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The viability of using complexity science in physics education research (PER) is exemplified by
(1) situating central tenets of student persistence research in complexity science and (2) drawing on the
methods that become available from this to illustrate analyzing the structural aspects of students’ networked
interactions as an important dynamic in student persistence. By drawing on the most cited characterizations
of student persistence, we theorize that university environments are made up of social and academic
systems, which PER work on student persistence has largely ignored. These systems are interpreted as
being constituted from rules of interaction that affect the structural aspects of students’ social and academic
network interactions from a complexity science perspective. To illustrate this empirically, an exploration of
the nature of the social and academic networks of university-level physics students is undertaken. This is
done by combining complexity science with social network analysis to characterize structural similarities
and differences of the social and academic networks of students in two courses. It is posited that framing a
social network analysis within a complexity science perspective offers a new and powerful applicability
across a broad range of PER topics.
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I. INTRODUCTION

In his 2013 Oersted lecture, Redish pointed out that,
“despite the clear value of theoretical frameworks in
scientific research, DBER [Discipline Based Education
Research] scientists are often reluctant to situate their work
within a theoretical framework” (p. 3) and that “part of the
challenge in building educational theory” is that “human
behavior is extremely complex.” He further argued that,
“Just as we have done in many areas of science, we create a
theoretical framework that allows us to build descriptive
models and that can evolve and change as we learn more”
([1], p. 2). However, to create such theoretical framing for
physics education research (PER) it is inevitable that the
physics education community will draw from other scien-
tific areas such as education, physics, sociology, psychol-
ogy, neuroscience, biology, and mathematics. A common
theoretical theme found across all these sciences is the

modeling of complex systems—or more specifically, the
application of complexity science or complexity theory.
This powerful perspective, however, has to date seen very
limited application in PER (see, e.g., Refs. [2,3]). Our aim
is to illustrate an application of it for a long-known thorny
issue—student persistence.
The reason that student persistence is chosen begins with

the work of Tinto, long regarded as a leading figure in the
seminal work on modeling student persistence. Tinto
describes how the view of student persistence has shifted
from relatively simplistic psychological aspects such as
“individual attributes, skills, and motivation” to a “detailed
longitudinal model that made explicit connections between
the environment, in this case the academic and social
systems of the institution and the individuals who shaped
those systems, and student retention [persistence] over
different periods of time” ([4], p. 2–3). Such a shift in
perspective, however, has thus far generally been missing in
PER studies dealing with student persistence issues.
Thus, we set out to illustrate the use of complexity

science in PER by addressing two research aims: (1) how to
situate central constructs from student persistence research
within a framework of complexity science, and (2) illustrate
the viability of using methods available from complexity
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science to analyze the structural aspects of students’
networked interactions.

II. CONCEPTUAL FRAMEWORK

A. Student persistence research

Student persistence—students persevering with their
studies—in university-level physics and related engineer-
ing education has been widely studied for many years, yet it
continues to be a significant international problem [5,6].
For example, in Sweden, the percentage of students who
graduate with a Bachelor of Engineering in Physics in the
designed degree program time is 63% of what it was
15 years ago, while during the same time period the number
of students has grown by 50% [7–11].
To date, student persistence research has drawn exten-

sively upon the work of Spady [12,13] and Tinto [14–16].
In 1987 Tinto showed that only 20% of students dropping
out failed academically, meaning that the remaining
80% left their university studies for other reasons [15].
This insight sparked a new thrust of study in the area that
became known as student persistence research. The con-
temporary field of student persistence has identified social
phenomena as critical attributes of student persistence,
instead of continuing to simply equate student dropout with
academic failure.
Since then, student persistence research has built its

knowledge base from a variety of applications of the work
of Spady and Tinto, and even today the research field still
draws extensively on these two foundational frameworks
[17–20]. According to these frameworks, the aspect of
students’ university life that has the most influence on
student persistence is the degree of students’ social and
academic integration as a function of students being able to
come to terms with the social and academic rules, norms,
values, and expectations found within the university com-
munity. These sets of rules, norms, values, and expectations
are framed as Durkheimian social systems [21] of the
university, i.e., the social “rules” and the academic “rules”
of being a part of the university community [15,22].
Thus, social and academic systems were brought to the

fore [12–16] in the field of student persistence. Several
successful theoretical and empirical models of student
retention are built around the separation of a social and
an academic system [12–18]. Thus, in this article, it is
analytically appropriate to treat these systems as two
distinct systems. These systems have been argued to be
interrelated in a complicated way [16]. However, Tinto [16]
made the case that in order for students to have a chance to
continue their studies, they need to be well integrated into
both of these systems. Tinto went on to propose that
students who are less successfully integrated into their
university’s social and academic life—from the students’
point of view—tend to be less likely to continue with their
studies ([16], p. 16).

