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The Force Concept Inventory (FCI) is a 30-question multiple-choice assessment that has been a building
block for much of the physics education research done today. In practice, there are often concerns regarding
the length of the test and possible test-retest effects. Since many studies in the literature use the mean score
of the FCI as the primary variable, it would be useful then to have different shorter tests that can produce
FCI-equivalent scores while providing the benefits of being quicker to administer and overcoming the test-
retest effects. In this study, we divide the 1995 version of the FCI into two half-length tests; each contains a
different subset of the original FCI questions. The two new tests are shorter, still cover the same set of
concepts, and produce mean scores equivalent to those of the FCI. Using a large quantitative data set
collected at a large midwestern university, we statistically compare the assessment features of the two half-
length tests and the full-length FCI. The results show that the mean error of equivalent scores between any
two of the three tests is within 3%. Scores from all tests are well correlated. Based on the analysis, it appears
that the two half-length tests can be a viable option for score based assessment that need to administer tests
quickly or need to measure short-term gains where using identical pre- and post-test questions is a concern.
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I. INTRODUCTION

Assessing what students learn or what they know is an
important but difficult task in education research. In the
physics education community, the Force Concept Inventory
(FCI) is the most often used tool of assessment [1,2]. There
are two versions of the FCI, the original version published
in 1992 and the revised version released in 1995. In this
study, the 1995 version is used, which contains 30 multiple-
choice questions covering topics commonly taught in
introductory mechanics. These questions were designed
to probe conceptions that are shown to be common among
high school and college students [3,4,5].
In education research and evaluation, pre-post testing is a

very popular assessment method. For example, in Hake’s
study, over 6000 students were pre-post tested using the
FCI [2]. The results showed that interactive engagement
classroom settings (ones that included hands-on learning
and discussions) enhanced students’ learning as opposed to

traditional classroom settings characterized by lectures.
These are powerful results for educators and have influ-
enced much of the physics education research and cur-
riculum development that takes place today.
When doing assessment in real classroom settings,

instructors and researchers are often concerned by a
number of practical issues. The first is the time taken for
students to complete the assessment. The typical 40-minute
allotted time for the FCI takes up nearly an entire class
period, which may affect the willingness of instructors to
use it for pre-post testing in their already crowded sched-
ules. However, less time is often not an option since test
anxiety could be raised by any reduction of the time allotted
[6]. As a comparison, the Chemistry Concept Inventory
was developed with only 20 questions so that it could be
administered in a short period of time [7]. The second issue
is the test-retest memorization effect when identical ques-
tions are used in pre-post testing. It has been shown that this
test-retest memory effect tends to fade over a time period
longer than 5 weeks [8–10]. If researchers want to study
short-term learning gains, the test-retest issue needs to be
carefully addressed [11]. A possible solution to measuring
short-term learning gains is to use equivalent parallel tests
for pre-post testing.
Therefore, it is advantageous to have shorter parallel

tests that have similar assessment capacities and are quick
to administer. Since the FCI is the most widely used
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research tool in PER, with which researchers have pro-
duced a large collection of data and research outcomes, it
would be ideal to create tests equivalent to the FCI so that
the results from the new tests can be compared with the
existing work.
The FCI test measures a range of concepts in force and

motion and is designed to have multiple questions for each
concept. In this study, we use both content analysis of the
FCI questions and descriptive statistics of the existing data
to split the FCI test into two equivalent short version tests
(nearly half-length) that each contains 14 questions. The
reduction in numbers of questions will adversely impact the
assessment capability in measuring individual concepts.
Therefore, the focus of this study is aimed at producing
equivalent and scalable total scores of the different versions
of tests.
A timed student trial showed that the majority of students

were able to complete the short tests in less than half the
time needed for the full FCI. We then conducted extensive
quantitative analysis to compare the assessment character-
istics of the three versions of the tests (two half-length tests
and the full-length FCI test) and to determine the typical
measurement uncertainties. The assessment parameters
obtained in this study establish an important baseline for
using the short version tests in practice.

