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Physics education research has shown that students tend to struggle when trying to use mathematics in a
meaningful way in physics (e.g., mathematizing a physical situation or making sense of equations).
Concerning the possible reasons for these difficulties, little attention has been paid to the way mathematics
is treated in physics instruction. Starting from an overall distinction between a technical approach, which
involves an instrumental (tool-like) use of mathematics, and a structural one, focused on reasoning about
the physical world mathematically, the goal of this study is to characterize the development of the latter in
didactic contexts. For this purpose, a case study was conducted on the electromagnetism course given by a
distinguished physics professor. The analysis of selected teaching episodes with the software Videograph
led to the identification of a set of categories that describe different strategies used by the professor to
emphasize the structural role of mathematics in his lectures. As a consequence of this research, an analytic
tool to enable future comparative studies between didactic approaches regarding the way mathematics is
treated in physics teaching is provided.
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I. INTRODUCTION

Many physics instructors complain that their students do
not know enough mathematics. However, it is quite clear
that the domain of basic mathematics skills does not
guarantee success in physics, since “using mathematics
in physics is much more complex than the straightforward
application of rules and calculation” [1]. Despite the
deep interrelations between physics and mathematics—
confirmed by both historical and epistemological studies
[2–7]—it is not uncommon in physics education to regard
mathematics as a mere tool to quantify physical entities and
express relations between them. This instrumental view of
the role of mathematics leads to an artificial separation
between the mathematical and the conceptual aspects of
physical theories, which becomes evident when educators
sustain that physics instruction should concentrate on the
latter to the detriment of the former.
Previous research into the role of mathematics in physics

education has focused mainly on the learning perspective
by analyzing students’ reasoning in thinking-out-loud
problem-solving sections and interviews [8–12]. Some
research outcomes highlight difficulties faced by students
in transferring mathematical knowledge to physical con-
texts [13], assigning meaning to physics equations [14],
using mathematical structures to model physical situations
[15], and other tasks associated with a deep understanding

of the interplay between physics and mathematics. But how
are these difficulties related to instruction? If one observes,
for instance, that students often focus on the instrumental
role of mathematics when they solve problems (e.g., plug
and chug), it is likely that this attitude is related to certain
features of the instruction they had. Therefore, focusing on
the role of mathematics in physics from the teaching
perspective—a facet rather overlooked in current physics
education research—should enhance our understanding of
the origins of students’ difficulties and provide possible
solutions to overcome them. This assumption determines
the guidelines of this work.
Taking the multifaceted character of the role(s) of

mathematics in physics into account, an overall distinction
between the technical dimension—associated with an
instrumental (tool-like) use of mathematics—and the struc-
tural dimension—related to the use of mathematics as a
reasoning instrument to think about the physical world
(Sec. II) is proposed. The central aim of this research is to
characterize the development of the structural dimension in
physics teaching approaches. For this purpose, a case study
was conducted on the electromagnetism course given by a
distinguished professor in the undergraduate introductory
level (Sec. III). The analysis of these lectures led to the
identification of a set of categories to describe the pro-
fessor’s didactic discourse. These categories are described,
justified, and exemplified in Sec. IV and then applied in
the coding of two teaching episodes extracted from the
lectures (Sec. V).
The intended contributions of this work are twofold.

First, I characterize the didactic choices made by the
professor to teach his students how to frame the physical
world mathematically and illustrate the complexity of this
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process with several examples extracted from his electro-
magnetism lectures. Second, an analytic tool to enable
future comparative studies between lectures (or lessons)
regarding the way mathematics is treated in physics
teaching is provided.

II. TECHNICAL AND STRUCTURAL DIMENSIONS

The intermediate portion of mathematical science,
which consists of calculation and transformation of
symbolic expressions, is most essential to physical
science, but it is in reality pure mathematics. Every-
thing connected with the original question may be
dismissed from the mind during these operations, and
the mathematician to whom they are referred may be
doubtful whether his results are to be applied to solid
geometry, to hydrostatics or to electricity. But as we are
engaged in the study of Natural Philosophy we shall
endeavour to put our calculations into such a form that
every step may be capable of some physical interpre-
tation, and thus we shall exercise powers far more
useful than those of mere calculation—the application
of principles and the interpretation of results (Ref. [16],
p. 672, our emphasis).

This quotation—extracted from Maxwell’s inaugural
lecture given in 1860 at King’s College—implies that,
although mathematical calculations play an essential role in
physics (natural philosophy at that time), physicists should
constantly pursue physical interpretations of each step
when performing them. This message illustrates an overall
distinction between two ways of using mathematics in
physics, namely, a technical and a structural one. Following
Maxwell’s quotation, the technical dimension is associated
with the mathematical calculations without any connection
with physical phenomena, whereas the structural one is
related to the use of mathematics to reason about the
physical world.
When translating this dichotomy (it is more likely a

duality) into physics teaching and learning practices, it is
possible to distinguish between the development of techni-
cal and structural skills [17–19], which implies different
kinds of questions to be asked to students, different teaching
approaches, assessments, materials, and so forth. In fact, the
domain of technical skills has already been proven to be
insufficient (although probably necessary) for success in
physics courses [20]. The excessive focus on this instru-
mental dimension in instruction has had a major impact on
students’ lack of interest in physics [21] and has motivated
physics education researchers to advocate in favor of a focus
on conceptual physics. Nevertheless, the intrinsic math-
ematical nature of the physical sciences [4] reveals that
understanding in physics is strongly connected with the
ability to think about theworld with mathematical structures
(structural dimension). In this sense, Hestenes ([22], p. 104)

stresses that “the challenge is to seriously consider the
design and use of mathematics as an important subject for
Physics Education Research.” Sherin ([8], p. 482) argues
in the same direction by stating that “we do students a
disservice by treating conceptual understanding as separate
from the use of mathematical notations.”
Physics education research literature provides various

means to categorize students’ different ways of using
mathematics to solve physics problems, which seem to
be broadly classifiable according to this general technical
or structural distinction. Among them, Sherin’s symbolic
forms [8] certainly belong to the structural dimension, since
they are connected with a deep understanding of how to
represent conceptual schemata—which are very basic
mathematical relations between physical quantities—in
terms of equations. The epistemic games proposed by
Tuminaro and Redish [9] could possibly be classified into
the ones focusing merely on technical aspects (plug and
chug and transliteration to mathematics) and the ones
demanding a deeper or structural understanding (mapping
meaning to mathematics and mapping mathematics to
meaning). Similarly, the classification of Walsh et al.
[10] of students’ problem-solving approaches into a sci-
entific (structural) and other less structured approaches like
plug and chug and memory based (both technical) seem to
fit in such an overall distinction. The categorization of Bing
and Redish [11] of students’ epistemological framing could
also be separated into technical (calculating and invoking
authority) and structural (physical mapping and mathemati-
cal consistency) approaches.
It is not the intention, of course, to imply that all the

subtleties contained in each of these categories can be
incorporated by such a broad distinction, but rather to focus
on differentiating a superficial from a deep understanding
of physics regarding the use of mathematics. After con-
sulting several physics graduate students and faculty
members, Chasteen et al. [23] identified this focus on
such deep understanding (mathematical sophistication [23],
p. 924) as one of the major learning goals of physics
courses and an essential trait of what it means to “think like
a physicist.” Furthermore, the nontriviality of the ability
to use mathematical structures to think about the physical
world is explained by Redish [24] with the argument that
math in physics is “semantically different” from simply
doing math [25]. According to him, physicists make
different use of constants and variables, put great value
on dimensional analysis, and often blend conceptual
physics with mathematical symbols when interpreting
equations. (See also Ref. [31] for a comprehensive list
of differences between math in physics and math in math.).
With the purpose of presenting a synthetic view of this
technical-structural distinction, Table I displays different
epistemological ways to use mathematics in physics, as
well as different views on this interplay, which are
associated with each dimension.
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As physics education researchers, we are all engaged in
finding ways to enable our students to understand this
difficult science deeply, which involves their ability to map
meaning to mathematics and vice versa [9], blend con-
ceptual and formal mathematical reasoning [12], adopt
scientific approaches [10], think like physicists [23], or, in
other words, recognize the structural role of mathematics in
physical thought and apply sophisticated strategies con-
sciously to problem solving. However, the truth is that we
do not have clear guidelines on how to teach students to do
that effectively. One reasonable possibility for finding such
guidelines is to look for specific characteristics in the
didactic discourses of excellent lecturers “in action.” Based
on this hypothesis, a case study was conducted on the
electromagnetism lectures given by a distinguished
professor of physics majors at the introductory level.
Thus, the central research question of this study can be
formulated as follows:

What are the main features of the didactic discourse of
an experienced physics professor who focuses on the
structural role of mathematics in his electromagnetism
lectures?

In the search for an instrument to characterize the
lectures, an analytic tool was developed, which is likely
fruitful for the conduction of future comparative studies,
although this hypothesis is not investigated here. The
methodology used to analyze these lectures and the reasons
for the selection of this particular case study are described
in the next section.