Previous research involving the constructs of academic
and social integration (and thus social and academic
systems) have been criticized by some as being fuzzy
and ambiguous [18]. In this article, we propose that this
critique can be fruitfully dealt with by analyzing students’
social and academic integration using a network perspec-
tive (cf. [20]) to bring out the “well connected” or
“knowing the right people” attributes within the system.
How do students become socially and academically

integrated? In other words, how do they become “well
connected” (or “getting to know the right people”)? Is it
possible to empirically explore if this process is random or
if it is governed by a set of rules (social systems)? If yes,
then it is of paramount importance to do this in relation to
exploring the fundamental nature, i.e., social and academic
integration, of student persistence. Then, physics students’
course interaction network is not only of importance
when it comes to physics learning [23], but also for their
persistence. However, if these networks are created
randomly and each student has a random position in the
network, then a network analysis of students’ course
interactions in relation to learning, or persistence, is limited
to being descriptive and does not offer any practical or
pedagogical implications.

B. Social network theory

Visualizations and analyses of the structure and dynamics
of the social and academic networks are possible through
social network theory. The emphasis in social network
theory is on “structural relations” [24]; i.e., social network
theory offers a way to explore the relations between
different structures within networks. The essential compo-
nents of a network are the nodes and the links between
nodes. In other words, social network theory is a powerful
way to explore, come to understand, and characterize
structure connectivity through network measurements.
This study differentiates between the social and aca-

demic networks of the participating students’ courses. The
nodes in the networks represent individual students within
the network, and the links represent the type of relation-
ships (social or academic) between students. Networks are
characterized by quantifying links between nodes. The
nodes in a directed network have a total degree made up of
the sum of out-degree (number of outgoing links) and in-
degree (number of incoming links) measurements. A route
through a sequence of nodes, which begins with the starting
node and follows outgoing links to other nodes through the
network to the end node, is denoted as a path. When there is
a path between every node, then the network is considered
connected. If there are many paths between two nodes, the
distance and number of links in the different paths are used
to find the shortest path between nodes [25].
In this study, the networks were formed as directed

networks using the responses from a network survey (see
Sec. III), which asked the students with whom they
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interacted and how (socially or academically). Their
responses were used to create models of their social,
academic, and combined (social and academic) networks.
The distribution of in-degree nodes of the different net-
works were analyzed to investigate whether the different
networks show similarity. The power of this approach is
that it may indicate the nature of the underlying processes
in the creation of the two networks [26].
Using the average path length, it is possible to measure

how far apart two nodes in general are in the network and to
see how large or small the networks tend to be. Clustering
coefficients [26] were measured. A clustering coefficient
describes, in short, the likelihood that a node’s two
neighbors are also connected to each other (in this case,
that two students who are interacting with one student are
also interacting with each other). Clustering coefficients
were used to illustrate how grouped the network tended
to be and to see how tightly grouped the students were in
their groups.
While student persistence has been shown to depend on

students’ social and academic networks, the conceptual and
theoretical underpinning needed to apply a network analy-
sis to explore them is currently lacking in the field of
student persistence. Thus, the following question arises:
How can the relationship between social integration and
Durkheimian [21] social systems be described? This
question arises because the central constructs of student
persistence research are for students to be integrated into
the social systems of the university. In order to be able to
bring together social integration and network theory in the
case of student persistence, we set out to draw on the field
of complexity science.

C. Using complexity science in education research

This section provides an overview of the field of
complexity science and introduces the conceptual thinking
associated with complexity science. In doing so, we
provide a theoretical framework through which it is
possible to interpret the collection of tools provided by
social network analysis. Complexity science aims to
describe and understand complex systems and their capac-
ity to show order, patterns, and structure [27]. Especially
important is how these orders, patterns, and structures
seemingly emerge spontaneously from local interactions
(neighbor interactions) between the system’s components
or agents. Complexity science is currently used as a
research framing across many disciplines [28] generating
a theory that essentially “transcends disciplines” [29].
Complexity science is not characterized by any particular
method, but it is a methodological perspective that employs
a range of methods to study complex phenomena, and
where the evolution of a complex system is understood to
be largely unpredictable and uncontrollable. For more
details on the historical development of complexity
science, see Waldrop [29], and for an overview of current

applications of complexity science in a wide array of fields,
see Mitchell [28]. For pioneering use of complexity science
in education, see, for example, Refs. [27,30,31].
Complex systems are typically described as learning

systems because they are adaptive and self-organizing [32].
Learning in this sense is taken to be characterized by
“ongoing, recursively elaborative adaptations through
which systems maintain their coherences within dynamic
circumstances” ([33], p. 151). As a guiding perspective in
education research, complexity science uses the character-
istics of complex systems and conditions of emergence to
both understand and prompt learning. This is done through,
for example, complex network simulations of the effects of
the rules of choosing what to learn. Here, the effects of the
rules of choosing what to learn takes place amongst
interacting agents [34]. Further studies also explored these
effects in respect to different knowledge structures [35].
Although the behavior of complex systems such as
society, organisms, or the Internet can only be conceptually
discussed as somewhere in between complete order and
complete disorder, any attempt to measure or distinguish
one system as “more” complex than another typically
breaks down [28]. Complexity, as a single construct, is
hard to measure. But it is possible to examine structures and
dynamics that are shared across complex systems.
Complex systems have been found to have a decentral-

