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The Colorado Learning Attitudes about Science Survey (CLASS) is a widely used instrument designed
to measure student attitudes toward physics and learning physics. Previous research revealed a fairly
complex factor structure. In this study, exploratory and confirmatory factor analyses were conducted on
data from an undergraduate introductory physics course (n ¼ 3844) to determine whether a more
parsimonious factor structure exists. Exploratory factor analysis results indicate that many of the items from
the original CLASS have poor psychometric properties and could not be used in a revised factor structure.
The cross validation showed acceptable fit statistics for a three factor model found in the exploratory factor
analysis. This research suggests that a more optimum measurement of students’ attitudes about physics and
learning physics is obtained with a 15-item instrument, which describes the factors of personal application,
personal effort, and problem solving. The proposed revised version of the CLASS offers researchers the
opportunity to test a shortened version of the instrument that may be able to provide information about
students’ attitudes in the areas of personal application of physics, personal effort in a physics course, and
approaches to problem solving.
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I. INTRODUCTION

The advancement of knowledge in science education is
dependent upon the quality of the assessments that are used
in research. Pelligrino [1] has argued that there is a need in
science education for rigorously developed and tested
assessments that provide multiple sources of validity
evidence. While the word “validated” is often used to
describe assessments, validity more correctly refers to the
extent to which theoretical and empirical evidence supports
the interpretation of results when properly used [2]. Simply
defined, validity means a test measures what it is intended
to measure [3]. This is an important distinction because
validity is inferred when multiple sources of evidence about
different aspects of an instrument have been obtained.
Validity is not a one-time stamp of approval made about an
assessment, but rather is inferred based on the evidence [4].
According to Kubiszyn and Borich, there is “validity
evidence if we can demonstrate that it [assessment]
measures what it says it measures,” ([3] p. 306).
Furthering the discussion on validity, Messick argued

that validation is an ongoing pursuit for the purpose of
improving and refining an instrument [5]. Based on

Messick’s discussion, assessments should be viewed
through a developmental lens. Others have noted this
and acknowledged that it may take years of research and
several iterations before an assessment’s psychometric
properties become acceptable [6]. Pointed out by
Arjoon, Xu, and Lewis, “If the instruments’ scores are
not valid and reliable, the resulting interpretations will also
be invalid, and can lead to potential detrimental decisions
for students and for the research or educational enterprise,”
([7], p. 536). It is not uncommon for an assessment to be
strong in one or more aspects of validity, and yet still need
further development to adequately address the necessary
aspects before the scores should be used for educational
decisions or research. In other fields, such as engineering
education and chemistry education, revised scales have
been published in order to inform the community about
psychometric issues and further develop and improve the
assessment [6]. In the same way that replicating a scientific
study provides evidence of the trustworthiness of the
original results, replication studies of important assessment
tools also enhance the degree to which researchers can be
confident in their results obtained by the assessment. Once
an instrument has been published for community use, it is
the researchers’ responsibility, not only the creators, but
also those who use that instrument to examine validity
evidence with their data through psychometric analysis.
Considering that research results are dependent upon
measurement, it is ethical to inform the community about
any evidence that calls into question the validity of the
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results for widely used assessments. The purpose of this
study is to examine the psychometric properties of an
important assessment in the research of students’ attitudes,
Colorado Learning Attitudes About Science Survey
(CLASS) [8], and propose revisions based on evidence
found. By first establishing which items robustly measure
the same constructs and can therefore appropriately be
scaled, this study aims to improve the validity of the
interpretation and use of the CLASS results.

II. ASSESSMENT FUNDAMENTALS

The extent to which an assessment produces valid results
is dependent upon the quality of the methods used in its
development. Assessments that have been developed from
rigorously applying methods should demonstrate evidence of
validity. The methods of development can vary from quali-
tatively driven approaches (see Creswell and Plano Clark’s
discussion of exploratory sequential mixed methods [9]) to
the more traditional, theoretically based approaches; see
Spector [10]). What determines the quality of an assessment
is not the methodological approach per se, but rather the rigor
of the methods used. While there is a plethora of assessment
development models that researchers can choose from to
design their research methods, there are fundamentals that
must be adhered to in order to assert something is in fact
being measured by the items in an assessment.
The construct to be assessed must be sufficiently defined