III. METHODOLOGY

The methodological design of the research was
outlined according to the goal of investigating the role
of mathematical reasoning in physics lectures. Given the
innovative character of this approach and the absence of

categories for such analysis in the literature, conducting a
case study [32] seemed the most appropriate alternative.
According to Gerring ([33], p. 40) “case studies tend to be
more useful when the subject being researched has not yet
been explored in a systematic manner or when it is
considered from a new perspective.” Moreover, it is
acknowledged that case studies can penetrate situations
in ways that are not always susceptible to numerical
analysis [34].
It is important to justify the decision of studying the

lectures of this professor in particular. In fact, several
reasons influenced this choice. The professor is quite well
known in the Physics Department of the University of
São Paulo for having a great ability to explain things clearly
and for encouraging his students to reason about the
physical meaning underneath the mathematical formalism.
Furthermore, he has been teaching introductory courses
for more than 30 years. Another motivation is related to
the students’ approval of his lectures. At the end of each
semester, students were asked to rate the quality of the
lectures according to the following criteria: (1) professor’s
interaction with the class, (2) preparation of the lectures,
and (3) quality of explanations, using a 4-point Likert scale
items (very good, 100%; good, 75%; regular, 50%; poor,
25%). It was possible to have access to students’ evalu-
ations of his courses since 2005, which makes a total of 317
students (the average number of students per class being
50). The approval of his lectures is attested by expressive
numbers—99.13% for (1), 99.53% for (2), and 98.82% for
(3)—which makes him one of the best-evaluated professors
in the department.
Thus, the starting research hypothesis was that the

lectures of this particular professor would provide several
examples of the emphasis on the structural dimension. If
this were correct, it would be possible to better characterize
the focus on this dimension in didactic situations. In order
to confirm the validity of this hypothesis, 10 lectures of the
professor on special relativity were recorded. This pilot

TABLE I. Technical-structural distinction concerning the role of mathematics in physics.

Technical (instrumental, procedural) Structural (relational, organizational)

Blindly use an equation to solve quantitative problems (plug and
chug)

Derive an equation from physical principles using logical
reasoning

Focus on mechanic or algorithmic manipulations Focus on physical interpretations or consequences
Use arguments of authority; rote memorization of equations and
rules

Justify the use of specific mathematical structures to model
physical phenomena

Fragmented knowledge: memorize different equations for each
specific case (e.g., free fall and vertical throw)

Structured knowledge: connect apparently different physical
assumptions through logic (e.g., Snell’s law and Fermat’s
least-time principle)

Identify superficial similarities between equations (e.g., d ¼ 1
2
gt2

and K ¼ 1
2
mv2 both seen as “half a constant times a squared

variable”)

Recognize profound analogies and common mathematical
structures behind different physical phenomena (e.g.,
central force field)

Mathematics seen as calculation tool Mathematics seen as reasoning instrument
Mathematics seen as “just another” language used to represent
and communicate

Mathematics seen as essential to define physical concepts
and structure physical thought
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study revealed the excellent quality of his explanations and
left no further doubt concerning the appropriateness of a
deep investigation of his lectures.
Moreover, both the analysis of the electromagnetism

course and the interviews provide an a posteriori validation
for this choice. In one the interviews, for instance, the
professor clearly explains why he does not emphasize the
technical dimension in his lectures. In his words, “You
cannot learn the technique at once; practice is really
important. I feel that it is not possible to learn this in
the lecture. […] Thus, what I prefer to do in my lectures is
to explore the multidimensionality of the physical knowl-
edge and exercise a bit each of its dimensions. In reality, my
hope is that they become aware of this broad picture.”
The research data of the main study consist of the

recordings of 40 lectures (total of approximately 60 hours
of video) from an introductory course [35] on electro-
magnetism given for physics majors in 2009 [36]. The
camera was directed toward the professor and special
attention was given to the moments when mathematical
reasoning took part in the exposition. The textbook used in
the course is a compendium of lecture notes on electro-
magnetism elaborated by the professor and other col-
leagues through the years. The 40 chapters of the textbook
are related to the (ideal) program of the 40 lectures to be
given in the course.
The compendium of lecture notes has quite a different

style, compared with traditional introductory level physics
textbooks (e.g., Refs. [37–40]). The main features that
distinguish them are as follows: (1) intense presence of
epistemological discussions (e.g., What is physics? What is
the relationship between physics and mathematics? How
does electromagnetic theory enable us to reason about the
world?), as well as dictionary definitions of essential terms
(e.g., law, principle, explanation), (2) few examples (typical
problems) are presented and discussed in depth, each step
being carefully justified in their resolution, (3) a small
number of problems and conceptual questions are proposed
at the end of each chapter. Students are encouraged to use
this material as support for individual study, but it is not
required for the attendance of the lectures.
The evaluation of the course was carried out by means

of four individual exams throughout the semester. The
final average score M is calculated as follows [41]:
M ¼ 0.3× (sum of the two highest grades among the
first three exams) þ0.4× (grade on the fourth exam).
Among the 81 students enrolled at the beginning of the
period analyzed, 11 left it after the first exam, and 59 of
the remaining 70 were approved. Even though a sys-
tematic comparative study was not conducted, 84% of
approval can be considered a successful result consid-
ering the history of students’ performance in the first
course on electromagnetism.
A preliminary analysis of the course syllabus pointed out

moments in which the intertwined relationship between

mathematics and physics would be addressed. Central
concepts like charge, density, flux, and electric current
would be introduced and properly mathematized.
Mathematical operations such as derivatives, multiple
integrals, vector operators (gradient, divergence, and curl),
among others, would be physically interpreted in the
context of charges and fields. Each one of Maxwell’s
equations would be addressed in their integral and differ-
ential forms.
After watching all of the lectures, 19 teaching episodes

were selected for further analysis. This selection followed
mainly two criteria: (1) the relevance and degree of
mathematization of the topic (including core concepts like
charge density, electric flux, current, field; physical inter-
pretations of mathematical operations, and the explanation
of Maxwell’s equations) and (2) moments when students
made interventions that indicated difficulties in under-
standing the use of the mathematical formalism of electro-
magnetism. The 19 teaching episodes were divided into
conceptual explanations and problem solving and their
detailed analysis can be found in Ref. [42].
The software Videograph [43] was used for the analysis

of the teaching episodes. This tool allows one to categorize
time intervals of teaching and learning situations (in this
case the lectures) and to generate timelines that dynami-
cally illustrate how the explanations evolved during the
course of an episode. An important step for this kind of
structured observation is to define a time unit for the
categorization [44]. After a few attempts, 20 seconds
seemed sufficient for the desired level of precision.
Figure 1 illustrates the software’s interface during the
coding process. It shows the three windows (video, time-
clip, and codeview) with which one works simultaneously
when coding. At the exact moment displayed in Fig. 1, the
20 seconds between 13:20 and 13:40 were being tran-
scribed and categorized. Those 20 seconds were catego-
rized as mathematizing (M1—assumptions), analogy
(A1—material), and visual representations (V1—gestures).
The categories of analysis are properly presented, exem-
plified, and explained in Sec. IV.
It is important to mention that working with Videograph

was essential for the very process of finding the most
suitable categorization system to analyze the lectures. The
visual timelines plotted by the program were helpful in
presenting and discussing the pertinence of the categories
with other colleagues. Aiming at minimizing the degree of
subjectivity in the categorization, two sessions of validation
were conducted. The sessions were organized as follows:
First, the categories were briefly described and the categori-
zation of a small lecture excerpt was presented and
justified. Then, five fellow researchers (four graduate
students and one professor) categorized five lecture pas-
sages (each one about 7 minutes long) individually using
the software Videograph. Finally, the categorizations made
by them were compared with what I had previously coded.
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The initial comparison already revealed a satisfactory level
of agreement (60%–70%), which was increased (to 80%)
after a collective discussion on the interpretations and
criteria utilized.
Naturally, one must be aware of the fact that the didactic

discourse conducted in a classroom environment is inten-
tional, dependent on the context and on the audience, and is
not necessarily a reflection of the way a lecturer thinks.
Therefore, in order to investigate the professor’s intentions
and conceptions, two semistructured interviews (totaling
approximately 2 hours) were conducted with him. These
interviews were important not only to provide a better
understanding of the professor’s intentions behind his
actions, but also for the internal validation of the
categorization system.

IV. CATEGORIES OF ANALYSIS

The process of reaching the categorization system was
mostly influenced by three domains: (1) historical and
epistemological studies on the relationship between physics
and mathematics [2–7], (2) categories found in the physics
education literature (classification of students’ reasoning
while solving problems) [8–15,23], and (3) the dynamic
process of watching the lectures and searching for appro-
priate categories while using the software Videograph.
For organizational reasons, the nine categories used for

the analysis are divided into three subsets that encompass
complementary dimensions of the lectures. The first three
categories (mathematizing, interpreting, and technical) are

directly related to the way mathematics is being treated.
The next three categories (visual representations, analogies,
and deduction) address a set of common pedagogical and
linguistic strategies used by the professor to focus on
translation processes (i.e., from physics to mathematics and
vice versa). The last three (philosophy, metacognition, and
questions) locate instants in which the “normal course” of a
lecture is interrupted by explicit moments of meta-level
discussions. In the following, a detailed description of the
categories is presented and each of them is exemplified
with excerpts from the teaching episodes.