ized network structure where the connectedness of system
nodes is characterized by a power-law distribution [27].
This power-law degree distribution is frequently found in
real-world dynamic networks, such as the Internet [36–38],
the World Wide Web [39,40], and citation networks [41].
The widely accepted interpretation [26] of finding a power-
law degree distribution is that the system has evolved (and
may continue to evolve) through preferential attachment,
which is a central process for exploring how complex
systems evolve and adapt. This characterization of decen-
tralized networks means that there are very few components
or nodes that are much more connected than others—i.e., a
small subset becomes more “important” than others, and
thus “attracts” more connections. However, other complex
social systems have recently been found to follow other
distributions such as the Gamma, Weibull, and Zipf
distributions [42]. Accordingly, from these findings, the
underlying processes of network formation could be differ-
ent, but the process of preferential attachment can still play
a role in these distributions, just not as a single process.
Decentralized network structures can be contrasted with

two other types of network structures: (1) centralized net-
works with one central node where every other node is only
connected to that central node and (2) distributed networks
where all nodes have the same connectivity in the network.
Information is shared efficiently in centralized networks, but
they are vulnerable to breakdown due to dependency on the
central node. On the other hand, distributed networks are
robust to breakdowns, but inefficient in sharing information.
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In the case of decentralized networks, when an “important”
component is removed or breaks down, then the whole
system will suffer considerable damage. However, the
system will remain stable with the removal of any of the
many less important, or less connected, nodes. This brings
us to an important observation: since a one-time measure-
ment was used in this study, the dynamic nature of the
system was difficult to immediately appreciate. It was only
after an in-depth consideration of the distribution of con-
nectivity of the nodes (students) that it was possible to
confidently infer the complex nature of students’ social
and academic interactions. In other words, it was through
this framing—complexity science—that it became possible
to interpret the complex nature of students’ social and
academic interactions in relation to the stochastic processes
which can give rise to the most likely family of distribu-
tions these networks resembles.
Because of their decentralized structure, complex systems

are made up of components, which are themselves complex
systems. Thus, complex systems can be described as nested.
Nested systems are “self-similar,” meaning that they share
the same type of distribution of the connectedness of nodes.
Each level of complex organization exhibits similar struc-
tures and dynamics but operates within different time scales
and in different units of analysis. For example, mathematics
learning-for-teaching has been modeled as several nested
complex systems: subjective understanding, classroom
collectivity, curriculum structure, and mathematical objects
[43]. By using complexity science, it is possible to consider
individual students to be nested within social and academic
networks, which, in turn, are nested within the larger
network of students within the course.
Another key aspect of the dynamics of complex systems

is that they are recursively adaptive to their own internal
and external interactions; in this case, adaptations contin-
uously occur in response to the students’ relationships with
other students and teachers within the university and other
networks outside the university. Through recursive adap-
tations, complex systems self-organize; properties, behav-
ior, and structures all emerge without an external system or
an internal “leader system” that controls the complex
system [27]. For the systems analyzed in this study,
the interpretation of the interactions taking place is a
coadaptation between the rules of interactions and the
students within the systems. In the study, only a “snapshot”
of the social and academic systems was taken. However,
given their complex systems properties, it is analytically
appropriate to infer the processes that led to their
emergence [26].

III. METHOD

A. Network survey

To explore the structures of a social and an academic
network, a network survey was developed and tested.
Appropriate ethical approval was obtained for this study.

A final version was given to students in two courses in an
engineering program at a Swedish university (a four-and-a-
half-year degree program made up of core courses in
physics, mathematics, and computer science, and a research
project requiring at least six months of full-time work) at
the end of the Spring term 2010. The data were collected
from the participating students who were attending intro-
ductory physics courses. Typically, the courses have a
lecture format with separate problem-solving and student
laboratory sessions. The teaching approaches range from
traditional (chalk and talk) to being highly interactive. The
design of the learning environment specifically provides for
many accessible venues to accommodate both instructor-
and student-initiated group activities. Following the meth-
odology of Morrison [44], which is a widely accepted
methodology used in social network analysis [45], the
students were asked to list the names of the people in their
courses with whom they interacted. The students were then
asked to characterize the nature of their interactions with
each of these people on a scale from only social (1) to only
academic (5) with both social and academic being (3).
In Fig. 1 we provide the cover page of the network

survey.
Students’ interpretations of what constitutes social inter-

action and academic interaction were explored in focus-
group discussions [46] with four groups (12 randomly
selected students). Discussions produced eight examples of
social interactions and nine examples of academic inter-
action. These examples were member checked [46].
Examples of social interaction involved doing the follow-
ing with other students: pausing while studying, going to
student pubs, participation in “exam parties,” going out for
lunch or dinner, doing sports or working out, playing board
games, engaging in student organizations, and participating
in student activities. Examples of academic interaction
involved doing the following with other students: studying,
discussing problems, discussing solutions to problems,
doing laboratory work, doing hand-in exercises, study
visits, going to the lectures, studying for exams, and going
to labor-market events. The focus group descriptions were
very similar to the descriptions by Spady [12,13] and Tinto
[14–16] of social and academic systems.
The two engineering program courses where the survey

was administered were a Mechanics II course (Course One)
and a computing science course (Course Two). The Course
One survey was answered by 68 students, which resulted in
a network of 122 students (54 more students in the course
were mentioned in the survey responses of others). The
Course Two survey was answered by 66 students, which
resulted in a network of 107 students (41 more students in
the course were mentioned in the responses of others). Only
the students who answered the network survey were used in
analysis of degree distribution, path length, and clustering
coefficient. All students mentioned were used in the
visualizations of the networks.
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B. Network visualizations and measurements