with a clear scope prior to item generation [4]. This can be
done through qualitative approaches, such as interviews
with students and experts to understand the variation that
exists between them; or this can be done based on
theoretical definitions. What is important is that the creators
have a well-defined construct (or constructs) and have
established the bounds of which the construct is to be
studied [4]. In particular, latent constructs, such as attitudes,
cannot be measured directly and, therefore, need several
indicators in order to produce valid inferences [6].
Analogous to taking several measurements of a physical
phenomenon in order to reduce measurement error, also in
assessments, measurement error is reduced by increasing
the number of measurements, i.e., questions about attitudes.
However, when measuring attitudes, the actual phenome-
non is not observable. Rather, what we have are questions
that when taken together, theoretically represent some
aspect of the phenomenon (e.g., attitudes) under study.
The questions asked are a sample, or chosen subset, of all
the questions that could be asked related to the phenome-
non. The more fully all the aspects of the phenomenon are
represented, the less the measurement error. In other words,
researchers decide what questions need to be asked so that
when taken all together, the questions will generalize to
represent the phenomenon. This is a similar rationale as
in physical study; researchers employ a strategy to ensure
the results generalize to the phenomenon. Because the
study of latent constructs, such as attitudes, is not directly

measureable, care must be taken to examine the evidence
that items labeled as a construct are in fact representative
of the true phenomenon. By clearly defining the bounds of
the phenomenon under study, researchers can articulate
the purpose and scope of the assessment and go on to create
items that are reflective of this purpose.
The development stage requires a clear rationale for why

the chosen items are considered to be measures of the
construct and then empirical evidence should demonstrate
their adequacy in representing the construct. The first
empirical evidence and prerequisite to justify the use of
a scale is through examination of dimensionality [4].
According to Nunnally and Bernstein, the statistical proper-
ties of items that measure the same construct will indicate
unidimensionality [11]. In addition, Netemeyer, Bearden,
and Sharma wrote, “Given that scale (factor) unidimen-
sionality is considered prerequisite to reliability and
validity, assessment of unidimensionality should be para-
mount” ([4], p. 9). Statistically speaking, dimensionality is
defined as the number of latent constructs (factors) needed
to explain the item correlations [4]. Evidence of unidi-
mensionality can be found through factor analysis, where
constructs have a clear factor structure with no or minimal
cross loadings [12]. A factor that is comprised of only items
that cross load on other factors indicates an ill-defined
construct. In addition, internal reliability will be high, as
reliability is in part based on item variance [4].
Cronbach’s alpha is one commonly used method of

ascertaining the internal reliability of the assessment [13]. It
provides evidence of the degree to which items are all
measuring the same construct through the computation

α̂ ¼ k
k − 1

�
1 −

P
α̂2i

α̂2X

�
;

where k is the number of items in the scale, α̂2i is the variance
of item i, and α̂2X is the total variance of the scale [14]. While
alpha is a function, in part, of the total number of items, it is
also dependent on the variance attributable to persons and to
the interaction between persons and items [13]. Cortina
studied the relationship between coefficient alpha, dimen-
sionality, the number of items in a scale, and average
interitem correlations [15]. He found that for a unidimen-
sional scale where the average interitem correlation is 0.50,
alpha will be 0.70, or higher, regardless of the number of
items. Under the conditions of unidimensionality, and
moderately high intercorrelations, it has been recommended
that four to seven items per construct (or factor) could be
sufficient to reach an alpha of 0.80 [4]. For a newly
developed scale, psychometric researchers have set the
benchmark for alpha at 0.80 for a scale to be used [16,17].

III. THE CLASS

As the last ten years of physics education have brought
reform specifically designed to improve student attitudes
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about physics, the CLASS has become an important tool to
assess curriculum reform. According to Google Scholar on
March 20, 2014, the CLASS article [8] published in physics
education research (PER) has been referenced in 253 articles.
There are 62 references to it in Physical Review journals, and
34 in PER. The CLASS has been used in numerous studies
published in PER (e.g., [18–20]). In addition, it has been
modified for biology and chemistry [21,22] and it has been
translated for use in several languages [23].
The CLASS was developed by scholars at the University

of Colorado and loosely based on other established attitude
and epistemological surveys towards science [8] and
Fishbein’s theory of attitudes [24]. Adams and colleagues
also report considerable time spent interviewing experts
and students in order to gain better understanding about
student attitudes and beliefs about physics and learning
physics. According to the creators, “This survey probes
students’ beliefs about physics and learning physics and
distinguishes the beliefs from those of novices. The CLASS
was written to make the statements as clear and concise as
possible and suitable for use in a wide variety of physics
courses” ([25], p. 1).
The developers of the CLASS administered it at both

