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[This paper is part of the Focused Collection on Upper Division Physics Courses.] Energy measurements
play a fundamental role in the theory of quantum mechanics, yet there is evidence that the underlying
concepts are difficult for many students, even after all undergraduate instruction. We present results from an
investigation into student ability to determine the possible energies that can be measured for a given wave
function and Hamiltonian, to determine the probabilities of each energy measurement and how they depend
on time, and to recognize how a measurement of energy affects the state. By analyzing student responses to
open-ended questions, we identify five broad, interrelated sets of conceptual and reasoning difficulties
related to energy measurements. Data are drawn from sophomore-, junior-, and graduate-level quantum
mechanics courses. Particular attention is paid to incorrect ideas that persist across all levels.

DOI: 10.1103/PhysRevSTPER.11.020111

I. INTRODUCTION

Experienced instructors recognize that quantum mechan-
ics is a difficult subject. There is mounting evidence that
many students complete a physics degree without having a
firm grasp of some fundamental concepts [1-4]. Even
majors that continue to graduate school in physics have
similar difficulties [5-7]. However, a working knowledge
of quantum mechanics is becoming increasingly important
as the market for quantum technologies continues to grow.
Thus, there is a need for ongoing research to document the
problems that students encounter and to provide the kind
of information needed to be able to develop and assess
instructional strategies.

The energy eigenbasis defines the time dependence of the
quantum state and is thus arguably the most important basis
in quantum mechanics. Full understanding of a physical
system is not complete without knowledge of the energy
eigenvalues. In a typical course on quantum mechanics,
students are asked to apply their knowledge of energy
eigenvalues and eigenstates to answer questions about
energy measurements. For example, they are often asked
to determine the possible values that could result from an
energy measurement and the probabilities of obtaining each
value. Implicit in many questions is an understanding of the
role of the Hamiltonian. Previous research studies have
demonstrated that students struggle in answering these
(and other) questions. The errors suggest a broad lack of
understanding of the underlying quantum formalism that can

“Corresponding author.
gpassante @fullerton.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

1554-9178/15/11(2)/020111(10)

020111-1

PACS numbers: 01.40.Fk, 03.65.-w

affect student ability to apply these principles to more
complex and physically realistic contexts [8—14].

In this work we analyze student responses to a set of
open-ended questions. The goal is to elicit common errors
and probe the lines of reasoning that many students use.
This detailed information not only informs the research
base on student learning but can also guide the design of
instructional materials. The results have implications for
teaching both energy measurements and related topics,
such as the WKB approximation, position and momentum
measurements, and time evolution.

II. CONTEXT FOR RESEARCH

The research discussed in this paper has taken place in a
sequence of courses at the University of Washington (UW).
An undergraduate physics degree at UW requires between
one and three courses on quantum mechanics. A sopho-
more-level course is the first formal introduction and is
the only required course on quantum mechanics for physics
minors and for one of the tracks for a physics major in
our department. The course uses a spins-first approach
that covers the first five chapters of Mclntyre’s textbook
Quantum Mechanics [15]. It ends with solutions to the
Schrodinger equation in position space for simple poten-
tials. The second and third courses are at the junior level
and together they cover the entire Griffiths’ textbook
Introduction to Quantum Mechanics [16]. Most of the
data in this paper are drawn from these three courses.
However, we also present data collected during the first
week of instruction in a graduate course on quantum
mechanics. These latter data are used to document the
understanding of strong physics undergraduates after typ-
ical instruction on quantum mechanics.

In all cases, the data come from qualitative questions
administered after relevant instruction. These questions
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have been designed to try to elicit explanations that provide
insight into student conceptions and common chains of
reasoning. Supporting evidence also comes from individual
student interviews. Both the written questions and the
interviews have probed student ideas related to energy
measurements in a wide range of contexts from the infinite
square well potential to perturbation theory.

The sophomore- and junior-level courses involved in this
study have used preliminary versions of a set of tutorials for
quantum mechanics that is being developed by our group
[17]. Typically, the questions presented in this paper were
asked before relevant tutorial instruction but after lecture
instruction. However, in a few cases, they were asked after
early versions of the tutorials that may have somewhat
influenced the results. It is for this reason, in part, that we
do not focus on the exact percentages of students who have
specific difficulties. Percentages that are reported should be
taken as a general measure of the prevalence of particular
difficulties; the percentages obtained at other institutions
may differ. However, the underlying difficulties reported
in this paper have been present across all years of our
investigation and have proved particularly resistant to
instruction. Thus, we believe they are common among
similar groups of students.

