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Discipline-based science concept assessments are powerful tools to measure learners’ disciplinary core
ideas. Among many such assessments, the Brief Electricity and Magnetism Assessment (BEMA) has been
broadly used to gauge student conceptions of key electricity and magnetism (E&M) topics
in college-level introductory physics courses. Differing from typical concept inventories that focus only
on one topic of a subject area, BEMA covers a broad range of topics in the electromagnetism domain. In
spite of this fact, prior studies exclusively used a single aggregate score to represent individual students’
overall understanding of E&M without explicating the construct of this assessment. Additionally, BEMA
has been used to compare traditional physics courses with a reformed course entitled Matter and
Interactions (M&I). While prior findings were in favor of M&I, no empirical evidence was sought to rule
out possible differential functioning of BEMA that may have inadvertently advantaged M&I students. In
this study, we used Rasch analysis to seek two missing pieces regarding the construct and differential
functioning of BEMA. Results suggest that although BEMA items generally can function together to
measure the same construct of application and analysis of E&M concepts, several items may need further
revision. Additionally, items that demonstrate differential functioning for the two courses are detected.
Issues such as item contextual features and student familiarity with question settings may underlie these
findings. This study highlights often overlooked threats in science concept assessments and provides an
exemplar for using evidence-based reasoning to make valid inferences and arguments.
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I. INTRODUCTION

Assessment is an integral component of science educa-
tion. When properly designed and implemented, assess-
ments can be effectively used to assist learning, monitor
student progress, and evaluate educational programs. Given
the increasingly heightened attention paid to the outcomes
of assessments and their possible ramifications to decision
making, educators and researchers are urged to reexamine
the quality of educational assessments and particularly the
appropriateness of the inferences and actions that are made
based on assessment results [1–3]. As emphasized by the
National Research Council, the very core of educational
assessment is an “evidence-based reasoning” process [1].
This should not only involve carefully crafted assessment
instruments that are grounded in learning theories and
capable of eliciting students’ knowledge and skills, but also
require sufficiently accurate analysis models and interpre-
tation mechanisms to allow for valid and reliable arguments
about teaching and learning [4–7]. To this end, careful

investigations of broadly used educational assessments to
inform and reshape future science curricula are warranted.
In the past two decades, a large number of science

assessments have been developed to measure students’
various cognitive constructs. Among them, discipline-
based concept inventories have been an important focus,
as they directly target disciplinary core ideas. In physics
education, the first of its kind—the Force Concept
Inventory (FCI) [8]—has been instrumental in revealing
student alternative Newtonian ideas and has served as a
catalyst for many physics curricular reforms. Inspired by
this, researchers invested a great deal of time and effort to
develop similar concept assessments for use in other
subject domains such as electricity and magnetism
(E&M) as well as in other science disciplines [9,10].
While these instruments are frequently employed to gauge
students’ learning of disciplinary core ideas and to compare
the effectiveness of science curricula, they are often used
with prima facie credibility without being subject to
additional validity and reliability investigations. For exam-
ple, in most cases a student’s understanding of a scientific
topic is represented by a single score on an assessment—
the sum of the questions the student has correctly answered.
This approach to representing student conceptual under-
standing is based largely on a putative assumption; that is, a
single score is a sufficient and meaningful indicator that can
lead to valid inferences about the student’s understanding
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of the tested topics [11–13]. However, this assumption may
not always hold, particularly in situations where the
assessment is designed to test a diverse range of topics
[14]. In such cases, a single aggregate score can be
problematic or even misleading (as a set of separate scores
may be needed to best represent each set of closely related
topics). Consequently, analysis and interpretation derived
from such aggregate scores are likely to generate inaccurate
or even false conclusions.
Similarly, when using a concept assessment to compare

the effectiveness of different curricula that cover the same
content, a critical yet often overlooked issue is assessment
bias [15,16]. Ideally, the selected assessment is appropriate
and serves as an unbiased measure for all students in
different curricula, if comparable learning opportunities are
indeed provided to students in these curricula. However, it
is not uncommon that consistent nonzero measurement
errors, also known as biases, may occur in some part of the
assessment [15]. For instance, a question on an assessment
may be situated in a context that is more familiar to students
in one class than to those in another. This could result in
students in the former class having an inadvertently higher
success rate on the question, even though both classes may
indeed share a similar mastery of the tested topics. Such
issues will likely go undetected if they are not empirically
examined and monitored, and as a result, the inferences and
conclusions drawn from the assessment outcomes can skew
reality. At their worst, these skewed inferences may either
inflate or underestimate the effectiveness of a science
curriculum, misinforming future decision making on cur-
riculum development and reform.
In this paper we reexamine one of the broadly used

concept assessments, the Brief Electricity and Magnetism
Assessment (BEMA) [10], to highlight these critically
important issues that have been overlooked in prior work.
Specifically, drawing on the “reasoning-from-evidence”
framework, we seek to uncover two missing pieces in
the common practices of using science assessments to
compare curriculum effectiveness. One is concerned with
the rationale of representing student conceptual under-
standing by an aggregate score. This issue is foundational
because a body of studies relied on this approach to
interpret BEMA results and draw conclusions [17,18]. If
no evidence is found to support this approach, a significant
portion of the prior results will become questionable. The
other issue we seek to address is whether the assessment is
potentially biased in favor of one group of students over the
other. For example, BEMA has been adopted to measure
student understanding of key electricity and magnetism
concepts in different physics curricula where students were
exposed to the same content [18]. Comparisons were often
carried out without checking the possibility of bias and
hence provided no evidence for the absence of this potential
threat.

II. THEORETICAL BACKGROUND

Following the evidence-based reasoning framework,
we seek to investigate these missing pieces in the context
of BEMA to illustrate their consequential significance
in science educational assessment. In this section, we
(1) review the content and construct of BEMA, (2) explicate
the possible threat in using an aggregate score to represent a
student’s conceptual understanding, and (3) address the
theoretical perspectives on potential measurement bias in
using concept assessments for comparative studies. Of
these three aspects, the last two directly relate to the two
missing pieces we attempt to seek in BEMA.