From the lists of names and relationship characteriza-
tions provided by the students in the network survey, three
separate networks were created using Gephi 0.7 beta [47]
for each course surveyed: a social network, an academic
network, and a combined (both social and academic)
network. The social network contained students’ social
interactions that corresponded with students’ social bonds
as noted by them in the network survey. A social bond was
interpreted to exist when students characterized their
relationship as “only social” or “both social and academic.”
The academic network corresponded to students’ academic
interactions as characterized by the students on the survey
with responses of “both social and academic” or “only
academic.” The combined network contained all student
interactions, both social and academic, that were noted by
the students in the network survey. Students’ responses on
the network survey were interpreted in terms of directed
social and/or academic bonds; if a student mentioned
another student, a directed link was present. If both students
mentioned each other, then it was interpreted that a
bidirectional link existed between the two of them.
To explain the measurement procedures used in the

analysis—average path length, degree, clustering coeffi-
cient, and degree distribution—the terms are now defined
mathematically. These measurements are the most

commonly used in the study of complex (networked)
systems as the means of describing the systems and system
creation and to elucidate system properties [26]. As
described in the conceptual framework, the first construct
of network theory is the nodes. The nodes represent
components of a network. Secondly, the links represent
the relationships or connections between nodes.
A network can be mathematically described through an

adjacency matrix A with elements Aij such that

Aij ¼
�
w if there is a link between nodes i and j
0 otherwise;

where w is 1 if the network is unweighted or it can take any
value when the network is weighted. The elements i ¼ j are
zero when the nodes in the network do not have self-links
(links to itself).

1. Average path length

The distance between adjacent nodes is defined as 1.
Thus, the average path length is calculated as the average
distance between any two nodes in the network.

2. Degree

A node’s total degree is the number of adjacent nodes.
The total degree (ki) of node i in the example network is

In this survey, if you choose to participate, we ask you to write the names of other students 
within your course with whom you have been interacting. Further, you are asked to classify 
your interactions as either social or academic on a five degree scale. A marking to the far left 
would mean that you mainly have a social relationship. A marking to the far right would 
indicate that your relationship to that person is mainly academic – you are mainly studying in 
groups, discuss the courses and/or content of courses. 
 

 

 cimedacA                                laicoS :emaN

X O       O       O       O       O 
 
Indicate that you have a relationship to student X, which is mostly social (we sometimes study 
together and do coursework, but on the broader scale of things we do social things together). 
 
 

 cimedacA                                laicoS :emaN

X O       O       O      O       O 

Indicate that your relationship with X is evenly balanced between doing social or academic 
activities together. 
  
 

 cimedacA                                laicoS :emaN

X O       O       O       O       O 
Indicate that your relationship with student X is mostly academic, and you have – at some point 
– done something social together. 

FIG. 1. Cover page of the network survey.
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then the sum of each row, and it can be calculated through
the adjacency matrix Aij by using

ki ¼
Xn
j¼1

Aij: ð1Þ

In a directed network, there is a possibility of differ-
entiating between incoming nodes and outgoing nodes. The
sum of each row is then the in degree, and the sum of each
column is the out degree. This can be calculated through the
adjacency matrix, Aij by using

kini ¼
Xn
j¼1

Aij; ð2Þ

kouti ¼
Xn
i¼1

Aij: ð3Þ

3. Clustering coefficient

When two nodes are directly connected, these two nodes
are adjacent. The clustering coefficient Cc (or transitivity),
in short, is the likelihood that a node’s two adjacent nodes
are also adjacent (i.e., are directly connected) to each other.
This is calculated as per

Cc ¼
3×number of triangles in the network

number of connected triplets of nodes in the network
;

ð4Þ

where 0 ≤ Cc ≤ 1, and 0 corresponds to no links in the
network, while 1 indicates that all nodes are adjacent to
each other.

4. Degree distribution

The degree distribution [the distribution of in degrees
(kin)] is a fundamental network property [26]. The distri-
bution of out degree (kout) is not commonly analyzed when
processes of network creation are sought. The study of
different distributions is critical to explore the possible
processes that drive the construction of the network [26].
The degree distribution pk [Eq. (5)] can be thought of as a
probability for a randomly chosen node to have degree k,
i.e., a probability density function:

pk ¼
number of nodes with degreekin

total number of nodes
;

kin ¼ 1; 2;…;∞: ð5Þ

The commonly found power-law distribution in degree
distributions of networks has been found to likely depend on
“preferential attachment,” which is where a node with high
degree “attracts” more nodes to create a link to that node