ITII. RESEARCH PERSPECTIVE

The perspective taken in this paper toward research on
learning and teaching has grown out of the experience that
the UW Physics Education Group has had in examining
student understanding and developing research-validated
curriculum. (See Ref. [18] for a more detailed discussion.)
For this project, we began by trying to identify what
students could and could not do through discussions with
students in the classroom and analysis of written responses
to questions on homework and course examinations. Our
goal was to try to gain insight into the approaches that
students use in solving a wide variety of problems. In the
process we began to develop and modify questions that
allowed us to probe incorrect lines of reasoning that seemed
to be applied repeatedly by multiple students and that arose
across a variety of questions and contexts.

The research involved members of our group independ-
ently interpreting many student statements as to the
possible underlying approach taken by the students.
Some responses did not include much detail, but were
noted to be similar to more complete statements given by
other students. In the process we came to identify certain
approaches that we interpret as being consistent with one or
more underlying conceptual or reasoning difficulties. We
use the term difficulty to describe incorrect or inappropriate
ideas or flawed patterns of reasoning that students use in
answering one or more of the questions.

The difficulties that we discuss in this paper stood out
during the analysis, as they occurred on a wide variety of
questions in different contexts and often at several different

levels of instruction. However, different formulations of
each question often elicited different aspects of student
thinking. Individual difficulties did not necessarily arise
in equal percentages on all variations of the questions.
Moreover, individual students did not always respond in the
same way when asked different, related questions in the
same course. The results suggest that students do not
necessarily have a firmly held model that is driving their
responses. Nonetheless, we are finding the identification of
conceptual and reasoning difficulties to be fruitful in
guiding the design of curriculum [17,19-21].

In this paper, we articulate five broad and overlapping
sets of difficulties relating to energy measurements and
discuss how these manifest at different levels of instruction.
Those that are presented were chosen for several reasons:
they are prevalent in different contexts (e.g., the infinite
square well and perturbation theory), they occur at different
levels of instruction (e.g., sophomore and junior), and they
have been identified in every year of our study across
multiple instructors. We include a discussion of some
difficulties even if certain aspects have been documented
previously in order to extend or contrast the results, or for
completeness. Previous results from research are cited
where appropriate.

IV. SAMPLE QUESTIONS FROM
THE INVESTIGATION

A functional understanding of energy measurements
in quantum mechanics requires that students be able to
interpret and apply steps in reasoning to contexts they have
not previously encountered. In this study, we have focused
on the ability of students to recognize and apply the
following ideas: (1) a given quantum mechanical system
has a set of allowed energy values and that these depend on
the eigenvalues of the Hamiltonian, and thus, upon the
potential, (2) a wave function defines the state of the
system and provides information about the probability of
measuring each energy, and (3) how time evolution and
measurement can affect the possible measurement out-
comes and the associated probabilities.

We have administered a wide variety of questions to
probe student ideas about these aspects of energy mea-
surements. In this paper, we illustrate three questions, each
of which elicits student ideas about several ideas mentioned
above. Multiple versions of each question have been asked
in various quarters to ensure that the difficulties encoun-
tered are generalizable and not an artifact of the phrasing of
the question or the context in which it is asked.

Question 1: Question 1, shown in Fig. 1, asks students
to find the probability of an energy measurement at t = 0
(part A) and 7 > 0O (part B). Several versions have been
given at the sophomore, junior, and graduate levels. The
version in Fig. 1 was given on a final examination in a
single sophomore quantum mechanics course at UW
(N =104). It indirectly probes student reasoning about
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Question 1: Recall that the eigenfunction of the infinite
square well potential as given by ¢, (z). Collection A
contains a large number of identical particles, each of
which is described by the initial wave function

1
V2

A. Suppose you were to measure the energy of a very
large number of particles at ¢ = 0. Would the number
of particles with energy E; be greater than, less than,
or approzimately equal to the number of particles with
energy Fo? Explain your reasoning.

Va(z,t=0) = —=(¢1(x) — ¢2(x)).

B. At some later time, the wave function for the particles
is given by

1
V2

Suppose you were to measure the energy of a very
large number of particles at a later time. Is there a
time ¢ > 0 when the number of particles with energy
FE is greater than the number of particles with energy
FE5? If so, determine at least one such time. If not,
state why not.

Uy, t) = —=(py(x)e PP — o (z)e™F2/),

FIG. 1. A sequence of questions given after all instruction in the
sophomore quantum mechanics course. Similar questions have
been given to students at the junior and graduate levels.

the probability of measuring various outcomes for the
energy of a single quantum state by asking about a large
number of measurements made on many identical systems.