II. METHOD AND DESIGN

As an overview, the method in this study includes five
general steps. First, a team of physics education researchers
hand picked the FCI questions into two short tests aimed to
measure approximately the same set of concepts and
produce mean scores that can be equated with the full-
length FCI scores. Second, using a large scale FCI data set,
a computational regression process is used to sort through
the possible combinations of the two short tests to identify
the optimal construction that minimizes the total errors
among the mean scores of the different tests. Third, the
Item Response Theory (IRT) is used to estimate and
compare the assessment features of the two short tests
and the FCI test, which suggest that simple linear models
can be used to convert the mean score of one test to an
equivalent mean score of another test. In the fourth step,
actual linear conversion models are determined to convert
scores of one test to another. The uncertainties in such
conversions are also evaluated. As the final step, which
evaluates the reliability of the method, the conversion
models are applied with data sets from very different
populations and the overall uncertainties in such applica-
tions are evaluated to obtain an approximate scale of error
tolerance for using the new tests in practice.
In the first step of this study, the FCI questions were

grouped into 7 clusters (see Table I) by a team of content
experts in the field of physics education research including
5 professors and 6 graduate students. The grouping took
into account a wide range of factors concerning the design

of the FCI [1,3–5,12,13], the involved concepts and
contexts of the questions [13–15], as well as the con-
struction features of the test such as individual and
sequenced question structures.
The expert team then hand-picked questions in each

cluster into two groups to form the initial versions of the
two half-length tests, referred to as HFCI1 and HFCI2. The
splitting of questions was determined by the expert team
based on a number of practical considerations regarding
contexts, average scores, question sequences, etc. This
splitting process produced the initial candidate versions of
the two half-length tests as well as the constraints for
certain questions to go into either of the tests. For example,
only questions in the same content clusters can be switched
between the two tests. In addition, questions in a sequence
needed to remain in the same sequence. A computer script
was written to scan all allowed question swaps as well as
removing up to a total of two FCI questions between
HFCI1 and HFCI2 to find the most optimized structures of
the two tests so that the sum of differences between scores
of the two tests in both pre- and post-test applications was
minimized. The final results of splitting of the questions
through computer and manual selections are listed in
Table I.
As shown in Table I, three FCI questions (2, 26, and 28)

are used on both half-length tests for test equating pur-
poses. These three questions cover simple projectile (free
fall) motion, force and motion, and Newton’s third law,
allowing a common base for test equating calculations.
Questions 1, 3, 16, 27, and 29 are not used on the new tests
in part due to the limited length of the two half-length tests.
In addition, questions 1 and 3 often have the highest scores
on the FCI test resulting in the ceiling effect on the pretest
for college students and on the post-test for high school
students. Questions 15 and 16 are two sequenced questions
on the concept of Newton’s third law using identical
contexts. The results of question 16 can be significantly
influenced by question 15 [13]. Therefore, question 16 is
not used in the half-length tests.
Question 27 is the last question in a 3-question sequence

on the concept of force and motion using the context of box
pushing. Performance on this question is significantly

TABLE I. The physics concepts assessed in the two half-length
tests, HFCI1 and HFCI2. The numbers listed under each test
reflect question numbers on the full version of the FCI.

Concept HFCI1 HFCI2

Free fall 2 2
Newton’s third law 15, 28 4, 28
Force motion 13, 17, 26 25, 26, 30
Circular motion 5, 6 7, 18
Projectile motion 12 14
Kinematics 19 20
Force motion cluster 8–11 21–24
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higher than the first two questions in the sequence. Based
on the computation results described in the second step
above, assigning question 27 to either of the half-length
tests would significantly impact the measurement equiv-
alence of the two tests. As a result, question 27 is not used
in the half-length tests. Question 29 involves the types of
forces on an object and is the only question in this category.
There hasn’t been much established research on student
difficulties in this specific area. In addition, quantitative
analyses showed that including or removing this question
doesn’t change the assessment characteristics of the tests.
Therefore, to limit the lengths and overlaps of the two half-
length tests, question 29 is also removed.
Although from the expert’s point of view, the two half-