middle-sized multipurpose schools and large research
universities in various physics courses composed of stu-
dents with differing majors [8]. In addition, the researchers
have reported studying the psychometric properties of the
CLASS with more than 5000 students. The CLASS
consists of 42 Likert-scale items probing student attitudes
towards physics. Students rate their level of agreement with
each item on a five-point scale from strongly disagree to
strongly agree. The scoring of the CLASS is determined by
the participant answers of agreement with the predeter-
mined opinion of physics experts.
Based on factor analysis work, 26 of the 41 items were

grouped into eight overlapping factors of attitudes about
physics and learning physics. The eight factors deter-
mined were Real World Connections, Personal Interest,
Sense Making and Effort, Conceptual Connections,
Applied Conceptual Understanding, Problem Solving
General, Problem Solving Confidence, and Problem
Solving Sophistication. Adams et al. define Real World
Connections as “physics described by the world,” Personal
Interest as “I think about physics in my life,” Conceptual
Understanding as “physics based on a conceptual frame-
work,” and Sense Making and Effort as “I put in the effort to
make sense of physics ideas [8].” Although Problem
Solving was not specifically defined in the paper, Sherin
defines problem solving as the ability to understand the
problem in relation to a particular schema and then solve the
problemwithin that schema’s techniques and equations [26].
Further understanding of the labeled categories can be
found by reading the items within each category.
This eight-factor model is very complex and uses only 26

of the items administered to students. Each of the factors

has at least four items and numerous items overlapping
between factors, indicating constructs are not unidimen-
sional. The factor analysis work completed on the
CLASS is the first of its kind. According to the researchers,
each factor was based on the following equation:
Robustness ¼ ð2ccþ flþ 5jΔEj=NÞ × 3R2, where cc is
the average absolute value of the correlation coefficients
between items, fl is the average absolute value of the factor
loadings for each factor, ΔE represents the shape the scree
plot, N is the number of items in the factor, and R2 is the
Pearson product moment correlation which represents how
close to a straight line the scree plot is for components
(eigenvalues) greater than 1 [8].
While Adams and colleagues developed an interesting

approach to factor analysis that capitalizes on the strengths
of both theory- and data-driven approaches, their resulting
solution violates the foundation of reliability and validity:
unidimensionality of each construct [11]. In a discus-
sion about the purpose of factor analysis, Gorsuch wrote,
“Each factor represents an area of generalization that is
qualitatively distinct from that represented by any other
factor,” [27]. Yet, in the CLASS, several items are used
to score more than one factor which is conceptually
problematic. The categories of Conceptual Connections,
Problem Solving Confidence, and Problem Solving
Sophistication do not have any indicator items that are
unique; all the items are scored in other categories. In
addition, the researchers do not report a measure of internal
reliability for the instrument or individual factors.
In a psychometric reevaluation of the chemistry version

of the CLASS, Heredia and Lewis found a 16-item, three-
factor solution best fit their data and Fishbein’s theory of
attitudes [28]. In addition, Heredia and Lewis suggest that
similar psychometric reevaluations of the CLASS occur in
the physics and biology versions. Their suggestion is in
alignment with Crocker and Algina’s argument that the
“ultimate criterion for the number of factors to interpret is
replicability” ([14], p. 303].
The purpose of this study is to examine the psychometric

properties of the CLASS through classical test theory. In
addition, we follow with Thurstone’s notion of simple
structure [29,30], which has been used by many researchers
to support the selection of the most parsimonious factor
structure that fits the data, along with Crocker and Algina’s
three criteria: sensibility, simple structure, and replicability
[14]. The research questions are: (1) What are the psycho-
metric properties of the CLASS on a large data set?
(2) What is the empirical factor structure found from
exploratory and confirmatory factor analysis?.

IV. METHODS

A. Participants and data collection

Participants include 3,844 college students enrolled in an
introductory calculus-based physics course at a large
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research university located in the Midwest. Typically, the
course consists of mostly freshman and sophomore engi-
neering majors, followed in number by physics and
chemistry majors. Available demographic information
showed the majority of students were male (77%) and
either Caucasian (75.5%) or Asian American (9%). The
data were randomly split into two groups, 1918 students
were selected for the exploratory factor analysis and 1926
students were selected for the confirmatory factor analysis.
Data were collected pre- and postsemester over eight

different academic terms starting in Spring 2006. Typical
enrollment in the course is about 800 in the fall, 1200 in the
spring, and about 40 students in the summer sessions. The
response rate for all semesters is estimated to be slightly
above fifty percent.
The survey was available online through the course web

site at the beginning and end of each semester. The students
volunteered to complete the online CLASS survey. There
was a small extra credit incentive for students who
completed both the pre- and post-survey.