A correct response to part A requires noting that the
absolute square of the coefficients for both terms in the
wave function are equal at the given time (¢ = 0). Thus,
the number of particles measured to have energy E; is
expected to be about the same as that for energy E,. For
part B, in which the time dependence of the wave function
is explicitly shown, the reasoning is similar. The time
components vanish when the absolute square is taken, so
there is no time when the number of particles measured to
have energy E| is expected to be greater than the number
measured to have energy E,.

Versions of this question have been given to juniors and
graduate students (see, for example, question 2A in Fig. 2),
but usually with two differences. First, the questions have
involved a single particle (rather than an ensemble) and
students have been directly asked about the probabilities of
various outcomes. Second, we have given students the state
at an instant and have not provided the time dependence
(as shown in part B of Fig. 1). This omission adds another
step to the reasoning, since students need to identify the
time dependence of each term in the wave function.
These versions have been asked of more than 300 students
at the junior level (after relevant lecture instruction) and
of 31 students at the graduate level (before any graduate
instruction).

Question 2: A particle in an infinite square well, with
energy eigenstates U, (z,0), is prepared so that its wave
function at time t = 0 is:

U(z,0) = 0.6¥;(x,0) + 0.8i¥y(x,0).

A. Suppose you were to measure the energy of this par-
ticle at time ¢; > 0. What value or values would a
measurement of the energy yield?

B. Suppose that at a later time ¢ you measured the en-
ergy of the particle again. (Assume that the particle
remains isolated from its surroundings during the time
interval t; < t < t3.) Which of the following state-
ments would best describe the result of your second
energy measurement?

i) Definitely the same result as the first.

ii) Possibly the same result as the first.

ili) Definitely not the same result as the first.

C. A particle is prepared in the ground state of the in-
finite square well. Its position is then measured and
found to be © = L/3 (where L is the length of the
well). Suppose you now measured the energy of the
particle. Which of the following statements best de-
scribes the result of your second energy measurement?

i) Definitely the ground state energy.
ii) Possibly the ground state energy.

iii) Definitely not the ground state energy.

FIG. 2. A sequence of questions that are given after approx-
imately one month of instruction in the junior-level quantum
mechanics course at UW. Students are also asked to explain their
reasoning after each question.

Question 2: The question shown in Fig. 2 begins by
providing students with a wave function at time =0
written as a superposition of two energy eigenstates of
the infinite square well. Variations of question 2 have
been given to students in the junior-level course beginning
in 1996.

Part A asks students to identify the values that could
result from an energy measurement at time ¢ > 0. The
correct answer is that both E; and E, are possible energy
measurements since they correspond to the two eigenstates
represented in the wave function. Part B asks students about
possible results from an energy measurement made after
the first energy measurement. To answer, students could
recognize that after the first measurement the wave function
of the particle corresponds to an energy eigenstate. Thus, a
second measurement must yield the same result as the first.

In part C, students are told that a position measurement
has been made and are asked about the possible results of a
subsequent energy measurement. A correct solution is to
recognize that after the position measurement, the wave
function is in an eigenstate of position (e.g., a delta function
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in position space), which can be written as a sum of many
energy eigenstates. Therefore, a subsequent energy meas-
urement could yield almost any energy eigenvalue for the
potential. Question 2 has been given to more than 200
students at the junior level.

Note that, in this question, students are required to think
about the state of a quantum system after a measurement
has been made. In undergraduate and graduate textbooks,
students are typically told that the possible outcomes of a
measurement are the eigenvalues of the operator associated
with the observable and that after a measurement the
system is in an eigenstate corresponding to the observed
eigenvalue (the “measurement postulate”) [22]. Sometimes
the phrase “collapse of the wave function” is used. There is
some disagreement among instructors as to whether or not
this postulate should be taught in undergraduate courses
[27]. The arguments often focus on the difficulty (or, in
some cases, impossibility) of performing such measure-
ments. Nonetheless, many undergraduate courses discuss
the state of a system after a measurement is made, and
we have found that this context provides an excellent
opportunity to probe student understanding of energy
measurements.

Question 3: Question 3, shown in Fig. 3, involves a
particle that is measured to be in the ground state of an
infinite square well potential. At a later time, a perturbation
is applied for a finite amount of time, after which it is
removed. Students are told to treat the perturbation as
beginning and ending instantaneously. They are asked to
determine the values that could result from an energy
measurement that is made (A) before, (B) during, or
(C) after the perturbation is applied. Versions of this
question have involved several different perturbations
(e.g., a delta function or a small rectangular perturbation
at the center of the well).