length tests span the same sets of physics concepts, the two
groups of questions involve different contexts. Existing
research on context sensitivity of assessment questions has
shown that contextual features of questions can signifi-
cantly influence how students respond to questions [14,15].
This leads to concerns on the reliability and equivalence of
the new tests. In this study, we will evaluate the equivalence
and reliability of the mean scores of the new tests using
results from a large-scale statistical analysis. The results of
this evaluation only apply to mean scores of the tests and
are not intended to be used to make implications on the
equivalence regarding student understanding of specific
conceptual domains.
Ideally, equivalent instruments not only produce equiv-

alent scores but also have similar assessment characteristics
such as discrimination, difficulty, and guessing chances. In

this research, the statistical analysis focuses on the equiv-
alence and reliability of the three tests (two half-length tests
and the original FCI). First, we use Item Response Theory
to estimate and compare the basic assessment features
including the discrimination, difficulty, and students’
guessing parameters of the three tests. We then quantita-
tively determine the numerical models for score conver-
sions among the different tests. If the differences among the
assessment features and the errors produced in the score
conversions are both acceptable, the three tests are then
considered to be statistically equivalent and can be used
interchangeably in practice.
The data used in this analysis were collected at a large

midwestern state university for a period of 5 years, the
students who enrolled in calculus-based introductory
mechanics courses took the full FCI as a pretest during
the second week and as a post-test in the week before final
exams, a time elapse of approximately nine weeks. The
average pre- and post-test scores for each quarter remained
fairly steady over time. Therefore, we treated the students
from different years as the same student population. The
data set consists of unmatched pre- and post-test scores,
containing 3139 pretest scores and 2526 post-test scores. A
few matched data sets from the same population have also
been experimented. The differences between matched and
unmatched data are small (less than 1% among all tests).
The data include results for all 30 questions of the FCI.

Based on the question assignments listed in Table I, data on
selected questions were used to calculate the results on
HFCI1 and HFCI2. In Table II, the basic statistics of all

TABLE II. Basic descriptive statistical comparisons of the two half-length tests and the original FCI test. All scores and standard
deviations are in the scale of a 100-point score. The score changes (ΔS) are calculated based on the average scores of the pre-
and post-test.

Pretest Post-test
Pre-post score change (ΔS)
and normalized gain (g)

HFCI1 HFCI2 FCI HFCI1 HFCI2 FCI HFCI1 HFCI2 FCI

Concept areas Score Score Score Score Score Score ΔS (g) ΔS (g) ΔS (g)

Free fall 43.77 43.77 66.43 62.27 62.27 77.42 18.5
(32.90)

18.5
(32.90)

10.99
(32.74)

Newton’s third law 33.50 33.83 41.00 56.12 64.75 64.87 22.62
(34.01)

30.92
(46.72)

23.87
(40.46)

Force motion 18.06 17.69 27.80 44.22 41.90 50.88 26.16
(31.92)

24.21
(29.41)

23.09
(31.97)

Circular motion 50.32 46.11 48.22 67.52 71.34 69.43 17.2
(34.62)

25.22
(46.81)

21.21
(40.96)

Projectile motion 78.31 61.07 69.69 88.24 69.04 78.64 9.94
(45.80)

7.97
(20.48)

8.95
(29.53)

Kinematics 67.44 65.50 66.47 70.51 72.96 71.73 3.06
(9.41)

7.46
(21.63)

5.26
(15.69)

Force motion cluster 50.29 56.98 53.64 67.64 66.22 66.93 17.35
(34.90)

9.24
(21.47)

13.29
(28.67)

Test total (SD) 43.75
(19.79)

43.66
(21.15)

49.26
(18.17)

62.25
(21.55)

61.93
(23.18)

66.23
(19.22)

18.5
(32.89)

18.27
(32.43)