[26]. However, other distributions suggest other driving
processes such as removal or joining of nodes that have
been modeled by a Weibull model [48]. Price’s creation
model [26] has been shown to follow a power-law behavior
though the beta and gamma functions. As it stands now in
the field, there are other processes used to explain different
distributions. However, studies using these different distri-
butions all suggest that the process of creating the network
and the degree distribution of a particular network are
closely tied together; see, for example, Refs. [26,48].
In order to estimate the similarity of the networks’ degree

distribution to known degree distributions, we used AICc
[49] [Eq. (6)], which is a sample-size corrected version of
the Akaike information criterion (AIC) [50]. The AICc was
used because the networks in this study can be argued to be
small:

AICc ¼ 2k − 2 lnðLÞ þ 2kðkþ 1Þ
n − k − 1

; ð6Þ

where k is the number of parameters, n is the sample size,
and L is the maximized value of the estimated likelihood
function.
Eleven common distributions (power law, normal,

log-normal, exponent, Poisson, Cauchy, Gamma, logistic,
binomial, geometric, and Weibull) were tested and evalu-
ated through the use of the AICc criterion.
In studying the relative fit between the degree distribu-

tion found in this study and other known distributions, it
becomes possible to compare the process of network
creation between two networks, but not to draw any
conclusions about pinpointing the exact process through
which each network is created.

IV. RESULTS

This section is divided into two parts. The first part
addresses the first research aim, which is to situate social
systems, i.e., the social and the academic system (and thus
social integration), within a framework of complexity
science. This is done in order to have a theoretical framing
for the tools used to analyze students’ networked inter-
actions. The second part is further divided into three
subsections that are used to illustrate the analysis of the
students’ interaction networks that addresses the second
research aim. This aim involves illustrating the viability of
using methods available from complexity science to ana-
lyze the structural aspects of students’ networked inter-
actions. The path lengths of these networks are investigated
in the second section. In the third section, the distributions
of the in degrees of the networks are analyzed, in order to
evaluate their macroscopic structural similarities and
differences. The second part establishes if the students’
interaction networks are random, and if they are not, how
differences in the social and academic interaction networks
(and thus the rules of interaction) can be analyzed.
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A. Situating core concepts from student persistence
in a complexity science framework

Here, we show how the new theoretical framing is used
to address the first research aim. Throughout the history of
student persistence research that has included learning [17]
and academic achievement [12–17], the idea that student
persistence is situated within a complex system has been
tacitly taken into account. For example, Spady ([12], p. 40)
has argued that if research on student persistence is to be
more fruitful, it needs to take a “… particular social system
as the result of a complex social process” into account.
More recently, Bean ([18], p. 238) argued that “students’
experiences are complex, and their reasons for departure
are complex.” However, empirical research on student
persistence that explicitly draws on complexity science is
both rare and new [2,3]. This is probably because the use of
complexity science is still new to educational research [27].
By drawing on results from complexity science in the
natural sciences, which has identified many characteristics
of complex systems, it becomes possible to apply the
general concepts from this framework for an educational
context. This makes it possible to identify complex systems
as learning systems. As discussed in Sec. IIC, these systems
are adaptive and self-organizing systems, whose global
behavior is an unpredictable and emergent property from the
interactions of component agents [27]. Complex systems
can be characterized by specific structures and dynamics.
For example, complex systems are made up of independent
agents that are connected in a decentralized network of local
interactions (cf., neighbor interaction [27]).
Like complexity, social networks have been present, but

also in the background, in the development of theoretical
models used to understand student persistence, especially
in the work of Tinto [14–16] who recognized that the field
of student persistence research needs to employ “network
analysis and/or social mapping of student interaction… [to]
…better illuminate the complexity of student involvement”
([17], p. 619). Recently, research has indicated that the
number of possible social links to other students is of
significance when predicting academic fit [51] (i.e., stu-
dents’ congruency with the academic system). Further
exploration of peer effects in random housing allocation
for college has shown that the person with whom you share
a room in the college years tends to have an effect on grade-
point average (GPA) scores [19]. However, these effects
diminish over time [19]. When examining effects on
previously identified critical constructs from student per-
sistence research, the structure of the social networks can
even have significant negative effects on persistence and
related constructs [20]. At the same time, it has also been
recognized that students’ social networks can be a source of
both support and stress for students [52]. These effects are
clearly not linear, however; hitherto, complexity science
together with social network analysis has not been
employed to examine the structure of students’ social

network and academic networks as resulting from two
sets of “social systems.”
Through interpreting the foundational work of Spady

and Tinto from a complexity science perspective, it is the
conceptualization of the nature of adaptation that differ-
entiates Spady, Tinto, and complexity science. While
Spady ([12], p. 41) accepts that the outcome of the
adaptation from his model, “normative congruence,” is a
multifaceted concept, he depicts the student as an active
agent within a static environment. For example, he argues
that students’ interactions within the university “provide
the student with the opportunity of assimilating success-
fully into both the academic and social systems of the
college” ([12], p. 77). The notion of a static environment is
also what Tinto describes when he claims that in the
process of student interactions a student will “… continu-
ally modify his goal and institutional commitments in ways
which lead to persistence and/or to varying forms of
dropout” ([17], p. 94). Drawing on the notion of adaptation
from complexity science [27], however, adaptation is then a
codependent construct between both the individuals and the
systems where the individuals are situated. Hence, it is not
only the students’ adaptation to the institutional environ-
ment that is critical, but also the institutional environment’s
adaptation to the students.
As the institutional environment is made up of the social