Question 3: A particle is measured to be in the ground
state of the infinite square well at time ¢ < 0. At a
later time, to, > 0, a small perturbation is added to the
center of the well. At a later time, tog, the perturbation
is removed.

A. Before the perturbation, 0 < t < to,, what possible
values could an energy measurement yield?

B. During the perturbation, t,, < t < t.g, what possible
values could an energy measurement yield?

C. After the perturbation has been removed, t.gp < t,
what possible values could an energy measurement
yield? Assume that no measurements where made
while the perturbation was present.

FIG. 3. Question 3 has been given after lecture instruction on
perturbation theory at the junior level. Questions testing similar
ideas have been asked at different points in the junior year and at
the graduate level.

Before the perturbation has been applied, only the
ground state energy of the infinite square well can be
measured, since the particle was initially in the correspond-
ing eigenstate. For the instant at which the perturbation is
applied, students should assume that the wave function is
continuous. Therefore, the mathematical form just after the
perturbation is applied still corresponds to that of the lowest
energy eigenstate of the infinite square well. However,
during the period that the perturbation exists, the new
Hamiltonian determines the energy eigenstates of the
wave function, and only the corresponding energies can
be measured. At the start of the perturbation, the wave
function in general will not be in an eigenstate of the new
potential and its time evolution is determined by the new
energies. Thus, the wave function will evolve out of the
initial unperturbed eigenstate. Finally, at the instant the
perturbation is removed, the wave function can again be
assumed to be continuous. The energies that can be
measured after the perturbation is removed are once again
those corresponding to the square well. However, at this
point the wave function corresponds to a superposition of
many energy eigenstates of the infinite square well and a
measurement of the energy is no longer restricted to
the ground state energy. More than 140 students at the
junior level have answered versions of this question. The
results are similar when it is given before or after lecture
instruction on time-dependent perturbation theory.

V. STUDENT UNDERSTANDING OF
ENERGY MEASUREMENTS

In responding to the questions described in the previous
section, students have made many, various errors. We have
identified five broad categories of conceptual and reasoning
difficulties that appear to underlie many of their answers
and that seem to persist throughout instruction. In this
section we provide examples of student responses when
they help to illustrate or substantiate specific difficulties. It
is important to recognize that individual student statements
may fit into several categories and that no single statement
completely encapsulates a particular difficulty. The catego-
ries presented have been developed on the basis of
examining a large number of student responses to multiple
different questions and draw on data obtained from
individual student interviews. Less formal discussions with
students in class or in office hours have also contributed to
the analysis. The percentage of students who made a
particular error is included for those cases in which the
responses did not appear to depend strongly on the version
of the question that was asked.

A. Failure to understand the relationship between the
wave function and possible energy measurements

In their responses to the questions above, many students
revealed a lack of understanding of the relationship
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between the wave function and the possible energy values
and their corresponding probabilities. Some of the ques-
tions probed student ability to find these quantities from the
wave function, others examined student ability to reason in
reverse (e.g., by asking students to find the possible results
of an energy measurement after a first measurement has
been made). The latter reasoning is arguably more difficult,
since students must first determine the wave function after
an energy measurement and then use it to obtain informa-
tion about a future measurement.

1. Finding the probability of an energy measurement
from the wave function

Research by others has demonstrated that students often
think that an energy measurement can yield the expectation
value of energy [9] or they calculate the probability density
in order to find the probability of an energy measurement
[8]. In our research we have also identified these errors at
the junior level; however, we find that these errors are less
prevalent among graduate students, and they did not appear
at all in sophomore students responses to question 1.

The errors made by students in the sophomore-level
course often seemed to be at a more basic level than
those mentioned above. A common error was to relate the
probability of making a specific energy measurement
directly to the coefficient of the corresponding term in
the wave function—without performing the absolute square
(15%, N = 104). Some students did this explicitly. For
others this error was more implicit. See, for example, the
following response to question 1B (Fig. 1):

These [energy eigenstates] are rotating around accord-
ing to the Schrodinger time evolution as given by e'Er'/",
The value for iE, /h is not the same so they are rotating
at different speeds so at some point the probability of
being in E, will be greater than E,. [sophomore,
question 1B]

This student appears to have a good understanding of the
time evolution of this wave function. He describes the
rotation of the real and imaginary components of the wave
function in the complex plane. However, the student does
not correctly associate the square of the coefficients in the
wave function to the probabilities of the energy measure-
ments. Like many of the students on this question, he seems
to be treating the real part of the coefficient as the only
important component.