A. First dimension: Translation processes
and technical use

The three categories of the first dimension refer specifi-
cally to how mathematics is being used in the physics
lectures. This dimension contains both translation proc-
esses (from physics to mathematics and vice versa) and
moments of pure technical use of mathematics. Because
they characterize considerably different approaches, these
categories are thought to be mutually exclusive, even
though at certain moments the time unit (20 s) is not small
enough to be able to capture shifts.

1. Mathematizing

Mathematizing is understood as the process of construct-
ing a mathematical representation for a physical situation
(in the broad sense). This process can be seen as a
translation from the physical world (e.g., observations

FIG. 1. Videograph’s coding interface.
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and experiments) into mathematical structures (e.g., num-
bers, functions, and vectors). Being successful in this
translation depends on the ability to see the world through
mathematical lenses, which involves not only a significant
understanding of mathematical concepts and theories, but
also the ability to abstract, idealize, and model the physical
reality. In fact, this is an extremely complex process and
can be easily ignored in physics instruction. If a lecturer, for
instance, starts his/her presentation of a concept by intro-
ducing its formula, it is likely that the whole mathematiza-
tion (thought as a process) is already disregarded. In the
lectures analyzed, the professor gave special attention and
devoted considerable time to mathematization. This was
conducted explicitly during the introduction of a new idea
or concept and in the beginning of problem-solving
activities.
Mathematizing a physical situation inevitably passes by

the construction of idealized models that abstract some
complexities of the real world. As Kline [45] points out,
Galileo’s approach to free fall was essentially mathemati-
cal, since he built an idealized representation of the
situation by eliminating some effects (e.g., friction and
air resistance) and focused on quantitative relations in order
to obtain its basic principles [46]. Therefore, adopting this
broader notion of mathematization, the first step of building
the model was considered one of its subcategories (M1—
assumptions). In the lectures, this happened when the
professor explicitly mentioned approximations, idealiza-
tions, and selection of relevant variables, as illustrated in
the following excerpt [47]:

You can approximate one road as a one-dimensional
thing. Its length is much bigger than its width. One
strand of hair, you can also approximate it as a one-
dimensional thing. One strand of hair has only
one dimension? No! It has 3. (lecture 5—36:40–37:00).

Furthermore, at this early stage of building a model, the
professor usually draws attention to the distinction between
reality and its representations. This attitude is evident in the
following statement:

Does an electrical wire have charge density? […] You
take this wire here and cut it with your mind. This dx is
not a physical cut. You cut it with your mind, math-
ematically. (lecture 5—41:40–42:00).

The second subcategory of mathematizing is related to
the actual process of finding a suitable mathematical
structure to represent a physical situation or concept
(M2—structures). Some philosophers use the metaphor
prefabricated mathematics and compare the attitude of a
physicist to “a person who goes to the market of math-
ematics to take what he/she needs to construct his/her
theory” ([7], p. 83). Representing continuous quantities by
real numbers, oriented quantities by vectors, and quantum

states by matrices are some examples of the uses of
prefabricated mathematics. The following passage exem-
plifies this search for suitable mathematical structures to
model physical phenomena:

But the problem is that i [electric current] is a scalar.
And if I want to describe the situation more precisely I
have to use a vector. […] I will use a vector pointing in
the velocity direction, so that if the charge is going in
this direction and I put the surface here [gestures] it
represents the notion that it does not penetrate the
surface. And then we will use the well-known concept of
flux. (lecture 26—22:40–23:40).

There is an important aspect that has to be emphasized
here. Understanding the mathematization process in depth
involves one being able to identify the essential aspects of
the physical situation that justify the use of a particular
mathematical structure. Similarly, Redish remarks that to
construct a mathematical representation of a physical
system, “we have to understand what mathematical struc-
tures are available and what aspects of them are relevant to
the physical characteristics we are trying to model” ([24],
p. 7). In this sense, it should not be enough just to know
how to operate with the mathematical “tools” (functions,
logarithms, matrices, vectors, etc.). It is important to
identify the essential aspects of these structures to model
physical phenomena. As exemplified in the quotations
above, making this point explicit was a major focus in
the lectures. Moreover, it represents an essential skill
concerning the structural role of mathematics in phys-
ics (Sec. II).

2. Interpreting

The first category illustrated the process of going “from
physics to mathematics” whereas the second concerns the
opposite direction. After presenting or deriving a math-
ematical expression—during either the explanation of a
concept or problem solving—the focus was immediately
directed to the physical interpretation of its meaning. A
formula was rarely presented or derived without a careful
explanation of its physical meaning. This was done with
the aid of powerful schemes and an intense use of visual
representations (figures, diagrams, gestures). In general, the
focus on the interpretation occurred after the solution of a
problem, in which a mathematical expression was obtained.
Sentences like “What does this expression mean?” or
“What does this equation say?” denote this approach as
exemplified on the following excerpts.

Why Q2 appears in this expression? Does the charge Q
interact with itself? Look what I did here. I picked up a
charge and brought it here [gesture]. And it was
interacting with what was already there. […] This is
what self-energy means. There is a charged system, but

RICARDO KARAM PHYS. REV. ST PHYS. EDUC. RES 10, 010119 (2014)

010119-6



this charge interacts with it and this is stored in that
expression. (lecture 21—29:00–30:00).

Today we do not want to calculate the divergence, but to
apply it in a physical situation. The divergence is a
mathematical machine. What favor does it do for you?
It finds the charge distribution, ok? If you calculate
the divergence in a point with no charge density you get
zero, right? On the other hand you expect it to be
nonzero where it finds charge. (lecture 23—1:29:20–
1:30:20).

In these passages the professor emphasizes the impor-
tance of looking for physical interpretations in mathemati-
cal expressions. In the first quotation the term Q2—present
in the expression of the self-energy of a charged sphere—is
properly interpreted and justified with physical arguments.
In the second, a physical interpretation for the divergence
operator is given when the professor states its “mathemati-
cal favor” of finding points with nonzero charge density.
One very common strategy to interpret mathematical

expressions physically is the analysis of special cases, as
exemplified next.

What do you expect from the expression if you have a
positive charge here, a negative charge here [gestures],
and move along the y-axis? To which direction should
the field point? […] What happens if x, y or z go to 0?
Does it make sense? […] If you don’t expect anything
from an equation you are lost. (lecture 9—58:00–
58:40þ 1:00:00–1:00:20).

After obtaining a mathematical result to a problem,
the professor often encouraged the students to check its
consistency by analyzing the physical consequences of
making some variables go to zero or infinity.
When students reach the final result in problem solving,

they quite often believe that they are done. Clearly against
this belief, in several moments of the course the professor
emphasized the importance of “playing with the final
result” in order to “see the physics behind it.” In fact, this
is one of the core skills related to the structural role of
mathematics in physics. As Hertz once said, mathematical
formulas are “wiser than we are” and we often “get more
out of them than was originally put into them” ([2], p. 13).
The fact that we are able to find more physics through the
interpretation of mathematical expressions testifies that
mathematics is not merely a language that offers a precise
description of physical phenomena, but that in many cases
the mathematical formalism guides the physical thought.
The first two categories allow the identification of

specific translation or transfer moments, i.e., going from
physics to mathematics and vice versa. Both mathematizing
and interpreting are among the abilities that characterize
what it means to “think like a physicist” (see mathematical

sophistication in [23]). They are essential structural skills
that are constantly being emphasized in the professor’s
didactic discourse. However, in many situations, to “act like
a physicist” involves using mathematics as a mere instru-
mental tool, and the following category locates moments in
which this approach was identified in the lectures.

3. Technical

When watching the lectures, the role played by an
instrumental use of mathematics (technical dimension) in
the professor’s didactic discourse was an important focus of
interest. In fact, physicists often treat mathematics as a set
of practical rules that provide them with a safe reasoning
guide. It is actually quite useful for physicists to allow
themselves to be “led by the safety of the formalism,” since
it is not necessary to prove the validity of every math-
ematical step. Differentiation or integration rules, math-
ematical theorems (Pythagoras, Gauss, Stokes, etc.),
trigonometric identities, among many other examples,
are extremely useful tools for professional practice in
physics. But what role should such a technical approach
play in physics lectures?
This category was thought to answer this question in the

context of this case study. It locates moments of the lectures
when the technical use is made both within the context of
physics—e.g., using arguments of authority, simply quot-
ing equations—and when no connection with the physical
world is made and the professor is doing “just math.”When
the approach is exclusively instrumental, it is categorized
as T1—technical procedural. Here are two examples:

This is a function of x and ymax is given by the equation
of this line here. What is the equation of the line? I know
that ymax should be given by the function y ¼ αxþ β.
[…] Fellows, in physics we have no self-affirmation
problem with mathematics. So if you want to look for
that at a table, just do it. We want the quickest way.
(lecture 6—51:20–52:40).