B. Data analysis

Data were collected at the beginning and end of each
semester. Only the predata were analyzed. This would ensure
that any intervention during the course of the semester would
not influence our results. The data were randomly split into
two groups. Approximately half of the data were used to run
a data-driven exploratory factor analysis (n ¼ 1918) and the
other half to confirm the newly proposed factor model
(n ¼ 1926). Before the statistical analyses, data cleaning
was conducted on students who responded incorrectly to the
monitoring item, who had the same answer for all the items,
and who completed less than half of the questions. Missing
data were negligible and thus handled by replacing the mean
of each item for missing values.
Preliminary to conducting factor analysis, interitem

correlations were conducted as recommended by Spector
[10]. This provides evidence of homogeneity of construct;
items that correlate relatively highly are considered to have
evidence of measuring a single construct. Items that do not
correlate significantly with other items that are purported
to measure the same construct are problematic and should
be deleted.
Exploratory factor analysis (EFA) is primarily used to

determine a more parsimonious conceptual understanding
of the data by identifying underlying latent constructs for
the measured items which may or may not be correlated
with each other [12]. EFA estimates the pattern of relation-
ships between common factors and each measured variable
in order to understand the structure of correlations among
the measured variables. In other words, EFA summarizes
the interrelationships between variables in order to aid in
conceptualization [31].
While orthogonal rotation forces the factors to be

uncorrelated, oblique rotation allows factors to be

uncorrelated or correlated and is therefore a good choice
in education research, as latent constructs in social science
data are usually correlated to some extent [12].
The exploratory factor analysis was conducted in SPSS

18. Twenty-five of the items had elevated means (>3.5 on a
5 point scale), the items skewness ranged from −1.14 to
1.15, and kurtosis ranged from −0.93 to 1.26. Principal
axis factoring was used to extract the factors along with a
promax rotation for ease of interpretation, as this estimation
technique is appropriate for data with skew and kurtosis
less than 3 and 10, respectively. The factors were not
determined to be orthogonal, thus an oblique rotation was
used. In fact, cross loadings were minimized but were not
entirely removed from the factor structure.
While EFA is a data-driven model, confirmatory factor

analysis (CFA) is a theory-driven approach; it is used to
test a hypothesis about the data [30]. Both EFA and CFA
are based on a common factor model. Therefore, when
examining relationships between items and constructs
within a large data set, it is appropriate to randomly split
the data in half, and perform an EFAwith one-half, a CFA
with the other. This approach provides strong support
for the proposed model and is recommended as cross
validation of the factor structure [12].
A 17-item factor model without cross loadings was first

modeled in Amos 18 [32] to confirm the factor structure on
the other half of the data. Again, since the data are
categorical and not normally distributed, the asymptotically
distribution-free estimation method was utilized. To improve
model fit, various cross loadings and correlated variances
between items of the same factor were added to the model.

V. RESULTS

The range of item response choices on the CLASS is
from one to five. Initial exploratory descriptive analysis
found almost half of the items had standard deviations
greater than 1.0 and a few items with means close to 3.0.
This indicates non-normality of the data, which is likely for
the categorical data being analyzed. Table I displays the
mean, standard deviation, and item-total correlations for
the exploratory and confirmatory data sets. The interitem
reliability for both the exploratory and confirmatory data
sets with all items was high (Cronbach’s α of 0.845 and
0.841, respectively). However, there were ten items (4, 7, 8,
9, 18, 19, 27, 33, 38, 41) in both data sets with all bivariate
correlations with other items less than 0.275. In addition,
the item-total correlation was below 0.20 for nine items in
the exploratory data set and ten items in the confirmatory
data set. These items were deleted because they did not
correlate well with any other item; meaning they were
measuring something different than other items and not
representative of a single underlying construct [4].
Communality coefficients are “the variance in a measured