The tendency to focus on the real part of the wave
function was not limited to students in the sophomore
course. One of the variations of question 1B asked in
the junior-level course presented students with the wave

function ¥(x,0) = i\@y/o - \/%l//] and asked whether

there is a time when the probability of measuring E; is
equal to 1:

Yes, y| also rotates through the complex axis in time,
meaning there are times at which it is completely
imaginary, and thus unobservable. [junior, variation
of question 1B]

This student explicitly states that only real parts of the wave
function can be measured. Approximately 10% (N = 123)
of the junior-level students gave answers consistent with
treating an imaginary coefficient for a term in the wave
function as meaning that the corresponding energy value is
not measurable.

Some of the students who did not properly square the
coefficient also treated the complex exponential as if it were
instead a decaying exponential. This tendency is discussed
in greater detail in Sec. V D.

Even some students at the graduate level struggled
with versions of question 1B. For example, when asked
if the probability of measuring a particular energy at a later
time is the same as it is at = 0, many students explained
that the time dependence of energy measurements depends
on the time dependence of the state. Statements like the
following were common:

It [the probability of measuring E, at a later time]
should be the same [at all times]. |y) is not relevant
with t. So (y|H|y) doesn’t change. [graduate, variation
of question 1B]

This student obtained the correct answer, but the underlying
reasoning is flawed, since |w) does in fact depend on
time [28].

2. Determining the outcomes of a subsequent
energy measurement

Many of the responses to the questions suggested that
students were having difficulty in determining the wave
function after an energy measurement is made. To answer
questions 2B and 3A, for example, students must recognize
that after the energy measurement, the wave function
corresponds to an energy eigenstate. Thus, there is only
one possible outcome for a future energy measurement.
Although these questions do not explicitly ask students to
write the wave function after the first measurement, the
explanations indicate that many failed to recognize or apply
this key idea. On question 2B, for example, 45% of junior-
level students (N > 200) incorrectly answered that the
result of a second measurement would possibly, but not
necessarily, be the same as the first. The following student
statement is exemplary:

The particle is described by a wave function with
elements in both eigenstates. Although a measurement
of energy collapses it to one, the possibility of the other
still exists, so a second measurement could get the other
E. [junior, question 2B]
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This student states that there is still a nonzero probability
associated with the other energy value, even though he has
knowledge of a “collapse” of the wave function. These
results corroborate findings by Zhu and Singh [8].

We have asked questions similar to the one above but
differ in that students are not given the initial wave
function, but rather are told the result of the first energy
measurement, e.g., that the measurement yielded the
ground state energy. (See, for example, question 3A.)
Lacking information about the state before the measure-
ment, students often answered that any of the energy
eigenvalues of the Hamiltonian could be obtained.

The failure to recognize how a measurement affects the
state of a system does not seem to be limited to measure-
ments of energy. In the sophomore course, we have asked
similar questions about measurements of spin. Many of the
same types of difficulties have emerged.

B. Tendency to associate the time dependence
of energy measurements with properties
of stationary states

Some previous studies have demonstrated that students
often have difficulty in identifying stationary states or in
answering questions that ask explicitly about properties of
stationary states [8]. We have found that even on questions
that do not involve stationary states, students spontaneously
invoke the term, often incorrectly, in justifying their ideas
about how the energy of a state does or does not change
with time. [In response to question 1B, about 10% of the
sophomore students (N = 104) explained their answer in
terms of stationary states.]

Stationary states are energy eigenstates and as such their
probability densities do not change with time. We have
found that students at all levels have a tendency to extend
this property both to the wave function and to the
probability of energy measurements. For the scope of this
paper, we restrict ourselves to discussing the latter. (See our
companion paper for a discussion of the former [29].)

Consider the following explanation of question 1B regard-
ing the state W, (x, 1) = % [y (x) e Ert/h — g, (x) e B2t/

W,(x,t) is a stationary state, the probabilities [of
energy measurements] will not change. [sophomore,
question 1B]

The student has provided the correct answer, but has made
two important errors. First, this student has incorrectly
identified the wave function as being a stationary state [30].
Second, this student has indicated that because it is a
stationary state the probability of energy measurement
outcomes will not change in time. Although the proba-
bilities do not depend on time, this is true for all quantum
states in a time-independent potential, not just stationary
states.