system and the academic system of the university [12–17],
it is proposed here that these systems can be analytically
viewed as complex systems [27]. By considering Spady’s
and Tinto’s characterization of the social system and the
academic system and comparing these with the complex
system perspective, the social system and academic system
can then be characterized as consisting of what Sawyer, in
his reading of Durkheim [21], called social facts [22].
Examples of these could be agency, intention, discourse
patterns, collaborations, subcultures, norms, beliefs, and
expectations (for readability, these social facts are taken to
be equivalent to rules of interaction).
These rules of interaction, divided into the realms of

social life and academic life within an institution, form and
are formed by social interactions and academic interac-
tions between students, staff, and faculty, thus creating two
systems of rules: the social and the academic. Furthermore,
due to these interaction types being ubiquitous, the two
types of interactions are continuously creating two
entangled and ever-present systems. From a complexity
science perspective, the emergence of a social and an
academic system is dependent on interactions within the
system while at the same time the interactions within the
system are dependent on the two component systems, and
thus there are recursive adaptations between student inter-
action and system structure. In other words, the networked
interactions, the social system, and the academic system are
all coadapting. Thus, differences in the structure and
dynamics of the social system and the academic system
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should influence structures and dynamics of the networked
interactions of individuals who are participating. This leads
to the formation of a social network and an academic
network (which are nested within a larger combined net-
work), and the coformation of the social and academic
systems.

B. Analyzing students’ interaction networks

1. Visualizations of the network structure

Using Gephi 0.7 beta [47], network visualizations were
generated for the Course One and Course Two data (Fig. 2)
in order to make qualitative observations and visual
interpretations of the network measurements. To attain
clearer network visualizations, all students mentioned in
the survey are represented in the network visualizations.
Visual representations of the combined, social, and aca-
demic networks for each course were seen to be sharing
similar structural characteristics.
For each course, the academic network displayed a group

of students who were disconnected (or more disentangled)
from the larger network. For example, for Course One
(Fig. 2) the academic network had one large cluster and two
small ones, which were not connected to the larger net-
work. Course Two (Fig. 2) had one very large cluster that
was disconnected. In contrast, most of the students
appeared connected in the combined and social networks
for each course.
The algorithm used to create the visualizations empha-

sizes structural clusters more than how each student is
connected. Still, the positions of clusters and individual
students are related to how the students within each cluster
are connected. Thus, the visualizations of Course One
portray networks where more students are interacting
between groups than the visualizations of Course Two.

2. Average path length and clustering coefficients

Average path length is calculated to globally measure
how “far away” students tended to be from one another in
each network (Table I). The measurement is the average

number of steps from a particular node to all other nodes,
following the shortest paths [26].
A calculation of the clustering coefficient [26] was

carried out to compare how tightly grouped the networks
were (see Table I). The measurement is for the whole
network, which results in a unique numerical value for the
network, as per Eq. (4). The clustering coefficient of the
analyzed networks was compared to the mean and standard
error of the clustering coefficient in 1000 random network
simulations with the same number of nodes and links.
In Course One students were closest to everyone else

(i.e., had the lowest average path length) in the social
network when compared to the other networks. Some
students in this course tended to be farther apart in the
combined network, or even unreachable (as no paths
existed between them) in their academic network. This
trend was different in Course Two, where the academic
network had a much shorter average path length than the
social or combined network. This could be seen visually
where the academic network divided into two separate
academic networks with no connections between them
(Fig. 2). Therefore, the students had no direct academic
connection to roughly one-third of the course. The reason
being that the calculation of the average path length was
smaller because there were fewer long paths in the network.
For all of the networks of both courses the measured

clustering coefficient was a factor of 4–15 times larger than
the corresponding simulated random network. This result
shows that the structure of the network is far from random,
and implies that students’ interactions follow sets of rules
[26]. The analysis illustrates how, for the two courses, the
tendency of tightly connected groups peaked in the
combined network of students and dropped to its lowest
in the academic network. This was corroborated by
qualitative observations of the visualizations (Fig. 2).

3. Degree distributions

Estimation of the degree distribution (distribution of
nodes in degree) was carried out for each of the networks

Courses 
  Mechanics II (1)   Computing Science (2) 

Networks 

  Combined 

  Social 

  Academic 

FIG. 2. Network visualizations of the combined, social, and
academic networks of Course One and Course Two students.

TABLE I. Clustering coefficient and average path length for all
networks of each course. C1 is Course One, C2 is Course Two,
Sþ A denotes the combined network, S denotes the social
network, A denotes the academic network, and the asterisk
denotes standard error of 1000 random simulated networks.