Once you have done that, you are allowed to turn the
mathematical crank. Just throw the values there and
start manipulating. (lecture 9–44:40–45:00).

After watching several lectures it became rather easy to
identify moments to be categorized as technical procedural
(T1), since the professor’s body language usually indicated
a careless attitude, which was evident when he performed
algebraic manipulations quickly and often turned his back
to the class. In several occasions during these manipula-
tions, students pointed out mistakes and the professor
quickly accepted their corrections, showing an attitude
of indifference.
At certain occasions, he behaves like a mathematics

lecturer and provides (mathematical) justifications for
the validity of properties, rules, and theorems, as

FRAMING THE STRUCTURAL ROLE OF … PHYS. REV. ST PHYS. EDUC. RES 10, 010119 (2014)

010119-7



exemplified in the following. These moments belong to
a subcategory of the technical dimension (T2—technical
conceptual).

Student asks: This r-squared is actually not a vector,
right?

Professor: What is a vector squared? It is r dot r, right?
Is that clear to you? […] Imagine a vector r
with its components x y z. If you calculate r
dot r, it gives x2 þ y2 þ z2, which is equal to
the square of the vector’s magnitude. (lesson
9–13:20–15:00).

Besides identifying moments of a sole technical
approach, it is crucial to determine their duration and
especially their location in the whole unit of a lecture
or an episode, especially considering the possibility of
conducting comparative studies. In fact, in this case study
the Videograph timelines show that this technical modus
operandi rarely appears alone. The most common sit-
uation is to find the instrumental approach occurring
between moments of mathematization and interpretation.
This is exemplified by the analysis of a problem-solving
episode in Sec. V as well as in the timelines presented in
the Appendix.

B. Second dimension: Pedagogic
and linguistic strategies

The next three categories refer to specific strategies used
by the professor when focusing on translation processes
(i.e., mathematizing and interpreting). In general, his
extensive use of visual representations and analogies is
quite noticeable, especially when new concepts are
introduced.

1. Visual representations

When representing physical situations mathematically
(M—mathematizing) or interpreting mathematical expres-
sions physically (I—interpreting), the professor’s didactic
discourse was remarkably visual. As the lectures were
being watched, it was noticeable that semiotic resources
such as gestures and pictorial representations (drawings,
charts, diagrams, etc.) played a central role in his explan-
ations, which influenced the choice of categorizing such
moments. In the interview, the professor justifies this
intensive use of visual representations by saying that
“physical knowledge is silent” and cannot be fully
expressed by words.
This insufficiency is supported, for example, by the work

of the American physicist and linguist Lemke [48]. After
analyzing several scientific articles, the author states the
following:

Science is not done, is not communicated, through
verbal language alone. It cannot be. The “concepts”
of science are not verbal concepts, though they have
verbal components. They are semiotic hybrids, simulta-
neously and essentially verbal-typological and math-
ematical-graphical-operational-topological. […] To do
science, to talk science, to read and write science it is
necessary to juggle and combine in canonical ways
verbal discourse, mathematical expression, graphical-
visual representation, and motor operations in the
natural world. ([48], p. 89, my emphasis).

Thus, by establishing a category for the moments when
visual representations played an essential role in the
professor’s discourse, it is possible to recognize the “multi-
mediatic” character of the meaning making process. These
visual representations were divided into two subcategories,
namely, V1—gestures and V2—pictorial, and some exam-
ples are given below.

The mathematical object appropriate to describe things
that do this [makes a circular motion with the finger] is
the curl. And this here [points to the divergence] is the
mathematical object used to describe things that do this
[spreads his arms] (lecture 24—1:45:00–1:45:20).

If you take a surface like this [bends a sheet of paper], for
example. Below here [gestures] passes a lot of charge,
but above here [gestures] almost nothing. If you have a
wire, then i [current] is enough, but if not, then ~j [current
density vector] is more accurate. (lecture 26—1:11:40–
1:12:00).

This type of discourse supported by visual resources was
mostly found when new concepts were being introduced
and mathematized. It appeared to complement (or even
expand) the traditional definitions expressed in words or
equations. In this sense, the use of multiple semiotic
resources is possibly related to the quality of the professor’s
explanations. In fact, the analysis of teaching episodes
showed that the focus on the structural dimension (math-
ematizing and interpreting) often demanded a more “multi-
mediatic” discourse. This seems to find resonance in
Lemke’s work, particularly when he talks about the notion
of meaning multiplication:

[…] the principle of functional cross-multiplication in
multimedia genres shows us how we can mean more,
mean new kinds of meanings never before meant and not
otherwise mean-able, when this process occurs both
within and across different semiotic modalities (i.e.,
language, visual representation, mathematics, etc.).
([48], p. 94, my emphasis).
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2. Analogies

Another very important explanatory resource related to
the structural dimension (especially mathematizing) is the
use of analogical reasoning. Throughout the course, the
professor makes use of a wide range of analogies and
metaphors. In most cases, this was done by means of
presenting everyday life situations and comparing physical
phenomena. At other times, formal similarities were high-
lighted and unifying mathematical structures were made
evident. This distinction led to the choice of two sub-
categories [49] to analyze the use of analogical reasoning in
the lectures.
A1—Material analogies (everyday life examples and

metaphors).—When a new concept is introduced, the
professor often uses a vast repertoire of everyday life
situations and analogies between physical phenomena as
exemplified here:

Can dogs calculate the gradient? Yes, they can. Put a
dog in the corner of a dark room. Then pick up a tasty
steak and put it here [points to the opposite corner of the
room]. […] What does the dog do? It lifts its nose and
smells. After one sniff, does it know where the steak is?
No! With one sniff it knows that there is a steak, okay?
Where is it then? Now it has to calculate the gradient. It
turns its head randomly. And then what will it measure?
It measures the direction in which the smell increases,
okay? Then it walks a little in this direction, stops and
sniffs again. And then, by repeating this process, it finds
the steak. In other words, it calculates the gradient.
(lecture 19—14:20–17:40).

This excerpt reflects a frequent attitude to seek for
concrete examples in order to offer the students an arsenal
of complementary images with which they can identify.
It is also clear that in the process of building a theoretical
concept, the professor chooses a from-concrete-to-abstract
approach. This identification with real life situations and
experiences seems to be a crucial condition for a mean-
ingful mathematization of physical situations. The strong
conviction of this importance was clearly identified during
the interview with the professor.
A2—Formal analogies (common mathematical struc-

tures).—According to Hesse ([50], p. 202), “an analogy in
physics is a relationship between two hypotheses, or
between a hypothesis and certain experimental results, in
which certain aspects of both relata can be described by
the same mathematical formalism.” Similarly, Feynman
stresses that “the equations for many different physical
situations have exactly the same appearance” ([51], 12-1).
The explicit mention of formal analogies was categorized
as A2 and is exemplified in the following.

The required mathematics is already done. This law
here [Ampère-Maxwell law] although we have not seen

its physical meaning yet, it is, from the mathematical
point of view, similar to this [Faraday’s law]. So if you
understand the math of this one [Faraday] then you
understand the math of this other [Ampère-Maxwell].
(lecture 24—31:20–32:00).

Analogical reasoning played an essential role in the
development of the electromagnetic theory (see, for in-
stance, the original works of Thomson and Maxwell). The
very words flux, tension, or current reflect the significance
of using formal structures developed in a concrete or
mechanical context to reason about the unknown or unseen
electromagnetic phenomena. Throughout the course, the
professor explicitly mentions the importance of analogical
reasoning for physics and dedicates considerable effort to
developing this reasoning skill with his students.

3. Deduction

The notion of proof is central for mathematics. Its
main idea is to start from an “evident” set of axioms
and, by logical deductions, prove the veracity of prop-
ositions. This style of reasoning is in the core of the
epistemological notion of physical explanation [52] and
is widely found in several physics masterpieces, such as
Newton’s Principia and Einstein’s work on special
relativity. In fact, Einstein explicitly mentioned the
similarity between geometry and theoretical physics by
saying the following:

The theorist’s method involves his using as his founda-
tion general postulates or “principles” from which he
can deduce conclusions. His work thus falls into two
parts. He must first discover his principles and then
draw the conclusions that follow from them ([53],
p. 110, our emphasis).

Being able to comprehend logical derivations of
formulas allows one to recognize how physical assump-
tions, such as the principles of minimal action or energy
conservation, are imposed by physics instead of emerging
from mathematical manipulations. The ability to separate
physical assumptions from mathematical manipulations is
strongly related to a meaningful understanding of the
role of mathematical reasoning in physics (structural
dimension). Thus, this category was designed to locate
moments where deductive reasoning was the focus of the
lectures. Although much less common, this approach is
found in some crucial discussions, as in the following
passage.