A similar question was asked on a final examina-
tion in the junior-level course. Students were given
a three-dimensional wave function w(r,6,¢,r=0) =
Nlwso1 + 2w311 + 2wa0), Where y,,;, are the normalized
energy eigenfunctions with energy eigenvalues E,;. They
were asked to find the probability that an energy meas-
urement at t = 0 would result in E,; and asked whether
or not their answer would change if instead the energy
were measured at a later time ¢ > 0. Almost all students
(approximately 80%, N = 44) correctly answered that
the probability would not change if it were measured at
a later time; however, only 25% gave correct explanations.
Many reasoned using stationary states, as demonstrated as
follows:

No because all [three terms] are energy eigenstates
which do not change with time. They are stationary.
[junior, variation of question 1B]

It [the probability of an energy measurement] would not
change. The eigenvectors of energy are stationary
states, so their coefficients will not be changing in time.
[junior, variation of question 1B]

The first student correctly identifies the y,,;,, as stationary
states, but then states, incorrectly, that they do not depend
on time. The student then uses that as the basis for stating
that the energy probabilities do not depend on time. The
second student also gives a correct answer, but explicitly
states that since each term in the wave function corresponds
to a stationary state, none of the coefficients have a time-
dependent phase. Although each of these students arrives at
the correct answer, they do not correctly relate the time
dependence of quantum states to the time independence of
the probability of energy measurements. We have found
that some graduate students make similar errors, although
less frequently.

C. Difficulties related to outside knowledge

On all of the questions we have asked, some students
have answered based on ideas that lie outside of the model
for quantum mechanics that has been developed in class.
The specific errors and the types of reasoning have varied
depending on the level of instruction.

On question 1 (Fig. 1), a consistent fraction of the
students (about 10%, N = 104) in the sophomore course
stated that lower energy values are more likely to be
measured than higher values. (Recall that the particle is
in an equal superposition of two energy eigenstates.)

[The probability of finding the particle in the ground
state is] greater than [the first excited state]. It requires
more energy for particles to stay in E, than E,. So
particles are more likely to be in a more stable state E.
[sophomore, question 1A]
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This student does not seem to recognize that the proba-
bilities for the energy measurements are determined by the
corresponding coefficients in the wave function. (See the
discussion in Sec. VA.) A possible explanation for this
response is that the student is using reasoning from
classical physics about particles being more likely to have
the lowest available energy. Another explanation is that the
student recalls information about spontaneous emission. In
either case, the student is neglecting to apply the model that
has been developed in class.

We found that reasoning based on outside knowledge
was more prevalent at the junior level when the questions
involved subsequent measurements. For example, on ques-
tion 2B (Fig. 2), about 10% (N = 141) of students used
conservation of energy to explain the possible outcomes of
future energy measurements. The following response is
typical of these students:

Since no energy was added or subtracted [during the
measurement], there MUST be the same E due to the
law of conservation of energy. [junior, question 2B]

This student arrived at the correct answer, but did so by
assuming that the prior measurement did not affect the
energy of the system. The same reasoning yields an
incorrect answer when it is applied to energy measurements
performed after a position measurement (or a measurement
of any other incompatible observable). For example, on
question 2C, some students stated that the position meas-
urement did not add energy to the system, so the energy
distribution will be the same as before the position
measurement. Other students, like the one following, stated
that the position measurement would add energy to the
system, so a subsequent energy measurement would result
in an increased value:

The particle’s position was measured which means some
energy must have been [added] into the system—which
would excited the particle above the ground state.
[junior, question 2C]

We have also seen instances of this chain of reasoning from
graduate students. The explanation below was given in
response to a question similar to question 3 (Fig. 3). In this
version, the potential was instantly changed from the
infinite square well to the simple harmonic oscillator and
students were asked about the possible results of an energy
measurement some time after the change:

The energy will be unchanged. I'm guessing this
because I don’t want to violate conservation of energy.
[graduate, variation of question 3B]

Some students used similar reasoning in their responses to
question 3B, in which a small perturbation is added to an
infinite square well. In many versions of the question, the
perturbation is nonzero over only a small portion of the well

(e.g., a small constant positive or negative correction
applied to a finite region near the center of the well).
Some students reasoned that the possible energy measure-
ments are found by adding the value of the perturbation to
the energy eigenvalues for the infinite well. In some cases,
students thought that the energy that could be measured
would depend on where inside the well it was measured.
For example, the possible energies would be those of the
unperturbed infinite square well if the measurement were
made where the perturbation is zero.

Related to these errors is a tendency of students to treat
the energy of any system as being well defined (i.e., there is
only one possible outcome from an energy measurement).
Perhaps students who indicate that the expectation value of
the energy could result from a single energy measurement
(see Sec. VA) are using this reasoning. Interactions with
students during tutorials and office hours provide us with
additional support that this may be affecting some of their
answers.