A. Content and construct of BEMA

BEMA is a 30-itemmultiple-choice assessment designed
to measure student conceptual understanding of key topics
in electricity and magnetism [10]. Since it is intended
to be a common-denominator assessment suitable for
use in various college-level introductory E&M courses,
only those that are considered core concepts by instructors
of both traditional and reformed courses are included
in the assessment [10]. To a large extent, BEMA shares
many similarities with concept inventories in terms of
design, format, and usage. In other words, as with concept
inventories, BEMA was designed to probe student con-
ceptual understanding of disciplinary core ideas, formatted
in the multiple-choice mode, and can be used for both pre-
and postinstructional measurements to track student learn-
ing gains. However, it also differs noticeably from regular
concept inventories in terms of the breadth of content
covered in the assessment. Typically, a concept inventory is
an assessment designed to probe student understandings of
a single topic [19–21]. The FCI is such an example that
focuses only on the Newtonian concepts of force—one of
the many topics that are discussed in mechanics [8].
Alternatively, BEMA covers a broad range of key concepts
in the domain of electricity and magnetism. Topics therein
range from electric charges and fields that are typically
taught at the beginning of an E&M course to electromag-
netic inductions, such as Ampere’s law and Faraday’s law,
that are discussed near the end of the course [10] (also see
Supplemental Material [22]). To distinguish assessments
with a broad content coverage (like BEMA) from those
with a narrowed focus (like FCI), researchers refer to the
former as concept surveys and the latter as concept
inventories [9].
The broad content coverage in BEMA raises a serious

question: Is using a single score by summing up correct
responses a meaningful way to represent a student’s overall
understanding of this broad subject domain? In other
words, can we make claims about student conceptual
understanding based on this broad concept survey? Or,
from a measurement perspective, can the individual ques-
tions on BEMA that are aimed at a wide range of topics

LIN DING PHYS. REV. ST PHYS. EDUC. RES 10, 010105 (2014)

010105-2



morph into a cohesive construct—a trait or a competency of
interest? Unlike concept inventories for which it is easier to
make an argument about a focused construct due to content
homogeneity and hence about the rationale of using a single
aggregate score to represent the construct, it is challenging to
make a convincing case for concept surveys [14].
From the measurement theory viewpoint, a clearly delin-

eated construct is essential for valid data interpretation and
inferences. However, when the content of an assessment
tested by different questions becomes increasingly hetero-
geneous, these questions run a risk of potentially represent-
ing different underlying constructs or distinct dimensions,
hence reducing the coherence and interpretability ofwhat the
assessment is testing [14,23,24]. In fact, for assessmentswith
a broad content bandwidth, even when classical test theory
reports a high reliability, a single construct or unidimension-
ality still cannot be guaranteed [23]. In this case, using a
single score to represent multiple constructs or different
dimensions increasesmeasurementuncertaintyandobscures
thenatureof the intendedconstruct.Specifically, twosources
of ambiguity are likely to be introduced into test results. One
is the lack of clarity in the contribution of each dimension to
the composite score. The other is the uncertainty in score
comparisons, because “the same composite score is likely
to reflect different combinations of constructs for different
membersof the sample” [14]. In lightof this theoretical basis,
it is crucial that the construct of BEMA be empirically
investigated to offer cogent arguments for the validity of
using a single score to represent student learning of a broad
range of E&M topics. Unfortunately, this issue has not been
addressed in prior studies.
From a different theoretical viewpoint of physical scien-

ces, electricity and magnetism concepts by nature should
form a cohesive entirety, because the topics in this subject
area, no matter how complex or seemingly diverse they are,
can always be traced back to nomore than a few fundamental
principles regarding charges, fields, and their interactions
[25]. Perhaps this is why the content of introductory-level
E&Mcourses hasmore or less remained constant for the past
century. Nevertheless, this scientific grounding lacks empir-
ical verification, especially when it comes to the learning
and teachingof these topics. For example, prior studies of the
FCI have shown that the construct of Newtonian force
conceptions viewed from the scientific perspective were
often misaligned with the empirical outcomes from student
learning of this topic [26,27]. To this end, it is necessary that
we uncover construct-related evidence for BEMA in order to
make inferences about the extent to which student under-
standingof electricity andmagnetismcanbe representedbya
single score.

B. Measurement bias and differential
item functioning

Measurement bias is another critical issue in the
evidence-based practices of science education assessment

[15,16]. In many comparative studies, researchers often
choose a common concept assessment for use with multiple
groups of students to seek meaningful between-group
differences. Presumably, each question on the assessment
is unbiased; or more specifically, differences in student
performance on each item should be solely determined by
real differences in the construct being measured. In
principle, students at the same level of competency as
measured by the assessment should demonstrate the same
(or similar) performance on each question regardless of
their group membership. If a significant difference exists
in student performance on an item between those with the
same level of competency in each group, the item is
considered to function differentially for different groups.
Or simply put, it has differential item functioning (DIF),
controlling for student ability levels. It is worth noting that
not every between-group difference should be considered
as DIF. Only those for matched students—those with the
same level of competency that the assessment is intended to
test—are considered as DIF [15,16]. Practically, a DIF can
be a sign of item bias but does not guarantee it. In other
words, DIF is a necessary but not a sufficient condition
for item bias [28]. Whether or not a question with DIF is
truly biased needs to be examined through analysis of its
content and context in relation to the target construct being
measured.
Theoretically, DIF represents a potential measurement

bias in a question that can be caused by two primary effects:
content and context [29]. The content effect lies in the
differential learning opportunities that different groups of
students may have [15]. For example, if a question tests
students’ knowledge about musical instruments, those who
have been exposed to symphony orchestras may have a
better chance to succeed on this question than those who
have not. A DIF due to such a content effect does not
necessarily mean the question is biased or problematic
and therefore may not be the researchers’ main concern.
On the other hand, a context effect occurs when a change
in question settings affects student performance [29]. For
instance, if a particular group of students happen to be more
familiar with the scenario of a question (not with what the
question is meant to test) and hence have a higher chance to
answer it correctly, this increased performance is undesir-
able and needs to be controlled.
Prior research using BEMA to study the relative effec-