16.97
(33.45)
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three tests are summarized, including the average pre- and
post-test scores, pre-post score changes, and pre-post
normalized gains of different concept areas and the whole
tests. The results show that the total scores of the two half-
length tests are virtually identical; the difference is 0.09%
on pretest and 0.32% on post-test. Because of the removal
of several high-scoring FCI questions, the scores of the
half-length tests are typically 5% lower than that of the FCI.
Meanwhile, larger variations are observed among the
scores of different tests in some of the individual concept
areas. This can be caused by at least two factors: the small
number of questions in a single concept area and the
sensitivity of student performance to question contexts.
As a result, it is recommended that only the total scores
and score changes are used for evaluating student
performances.
Between pre- and post-test, the raw score changes for the

two short tests are also very similar, with a difference of
0.23%. Between the short tests and the FCI, the raw score
changes differ on the order of 1.5%. Similar results are also
observed with the normalized gains. These results suggest
that on the basis of descriptive statistics, the total scores,
score changes, and normalized gains of the two short tests
provide equivalent measures of student performances and
learning gains. The FCI scores are slightly but consistently
higher than those of the short tests. In the later part of this
paper, a numerical relation will be quantitatively deter-
mined, which can convert the score of one test to an
equivalent score of another test. With such conversions, the
two short tests and the FCI can be used interchangeably to
measure student overall performances.

III. TEST EVALUATION USING IRT ANALYSIS

When evaluating the assessment equivalence of different
tests, the mean score is often less important than the
discrimination and measurement scale. For example, if
two tests produce different mean scores with the same
population but have similar discriminations and measure-
ment ranges, the test scores can be easily equated with a
constant offset. In this study, a standard approach of the
IRT-based test equating analysis is used to evaluate the
score-based assessment equivalence of the half-length tests
and the full-length FCI test.
Test equating is a well-established field that uses

multiple models and methods to study the reliability and
equivalence of assessment instruments [16,17]. IRT is often
used as the theoretical basis for advanced test equating
analysis that can produce assessment parameters based on a
probabilistic framework. The typical set of assessment
parameters includes test discrimination, test difficulty,
and the guessing factor. Existing research has shown that
IRT can be used to evaluate features of the FCI test [18,19].
The advantages of using an IRT-based method is that it can
maintain assessment consistency when student populations
have very different mean scores and that the estimated

assessment parameters can help extend the assessment scale
into questions not used on the test [16]. In this section, we
apply the three-parameter IRT model to estimate and
compare the assessment parameters of the two half-length
tests and the full-length FCI test. The model is given by

PðθÞ ¼ cþ 1 − c
1þ exp½−1.7aðθ − bÞ� : ð1Þ

Here, PðθÞ is the probability of a student with ability θ to
correctly answer a question, which is the model predicted
score of the student. The assessment characteristics of a
question are described in terms of three parameters: the item
discrimination a, the item difficulty b, and the guessing
parameter c. All the parameters in Eq. (1) are between 0 and
1 and are estimated with a large-scale data set through a
regression process using marginal maximum likelihood
(MML) algorithms that minimize the errors between
observed student scores and model predicted scores.
To apply the IRT model, the data should follow a normal

distribution [20]. Analysis of the data set used in this paper
suggests that student scores on the two half-length tests
reasonably follow a normal distribution (R2 > 0.97) and that
the condition of this data set is appropriate for conducting
IRT analysis. Similar results have also been reported in our
previous study on IRT application to FCI data [18].
Using the three-parameter IRT model, the assessment

parameters of the three tests were calculated with pretest
data. The use of pretest data is based on the implementation
model that treats the test instrument as a fixed entity and the
students with changing abilities between pre- and post-test.
The IRT model estimates the three parameters for each item
on a test. The results were then averaged to produce the
parameters of the test listed in Table III [21]. Overall, the
assessment features of the three tests are similar in terms of
discrimination and guessing. However, the difficulty level
of the full FCI is smaller than that of the two half-length
tests, which is consistent with the results of test scores
shown in Table II.
For all three tests, the guessing chances are on the order

of 10%–15%, which is below the structural uncertainty of
the five-choice single-response questions. This result is
consistent with the existing literature, which shows that the
distractors of the FCI tests are not equally attended to by
students due to students’ naïve understanding of the related

TABLE III. Assessment parameters for the two half-length tests
and the full-length FCI calculated using IRT model applied on the
pretest score.