[Discussion after problem solving—Determine the elec-
tric flux through a disk caused by a point charge] This
happened because I used that expression [Coulomb’s law]
and it falls with 1=r2, ok? What is happening is the
following: the field drops with the square of the distance,
but the surface increases with the square of the distance, so
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that the product of the surface times the field remains the
same. […] What is the idea of Gauss’s law? The idea is to
invert the logical order of these two statements. And it
raises the flux constancy to a greater truth than that
[Coulomb’s law]. So now we see an inversion of values. We
started believing in this [Coulomb’s law], which is an
empirical fact. But what physics decided to say that this
[flux constancy] is more important. And if I say that this is
more important, what do I learn? I can now understand
why the field drops with 1=r2. […] We can now derive
Coulomb’s law from Gauss’s. We can show where the 4π
comes from. (lecture 12—1:41:20–1:42:40).
The emphasis on the words show and derive are

evidences that the deductive aspect of physics is being
approached. The greater generality of Gauss’s law is
expressed when the professor mentions that it can be used
to derive Coulomb’s law and to show where the “mysteri-
ous” 4π comes from. This emphasis on deductive reasoning
is normally found at the end of topics or chapters and has
the goal of highlighting big syntheses. It is especially
present when the professor stresses the power of the
theoretical edifice represented by Maxwell’s equations.

C. Third dimension: “Stops” dedicated
to metalevel reflections

The last set of categories address specific moments in
which a clear interruption of the “normal course” of the
lecture is identified. Another way to interpret this dimen-
sion is to imagine a lecture as train travel and treat the
moments described by the following categories as stops
made along the way to admire the view [54]. These stops
were generated mainly by philosophical discussions, meta-
cognitive remarks, or questions posed by the students.

1. Philosophy

Discussions about the nature of physical knowledge
were quite common during the lectures. This focus is
possibly explained by the professor’s background, which
includes studies in philosophy of physics. In many
instances of the lectures—often during the first 20 minutes
or when a student raised a question—the professor the-
matizes metatheoretical aspects of physics, such as “What
is a theory?,” “What is the relation of mathematics to
physics?,” “What is the relationship between theory and
experiment?,” “How do we model reality?,” among others.
Because of the high frequency and wide variety of this
approach, it is impossible to reproduce the discussions in
depth here. The following fragments provide examples of
passages identified in this category.

This frame of reference is a reasoning instrument. It is
not in nature, but in your mind. It is an invention.
(lecture 5—1:00:20–1:00:40).

What is the relation between mathematics and physics?
This is a very complex relationship. […] In physics, we
use mathematics as a reasoning instrument to think
about the world. […] But we use math in quite an
intuitive way. Of course the mathematical rigor is
important, but when we work in physics we do not
worry about it so much. […] Our way of thinking is
connected to the material world. Several mathematical
theorems were intuited by physicists, they did not
demonstrate them. Stokes’ theorem is a good example.
(lecture 6—1:20–6:00).

A great number of other examples could be given, since
the professor’s philosophical discourse is both very wide
ranging and deep. The implicit message, which was
confirmed in the interviews, is the following: the student
should not only be able to do physics, but also to reflect on
what it means to do physics. This kind of approach is not
usually found in traditional physics lectures and tends to be
delegated to specific “history and philosophy of physics”
courses. The examples found in this electromagnetism
course as well as the interviews with the professor show
that it is possible (even desirable) to do physics and to think
about doing physics at the same time. In fact, the quality
and depth of the discussions highlight the benefits of
conducting philosophical discussions from an insider
perspective.

2. Metacognition

Thinking about one’s own thinking has proven to be an
important habit of mind for good problem solvers.
Moreover, research on cognitive psychology has shown
that metacognition is a powerful predictor of learning
outcomes [55]. During the lectures, a constant intention
of the professor to encourage this kind of metacognitive
reflection was perceived. At numerous times he paused
the lecture with metacognitive remarks such as, “Now ask
yourself if you truly understood this,” “Do not think this
is easy?,” “We usually need a lot of time to understand
this,” among others. These moments were categorized as
metacognition and seem to be another important feature
of the lectures. The overall perception is that the
professor is fully aware of the difficulties he faced in
understanding the abstract concepts of electromagnetism
and makes them explicit to students, as opposed to acting
as if everything were easy and obvious. This attitude of
encouraging metacognition is exemplified in the follow-
ing excerpts:

This may look simple, but if you make a small mistake
here, you ruin everything. So you need to be careful.
[…] This is serious! You won’t be able to solve the
problem this way. In general, people who have difficulty
in connecting the symbols during the calculations begin
to solve a problem and do not realize when the problem
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is over. For them, the problem is to calculate something,
and then they start to calculate, calculate, calculate…
The answer is already found, but they continue to
calculate, calculate, calculate. [Laughs] We cannot
work this way. (lecture 9—42:40–44:00).

It is very nice that he asked this question. His question
indicates a certain misunderstanding. But this confusion
occurs with everyone who studies this topic for the first
time. And if it still did not happen to you, it is because
you have not realized it yet. It is taking place in your

TABLE II. Summary of the categorization system.

Category Description Example

First: Translation and manipulation
Mathematizing M2—structures Mathematical structures are used to

represent physical quantities and their
relationships. Essential aspects are
identified and physical justifications
are offered.

The problem is that i [current] is a scalar.
In order to be more precise, we need a
vector [~j, current density].

M1—assumptions Idealizations, approximations, and
selection of relevant variables are
addressed explicitly.

This paper sheet is not bidimensional, but
I can think of it as if it were.

Interpreting (I) Mathematical expressions are interpreted
physically. Special cases are
commonly used.

What does it mean to integrate over dy?
[…] What does this expression say?
[…] What if x, y or z ¼ 0?

Technical T2—conceptual
mathematics

Conceptual explanations to mathematical
rules and procedures are given. The
justification is solely mathematical.

Imagine any vector r with components x,
y, and z. If you calculate r dot r it gives
x2 þ y2 þ z2, which is the square of the
vector’s magnitude.

T1—manipulation
and authority

Technical manipulations are performed,
equations are blindly used, and
arguments of authority are evoked.
Careless posture.

Now you are authorized to turn the
mathematical crank. Throw it there
and start manipulating.

Second: Linguistic and didactic strategies
Visual V2—pictorial Drawings, diagrams, and other pictorial

representations are essential
explanation sources.

The positive charge creates a yellow field
[draws]. The negative creates an
orange field [draws].

V1—gestures Gestures play an essential explanatory
role.

This is theta [points at the door], this is
theta plus d theta [opens the door]

Analogies A2—formal Formal similarities and differences are
highlighted. Unifying character of
mathematical structures is mentioned
explicitly.

They took this mathematical formulation
and used in different situations. […]
But there are also important
differences.

A1—material Everyday life situations, analogies, and
metaphors are used to give meaning to
abstract concepts.

Can dogs calculate the gradient? Yes.
[…] How can it find a steak inside a
dark room?

Deduction (D) Aspects of the logical-deductive
character of physical knowledge are
mentioned. Formulas are deduced from
physical principles.

We can now derive Coulomb’s law from
Gauss’s. We can show where the 4π
comes from.

Third: Metalevel stops
Philosophy (P) Philosophical discussions are conducted.

Various aspects of the nature of physics
are thematized.

In physics we use math in quite an
intuitive way. Our way of thinking is
closely connected to the material
world.

Metacognition (Met) Students are encouraged to reflect on
their own thoughts. Difficulties in
understanding abstract concepts are
made explicit.

This confusion occurs with everyone who
studies this topic. It is taking place in
your mind right now, but you are not
aware of that.

Questions (Q) Questions related to the interplay
between physics and mathematics are
raised by students. Long time is
dedicated to the explanation.

Student: There is “g” in the result,
shouldn’t it be “v”?

Professor: It is really great that you
asked that.
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mind right now, but you are not aware of that. (lecture
12—37:00–37:40).

The focus on regulating thought processes and recog-
nizing complexities is evident in the professor’s metacog-
nitive discourse. His attitude contrasts with the usual
posture of presenting physical knowledge as linear, logical,
and even trivial, which implicitly suggests to students that
they should not experience difficulties when trying to learn
physics.

3. Questions

Even though the lectures of this case study can be
described as quite traditional, the professor’s Socratic
discourse seems to create an atmosphere in which questions
are very welcome. In the interviews, he clearly states his
appreciation for questions and his desire to encourage
students to ask them frequently. In fact, the analysis of the
lectures showed that a lot of time and effort is dedicated to
each answer. Moreover, a positive reaction is commonly
identified in his answers (e.g., “this is a very good
question,” “you are right”). Thus, this category was created
to locate moments in which the professor interrupts the
course of a lecture due to questions posed by students. Two
examples of questions related to the role of mathematics,
which generated long explanations, are given in the
following:
Student: The flux has to be in 3D, right?
Professor: Good question. How many dimensions does

the flux have? […] Let’s go back to the
original problem. What is flux? In the case of
water or bees, you will count what passes
through a surface. But now consider a street
and count the number of cars passing on the
street. […] How many dimensions does the
flux in the street have? […] Two, ok? Cars on
a street is a two-dimensional problem, right?
It is not like bees or air, they are flying all
over the place. You do not have a car in the
third dimension. […] So the movement of the
car in the street can be considered two-
dimensional. And then the flux will be
through what? A line. The surface is not
important. You count on a line. (lecture
12—31:40–34:00)

Student: Isn’t it easier just to throw everything in the
equation and then reason about the problem’s
geometry?