tiveness of physics curricula has overlooked the important
issue of potential bias in the assessment. In large-scale
studies, Kohlmyer et al. [18] used BEMA to measure
student conceptual understanding of electricity and mag-
netism in two physics curricula. One is a traditional
college-level calculus-based physics course, and the other
is a reformed course called Matter and Interactions (M&I)
[30]. In both courses, students were required to attend class
for the same amount of time, were exposed to similar
course content in the same academic term, and were taught
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by equally experienced instructors [18]. A main difference
between the two courses, however, was that the sequence of
the topics in the M&I course was rearranged to highlight the
hierarchical structure of physics knowledge centered on a few
fundamental principles. Kohlmyer et al. compared student
total scores between the two curricula and found that students
in M&I outperformed their peers in the traditional physics
courses. After taking into account many confounding factors,
Kohlmyer et al. reached the conclusion that theM&I course is
moreeffective inpromotingstudent conceptualunderstanding
of coreE&Mideas than a traditional course.However, inview
of the evidence-based reasoning framework, an important
supporting piece is missing; that is, the threat of potential bias
has not been ruled out. It is true that BEMA is designed to be
appropriate for both traditional and M&I curricula, and prior
studies have established sufficient content-related evidence.
Nonetheless, no empirical data havebeen established toverify
that BEMA questions are indeed not inadvertently in favor
of the M&I students. Without this supporting evidence, the
argument about the increased effectiveness of the M&I
curriculum can be dubious.
It is worth noting that in this case there was no evidence

suggesting different opportunities for students to learn the
tested topicsbetween the twocourses.According toKurzand
Elliott [31], learning opportunities are conceptualized as
consisting of three key aspects: instruction time, content, and
quality. As mentioned earlier, both courses took place in the
same academic term and involved the same instruction time.
In addition, students in both courses were exposed to similar
content, although the M&I students learned the required
topics by following a different sequence that underscored the
hierarchical structure of the physics enterprise. Moreover,
instructors who taught these courses were equally experi-
enced and gave no reason for assuming any significant
difference in their teaching quality. Perhaps more impor-
tantly, the developers of BEMA stressed that this assessment
was intended to be a common-denominator test. Therefore,
items testing topics that were not discussed or only treated
as of peripheral importance in either of the two courses were
not included in BEMA [10,18]. To this end, what BEMA
purports to test is presumably thosekeyE&Mtopics thatboth
traditional andM&I studentswould have comparable oppor-
tunities to access in their respective courses. This indeed
needs to be empirically verified, because the comparison
between the M&I and traditional courses was predicated on
the postulation that BEMA is not in favor of one course over
the other [18].

C. Research goals

In this study, we investigate the aforementioned two
missing pieces. Specifically, we attempt to answer the
following questions. (1) Do the individual questions on
BEMA form a cohesive construct to allow a meaningful
interpretation by using a single aggregate score? (2) If the
answer to the previous question is affirmative, then what

exactly is the construct that BEMA is intended to measure?
Conversely, if theanswer to thepreviousquestion isnegative,
then how should we better represent student performance to
allowforvalid inferences? (3)Whatevidencecanspeak to the
issue of potential DIF in BEMA when comparing the two
courses, traditional versus M&I?

III. METHODS

A. Student sample and settings

In order to provide empirical answers to the above ques-
tions, we administered BEMA to students in science and
engineering majors at a large U.S. research university. These
students were enrolled in two parallel calculus-based intro-
ductory E&M courses in the same academic term. Both
courses were the second sequence of their respective two-
semester physics curricula and were taught by equally
experienced senior faculty members who valued and com-
mitted to effective teaching. One was a traditional course, in
which students attended three 50-minute lectures and one
2-hour lab each week. The topics covered in this course
followedaconventional sequence (seeSupplementalMaterial
[22]). The other was theMatter and Interactions E&Mcourse
[30,32,33]. Students in this course also attended three
50-minute lectures and a 2-hour lab every week. Although
the topics covered in M&I were essentially the same as those
discussed in the traditional course, the sequence was reor-
ganized by following a hierarchical, principled structure (see
Supplemental Material [22]) to help students increase con-
ceptual coherence [33]. More details on the M&I curriculum
can be found in Refs. [30,33]. As with the case in studies
performed by Kohlymer et al., students in both courses were
provided similar opportunities to learn the tested topics on
BEMA, as theywere exposed to comparable instruction time,
course content, and teacher quality.
We administered BEMA as both a pretest and a posttest

to students in the traditional and M&I courses. The pretest
was conducted in the first week of the course as part of class
activities; a total of 190 students attending the classes on
the day that BEMA was administered took the test (102
from the traditional class and 88 from M&I). To secure the
test for postinstructional use, no feedback was provided to
students, and students were not told they would be retested
at the end of the academic term. The posttest was
administered in the last week of the course; 165 students
attending the classes on the day of the event completed the
test (82 from the traditional class and 83 from M&I). Note
that there was a significant attendance drop in the tradi-
tional class near the end of the semester, the reason for
which remains unknown.

B. Rasch analysis of BEMA items and model fit

In order to match the goals of the study, we chose
the dichotomous Rasch model to examine the collected
data. This decision was made based on the following
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considerations. First, Rasch analyses can allow us to
examine whether or not the individual items fall under one
single dimension to fit the model, and hence can provide
evidence for construct-related arguments about BEMA
[11–13,34,35]. Second, Rasch analysis can convert ordinal-
level raw data to a set of interval-level estimates [36–39].
Strictly speaking, the commonly used total scores are not
continuous (although they have orders) and cannot be directly
subject tovariousstatistical analyses thatonly intervaldatacan
suit. Rasch analysis can resolve this issue by creating an
interval scale of measurement for both items and respondents
[11–13]. Another intrinsic advantage of Rasch analysis is that
the model-estimated item difficulty and person ability are
sample independent, which is also known as invariance of
measurement [40]. This means that the item difficulty esti-
mates obtained from Rasch analysis remain more or less
constant regardless of the student samples taking the test
(given that the model fit is satisfactory for the samples).
Similarly, the estimates of person ability are invariant
regardless of the difficulty levels of the items that are pooled
into the test. Because of the invariant nature, we can use
Rasch-generated results to detect DIF in BEMA questions
to examine whether or not potential bias exists. In this study,
we used the Winsteps software [41] to carry out Rasch and
DIF analyses.