Discrimination
a (SD)

Difficulty
b (SD)

Guessing chance
c (SD)

HFCI1 1.86 (0.95) 0.59 (1.08) 0.15 (0.14)
HFCI2 1.74 (0.92) 0.51 (0.91) 0.11 (0.09)
FCI 1.65 (0.95) 0.26 (1.09) 0.13 (0.12)

HAN et al. PHYS. REV. ST PHYS. EDUC. RES 11, 010112 (2015)

010112-4



physics concepts [14]. As a result, students holding certain
naïve conceptions would consistently chose a specific
subset of incorrect answers reducing the occurrences of
random guessing.
The discrimination parameters of the two new tests are

similar and are slightly higher than that of the FCI. The
differences are about 0.2, which would not significantly
alter the response characteristics of the tests. To explore
how variations of the three assessment parameters might
impact the response probabilities, the response curves of
the FCI and the two half-length tests were plotted in Fig. 1
along with an adjusted curve of HFCI1, which will be
discussed later. In Fig. 1, the solid black line represents the
response curve of the FCI. The two nearly overlapping
dotted and dashed black lines are the response curves of
HFCI1 and HFCI2. This shows that the two half-length
tests have nearly identical response characteristics con-
cerning their difficulty levels and discriminations. The
chances of guessing the HFCI1 are slightly larger than
that of the HFCI2 at low θ, which in this case will not
impact the overall assessment properties as the ability
measure θ of most students is in the range from −1 to þ2.
Comparing the HFCI tests and the FCI, their two

response curves look very similar except that they are
shifted horizontally by a constant equal to the difference
between their difficulty parameters (¼0.33 for the HFCI1,
as an example). The HFCI tests are slightly harder and

therefore their response curves are shifted towards the
high-θ direction.
Using HFCI1 as an example to compare with the FCI, the

features of the two response curves are ideal for test
equating using linear models. Since the main difference
between the two curves is a constant shift, one can
quantitatively adjust the difference of the difficulty param-
eter to make good predictions from the score of one test to
the other. As an example, an adjusted HFCI1 response
curve is produced by subtracting the difficulty parameter of
HFCI1 with 0.33. The curve is plotted with a gray dashed
line in Fig. 1. The results show a nearly identical curve to
the FCI’s response curve. The standard deviation of the
differences in predicted student scores produced by the
response curves of the FCI and the adjusted HFCI1 is 1.4%,
which provides a rough estimation of the approximate
uncertainty of score equating between FCI and HFCI1.
In summary, the results in Table III and Fig. 1 suggest that

by using linear models of test equating the three tests can
produce equivalent assessment scores with errors at the level
of 1.4%. Therefore, the two new tests can be alternative score
based assessment options for replacing the FCI.

IV. TEST EQUATING RESULTS

Based on the descriptive statistics and IRT analysis, the
two half-length tests and the original FCI have similar
assessment features and can produce equitable measure-
ment outcomes. In practice, it is often helpful to convert the
scores of the new tests to equivalent FCI scores, which
allow direct comparisons of the new results with the large
amount of FCI data in the literature. In this section, the
conversion scales are determined so that the score measured
by any one of the three tests can be converted into an
equivalent score on another test.
It is worth clarifying that score conversions operate on

the average total scores of the different tests and don’t apply
to individual student scores due to the multifaceted uncer-
tainties within the individual students’ problem-solving
processes. The average of total test scores of a sizable
sample (N ∼ 100) can often reduce the impact of the
individual uncertainties and produce results that are sta-
tistically valid and reliable.
With threeversions of tests and two testing conditions (pre

and post), a total of six scatter plots are produced in Fig. 2 to
show the relations between the scores of any two tests in
different testing conditions. A point in the figure gives the
average scores on two tests for a group of students in a
particular bin. The bins are definedwith the scores of the test
labeled on the horizontal axis of each curve. Since each half-
length test has 14 questions, there are a total of 15 score bins.
Students are assigned to one of the 15 bins based on their
scores on the test indicated on the horizontal axis. For the
group of students in a particular bin, their average scores on
the two tests indicated on the horizontal and vertical axes are
calculated and used to position the point on the figure. The