Professor: But how will you throw everything in the
equation without knowing what ~rp and
~rq are?

Student: You work with them like vectors; symbolic.
Professor: But what does the symbol stand for?

Student: Can’t I just put ~rp minus ~rq over […] and then
this minus […]?

Professor: You can, but if you do not draw a picture, you
won’t know what you are talking about. And
this is the problem. ~rp is ~rq but you cannot
find out what ~rq is. Your formalism is not
deeply connected to the problem. (lecture
9—36:00–37:00)

Every physics teacher would probably say that questions
are welcome in their class. However, students are easily
capable of sensing this appreciation in the way teachers
react to questions. In the lectures of this case study, there
are many examples of questions motivated by students’
struggle to understand the interplay between mathematics
and physics. Being able to create an atmosphere where
students feel confident to ask questions seems to be crucial
for a successful teaching of physics, especially concerning
the learning of the structural role of mathematics.

D. Categories summary

The nine categories presented and illustrated in this
section constitute the basis for the analysis of the teaching
episodes using the software Videograph. Table II contains a
summary of the categorization system.

V. ANALYZING TEACHING EPISODES

The categories presented and exemplified in the previous
section are used to analyze teaching episodes extracted from
the lectures. The coding process (see Fig. 1) consists in
dividing an episode in 20-s time units and assigning to each
unit one (or more) category. The final result is a timeline,
which can be seen as a kind of x ray or spectrum of the
episode. This visual representation gives an idea of the
duration of each category and the order in which they
appeared in the lectures. Even though such visualization
provides a dynamic image of what happened during an
episode, its combinationwith the transcripts is essential for a
deeper understanding of the professor’s didactic discourse.
Nineteen episodes were selected for a deep analysis in

this case study. These were divided into two groups,
namely, the ones dedicated to the introduction or explan-
ation of a particular concept and the ones focused on
problem solving. In order to provide the reader with a broad
picture of the categorization process, two episodes (one
concept and one problem) are analyzed in the following. In
the Appendix, the timelines of six other episodes, including
a brief description of their essential features, are presented.
The complete analysis of all 19 episodes can be found
in Ref. [42].

A. Episode 1: Flux of a vector field (concept)

Lecture 12—Duration: 30 min.
The concept flux of a vector field is present in all four

Maxwell equations and, therefore, is of fundamental
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importance for the understanding of electromagnetism.
Moreover, previous studies [56] have already shown that
students encounter difficulties with it and often mix the
concepts of field and flux. These are among the reasons for
selecting this episode to exemplify the categorization of a
teaching episode dedicated to the introduction of a concept.
As its timeline (Fig. 2) indicates, this episode is focused on
the mathematization of the flux concept. It is also evident
that several visual representations and analogies are used
in this process. Furthermore, it is possible to identify
some metacognitive stops and long answers to students’
questions.
The episode starts with the professor’s survey of the

students’ intuitive notion of flux. He gradually identifies
relevant variables for the mathematic description of this
concept:

01:40–04:00 How do we think about something that
flows? […] There is no notion of flow unless you
support a mathematical surface on the door. Thus, we
can only speak of flux through a surface. […] [turns the
book parallel to the plane of the door] Is there air
flowing through this surface now? Yes, okay? [turns the
book] It changes, right? So the notion of flux depends
on how you orient the surface. From the mathematical
point of view, we have to take this into account.
(M1, V1, A1).

Afterwards, the search for an appropriate mathematical
representation is gradually approached:

04:20–06:00 Ok, we have to project something. What is
the light flux from the lamp through this surface here?
[…] One important remark: Flux is the end result. How
am I going to say mathematically that there is flux when
the surface is like this [perpendicular], and not when it is
like this [parallel].

Student 1: It has to be perpendicular to the flux.

Student 2: Put some angle there.
Professor: We cannot say “perpendicular to the flux”

because flux is the result of our calculation.
Ok, it has to be perpendicular to something.
What is the relevant magnitude? […] This
vector and what from light? […] Its
direction, ok? How do we quantify that?
Which vector enters in our calculation?
(M2, V1, A1)

In these fragments we observe various strategies used by
the professor to highlight the need of a surface to think
about flux and its dependence on direction. Instead of
starting by mentioning a formula, it is clear that the goal is
to mathematize, i.e., build a mathematical representation
of an idea extracted from the world. In this process it is
noticeable that idealizations are explicitly mentioned,
relevant variables selected, and appropriate mathematical
structures (vectors, dot product, integral) chosen.
Similarly to other moments when new concepts were

introduced, numerous analogies are used during the flux
episode:

01:40–02:00 What is water flow? How do we think
about this situation? Think of a river. Imagine that you
have a river here [draws] and the water is flowing.
(M1, A1, V2).

09:00–09:20 What is the flux of light from the lamp
through that surface here? (M1, A1, V1).

10:40–11:00 Imagine a bee swarm coming through that
door. Is there a flux of bees through this surface?
(M1, A1, V1).

14:40–15:00 Can we speak about the flux of g [gravity]
through this ds? (A2, V1).

FIG. 2. Timeline of the flux episode.
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In addition to metaphors and material analogies with
other areas of physics, the frequent presence of formal
analogies is also evident in this episode. This is seen when
the professor points out that the same mathematical
structure can be used to represent different phenomena.

01:20–01:40 This vector can be anything, it is a generic
~F. It can be an electric field, magnetic, velocity,
gravitational field, it can be anything. (A2).

Aside from approaching similarities, highlighting
differences is also very important when addressing formal
analogies. In the particular case of the flux concept, one
crucial problem arises due to the usual meaning attached
to the word flux (or flow), which implies the notion of
movement, i.e., something is moving (or flowing) across a
surface. However, when it comes to the flux of the electric
or gravitational field, there is no notion of movement
involved. Aware of the fact that this is a common learning
difficulty for the students, the professor explicitly addresses
this crucial difference when he calculates the flux of the
gravitational field:

14:40–16:00 Can we speak about the flux g [gravity]
through this ds [surface element]? In fact we can and
we do that. But then the word flux is not a good one.
Because when I talk about velocity, the bee swarm for
example, the bee was here and it crossed to the other
side of the section. The bee really went through the
mathematical surface. So when I speak about the flux
of a velocity field, the word flux is good because it
contains the idea of something moving. Is the vector g
passing through the surface? No. The g is standing
here. […] In this case the notion of movement does
not exist in the word flux. But we use the word
anyway. We do talk about flux of gravitational field.
(A2, V1).

Even though the lecture is part of the electromagnetism
course, the professor does not explicitly mention the
electric flux in this episode. In fact, the first remark about
electric flux comes from a student in the end of this episode,
probably realizing the analogy with the gravitational field:

28:20–30:20 Professor: Is there a Gauss’s law for
gravitation? […] Yes. Con-
sider the Earth here. There is
g everywhere [draws radial
field lines]. Then you take a
mathematical surface. […]
What is the flux of g through
this surface? And what
Gauss’s law says is that it
is equal to the mass of the
Earth. […] Again, g is not
flowing through the table.

Student: The electric field will also be like this, it is not
moving. It will be just there.

Professor: Exactly! The same thing for the electric field.
And what will Gauss’s law say? What is the
analogous to mass in the electrostatic case?
The charge. (A2, V1, Q)

This episode highlights the multiple resources used by
this professor to focus on the structural role of mathematics.
The emphasis is noticeably on mathematizing the flux
concept and, for this purpose, analogies (both material and
formal) and visual representations (gestures and pictorial)
are used extensively. Metacognitive remarks and answers to
students’ questions are also frequently found throughout
the episode. It is worth noting that similar profiles were
found in episodes where other concepts like charge density
and electric current were introduced or mathematized (see
the Appendix). Using the analytic tool presented in this
work to categorize other lectures could reveal important

FIG. 3. Timeline of the charged plate problem episode.
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differences. In a didactic approach focused on the technical
role of mathematics, for instance, the electric flux equation
would likely be presented right at the beginning and
followed by problem solving. In general, this would
involve a more rational and straightforward approach as
well as a less varied (i.e., less colorful) spectrum.