C. Analysis of BEMA construct

1. Rasch analysis of unidimensionality and local
independence of BEMA items

To seek construct-related evidence for BEMA, we exam-
ined the fitof thedata to theRaschmodel.Foreach item,Rasch
analysis reports a set of fit statistics: infit and outfit mean
square residuals and their standardizedZ scores (seebelow for
details). These statistics reflect howwell the data set conforms
to the model [41]. Since the Rasch model assumes all items
falling under one single dimension (unidimensionality), the
reported fit statistics can help identify which items, if any, do
not meet this requirement [13,41].

In addition to checking the fit statistics, the unidimension-
ality assumption needs further verification [20]. Bejar’s total
test versus subtest approach is one way to evaluate this
assumption [20,42,43]. The key idea is to estimate item
difficulty parameters twice, first by using the total test and
thenby using only a subset of the test. If the assessment items
form a cohesive single construct, a scatter plot of these two
sets of estimates should showpoints near parallel to a straight
line of slope 1 and intercept of 0. On the other hand, if the
plotted points significantly depart from the line, the unidi-
mensionality assumption is violated. In this study, we used
this approach to test the unidimensionality of BEMA items.
Related to unidimensionality is another important

assumption of the Rasch model: local independence.
This means that the correlations between student responses
to each item should be explained entirely by two factors:
item difficulty and person ability [13,44,45]. Yen’s Q3
method provides a practical way to test the local inde-
pendence assumption [45]. This method looks into the
correlations of Rasch residuals after removing the portion
of variance that has been explained by the item and person
estimates. As recommended by Yen and Fitzpatrick [45],
residual correlations with a magnitude less than 0.2 are
acceptable. We followed this approach to acquire further
evidence regarding whether BEMA items are only related
by the construct they are intended to measure.

2. Qualitative analysis of BEMA construct

To articulate what BEMA actually intends to measure,
we analyzed the individual items by using a revised two-
dimensional Bloom taxonomy [46–49]. These two dimen-
sions in the Bloom taxonomy are content and cognition.
The content dimension, represented by a set of nouns,
reveals “what” types of knowledge are tested by each item.
There are, from the lowest to the highest level, four types:
facts, concepts or principles, procedures, and metacognitive
knowledge (see Fig. 1). The cognition dimension, which
is characterized by verbs, shows “how” mental processes
are carried out. With an increasing order of complexity,
these cognition levels include remember or recognize,

FIG. 1. Two-dimensional Bloom’s taxonomy. The vertical dimension contains knowledge types (represented by nouns); the horizontal
dimension contains cognition processes (represented by verbs).
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comprehend, apply, analyze or synthesize, evaluate, and
create. We classified BEMA items onto these two dimen-
sions to explicate at which content and cognition levels this
assessment is aimed. This analysis serves two important
purposes. One is to provide an articulated description of
the BEMA construct, which its developers only vaguely
reported as “understanding of basic electricity and magnet-
ism concepts.” Since Bloom’s taxonomy is a general
operational framework for explicating educational objec-
tives, it can help capture the qualitative details of BEMA
construct while still preserving an appropriate level of
generality. The other purpose is to examine, together with
the Rasch measures, whether or not items classified at
higher levels of Bloom’s taxonomy are indeed more
difficult than those at the lower levels. Such results can
cast useful light on the details of BEMA construct.

D. Rasch-based analysis of DIF in BEMA

To test potential DIF in BEMA for the two groups of
students (traditional versus M&I), we separately analyzed
the data from the two courses. As with the previous Bejar’s
method, we analyzed BEMA item difficulty twice, first by
using the data collected from the traditional course and then
by using the data from the M&I course. According to the
invariant property of Rasch measurement, the two sets of
item difficulty estimates, which are both constrained to
have a mean of zero by default, should be approximately
equal or differ by only a constant [13]. Surely, no
measurement is perfect, and in reality error is always
involved. Thus, a divergence between the two sets of
estimates within a certain error range (for example, 1%
or 5%) is acceptable. We used Rasch measures to detect
potential DIF for each item on BEMA.

IV. RESULTS

A. Rasch analysis of BEMA: Item quality
and model fit

Based on collected data points, the person and item
reliability of BEMA are found to be 0.78 and 0.96,
respectively, indicating an adequate measure to allow for
meaningful subsequent Rasch analysis. Note that person
reliability in Rasch analysis is equivalent to the conven-
tional KR-20 index or Cronbach’s alpha. It essentially
indicates the extent to which person placement can be
replicated if a similar test is administered to the same
participants. Item reliability, on the other hand, does not
have a conventional equivalent. It represents the replica-
bility of item placement along the difficulty hierarchy if the
test is administered to a similar cohort of students. In
making a judgment of the acceptability of reliability, one
can use the traditional criterion as a reference; that is, a
value equal to or above 0.7 is typically considered
satisfactory [10,50,51].

