditionally
been exposed to the discreteness of data and the necessity
of addressing experimental uncertainty in their lower
division laboratories. But this exposure is disappearing
with the near ubiquitous use of motion sensors and
computer interfacing that blur the distinction between
discrete data and continuous plots. What other physics
experiences (research, advanced laboratory courses, etc.)
will be needed to reinforce these aspects of the concept
image of derivative?
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