D. Failure to recognize that the time evolution
of an isolated system is determined
by the Schrodinger equation

On some of the questions that we have asked, student
responses have reflected a tendency to ascribe a time
dependence to isolated systems that goes beyond that
described by the Schrodinger equation. Students have often
predicted that a particle will decay to the ground state,
return to its initial state (revival), or evolve to include all
possible values (diffusion) [31]. In some cases, students are
using knowledge from outside the course, as was discussed
in the previous section. The difficulties below are treated
separately since they all seem to be related to the dynamics
of quantum systems.

Decay reasoning.—In some versions of the questions
that we have administered, students are asked about the
possible energies that can be measured shortly after an
energy measurement and a long time afterward. On these
versions, many students respond that the particle will
eventually decay into the ground state. We also see
evidence of this in the time-dependent perturbation theory
question in Fig. 3, for which some students have stated
that the particle will eventually end up in the ground state.
This reasoning is most common when students are told that
the particle begins in an excited state (as opposed to the
ground state):

As time goes on the particle is more likely to settle
into the ground state whatever that may be. [junior,
question 3B]

Many students fail to provide a detailed explanation
for why they think the particle will evolve to be in the
ground state. However, the reasoning given by some
suggests that they are recalling ideas they had studied
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earlier, such as radioactive decay and spontaneous or
stimulated emission.

Revival reasoning.—On questions that ask about the
possible energy values that could be measured after a prior
energy measurement, students often indicate that the particle
will return to the initial state. Others do not explicitly
indicate that it will return to that state, but they give
probabilities for measuring the energy that are the same
as they were before the measurement. These types of
answers were given by about 20% (N = 141) of the students
on question 2B (Fig. 2). A sample response is as follows:

The time interval, minute, is long enough for the wave
to return back to normal, so the option for both
[energy measurements] is there like before. [junior,
question 2B]

It is not clear what this student means by the term normal;
however, the student clearly states that both measurement
options are possible, even after the first energy measure-
ment has been made.

We also have found that many students express the idea
that a quantum system has a “memory” in time-dependent
perturbation theory. For example, in question 3C (Fig. 3)
students often predict that the particle will return to its
initial state once the perturbation is removed. This idea is
not restricted to the context of energy measurements. On
questions involving successive spin measurements, stu-
dents often express similar ideas.

Diffusion reasoning.—In response to many of the ques-
tions we have asked, some students have responded that after
a measurement has been made, the state will eventually
consist of an equal superposition of all available eigenstates.
The following student statement is in response to a version of
question 2B (Fig. 2) in which a particle was first measured to
have energy E; and the question asks what are the possible
results of a subsequent energy measurement:

If the energy were measured immediately afterward, the
probability is likely to remain E, because the wave
function has not yet spread out into its full linear
combination. However, if the energy is measured a long
time later, then the probability of measuring E| de-
creases, because the particle is now in a superposition of
states whose energies are clearly not all E|. [junior,
variation of question 2B]

We have also observed this line of reasoning in other
contexts, such as angular momentum. For example, if a
particle is known to have the angular momentum quantum
numbers [ =1 and m; =1 (where m; is the quantum
number for the z component of angular momentum), then
the possible quantum numbers for angular momentum in
the x direction are —1, 0, and 1. Many students incorrectly
state that each option must have an equal probability
of 1/3.

E. Failure to recognize the role of the Hamiltonian
in determining the possible energy values

We have found that many students have difficulty in
relating the Hamiltonian to the possible energy values for a
system. Two types of errors were common in response to
the questions we asked.

The first type of error was evident on versions of
question 1B, all of which involve a superposition of two
energy eigenstates. The questions probe student under-
standing that the probability of energy measurements for
such a system does not change in time. Many students
answered correctly and correctly stated that the absolute
squares of the coefficients are not time dependent.
However, some based their reasoning on the fact that the
potential is not changing [32]. These responses are con-
sistent with the belief that the probabilities do not have time
dependence if the Hamiltonian is time independent. We
have also paired this question with one that asks about the
time dependence of the wave function, and have found that
students have answered in the same way for both questions.
This suggests that the difficulty is more general and reflects
a misunderstanding of the role of the Hamiltonian in
quantum systems [33].

The second type of error was demonstrated in responses
to question 3 (Fig. 3), which asks about possible energy
measurements for a particle in the ground state of a system,
before, during, and after a perturbation. Almost 30%
(N = 140) of the (junior-level) students incorrectly indi-
cated that the original, infinite square well energies could
be measured while the perturbation is present. These
students seem to be using the basis in which the wave
function is written, and not that for the current Hamiltonian,
to determine the possible results of an energy measurement.
This error also occurred for the period after the perturbation
has been removed. About 40% answered correctly that any
of the energy values associated with the original, unper-
turbed potential could be measured; however, about half of
them have stated that it takes time for the particle to “feel
the effects” of the change to the potential. They do not seem
to be arguing that the potential itself takes time to change,
but rather that the wave function needs time to adapt. The
explanations suggest that students are treating the wave
function, and not the Hamiltonian, as determining the
possible outcomes of an energy measurement [34].