Course
networks

Simulation of random
network–mean

clustering coefficient
Clustering
coefficient

Average path
length

C1 Sþ A 0.027� 0.004� 0.393 3.802
C1 S 0.027� 0.005� 0.364 3.572
C1 A 0.026� 0.005� 0.247 4.479
C2 Sþ A 0.050� 0.004� 0.519 5.424
C2 S 0.041� 0.004� 0.424 4.252
C2 A 0.034� 0.005� 0.374 2.844
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because it becomes possible to compare the process of
network creation between two networks, as discussed in
Sec. III B 4. Two classes of distributions were found to be
likely candidates for describing the distributions of the
networks found in each course: the Gamma distribution and
the Weibull distribution. However, these distributions
cannot easily be compared, as they can differ significantly
in form.
In order to evaluate the parameters for these two

distributions by using the same model, the generalized
gamma function was used [53]:

fðx; a; v; pÞ ¼ jpjxpv−1e−ðx=aÞp
apvΓðvÞ ; ð7Þ

where a, v, and p are the parameters of the generalized
Gamma function.
These three distributions (Gamma, Weibull, and gener-

alized Gamma) are examined together with the degree
distributions of the networks to show how similar these
distributions can be. The similarities of the estimated
degree distributions are shown in Fig. 3 for the social
and the academic networks of Course Two.
However, both the Gamma and the Weibull distributions

are covered by the generalized Gamma function’s special
cases [Gamma distribution fðx; a; v; 1Þ, Eq. (7), with
p ¼ 1; Weibull distribution fðx;a; 1; pÞ, Eq. (7), with
v ¼ 1), which allows one to evaluate if parameter a
is significantly different for these types of networks.
The estimations of a were undertaken using nonpara-
metric bootstrap methods based on maximum likelihood
estimations, which is implemented by the package

FITDISTRPLUS [54] in the statistical environment r
[55]. The estimation of the a parameter using this meth-
odology also gave an estimation of the 95% confidence
intervals for the a parameter. These confidence intervals are
used to identify the differences between the networks
(Table II).
The estimated parameter (a) for the generalized Gamma

distribution between Course One and Course Two showed
that the networks between these two courses are signifi-
cantly different. The social network of Course Two fell
outside the 95% confidence interval in comparison to the
academic network of the same course; the implications
being that the rules of interaction differ between the social
and the academic interaction networks. Furthermore, both
classes of distribution—as estimated from the degree
distribution—are found in other systems that are identified
as being complex ([26], p. 494; [42]). In other words, they
also follow a set of interaction rules. From here it becomes
possible to empirically describe such course interactions as
complex systems.
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FIG. 3. Degree distribution for Course Two for the social (left) and the academic (right) network, and the estimations for the
generalized Gamma, Gamma, and Weibull distributions.

TABLE II. Estimation of parameter a in the generalized
Gamma function with 95% confidence intervals.

a 2.5% 97.5%

Course One, combined network 1.57 1.18 1.99
Course One, social network 1.38 1.04 1.73
Course One, academic network 1.26 0.92 1.61
Course Two, combined network 8.44 7.64 9.25
Course Two, social network 7.29 6.39 8.17
Course Two, academic network 5.59 5.00 6.32

EXTENDING THE THEORETICAL FRAMING … PHYS. REV. ST PHYS. EDUC. RES 10, 020122 (2014)

020122-9



V. DISCUSSION

This article has addressed the viability of using complex-
ity science as a frame to extend methodological applica-
tions for physics education research. In doing so, we set out
to address two research aims: (1) how to situate central
constructs from student persistence research within a
framework of complexity science and (2) illustrate the
viability of using methods available from complexity
science to analyze the structural aspects of students’
networked interactions.
The structures of the social, academic, and combined

networks of the participating students were described by
examining the clustering coefficients, path length, and
degree distribution of their nodes. The interpretations of
these measurements were also informed by the visualiza-
tions of the networks that were produced. The clustering
coefficient was used to show that the networks are far from
random. The path length was used to show that the different
courses had different interaction networks. By analyzing
the degree distribution, it became possible to illustrate that
these introductory-level courses had similar degree distri-
butions to those of other complex systems [40] and could
analytically be viewed as complex systems. These results
support claims that students’ social and academic networks
are complex in nature. Realizing this complex nature of
student interaction networks cannot provide a dynamic
understanding of how these networks are evolving.
However, the findings, together with the theoretical frame-
work described above, offer the first steps toward building
such understanding.
The exclusion of external actors (for example, other

students, instructors, and parents) that interact with the
students within a course was a limitation that was intro-
duced by choice because the research was focused on
discussion of students’ course interactions and how that
could be framed as a complex system. This choice was
made to make it possible to study only one level of
complexity—student interactions, in order to minimize
mixing of multiple nested levels together under one
analytic method. As a result of this choice, the study also
has a somewhat limited sample size. At the same time, the
sample size is of “normal” numerical value for its context
for analyzing such students’ course interactions.
Measurements in this article did not include the strength

of links (edge weights) between students. This is because it
is not necessary to do so when studying average path length,
degree (in this case), clustering coefficient, and degree
distribution. However, future studies of students’ social and
academic interaction need to take this property of links into
account as it could prove to be vital in describing the
function of students’ course interaction networks.
The study reports on data obtained from a one-time

measurement. A limitation arising from this is that it is not
possible to identify dynamic changes in the social and
academic network that can provide definitive interpretations