At the core of Rasch analysis is the collection of
construct-related evidence for BEMA. One way to do this
is to examine item quality and model fit. As mentioned
earlier, Rasch analysis yields a set of interval-level esti-
mates for item difficulty and person ability. Since they are
on the same interval scale, we can plot them side by side to
check item and person distributions. Such a plot is called a
Wright map [12,13,35]. For accurate model estimates, a
close match between the item and person distributions is
desired [13]. Figure 2 displays a Wright map for BEMA. In
this figure, a vertical scale (with increasing values from
bottom to top) separates the person ability distribution on
the left and the item difficulty distribution on the right.
Here, two columns of person distributions are shown; one
for the pretest and the other for the posttest. As seen,
student pretest performance is noticeably lower than the
difficulty levels of most BEMA items. On the other hand,
the posttest distribution seems to match the item distribu-
tion fairly well. However, two gaps in the item distribution
are noticeable. One is at the lower end of the scale between
item 1 and item 8, the other is at the higher end of the scale
between item 12 and item 28. This suggests that more items
with a difficulty level in these two ranges are needed to
better estimate student ability.
Rasch analysis also generates a set of fit statistics to allow

for inspection of model fit. For each item, two sets of fit
statistics are reported: mean square residuals (MNSQ) and
standardized Z statistics (ZSTD). Both reflect the difference
between the observed data and model-expected values. The
MNSQs are an average of squared residuals, whereas the
ZSTDs are normalized Z scores of the residuals [12,13].
Depending on howMNSQs and ZSTDs are calculated, each
can further generate two statistics: infit and outfit. The infit
assignsmoreweight to thosewith a close person-itemmatch,
whereas outfit puts equal weight on all data points and hence
is more sensitive to outliers. Typically, MNSQs within the
rangeof [0.7,1.3]andZSTDswithin [2,2] areconsideredasa
reasonable fit [13]. For items with MNSQs greater than 1.3
and ZSTDs greater than þ2, there is more variance in the
observed data than predicted by the model—also known as
underfit. Conversely, MNSQs less than 0.7 and ZSTDs less
than 2 signify that there is less variance in the data than
predicted—which is also known as overfit. Overfit indicates
that the data are too predictable and lack randomness, so it
does not degrade model fit [13,41].
Table I shows BEMA item fit statistics. The majority of

the items seem to have a reasonable fit to the model within
the acceptable range. Four items (item 5, item 6, item 15,
and item 16) fall below the lower end of the range and
represent an overfit. Given that these items yield data that
are too predictable but do not degrade the measurement,
they are less of a concern. On the other hand, two items
(item 9 and item 17) exceed the upper limit of the range and
therefore represent an underfit. These two items warrant
further inspection and need to be revised in future studies.
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FIG. 2. A BEMAWright map based on all data. On the left-hand side of the logit scale are two columns of student ability distribution;
on the right-hand side of the logit scale is the item difficulty distribution.
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Specifically, item 9 asks students to determine the current
in salt water by using the drift velocity and the number of
ionic charges therein. Although this question targets a
content-relevant topic of polarization in an ionic solution, it
requires students to formulate the answer in mathematical
symbols. Perhaps this math component makes the question
deviate from what it is originally intended for. The other
question that shows an underfit is item 17. A quick glance
at this question does not flag any problematic issues: it tests
a key concept in the electromagnetism domain—electric
potential in an open circuit—and it does not require
nonphysics-related knowledge. A closer look at Table I
shows that the infit statistics are in the acceptable range,
but the outfit statistics fail to meet the requirement. This
suggests that students may have made careless mistakes or
lucky guesses in answering the question [41]. Indeed,
nearly 50% of the students in the top quintile (according
to Rasch-generated ability estimates) mistakenly chose zero
as an answer. In other words, these students overlooked the
battery in the circuit and solely focused on the open part of

the circuit. Conversely, students in the bottom two quintiles
had a correct rate of 12%, close to the overall 19% average
success rate. These students may have guessed correctly on
this question or had previously encountered a similar
question and thus memorized the answer.

B. Rasch analysis of BEMA Construct:
Unidimensionality and local independence

While the fit statistics suggest BEMA items, in general,
can hold together as a meaningful measurement of one
construct, the unidimensionality assumption of Rasch
analysis needs to be further verified. We used Bejar’s
approach to compare two sets of item difficulty parameters
based on the entire BEMA and a subset of the BEMA
items, respectively. For a rigorous evaluation, we followed
Bejar’s recommendation [20,43] to split the items into two
areas of most dissimilar content: electricity and magnetism.
Of course, one can choose to split the items in numerous
other ways. However, the more dissimilar the items are
between two subsets, the more useful information can be
revealed. On BEMA, the first 19 items (item 1–item 19)
target electricity concepts and the remaining items (item
20–item 30) target magnetism or electromagnetic induction
concepts. We estimated item difficulty parameters sepa-
rately for these two subsets of questions and then compared
them with those based on the entire BEMA. Figure 3(a)
shows a scatter plot of total-test-based versus subtest-based
estimates for the electricity items, and Fig. 3(b) shows a
similar plot for the magnetism items.
The plotted dots for the 19 electricity questions in

Fig. 3(a) lie near the identity line (solid line with a slope
angle of 45°). A linear regression of these dots, namely, a
regression axis, yields a line with a slope of 1.01 (a slope
angle of 45.3°) and an intercept of 0.22, nearly parallel to
the identity line. Similarly, the dots for the 11 magnetism
questions in Fig. 3(b) also locate near the identity line,
forming a regression axis with a slope of 1.12 (a slope angle
of 48.2°) and an intercept of −0.41. According to Bejar,
unidimensionality should result in a close parallelism
between the principle axis and the identity line. Based
on Fig. 3, there seems to be no evidence to support the
hypothesis that the unidimensionality assumption is
violated.
We also evaluated the local independence assumption by

using Yen’s methods. The correlations of Rasch residuals
between each item were calculated. Yen and Fitzpatrick
[45] considered a residual correlation jrj < 0.2 as an
indication of local independence. In the present study,
nine correlations (out of a total of 435 item-pair correla-
tions) were found to fall outside of this range: three of them
are greater than 0.2 and six are less than−0.2 (see Table II).
While overall the local independence assumption appears
to hold for the BEMA items, these nine residual correla-
tions warrant further investigation (see Sec. V A).

TABLE I. BEMA posttest item difficulty estimates, model
standard errors (SE), and infit and outfit statistics [mean
square residuals (MNSQ) and Z scores].