variable the factors as a set can reproduce,” ([30], p. 179).
In other words, the shared variance of items. When an EFA
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is performed with items of low communality, the results can
be substantially distorted [11]. For the exploratory factor
analysis, based on recommendations from Comrey, an
iterative removal of items with low communalities
(<0.30) in order to reduce distortion [33]. Typical item
communalities in the social sciences are between 0.40 and
0.70, and a “high” communality is considered 0.80 or greater
[19]. After each item removal, the EFA was conducted to
find out whether communalities of other problematic
items would increase after other poor items were removed.
The remaining 30 items were analyzed and six more items
were removed in an iterative manner because communalities
were less than 0.30. Seven more items were removed
because of they did not significantly load on any factor
(>0.30), following best practices recommendations [11].
The final model was comprised of three factors consist-

ing of 17 items. The first factor contains seven items
pertaining to the student internalizing physics concepts and
relating them to the world around them. This factor is called
Personal Interest and Relation to the Real World. The
second factor contains five items pertaining to student
attitude towards problem solving and learning physics. This
factor is called Problem Solving and Learning. The final
factor contains five items that pertain to student level of
effort in understanding physics concepts and their relation-
ships. This factor is called Effort and Sense Making. The
factor matrix presented in Table II shows there may be
some cross loadings between factors for items 11, 21, 25,
34, and 35. Cronbach’s alpha was calculated as a measure
of internal reliability for each factor and for the overall

assessment of students’ attitudes about physics and learn-
ing physics: Personal Interest and Relation to the Real
World α ¼ 0.80; Problem Solving and Learning α ¼ 0.73;
Effort and Sense Making α ¼ 0.69; Overall scale α ¼ 0.86.
This 17-item factor model was analyzed via confirmatory

factor analysis (CFA). The model fit was still not found to be
within an acceptable range based on commonly accepted
standards given by Hu and Bentler [34]. Items 11 and 35
were removed based on modification indices reported and
the EFA results. The CFAwas recalculated. Cross loadings
and error covariances were added to the model to increase fit
indices based on modification indices that held theoretical
or conceptual justification, as recommended by Brown [35].
For example, while many cross loadings indicate poor
conceptualization, we considered the modification indices
suggestion to allow item 25 to cross load with the factor
of Problem Solving and Learning. This allowed retention of
the item, I enjoy solving physics problems, which is
conceptually an important aspect of a students’ attitude
about physics and learning physics. In addition, it is
understandable that the item would load with other items
that were related to the students’ own personal interest, as
well as their effort in solving physics problems. This is
purely for model-fitting purposes; we do not recommend,
however, that this item be scored twice. We conceptualize
it as an aspect of Personal Interest and Relation to the
Real World. Items with similar wording are understood to
have similar measurement error and thus were allowed to
have the error variances correlated, as suggested by the
modification indices.

TABLE I. Univariate summary statistics and item-total correlations of the CLASS.

Exploratory Factor Analysis (n ¼ 1918) Confirmatory Factor Analysis (n ¼ 1926)

Item M SD rcorr Item M SD rcorr Item M SD rcorr Item M SD rcorr

1 3.0 1.1 .32 22 3.0 1.0 .33 1 3.0 1.1 .31 22 3.0 1.0 .33
2 3.9 0.9 .32 23 3.9 0.8 .40 2 3.9 0.8 .31 23 3.9 0.9 .38
3 3.4 1.1 .50 24 4.0 0.8 .37 3 3.4 1.1 .49 24 4.0 0.8 .35
4 3.6 1.0 .01 25 3.3 1.0 .55 4 3.7 1.0 .05 25 3.3 1.1 .55
5 3.3 1.1 .42 26 4.1 0.7 .46 5 3.3 1.1 .43 26 4.1 0.7 .47
6 3.6 1.0 .44 27 3.2 1.1 .07 6 3.6 1.0 .41 27 3.2 1.1 .06
7 2.5 0.9 −.17 28 3.7 0.9 .43 7 2.6 0.9 −.15 28 3.7 0.9 .46
8 2.2 0.9 .15 29 4.2 0.9 .42 8 2.2 0.9 .17 29 4.2 0.8 .41
9 3.2 1.1 .15 30 4.0 0.8 .52 9 3.2 1.1 .18 30 4.0 0.7 .53
10 3.9 0.9 .37 32 3.9 0.9 .46 10 3.8 0.9 .34 32 3.9 0.9 .49
11 4.0 0.8 .44 33 3.0 1.0 −.05 11 3.9 0.9 .42 33 3.0 1.0 −.06
12 2.3 1.1 .23 34 3.8 0.8 .51 12 2.3 1.1 .25 34 3.8 0.8 .50
13 3.7 1.0 .40 35 3.9 0.9 .49 13 3.7 1.0 .37 35 3.9 0.9 .47
14 3.6 0.9 .51 36 3.1 1.0 .33 14 3.6 1.0 .49 36 3.1 1.0 .34
15 3.9 0.8 .37 37 3.4 1.1 .42 15 3.9 0.8 .37 37 3.4 1.0 .40
16 3.8 0.9 .33 38 3.6 1.0 .23 16 3.8 0.9 .30 38 3.5 1.0 .20
17 3.4 1.0 .29 39 3.8 0.8 .34 17 3.4 1.0 .27 39 3.7 0.8 .36
18 3.4 1.0 .04 40 4.0 0.8 .51 18 3.4 1.0 .02 40 4.0 0.9 .49
19 3.7 0.9 .12 41 3.2 1.0 .01 19 3.7 0.9 .09 41 3.2 1.0 −.01
20 3.9 0.9 .38 42 3.8 0.7 .50 20 3.9 0.9 .36 42 3.8 0.7 .49
21 3.4 1.1 .44 21 3.4 1.1 .44
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Results of both the 17- and 15-item model and the final
fitted model are given in Table III. The chi-square value is
the standard overall model goodness-of-fit (GFI) index,
however, it is highly sensitive to sample size and routinely
violated in CFA [36]. Therefore, structural equation mod-
eling software provides several other ways to practically
evaluate how well a hypothesized model fits the data,
referred to as goodness of fit statistics [37]. There are
dozens of fit statistics available for use in evaluating a
model [36]. To evaluate models through the use of different
evidence, researchers are recommended to report at least