about how the time-dependent evolution of complex sys-
tems can impact student persistence. However, the study
embeds student persistence research into a complexity
science framework using network theory and in this way
can be argued to provide sufficient empirical rationale for
analyzing students’ course interactions as complex systems.
Differences in the social and academic networks were

found that suggest that there could be different underlying
constructs within Tinto’s [14–16] social and academic
systems, which are dependent on the agent interactions
within the two different networks. Tinto [16] posited that the
social and academic systems were nested within each other.
Complexity science defines nested systems as complex
systems that exist within a greater complex system and that
have similar structures and dynamics, yet operating on
different scales. Our analysis supports these claims and
suggests that the social and academic networks are definitely
entangled in each other and together are nested to create a
larger network of interaction for the students. It is important
to point out that the study implies that both the social and
academic networks’ structures and dynamics will affect the
larger systems’ structure and dynamics (i.e., the combined
networks, which previous studies have examined).
Measurements of the clustering coefficients for each type

of network and for each course showed similar trends
between the courses; all the networks were much more
clustered than a random network would be, and the social
networks were more tightly linked than the academic
networks. Hence, the formation of such social and aca-
demic networks is not random and should be seen as
dependent on “rules of interaction” that can be understood
as the social and academic norms that exist in the institution
(i.e., the social and academic systems of the university).
In other words, the formation of the structures of these
networks is dependent on neighbor interaction [27], where
the neighbor interaction is dependent on the social and
academic systems. Furthermore, due to the clustering
coefficient being lower in the academic network, it is
possible to argue that the rules of interaction [22] (for
instance, agency, intention, discourse patterns, collabora-
tions, subcultures, norms, beliefs, and expectations) in the
academic system do not influence the “clustering” on a
system scale as much as the rules of interaction in the social
system—they may even be isolating students from each
other academically. An example of a “rule of interaction” in
the realm of the academic system (which could act as an
isolator) is being widely recognized as being the most
scholarly student in the course. Such a rule of interaction
either potentially helps a student form new and wider
academic ties or presents a potential for the student to
become isolated both socially and academically.
Average path length measurements illustrated differences

between social and academic networks, where social net-
works tended to have shorter path lengths. Consequently,
students’ social networks were structured such that most
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students were close to each other, whereas academic net-
works were more distinct—students work closely with
some but not all of their fellow students. Visualizations
of student networks illustrated similar trends, where the
academic networks for each coursewere more likely to have
a completely separate group of students who work together.
Drawing on a complexity science perspective, further
tentative characterization of these “rules of interaction”
(that is, the social facts [22] in the social and academic
system of the university) becomes possible through the
analysis of the outcomes of the social system rules, as
experienced by the social network of students in CourseOne
and Course Two. The rules of interaction in the social
system can then be described as creating social bridges
between most students in the course, creating such a
network where most students could eventually get ahold
of any other student by asking around in the network.
However, the academic system (i.e., the rules of interaction
of the academic system) does not produce the same
frequency of what could be called academic bridges
(links that connect academic groups together) between all
students, even creating islands of academic interaction that
are not connected to the other students of the course at all.
This illustrative study found sufficient empirical evi-

dence for the presence of distinct social and academic
systems [12–16] that emerge from and can play a role of
codependence on student-to-student interactions within the
larger social and academic system of the university. This
finding suggests that researchers, educators, and policy
makers not only need to address critical aspects of the
academic environment, but the same kind of research rigor
needs to be used to address the social side of studying. The
analyses illustrate a method and conceptual framing that
could be used to better understand the structure and
dynamics of these networks and exemplify that it makes
sense to separate the interaction network of courses into
two separate networks.
The empirical implications provide researchers, practi-

tioners, and policy makers with a characterization of the
complexities of participating student interactions that opens
the way for the development of complexity science as an

important framing for PER. This research perspective offers
new ways to incorporate observations, measurements, and
recognition of complex structures and dynamics that are
inherent to a given PER problem. In terms of codependency
of network structures and “rules of interaction” by using the
constructs of social facts [22] together with complexity
science [27], student persistence research is framed from a
complexity science perspective where network structures
are brought to the fore. The measurements of network
structures can thus be interpreted as the outcomes of
different rules of interaction, both social and academic.
If measurements of network structure are to be used to
predict educationally significant dynamics such as student
persistence, a complexity science framing facilitates the
interpretation of network measurements.
This article began by proposing the use of complexity

science as a suitable research framework for PER and has
provided an illustration of what kind of research becomes
possible by framing a social network analysis within a
complexity science perspective. For this to be possible
there is a need to incorporate and develop new, effective
methodologies that are aligned with complexity science.
Such methodologies could encompass, for example, agent
simulation within complex networks [35,56] to delve into
how differences are formed from an agent interaction
perspective, how they develop over time. Renowned
researchers in the field of complexity in education
[21,27] have posited implications for research and policy
issues when these kinds of issues are considered. Our
illustrative analysis complements well the future directions
of research of physics students’ networked interactions as
described by Brewe, Kramer, and Sawtelle [23], and we
envisage many aspects of the experience of teaching and
learning physics taking on new visibility through guiding
applications of complexity science.
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