Infit Outfit
Item Difficulty SE MNSQ Z MNSQ Z

1 −2.31 0.21 1.02 0.2 0.92 −0.8
2 −0.23 0.16 1.03 0.5 1.07 0.7
3 −0.6 0.17 0.96 −0.6 0.91 −0.9
4 −0.62 0.16 1.02 0.3 0.98 −0.1
5 0.01 0.17 0.83 −2.8 0.83 −1.7
6 −0.04 0.17 0.86 −2.4 0.79 −2.2
7 0.55 0.18 1.04 0.5 1.09 0.9
8 −1.36 0.17 1 0 0.99 −0.1
9 0.72 0.18 1.37 4 1.71 5.8
10 −0.17 0.16 1.03 0.5 1.03 0.3
11 0.99 0.19 1.17 1.7 1.17 1.5
12 1.24 0.2 1.08 0.8 1.14 1.3
13 −1.14 0.17 0.88 −1.8 0.88 −1.2
14 −0.7 0.16 1.05 0.8 1.1 1
15 −0.65 0.16 0.74 −4.9 0.67 −3.6
16 0.81 0.18 0.79 −2.5 0.65 −3.9
17 1.28 0.2 1.16 1.4 1.65 5.3
18 −0.61 0.17 1.12 2 1.15 1.4
19 −1.12 0.17 0.97 −0.4 0.99 0
20 0.43 0.17 0.89 −1.6 0.89 −1.1
21 −0.8 0.17 0.88 −2 0.87 −1.3
22 −0.25 0.17 0.9 −1.8 0.84 −1.6
23 0.31 0.17 0.9 −1.4 0.88 −1.2
24 −0.52 0.16 1 0.1 1 0
25 0.4 0.17 1 0.1 1 0.1
26 0.33 0.17 1.13 1.7 1.17 1.6
27 0.84 0.19 1.05 0.6 1.11 1.1
28 2.03 0.25 0.99 0 1.14 1.3
29 0.42 0.17 0.87 −1.8 0.91 −0.9
30 0.78 0.18 1.03 0.4 1.16 1.5
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C. Qualitative analysis of BEMA construct:
Bloom’s content and cognition levels

Based on the above Rasch analyses, there seems to be
no strong evidence suggesting that BEMA items cannot
function together to measure the same construct. But a
lingering question is, what is this construct? As mentioned
by the BEMA designers, this assessment is meant to test
student understanding of key electricity and magnetism
topics [10]. Though it may be true, this vague description
of BEMA offers little information as to what exactly it is
intended to measure. A more detailed account of the
construct of BEMA is needed for better interpretation of
assessment outcomes. We used the revised two-dimen-
sional Bloom’s taxonomy to classify BEMA items [46,47].
We categorized each item twice along the content and

cognition dimensions, respectively (see Fig. 1). A panel of
two physics education researchers and one physicist
independently classified all the items using the taxonomy
[47]. During the initial classification, it was found that both

the conceptual and procedural knowledge categories
can capture the content of BEMA items. According to
Krathwohl [47], conceptual knowledge is defined as “the
interrelationships among the basic elements within a larger
structure that enable them to function together,” for
example, “knowledge of principles and generalizations”
or “knowledge of theories, models, and structures.”
Krathwohl also defined procedural knowledge as “methods
of inquiry and criteria for using skills, algorithms, tech-
niques and methods,” for example, “knowledge of subject-
specific skills and algorithms” or “knowledge of criteria for
determining when to use appropriate procedures.” The
panel recognized that BEMA items require students not
only to know the meaning of physics laws and principles
but also to know when and how to use them in a logical way
to answer the questions. Therefore, the conceptual and
procedural categories should go hand in hand in the
analysis of BEMA items. We therefore combined the
two content categories for use in this study.
The three panel members independently categorized all

items, and then classification notes were compared to check
interrater reliability. The initial agreement between all panel
members before discussion was 90% for the content
categorization and 87% for the cognition categorization.
For the remaining cases, there was always an agreement
between two of the three panel members and the third
disagreed by only one level. The divergences were then
discussed among the panel and were eventually resolved.
As a result, 23 items (item 1–item 23) were categorized
as requiring students to apply an E&M principle by
carrying out the application procedures in a specific context
(apply concepts or procedures). The other seven items (item

FIG. 3. Scatter plots for full-test-based versus subtest-based BEMA item estimates. (a) Scatter plot for electricity items (item 1–item
19). (b) Scatter plot for magnetism items (item 20–item 30).

TABLE II. BEMA item pairs with residual correlations
jrj > 0.2.

Residual correlation r > 0.2 Residual correlation r < −0.2
Correlation Item pair Correlation Item pair

0.34 Q21–Q22 −0.26 Q18–Q21
0.34 Q15–Q16 −0.24 Q21–Q26
0.21 Q2–Q3 −0.24 Q9–Q15

−0.23 Q9–Q21
−0.21 Q16–Q26
−0.21 Q12–Q22
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24–item 30) were classified as requiring students to
synthesize both electricity and magnetism concepts for
analysis in a complex system (analyze concepts or proce-
dures). (Also see Supplemental Material [22].) Using the
Rasch-generated item measures, we further compared
the difficulty of these two categories of items. Overall,
the mean difficulty estimates for items that require “appli-
cation of concepts or procedures” and “analysis of concepts
or procedures” are −0.19 [standard errorðSEÞ ¼ 0.19] and
0.61 (SE ¼ 0.29), respectively, with the former being
statistically lower than the latter at the 4% error rate
(p < 0.04, effect size d ¼ 0.92).