one fit index from each class of absolute, parsimony, and
comparative fit indices [35]. In doing so, we followed
Byrne’s recommendations on interpretation and report the
“rules of thumb” after a brief description of each fit index
[37]. Root mean square residual (RMR) is an absolute fit
index that is calculated based on covariance residuals,
differences between observed and predicted covariances
[35]. Ideally, models will have 0.05 or less RMR. The GFI
is an absolute fit index where the hypothesized model is
compared to the null hypothesis, in other words, the items
have no structured relationship. Values close to 1.0,

TABLE II. Exploratory factor analysis factor structure.

Factor 1 Factor 2 Factor 3

P S P S P S h2

Factor 1: Personal Application and Relation to Real World
3. I think about the physics I experience in everyday life. :716 :682 .317 .272 .470
11. I am not satisfied until I understand why something works the way it does. :392 :479 −.116 .224 .290 .422 .284
14. I study physics to learn knowledge that will be useful in my life outside

of school.
:650 :658 .323 .333 .433

25. I enjoy solving physics problems. :607 :651 .258 .464 −.161 .273 .471
28. Learning physics changes my ideas about how the world works. :587 :577 .226 .309 .339
30. Reasoning skills used to understand physics can be helpful to me in my

everyday life.
:469 :582 .327 .264 .476 .387

37. To understand physics, I sometimes think about my personal experiences
and relate them to the topic being analyzed.

:587 :556 .233 .238 .311

Factor 2: Problem Solving and Learning
5. After I study a topic in physics and feel that I understand it, I have difficulty
solving problems on the same topic.

.291 :652 :618 .269 .386

21. If I don’t remember a particular equation needed to solve a problem on
an exam, there’s nothing much I can do (legally!) to come up with it.

.292 :410 :505 .169 .391 .277

22. If I want to apply a method used for solving one physics problem to another
problem, the problems must involve very similar situations.

−.140 .142 :514 :486 .275 .251

34. I can usually figure out a way to solve physics problems. .225 .443 .334 .371
40. If I get stuck on a physics problem, there is no chance I’ll figure it out

on my own.
.326 :456 :581 .253 .484 .382

Factor 3: Effort and Sense Making
23. In doing a physics problem, if my calculation gives a result very different

from what I’d expect, I’d trust the calculation rather than going back through
the problem.

−.121 .208 .185 .384 :490 :527 .304

24. In physics, it is important for me to make sense out of formulas before
I can use them correctly.

.254 .371 −.207 .144 :439 :455 .264

29. To learn physics, I only need to memorize solutions to sample problems. .247 .359 :611 :609 .379
32. Spending a lot of time understanding where formulas come from is a waste

of time.
.325 .382 :559 :608 .375

35. The subject of physics has little relation to what I experience in the real world. .167 .425 .189 .447 :341 :522 .333

Note: P ¼ PatternStructure; S ¼ FactorStructure

TABLE III. Confirmatory factor model and fit indices.