FIG. 1. IRT response curves of FCI and HFCI1. The horizontal
axis represents the scale of the student ability parameter θ, which
is typically between −3 and þ3. The majority of students fall in
the range of −1 to þ2. The vertical dimension gives the
probabilities of correct response (or the mean score) on the test
of students with specific values of ability θ. The solid line plots
the response curve of the FCI test based on the parameters in
Table III. The black dotted and dashed lines plot the response
curve of HFCI1 and HFCI2. The gray dashed line plots the
response curve of HFCI1 with its difficulty parameter reduced
by 0.33.
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error bar of each point gives the standard deviation of the
average score of the test indicated on the vertical axis.
The scatter plots show that the binned average scores of

the different tests are linearly related at all performance
levels. This is an important relation that allows us to use
linear functions for score conversions between different
tests. Since the making of the short tests are based on the
total scores, it is not guaranteed that students at different
performance levels will respond equally (linearly) to the
new tests. The linear relations shown in Fig. 2 confirm that
students at different performance levels respond similarly
to both the short version tests and the FCI test. This is also
consistent with the similar discrimination parameters of the
short tests and the FCI.
The equation for each linear fit is calculated and shown

in each of the six figures with R2 close to 1. (R2 is the
square of the correlation coefficient and gives the fraction
of variance explained by the fitted line.) The parameters of

the linear fits are listed in Table IV. There are slight
variations among the fitting parameters of the different
pairs of tests. For consistency purposes, we use the average
fitting parameters (also shown in Table IV) to produce two
average fitting models in Eqs. (2) and (3), one for
converting the scores between a short test and the FCI
and the other for converting the scores between the two
short tests. Additional conversion models can also be
between specific pairs of tests using the results in Table IV.

Score FCI ¼ 0.804 × Score HFCIþ 15.482 ð2Þ

Score HFCI2 ¼ 0.814 × Score HFCI1þ 11.536 ð3Þ

The uncertainties of score conversions can be evaluated
using the differences between the predicted scores and the
observed scores with two measures, the mean error (ME)
and the root mean square deviation (RMSD), which

FIG. 2. Cross comparisons between FCI and the half-length tests. In each graph, there are 15 bins along the horizontal axis with an
equal difference of 1=14 of the total score. A point on the graph represents the average score of the test described on the vertical axis
from students having a score within a particular bin on the horizontal axis. The error bars are the standard deviations.
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provide quantitative evaluations of the accuracies of score
conversions:

MEij ¼
P

N
k¼1 ðPk

ij − Ski Þ
N

RMSDij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
k¼1 ðPk

ij − Ski Þ2
N

s

: ð4Þ

Here, for the kth examinee, Ski is the observed score of test i
and Pk

ij is the predicted score of test i based on the observed
score on test j. N is the number of examinees. The errors of
score conversions for each pair of the three tests are given in
Table V.
As discussed earlier, score conversions can be calculated

using individual fitting parameters or the average fitting
parameters listed in Table IV. Table V gives the errors of both
types of conversions. In general, the mean errors of score
conversions are small, with the maximum being 3.49%,
which is approximately one-half of a question difference for
the short tests. Conversions between the short tests and the
FCI have smaller errors than conversions between the two
short tests. This is largely due to the smaller numbers of
questions in the half-length tests; shorter tests will cause
larger steps in total scores, which can lead to larger scales in
uncertainties. This is also evident from the larger RMSD
measures of the short tests, which double that of the FCI.
The results in Table V also show that using individual

fitting parameters rather than the average fitting parameters
reduces the error slightly by 0.5%–1.5%. However, since

the errors associated with using either method are small, it
is preferable to use the average fitting parameters so that
score conversions and comparisons in different studies can
be more standardized with a consistent conversion model.
From Table V, it appears that by using the average