Graduate students gave very similar responses on a
variation of question 3. This version began with a particle
in the first excited energy eigenstate of an infinite square
well. Students were told that the potential then instanta-
neously changes to that for a harmonic oscillator and were
asked to list the possible results of an energy measurement
made immediately after the change. Only 25% (N = 31) of
the graduate students answered correctly. About 40%
incorrectly stated that the original infinite square well
energy could still be measured, as follows:
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It should still be E,—the wave will take time to conform.
[graduate, variation of question 3B]

Many, like the student above, reasoned that it would take
time for the particle to feel the effects of the change. About
half of the students who gave this response predicted that
some time later the harmonic oscillator energies would be
measured.

VI. DISCUSSION

In this paper, we have documented some of the diffi-
culties that students have in reasoning about the results
of energy measurements on quantum systems. We have
probed student thinking about which energy values can be
measured for a given physical system, how to calculate the
probabilities of obtaining each energy value, and how both
time evolution and measurement can affect these proba-
bilities. The results provide insight into some of the
conceptual and reasoning difficulties that students encoun-
ter in the study of quantum mechanics. We have found it
useful to group the underlying problems into five related
categories. These are not limited to sophomore- or junior-
level students, most also arise at the graduate level.

At the sophomore level, many of the errors seem to be
relatively basic in nature, such as a failure to use the
absolute square of the coefficients in a wave function to
find the probabilities for the measurements of energy.
However, the errors often seemed to have conceptual
underpinnings. For example, some responses are consistent
with a belief that only the real part of the wave function
contributes to the energies that can be measured and their
associated probabilities. This and other ideas seem to
persist to the junior level and beyond. In the sophomore-
level course, for example, we found evidence of students
treating the term stationary state as implying that the wave
function itself (not just the probability density) has no time
dependence. The students then used this reasoning as the
basis for arguing that the probability of energy measure-
ments do not depend on time. This incorrect chain of
reasoning proved to be persistent, and we saw evidence for
it at both the junior and graduate levels.

One of the most interesting errors we found at the
sophomore level was evident in only a small fraction of the
students (~5%), but the reasoning they used provided
insight into errors made by students at more advanced
levels. Some of the sophomores seemed to be reasoning
that the probability of a given energy measurement depends
on time only if the potential has a time dependence.
Although this chain of reasoning was not common among
sophomores, it was relatively common at the junior level in
the context of perturbation theory. We had seen this
reasoning previously among these students and thought
it was an isolated and question-dependent error. However,
the underlying ideas appear to be much deeper, and suggest
that many students fail to understand the relationship

between the time-dependent and
Schrodinger equations.

At the junior level we also asked questions about
subsequent measurements made on a system. The results
suggest that there is considerable confusion about the effect
of a first measurement on the possible outcomes of later
energy measurements. Students often gave answers that
suggested they thought that the particle eventually returns
to the initial state or would evolve to include all possible
energies. Some provided explanations that indicated that
the energy of a system does not change when a measure-
ment is made.

Finally, at both the junior and graduate levels we found
that when faced with an abrupt change to the potential, a
large fraction of students claim that the energy eigenvalues
of the former potential can still be measured after the
change. They reason it would “take time for the particle to
feel the effects of the change.” These students seem to be
aware that the potential determines the possible energy
values, as many of them articulate that, some time after
the change, the energy eigenvalues of the new potential
can be measured. However, instead of using knowledge of
the instant the measurement is made, they appear to be
incorporating their knowledge of the system moments
earlier.

We have found that a critical step in the design of
effective curriculum is the identification of ideas that
underlie the errors that students make on a given topic.
This process is guiding the design of curriculum for the
junior-level quantum course (Tutorials in Physics:
Quantum Mechanics [17]). At this stage, there is evidence
that some of these tutorials have a direct impact on student
conceptual understanding [35]. However, significant work
still needs to be done. Some of the most common
difficulties seem to be persistent and resurface when
students are asked questions in different ways or in new,
more difficult contexts. The discussion in this paper has
focused on some of the areas that we have found relevant
for most topics in quantum mechanics, and in recent
versions of the tutorials we have made an effort to
continually reinforce many ideas relating to energy mea-
surements throughout the undergraduate course content.

time-independent
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