χ2 df RMR GFI CFI RMSEA BIC

3 factors with 17 items 656.84* 116 .077 .915 .628 .049 936.7
3 factors with 17 items and correlated errors 436.90* 110 .066 .944 .775 .039 762.1
3 factors with 15 items 516.70* 87 .071 .928 .675 .051 766.3
3 factors with 15 items and correlated errors 323.82* 83 .058 .955 .818 .039 603.7

*p < .0001. RMSEA, root-mean-square error of approximation; BIC, Bayesian information criterion.
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specifically 0.95 or higher, indicate a good fit. The root-
mean-square error of approximation is an index of parsi-
mony that compares how well the hypothesized model fits
the data, while accounting for the complexity of the model,
and penalizes for overly complex models. This is consid-
ered one of the most widely used fit indices in CFA [37].
Values of 0.05 are indicative of a well-fitting model,

whereas values of 0.08 and higher indicate misspecifica-
tion. The Bayesian information criterion is a comparative
index that takes into account the complexity of the model,
per degrees of freedom and overall model fit. This is helpful
in comparing models, as that a lower value indicates the
more parsimonious model. The comparative fit index (CFI)
is an incremental comparison of the hypothesized model to
the base model. Values range from 0 to 1, where values of
0.95 or higher indicate excellent fits.
Consideration of the 5 indices described above led to the

conclusion that the 15-item, three factor model is the best-
fitting model for the data. The final model with unstand-
ardized and standardized factor loadings is shown in Fig. 1.
Factor loadings can be viewed as regression coefficients
which show the strength of relationship between the items
and the factors that underlie them. Internal reliability was
again calculated: Personal Application and Relation to the
World α ¼ 0.82; Problem Solving and Learning α ¼ 0.73;
Personal Effort and Sense Making α ¼ 0.61; and overall
scale α ¼ 0.82.

VI. DISCUSSION

The proposed factor structure is more parsimonious than
the original factor structure and may allow for the use of a
shorter measure of student attitudes towards physics and
learning physics. Table IV compares the original version of
the CLASS to the revised version. While several items have
been removed from the original survey and there is loss of
item-level data, the result is an interpretable instrument that
researchers can use to understand student attitudes. All of
the items in the proposed version are scored, so all of the
questions students answer have utility. Additionally, the
proposed factor structure has strong psychometric proper-
ties which support that each factor is indeed measuring one
aspect of student attitudes about physics. Although the CFI
did not meet the level of a superior fitting model, taken into
account with the other fit indices, the final model is the best
fit for these data. From a developmental perspective, the
next step is to empirically test the newly created shortened

TABLE IV. The Original and Proposed Revision to the CLASS Categories and Survey Items.

Original CLASS [14] Proposed Revision

Categories Survey Items Categories Survey Items

Real World Connection 28; 30; 35; 37 Personal Application and Relation
to Real World

3; 14; 25; 28; 30; 37

Personal Interest 3; 11; 14; 25; 28; 30 Problem Solving/Learning 5; 21; 22; 34; 40
Sense Making/Effort 11; 23; 24; 32; 36; 39; 42 Effort/Sense Making 23; 24; 29; 32
Conceptual Connections 1; 5; 6; 13; 21; 32
Applied Conceptual Understanding 1; 5; 6; 8; 21; 22; 40
Problem Solving General 13; 15; 16; 25; 26; 34; 40; 42
Problem Solving Confidence 15; 16; 34; 40
Problem Solving Sophistication 5; 21; 22; 25; 34; 40
Not Scored 4; 7; 9; 31; 33; 41
Note.—Items in bold are scored more than once.

FIG. 1 (color online). Unstandardized factor loadings and
covariances for confirmatory factor model. (Standardized factor
loadings and correlations are listed after the slash.) “Personal
Application” denotes factor 1; “Problem Solving” denotes factor
2; and “Personal Effort” denotes factor 3. **p < .01. ***p < .001.
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version. Future research should consider whether additional
revisions to the instrument may improve the theoretical
understanding of the items and improve model fit.
When the models of the exploratory and confirmatory

factor analysis were compared with the original factor
structure proposed by Adams et al. [8], numerous simi-
larities were found between the determined factors. The
first factor, Personal Application and Relation to the
World, is the combined factors of Personal Interest and
Real World Connectionwithout items 11 and 35, which did
not have strong factor loadings in the confirmatory model
but were included in the exploratory factor model. Further
analysis with the postdata and other data sets would help
explain this incongruence with the two items.
The second factor, Problem Solving and Learning, has