D. Evaluation of DIF in BEMA

While the emerging evidence allows us to make infer-
ences about the construct of BEMA, it is still unclear
whether or not we can use this assessment to compare
different E&M courses and draw valid conclusions. We
used data from the traditional and M&I courses to seek
evidence for DIF (potential bias) in BEMA. To establish
baseline information, we compared Rasch-generated
person ability estimates between the two courses (see
Table III). For the pretest, no significant between-group
difference is detected, but for the posttest there is a
significant difference. This means students in both courses
started at a similar performance level, but the M&I students
finished with a higher level than those in the traditional
course—a result consistent with what was reported in the
literature [18]. In this case, the validity of the difference in
the posttest becomes our major concern, because it could
have been due to the potential bias in BEMA that was in
favor of the M&I curriculum.
We reestimated BEMA item parameters by using the

data from the traditional and M&I courses separately. Since
the difference in the posttest is our main concern and the
pretest data lacks a sufficient person-item match (Fig. 2),
we used the post data for DIF analysis. The two sets of item
difficulty parameters (estimated based on the traditional
and M&I courses, respectively) are presented in a scatter
plot as shown in Fig. 4. With measurement error in mind,
we plotted 95% confidence bands (dotted curves) and 99%
confidence bands (solid curves) in the plot (also see
Ref. [13]). The dots within these bands represent items

of similar functioning for the students in different courses.
Those that depart from the bands are items with a DIF and
need to be examined. In this plot, the majority of the
dots are within or in the immediate vicinity of the 95%
confidence bands (specifically within the 99% bands),
suggesting no significant DIF in these items. Five dots
fall out of the 99% confidence bands, signaling a significant
DIF in these items. Among them, two (item 5 and item 7)
are located below the lower-limit band and therefore are in
favor of the M&I students, the other three (item 17, item 22,
and item 25) are above the upper-limit bands, hence, in
favor of the students in the traditional course. Additionally,
we examined the effect sizes of DIF, namely, DIF contrasts,
by taking the difference in item estimates between the
two groups [41]. It was found that the DIF contrasts for the
items falling out of the 99% bands were at least 1.12 in size
(jDIFjitem 5 ¼ 1.17, jDIFjitem 7 ¼ 1.12, jDIFjitem 17 ¼ 1.57,
jDIFjitem 22 ¼ 1.24, and jDIFjitem 25 ¼ 1.36). For the
remaining items, the DIF contrasts were all immediately
near or below 1, with seven of them displaying a moderate
size with jDIFj ≥ 0.64 (see Ref. [41]).
To further explicate the DIF in these items, we divide the

students from each course into five quintiles according to
their Rasch ability estimates. For each item, the proportions
of correct responses in each quintile are plotted as a
function of person ability (see Fig. 5). For the two items
in favor of the M&I students (item 5 and item 7), the curve
of the M&I course lies higher than that of the traditional
course. Conversely, for the three items in favor of the
traditional course (item 17, item 22, and item 25), the
pattern is reversed. These plots reveal the ability levels at
which each item functions differentially for the two groups

TABLE III. Pre- and posttest person ability estimates for
students in the traditional and M&I physics courses.

Person ability mean value
(� standard deviation)

Traditional
course

M&I
course

Two-sample
t test

p value

Pretest −1.46ð�0.59Þ −1.59ð�0.59Þ p ¼ 0.11
Posttest −0.84ð�1.03Þ −0.28ð�1.21Þ p < 0.003

FIG. 4. A scatter plot of BEMA item difficulty estimates based,
respectively, on data from the traditional and M&I courses.
Dotted curves are 95% confidence bands, solid curves are 99%
confidence bands.
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of students. For example, item 22 displays a consistent DIF
between the two groups of students regardless of the ability
levels. Alternatively, the DIF in item7 comes mostly from
the difference in the high ability region.
In addition to seeking empirical evidence for differential

functioning at the item level, we also evaluated possible
differential functioning at the assessment level. One

approach is to plot students’ total scores as a function of
their ability levels estimated separately for the two courses
and then examine the deviation between the two plots [52].
If the two plots overlap, there is no differential functioning
at the assessment level. Otherwise, the assessment as an
entirety functions differentially for different groups of
students. Figure 6 shows the two plots for the traditional

FIG. 5. Item characteristic curves (showing proportion of correct responses as a function of person ability) for BEMA items with DIF.
Solid lines are empirical results based on the data from the traditional and M&I courses respectively, dashed lines are modeled results.
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and M&I courses, respectively. Here, the two curves
virtually fall onto the same S-shaped curve.

V. DISCUSSION

A. Construct of BEMA

The above results derived from Rasch analysis suggest
that BEMA items, albeit testing a broad range of topics,
can, in general, hold together to collectively measure the
same construct. That said, two items fail to fit into this
construct. One item (item 9) requires students to formulate
answers in mathematical notations—a possible con-
founding factor in a physics concept survey. Therefore,
revisions aimed at removing this factor are recommended.
The other item (item 17) represents a situation in which
students may have made careless mistakes due to some
unknown reasons. A close monitoring of this item in future
studies will be useful. Besides checking the fit statistics,
the unidimensionality of BEMA is further evaluated by
using Bejar’s approach. No evidence suggests that this
assumption is violated. Moreover, an evaluation of the
Rasch residual correlations indicates that the local inde-
pendence assumption by and large is supported. Thus, the
model we used can satisfactorily explain the relationships
among items; or simply put, the assumption that BEMA
items are related by a shared construct holds [45].
Nevertheless, nine pairs of items show a stronger

association in their residuals than expected (Table II).
Among them, three have a strong positive association
(r > 0.2) and six have a strong negative association
(r < −0.2). The three positive correlations suggest that
there may exist between each pair of items some common
factor extraneous to the shared construct of the assessment.
A closer look at these items reveals that these are all
consecutive questions that share the same question stems
and diagrams. It is possible that this commonality may have
led to the positive residual correlations. Future studies are