conversion models described in Eqs. (2) and (3), the range
of mean errors for predicting equivalent FCI scores from the
two half-length test scores on both the pre- and post-test is
within �1.5%, while the RMSD is approximately 7%. The
scale of the error is consistent with the theoretically
estimated uncertainty based on the IRT response curves
shown in Fig. 1. For the FCI test, which has 30 questions,
1.5% error in score is less than the uncertainty produced by
half of a question difference. The RMSD is equivalent to the
standard deviation of differences between the observed and
predicted scores. Based on existing research on control
treatment and pre-post comparisons, typical FCI pre-post
score differences are larger than 10%, and the standard
deviations are on the order of 15%–20%. Therefore, the
1.5% mean error and 7% RMSD provide a good statistical
baseline for using the short tests as FCI-equivalent measures.
Meanwhile, using the two half-length tests as parallel

tests in short term pre-post testing studies will incur a mean
error of approximately 3.5% with an RMSD at the 13.5%
level. This range of uncertainty is also small enough for
using the two short tests in typical education studies. For a
score difference of 10% or more, the error is within 1=3 of
the magnitude of the signal, which will not undermine the
statistical validity of the study.

TABLE IV. Parameters of the linear fits between any two of the three tests on both pre- and post-tests.

Comparison conditions Slope Intercept R2

HFCI1 vs FCI for pretest 0.830 13.464 0.999
HFCI2 vs FCI for pretest 0.790 15.310 0.999
HFCI1 vs FCI for post-test 0.808 16.060 0.995
HFCI2 vs FCI for post-test 0.791 17.092 0.995
Average parameters of fitting between FCI and HFCI1/2 0.804 15.482
HFCI1 vs HFCI2 for pretest 0.844 8.969 0.983
HFCI1 vs HFCI2 for post-test 0.785 14.102 0.963
Average parameters of fitting between HFCI1 and HFCI2 0.814 11.536

TABLE V. Errors between the predicted scores and the observed scores. All scores are in the scale of 0–100.

Prediction conditions
Individual fittinga Average fittingb

ME RMSD ME RMSD

HFCI1 predict FCI on pretest 0.51 7.39 1.39 7.53
HFCI2 predict FCI on pretest 0.52 6.81 1.33 6.91
HFCI1 predict FCI on post-test 0.09 6.83 −0.70 6.87
HFCI2 predict FCI on post-test −0.19 6.57 −0.96 6.65
HFCI1 predict HFCI2 on pretest 2.22 13.33 3.49 13.61
HFCI1 predict HFCI2 on post-test 1.01 13.40 0.28 13.28

aErrors are evaluated using the individual fitting parameters listed in Table IV.
bErrors are evaluated using the average fitting parameters listed in Table IV.
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V. TEST EQUATING RELIABILITY

The half-length versions of FCI tests are developed
based on a large data set from one university. Since student
performances on FCI are dependent on student background
and instructional settings, the fact that the data are from a
single population can pose potential limitations on the
applicability of this research to other student populations
with different background and receiving instruction via
different pedagogical approaches. To evaluate the reliability
of the half-length tests and the equating method, two
additional data sets are analyzed and compared together
with the original results in Table VI.
The three institutions listed in Table VI are located in

three different states. The data set from University 1 is the
original data used to develop the short tests. The results for
University 1 are copied from Table II for easy comparisons
with others. University 2 is a large state university in a
different state and the data collected are from an intro-
ductory algebra-based college physics course. The third
school is a suburban high school with well-established
physics courses. The data from University 2 (N ¼ 501) and
the high school (N ¼ 657) are matched pre- and post-test
data. With these sample sizes, the standard errors of the
average test scores are under 1%.
The three populations and courses compared in Table II

are very different, which are confirmed by their pretest
scores and pre-post gains. Comparisons of these diverse data
sets show that the uncertainty between the half-length tests in
measuring different populations in pre- and post-test is
approximately 3%. The measurements of score changes
are more stable with an overall uncertainty less than 1.5% for
all three tests. The uncertainties for normalized gains are on
the order of 3%, slightly larger than score changes.
Combining all the analyses discussed above, the reli-

ability of using the short tests with different populations can
be initially established at the 3% level. The reliability
evaluation is an ongoing process that requires large
collections of diverse data sets. The results presented here
serve the purpose to provide a starting baseline for applying

the half-length tests in future studies. The outcomes of this
study suggest that the method of creating short tests based
on the FCI instrument can provide FCI-equivalent meas-
urement in the form of total average scores with an overall
uncertainty of 3%. Therefore, if the expected score changes
or differences are 3 times larger than the uncertainty
(>9%), the confidence for trusting the observed signal
being a real signal rather than a system error due to using
different instruments can be established at a level of 99% or
greater. In such cases, the two half-length tests can be used
to replace the FCI in assessment.