B. Episode 2: Net charge of a plate (problem)

Lecture 6—Length: 25 min.
Problem: Calculate the net charge of a rectangular plate

with sides D (horizontal) and C (vertical), whose surface
charge density is given by σ ¼ ðaxþ bÞy.
To solve this problem in a purely procedural (technical)

way would require 5 minutes at most. Why did the
professor spend 25 minutes of the lecture with its solution?
The timeline (Fig. 3) provides some hints. It reveals a
strong presence of the category interpretation (green),
which is related to the physical meaning of representing
surface charge density by mathematical functions [σðx; yÞ]
and integrating functions to obtain the net charge. Gestures
and figures are heavily used as explanatory resources. It is
also noticeable that, at various times, remarks of a meta-
cognitive nature (yellow in Fig. 3) are made with the aim
of encouraging reflection on cognitive processes during
resolution. In addition, portions of mathematization and
technical manipulations are also identified.
The problem is proposed as follows:

01:20–03:00 Imagine a rectangular plate [draws]
charged with the function σ ¼ axþ b. If you had to
make a drawing of the charge contained in this plate,
how would it look like? […] One possibility is to draw
points to show regions with different densities [points
closer or further away from each other]. Here the charge
is weaker. As you go farther away the charge becomes
more concentrated [the bigger the distance from the
origin, the closer the points]. What is important here is
to look at this function and know what it represents
in nature. […] Another possible function is:
σ ¼ ðaxþ bÞy. How does the charge distribution look
like now? […] It varies in two directions [draws], it
grows here [moves to the right] and also in this direction
[moves up, vertical]. Each function represents a par-
ticular charge distribution. (M2, I, V2, Met).

The question of a student indicates that he has difficulty
interpreting the meaning of a function that does not depend
on y and it motivates a more detailed explanation.
04:20–06:00 Student: In the first case there is no

dimension in y, right?
Professor: Yeah, what does that mean?
Student: It means that it has a linear growth.
Professor: Let’s consider his question, what does it

mean not to depend on y? For example,
consider this band [vertical]. If you take this

band and cut it up like that. All the pieces
have the same size [draws small rectangles
on the same vertical band]. Where does it
have more charge, here [bottom] or
here [top]?

Student: The same
Professor: Yes, so this is what is being said by the

function. Now if you compare this [vertical
band closer to the origin] with this [farther
away to the right], this one [latter] has a
greater charge. In the other case
[σ ¼ ðaxþ bÞy] [draws horizontal and ver-
tical lines], in this square [top right] there is
more charge than here [bottom left]. I am
taking equal areas to make our lives easier.
The charge increases in this direction [up]
and also here [to the right], right? (I, V2,
Met, Q)

The charge element is represented by d2q ¼ σdxdy and
the total charge by the integral

R
D
0 dx

R
C
0 dyσ. After this

mathematization step, the focus is again directed to
interpreting the meaning of each integral operation, which
is done with the help of a sheet of paper.

10:40–12:40 What does it mean to integrate over dy ?
That I am adding all the charge contained on this band
[points to vertical band on drawing]. The result of the
operation [charge] is a number. Then, to integrate over y
is equivalent to do this [folds a sheet of paper turning it
into a horizontal bar]. After we integrated over dy, the y
dimension is gone. And what is left is a bar. And then
what does it mean to integrate over dx after that? Is to
do that [crumples the paper stripe turning it into a
“ball”]. And that is the total charge. (I, V1, Met).

Calculus is essential for virtually all branches of physics.
In order to solve problems, students quite often have to
know which integration technique can be applied to a
particular function. This can make them reflect less on what
the calculations represent physically and more on how to
solve the integrals (technical dimension). In this passage,
the greatest importance is given to the interpretation of the
meaning of the integration, which is done with the help of
gestures. Saying that to integrate over x and then over y
means that you first transform the sheet of paper into a bar
and then into a ball provides a physical or visual meaning to
the operations. This attitude reinforces his emphasis on the
structural dimension of mathematics.
Nevertheless, this does not mean that the technical part

of mathematics is not approached. In this episode it is
possible to find moments when the “mathematical crank”
was turned to solve the integrals as shown by Fig. 3. It is
easy to notice a considerable change in the professor’s
posture when performing these calculations, which denotes
a somewhat careless attitude. Moreover, it is also noticeable
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that such technical approaches are usually followed by
interpretation phases.
A small change in the problem allows the professor to

better exploit its potential and provides another possibility
to emphasize the physical meaning of mathematical rep-
resentations. The plate is now triangular (the rectangle basis
is maintained, but a triangle is constructed by drawing a
diagonal and eliminating the superior triangle). In the
following passages it is quite difficult to distinguish
between mathematization and interpretation:

19:20–20:00 What changes in the calculation if I have
half a rectangle now? In other words: Where, in this
calculation, does the information that the body is a
triangle and no longer a rectangle enter? (M1, V1).

23:00–25:40 Where does the information about the
shape of the body go? […] In the first example I
integrated the variable y from zero to C. Why? Because
the body was like this [rectangle] and I wanted to get
from here to there [0 to C]. For each point the distance y
was constant. This changes now. Now for each x, y has a
maximum value [ymax] and I am going to take this away
[erases the upper limit of the integral] and put ymax up
here, given by that function [ymax ¼ −ðC=DÞxþ C]
[draws a straight line from C top left—to D—bottom
right]. […] What do we need to pay attention to? The
shape of the object is given by the limits of integration.
[…] Is the total charge different? Why is it different?
How does the calculation know that? […] The expres-
sion has to be informed of what you are doing. Then at
each step of the calculation, you have to put some
information there. Each information enters in one
particular place. The information about the density
goes here [points at the σ]. The information about the
shape goes up here [limits of integration]. (M2, I, T, V1,
Met).

At the same time that the professor is mathematizing
(e.g., How do we express mathematically the fact that
we now have a triangle?), he is interpreting the meaning
of mathematical operations. This almost simultaneous
approach is highlighted in the categorization of the last
3 minutes of this episode. The kinds of (unusual) questions
posed by the professor during the process of solving this
problem—such as how does this information enter the
calculation—attests to his focus on the structural dimen-
sion of the relationship between physics and mathematics.
Moreover, the explicit monitoring of the solving process
(metacognition) is stressed in his discourse.
Like in the flux episode, one promising strategy would

be to compare the solution of the same problem conducted
by other lecturers and use the analytical tool to identify core
differences. Again, one approach focused on the technical
dimension would likely be more straightforward, contain

fewer categories (less colorful timelines), and last less time.
Overall, the number of problems solved throughout the
electromagnetism course is quite low. However, a great
amount of time was dedicated to their formulation, sol-
ution, and discussion, as exemplified in this episode (the
timelines of the other three problems are provided in the
Appendix). This indicates that the professor does not regard
problem solving as an application of definitions and
procedures (technical dimension), but as valuable oppor-
tunities to learn how to use mathematical reasoning to
structure physical situations (structural dimension).

VI. CONCLUSIONS AND RESEARCH
PERSPECTIVES

How to facilitate students’ understanding of abstract
concepts is certainly a major concern of every dedicated
physics teacher. However, specific guidelines on how to be
successful in this task are not always available. With the
goal of contributing to the research (and practice) in this
field, I have analyzed the electromagnetism course given by
a highly appreciated and experienced physics professor at
the introductory level. The focus was directed to the way
mathematical reasoning was used in his didactic discourse.
Considering an overall distinction between a technical and
a structural role of mathematics, special attention was given
to the strategies used by the professor to teach the students
to use mathematics as a reasoning instrument to frame
the physical world. A coding process developed with the
software Videograph for the analysis of teaching episodes
was presented and exemplified.
For organizational purposes, the categories were divided

into three subsets that address different, yet complemen-
tary, dimensions of the lectures. The first dimension refers
to how mathematics is treated and encompasses both
translation processes (mathematization and interpretation)
and the technical approach. In general, the analysis shows
that the professor dedicates a considerable amount of time
and effort to build mathematical representations of physical
concepts. This was done with an explicit mention of
idealizations or abstractions (M1) and clear justifications
for the use of specific mathematical structures (M2). In fact,
mathematization (as a process) can be easily disregarded in
physics teaching, for instance, when formulas are prema-
turely presented and used as calculation tools (technical
approach). The didactical choices of this professor stress
his emphasis on a gradual and meaningful construction of
mathematical representations in physics teaching, which
indicates his focus on the structural role of mathematics.
After obtaining a mathematical expression, either for

representing a physical concept or as the solution of a
problem, the focus was immediately directed to the
interpretation of its meaning (I). For this purpose, special
and/or limit cases were frequently discussed. Specific
questions highlight this approach, such as “How and where
does this information enter the calculation?” “Which term
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is responsible for this physical property?” “What is the
physical implication of the fact that the expression depends
(or not) on this factor?” His reason for focusing on
interpretation is expressed in one interview: “The final
result/equation is like a finger. It is pointing you to
something really interesting. If you stop there, you leave
the most important and fascinating thing out”.
Thus, concerning the first dimension, the main focus of