the exact same items as the original Problem Solving
Sophistication factor. This suggests a more parsimonious
factor of problem solving and may indicate that the
previous three factors of problem solving are better
described by the single underlying construct of problem
solving. The third factor, Personal Effort and Sense
Making, is contained in the original Sense Making and
Effort factor. However, there are four items in the original
factor not retained in the exploratory analysis completed
here. Item 29 (“To learn physics, I only need to memorize
solutions to sample problems”) was not included in the
original factor structure. Item 29 seems an appropriate
addition to a factor including other items referencing sense
making and effort. Theoretically, experts understand phys-
ics on a deeper level than simple memorization of solutions,
whereas novices may approach learning physics by
memorization.
In addition to the similarities this factor structure shares

with the original CLASS factor structure, our results find
similar factors as those found by Heredia and Lewis in the
chemistry version of the CLASS [28]. Their research also
found factors of Personal Interest and Problem Solving.
In the chemistry version of CLASS, there are also unique
items related to Atomic-Molecular Perspective of Chemistry.
This provides further evidence that the CLASS is coming
closer to a stable factor structure that can be used in different
settings. One caveat to this finding, however, is that the
student demographics in this study were largely white males
and it is unknown whether this factor structure would hold
with students from other demographics. Heredia and Lewis
had a somewhat more diverse student sample, with white
males comprising 42% and whites 57%. In keeping with
Messick’s proposition that assessments should be viewed
from a developmental perspective, as researchers consider
student attitudes in populations with larger variation in
student demographics, this factor structure should again
be examined specifically with underrepresented minority
groups [5]. In addition, use of item response theory could
further examine whether students from diverse groups
understand the CLASS in the same way.

The finding that the three factors of Personal Application
and Relation to the World, Problem Solving and Learning,
and Personal Effort and Sense Making, correlate signifi-
cantly with each other and have a high level of overall
internal reliability, suggests that a general attitude about
physics is emerging from the data. The proposed factor
structure will enable researchers to parse out the different
attitudes from each other, but still appreciate that student
overall attitude may be attributing to how interested they
personally are in physics, the way they are able to relate
physics to their world, and how much effort they are willing
to devote to learning. The internal reliability of factors
Problem Solving and Learning, and Personal Effort and
Sense Making are still below what is ideal and future
revisions of CLASS should consider what other aspects of
those constructs in relation to Fishbein’s theory [24] could
be added to more accurately measure students’ attitudes
around problem solving and exerting effort in physics.

VII. FUTURE DIRECTIONS

From a use perspective, the proposed version of the
CLASS will enable researchers to focus on assessing
specific areas rather than trying to make sense out of
interpreting overlapping constructs. In addition to provid-
ing more targeted research on student attitudes related to
physics, a revision of the CLASS has potential to be of
more practical use for instructors to evaluate the areas
that need to be addressed more purposefully in courses.
A 15-item survey is relatively quick for an instructor to
administer and could be done midsemester to assess how
well students are maintaining or improving in how they
relate physics to the world, problem solve, and put forth
effort in learning. Instructors could then adjust lectures to
more clearly address the areas in which students are
struggling. The findings from the end of the course
assessment along with the revised CLASS could be used
to improve future offerings of the course.
In order for the science education community to capi-

talize on the “opportunity” that Pellegrino [1] calls for in
increasing the rigor of assessments, researchers must not
only employ rigorous methods for developing and testing
assessments, but researchers must continuously re-examine
the psychometric properties of popular assessments.
Validity is an ongoing process that cannot be separated
from its context [5]. Therefore, in order to have confidence
in an assessment’s results, the original psychometric
properties should be replicated in additional studies on
different groups, and, if not found, modifications to the
assessment, based on empirical findings that are theoreti-
cally coherent, should be shared with the community.
Through this developmental perspective of assessments,
the science education research community will have
greater confidence in the validity of their results and the
interventions designed to increase students’ outcomes.
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Researchers have a responsibility to be informed users
when they are considering the best way to determine the
outcomes of curricular reform. While psychometric studies
may not be, to some, as interesting as the results of
innovative curriculum reform, what will happen in cur-
ricular reform will, at least in part, be influenced by

assessment. Care should be taken in how we conceptualize
and measure students’ attitudes and the evidence we have to
support our measures. Through collaboration with those
who have measurement and assessment expertise, physics
education researchers can become more informed of critical
assessment issues and develop more robust measures.
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