VI. SUMMARY AND DISCUSSIONS

Conceptual surveying and pre-post testing are valuable
methods widely used in education research and teaching
practices. When using these methods in practice, research-
ers and teachers are often concerned about the length of the
assessment and memorization from pre- to post-test. If a
test is too long, instructors may be reluctant to administer
the test because it might take up too much time in an
already tightly scheduled classroom. If the same test is used
in both pre- and post-testing, at least 5 weeks of time must
elapse between the two tests in order to reduce the influence
from memorization. In physics education research, the
Force Concept Inventory is a popular tool and has estab-
lished an extensive collection of test results. It would be
useful, therefore, to have short, parallel assessments that
provide measures equivalent to that of the FCI.
In this paper, we have derived two half-length tests from

the popular FCI. The FCI and the two tests proposed here,
extracted as subsets of the FCI, cover the same concepts
and appear to have similar assessment characteristics that
produce equivalent test scores with an overall uncertainty
less than 3%. With these new parallel tests, researchers and
teachers would be able to administer the assessment in a
shorter period of time, reduce the test-retest effects in pre-
post testing, and still expect to measure scores directly
comparable to that of the full FCI test. Although the
outcomes of this study are encouraging, the new tests

TABLE VI. Comparisons of test performances with data from three different institutions. University 1 is the institution for the original
data set. The results for University 1 are copied from Table II for easy comparisons. University 2 (N ¼ 501) is a public state university in
a different state. The high school data (N ¼ 657) are from a suburban high school located in a state different from both universities. The
scores and normalized gains in the Table are in the scale of 0–100.

Pretest Post-test Pre-Post score change (ΔS) and normalized gain (g)

HFCI1 HFCI2 FCI HFCI1 HFCI2 FCI HFCI1 HFCI2 FCI

Testing conditions Score Score Score Score Score Score ΔS (g) ΔS (g) ΔS (g)

University 1 (SD) 43.75
(19.79)

43.66
(21.15)

49.26
(18.17)

62.25
(21.55)

61.93
(23.18)

66.23
(19.22)

18.5
(32.89)

18.27
(32.43)

16.97
(33.45)

University 2 (SD) 30.00
(16.35)

26.86
(16.69)

33.88
(15.10)

41.54
(20.30)

38.71
(21.03)

45.84
(18.64)

11.55
(16.50)

11.84
(16.09)

11.96
(18.02)

High school (SD) 22.29
(13.09)

21.56
(13.48)

25.36
(11.94)

48.95
(24.90)

46.43
(26.52)

51.67
(23.66)

26.66
(34.38)

24.88
(31.80)

26.31
(35.29)
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and equating methods will need to be thoroughly validated
through additional research involving a large number of
diverse data sets from different populations and institutions.
The nature of this study represents a theoretical data-

mining approach on modifying an existing instrument.
There are limitations and constraints. The assessment
method can produce FCI-equivalent mean scores using
two half-length tests. The results only apply to the mean
scores and should not be used to make inference about
student understanding of specific concepts as a shortened
test will certainly leave out a great deal of assessment
capacity. Therefore, the methods and results introduced in
this paper are only applicable to average total test scores
and should not be used to evaluate scores of individual
students or subsets of the questions on specific concepts
included in the tests.

In addition, the data-mining technique uses the existing
data collected with the full 30-question FCI. An exper-
imental study that uses all three tests with randomized
samples of identical populations has been carried out to
further establish the reliability of the short version tests.
The preliminary results are consistent with the theoretical
predictions, which will be reported in a follow-up paper.
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