the lectures was clearly on translation processes (math-
ematical sophistication [23]), which belong essentially to
the structural approach (see Table I). Although technical
manipulations (T) were also commonly found, they never
appeared alone and were almost always preceded
by mathematization and followed by interpretation.
Moreover, the technical approach was easily identified
by a careless attitude of the professor. When asked to justify
this posture, he said, “This is sort of a political attitude.
I want to show that this is part of physics, but it is far from
being everything. I don’t want them to think that this is the
most important, which is a widespread view in physics
instruction.”
The second dimension concerns particular strategies

used by the professor when mathematizing and interpret-
ing. Among them, visual representations (V1 and V2) were
used thoroughly as linguistic resources to make meaning,
which reinforces Lemke’s [48] argument that scientific
concepts are “semiotic hybrids.” Furthermore, mostly at the
end of chapters, the deductive reasoning (D) was high-
lighted with the goal of underlining big theoretical syn-
theses. This was particularly evident when the predictive
power of Maxwell’s equations is emphasized.
When introducing a new concept (e.g., charge density,

electric flux, electric current), a from-concrete-to-abstract
approach was clearly preferred, which was manifested in
his extensive use of rather unusual analogies with everyday
life situations (A1). In one interview, the professor explains
his didactical choice by exploring the analogy between
calculating the gradient and a dog searching for a steak in a
dark room (Sec. IV): “The example of the dog is very good
and the students understand it. […] We have a direct
experience with dogs. […] The relation a dog has with the
smell of a steak is very strong; it knows how to find it, even
without knowing how to calculate the gradient. So this
means that the notion of the gradient was extracted from
the world. The gradient is a human construction, it does not
belong to the world; the world came first. […] So, the
persons who invented this mathematics took this property
out of the world and translated it into mathematical
language. Then, if you are not able to find this deep
connection with the world, this becomes just a language,
which is somehow meaningless to you”.
The last three categories describe moments of the

lectures in which a clear interruption of their “normal
course” was identified. In the interview, the professor refers
to such moments as “epistemological stops,” as if a lecture

were train travel and such moments thought of as stops
made along the way to admire the view. These stops were
often motivated by questions (Q) posed by the students and
the amount of time and effort dedicated to each answer
shows his desire to encourage students to ask them
frequently. Moreover, the stops were frequently dedicated
to philosophical discussions (P) about the nature of physics
and specific characteristics of physical knowledge.
Although many people might think that philosophy of
physics should belong to another course, the interviews
reveal a different perspective: “The separation between
physics and epistemology is artificial. I think that if you
make an effort, you will realize that epistemology is
everywhere.”
Another special feature of the professor’s discourse is

the recursive use of explicit metacognitive remarks (Met).
A conscious and careful monitoring of intellectual proc-
esses is an overall trademark of the lectures. This involves,
among others, making the difficulties related to using
mathematics in physics clear and explaining their reasons
to the students. The professor justifies his attitude as
follows: “There is something very intriguing in physics
education. When people teach physics, they quite often
forget how hard it was for them to understand something
and teach it as if it were very easy and straightforward. […]
Perhaps they think that by doing so the students will
understand better. I totally disagree and try to make the
difficulties evident in my lectures.”
The goal of this work was to analyze the lectures of a

distinguished physics professor in order to characterize
features of his didactical discourse to focus on the structural
role of mathematics in physics. This case study reveals that
teaching to use mathematics to reason about the physical
world is a difficult and time-consuming task, which
involves taking several aspects of the roles of mathematics
into account. This stresses the complexity of concentrating
on the structural dimension, as opposed to treating math-
ematics as a set of tools to calculate and describe (see
technical versus structural dimensions in Table I).
Furthermore, this study provides an analytic tool that

can be fruitful for conducting future comparative studies.
The analysis of other lectures on the same topic may reveal
considerable differences in the timelines generated by the
software and imply different learning goals. The categori-
zation system can also be used to analyze physics lessons
in high school, textbooks, and other teaching materials.
Moreover, the analytical tool can be implemented in
teacher training programs to discuss the implications of
different didactic approaches.
An envisaged future goal of this research is to establish

objective criteria to characterize the notion of didactic
quality of explanations, especially concerning the use of
mathematics in physics. Considering the limitations of the
study design and the early stage of the research in this area,
it is only possible to formulate general hypotheses for
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further investigation. Additionally, it might be more pru-
dent to speak about quality of explanations in situated
contexts (e.g., explanation of a particular concept and
solving of a particular problem). Nevertheless, an overall
analysis of the lectures shows that the colorfulness of the
profiles, i.e., the presence of numerous categories in a
concept or problem-solving episode, may be an indicator
of explanation quality. In a more traditional and technical
approach, the discourse would likely be more rational and
the timelines less colorful. The colorfulness identified in
the lectures seems to be aligned with the complex and
multifaceted character of the relationship between physics
and mathematics underlined by several historical and
epistemological studies [2–7].
Although it may be inferred that the multifaceted

approach identified in this electromagnetism course is
related to students’ learning outcomes, the influence on
learning is still subject to a deeper investigation. A possible
research design would be to conduct thinking-out-loud
problem-solving sessions with the students of this professor
and investigate whether or not they frame problem solving
similarly to the way it is done in the lectures. Another
possibility would be to conduct similar analysis with
students of other professors who teach in more traditional
ways and compare their problem-solving process to those
taught by the professor of this case study.
The overall message is to advocate in favor of

changing the emphasis from a technical to a structural
approach in physics instruction, which should help over-
come the widespread notion of mathematics as a mere set
of tools for problem solving in physics. The electromag-
netism course investigated in this case study is full of
examples of a professor who is committed to this task.
Since the chief goal of the analyzed course is a deep
understanding of the electromagnetic theory, whose
elegant and powerful structure is mathematically
expressed by Maxwell’s equations, it seems fair to finish
the paper with another recommendation of Maxwell to
his students, in which he highlights the importance of
“mastering a principle” (structural) in detriment of “get-
ting up a formula” (technical):

I know the tendency of the human mind to do anything
rather than think. None of us expect to succeed without
labour, and I am sure we would all give a great deal of
mental labour to get up our subjects. But mental labour
is not thought, and those who have with great labour
acquired the habit of application, often find it much
easier to get up a formula than to master a principle.
I shall endeavor to show you that principles are fertile
in results, but the mere results are barren, and that the
man who has thought out a principle may keep his
mind clear of formulae, knowing that he could make
any number of them when required. ([16], p. 671, my
emphasis).
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APPENDIX: TIMELINES AND BRIEF
DESCRIPTION OF OTHER
TEACHING EPISODES

1. Concept episode: Charge density
(1, 2, and 3 dimensions)

Lecture 5
Total duration: 28 minutes.
Main characteristics: building (mathematizing) the con-

cept of charge density; assumptions (idealizations, approx-
imations) explicitly mentioned; several analogies with
everyday life situations; intense use of gestures and
pictorial representations; not a single moment of technical
approach. Numerous metacognitive remarks and answers to
students’ questions. See Fig. 4.

2. Concept episode: Meaning of
Gauss’s law (integral form)

Lecture 14
Total Duration: 19 min.
Main characteristics: highlighting formal differences

between open and closed surfaces; analogy charge-lamp;
interpretation of Gauss’s law: investigate the existence of
charge in the interior of a volume by analyzing its surface.
See Fig. 5.

3. Concept episode: Ampère’s law

Lecture 31
Total Duration: 21 min.
Main characteristics: careful presentation of the con-

ventions involving Ampère’s law (path orientation, math-
ematical surface supported by the path, direction of the
normal); intensive use of visual representations; analogy
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with soap bubbles; interpretation of the Stokes theorem,
and physical intuition of the curl. See Fig. 6

4. Problem episode: Flux through a disk

Lecture 12
Total duration: 35 min.
Main characteristics: mathematization-technical-inter-

pretation pattern; intense use of visual representations;
careful and clear explanation of the relevant variables; long
time dedicated to technical manipulations; emphasis on the
deductive reasoning (Gauss’s law as a “bigger truth” than
Coulomb’s law). See Fig. 7.

5. Problem episode: Electric field of an infinite wire

Lecture 15
Total duration: 10 min.

Main characteristics: necessary conditions for applying
Gauss’s law; idealizations justified; formal differences
between the infinite plane and wire; synthesis of the three
cases (point, line, plane): relation between Gauss’s law and
spatial dimensions. See Fig. 8.

6. Problem episode: Magnetic
field created by a finite wire

Lecture 19
Total duration: 20 min.
Main characteristics: mathematization-technical-inter-

pretation pattern; emphasis on representing relevant vari-
ables by vectors and on the cross product rules; formal
differences between the radial symmetry of the electric field
of a charge and the cylindrical symmetry of the magnetic
field of a moving charge: velocity “breaks the symmetry” in
one direction. See Fig. 9.

FIG. 5. Timeline of the Gauss’s law episode.

FIG. 4. Timeline of the charge density episode.
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FIG. 8. Timeline of the electric field of an infinite wire problem episode.

FIG. 7. Timeline of the flux through a disk problem episode.

FIG. 6. Timeline of the Ampère’s law episode.
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