recommended to separate these items either using different
question stems and diagrams or placing them at different
locations of the assessment. As such, the local independ-
ence can be more accurately tested to examine the presence
(or absence) of unintended factors among them.
Conversely, the six negative correlations indicate that there
may be some inherent differences between the items in each
pair. In fact, for all of the six pairs, each contains one
magnetism question and one electricity question (or a
synthesis of electricity and magnetism as seen in item
26). Therefore, the content dissimilarity between the paired
items may account for the negative residual correlations.
This result seems to suggest that magnetism and electricity
items may not fit well together. In light of this possibility,
the totality of the acquired evidence is examined to draw
credible inferences. Recall that, in testing the unidimen-
sionality assumption, we split BEMA into two subsets of
electricity and magnetism items, and the results support one
construct. In terms of the local independence assumption,
while six out of total 435 pairs show a strong negative
association, the majority are in the desired range. In
addition, the Rasch fit statistics yield no evidence for a
large number of underfits. Combining all of these consid-
erations, it is unlikely that separating electricity items from
magnetism items is warranted. Given the above emerging
evidence, it is therefore reasonable to infer that a single
aggregate score on BEMA can be used to represent student
understanding of E&M topics.
In the present study, the construct of BEMA, which was

vaguely described by its designers as “understanding of
basic electric and magnetism concepts,” is qualitatively
explicated through Bloom’s taxonomy. Specifically,
BEMA is aimed at testing students’ proficiency in applying
or analyzing E&M principles through logical procedures to
predict various electromagnetic phenomena. As manifested
by their average item difficulty measures, questions that
require students to perform analysis or synthesis, in
general, are more challenging than those that require only
application, and the difference in their difficulty measures
is of a large size (d ¼ 0.92). This result is consistent with
the hierarchical nature of Bloom’s taxonomy (see Fig. 1).

B. Potential bias in BEMA items

Based on the Rasch measures, no significant DIF is
detected for the majority of BEMA items. This means that
most items function similarly for students who have the
same ability levels regardless of which course they
attended. However, our analysis also reveals possible
evidence of DIF for five items. Among them, two are in
favor of the M&I course and the other three are in favor of
the traditional course.
Typically, DIF can be attributed to two primary causes.

One is due to the different opportunities that students have
of being exposed to the tested content, and the other lies in
the context in which questions are situated. In the present

FIG. 6. BEMA test characteristic curves (showing total scores
as a function of person ability estimates) based on the data from
the traditional and M&I courses, respectively.

LIN DING PHYS. REV. ST PHYS. EDUC. RES 10, 010105 (2014)

010105-12



study, there is strong evidence suggesting that the two
courses provided comparable opportunities for students
to learn the tested topics in terms of instruction time,
course content, and teacher quality—the three-pronged
conceptualization of learning opportunities [31]. More
importantly, BEMA was intentionally designed to be a
common-denominator assessment to test key E&M topics
that students in both traditional and M&I classes would
have comparable opportunities to access in their respective
courses [10,18]. Therefore, possible causes of the detected
DIF in the present study likely rest with the contexts in
which these items are situated. To some extent, DIF can
also be considered as an indication of possible extraneous
factors in questions that may have caused differential
outcomes for students with comparable ability levels; or
simply put, there may be some subtlety in the item design
that interferes with the functioning of the item [16].
Take the two items in favor of M&I, for example, item 5

and item 7. Item 5 requires students to apply the suppo-
sition principle to determine an electric field and is
presented in the case of an electric dipole. Item Q7 requires
students to determine the polarization in an insulator
produced by an external electric field. Both items are
posed in a context highly familiar to the M&I students.
Specifically, electric dipoles are often used as a scenario in
practice problems in the M&I course, whereas the same
setting in the traditional course is primarily invoked as a
special example of the superposition of electric fields.
Since the purpose of item 5 is to test student application of
the superposition principle, perhaps a context other than
electric dipoles can be tried to mitigate the possible DIF.
Similarly, the context of item 7 (particularly the diagram
presented therein) highly resembles the context of Scotch
tape polarization examples that are frequently used in the
M&I course [30]. Conceivably, when answering these
questions, the M&I students likely have an advantage over
those in the traditional course.
However, the potentialDIFof the three items in favorof the

traditional course is difficult to understand. A further exami-
nation of the curricula materials for both courses provides no
interpretable account (neither in terms of course content nor
student familiarity with item contexts). One postulation,
however, is that the students in the traditional course might
have encountered similar questions not long before taking the
BEMA, and therefore were likely to succeed on these items.
Item 22, perhaps, is such an example, since students at all
levels in the traditional course outperformed their M&I
counterparts of the same person ability (Fig. 5). Another
alternative explanation is that theM&Istudentsmadecareless
mistakes or a lucky guess in responding to these items. For
example, when answering item 17, nearly 60% of the M&I
students (as opposed to40%of those in the traditional course)
chose “0 volt.” As discussed earlier (see Sec. IV A, last
paragraph), these students likely overlooked the battery and
focused solely on the “open” part of the circuit. In light of the

datawe have, it is nevertheless unclearwhy theM&I students
would have made such a mistake.
Additionally, the differential functioning at the assess-

ment level is evaluated. The plots of total score versus
person ability are compared between the M&I and tradi-
tional courses. The fact that the two curves fall on the same
S-shaped curve suggests that, despite the detected DIF in a
few BEMA items, the entire assessment functions similarly
for the two groups of students. Based on this evidence and
the aforementioned inferences about BEMA construct, it is
reasonable to conclude that the higher posttest performance
of the M&I students on BEMA is unlikely caused by bias in
the assessment. Since both groups of students started with a
similar preinstructional ability measure, we can now more
confidently attribute the statistically better posttest measure
of the M&I students to the instruction they received in the
course. Clearly, the M&I course improved students’ overall
ability of applying and analyzing various electromagnetic
phenomena (the construct of BEMA), not just increased
their performance on specific topics due to potential biases
(as otherwise would be manifested by DIF in a large
number of items).
As noted earlier and demonstrated in the above analysis,

detection of DIF often requires both quantitative and
qualitative inspection of the items of interest. A statistically
significant DIF can be a sign of item bias but certainly does
not guarantee it. In order to properly infer item bias, a
careful analysis of item content and context is needed. In
our study, the uniqueness of content similarity between
the two courses serves as an anchor for our subsequent
analysis regarding the contextual issues pertinent to item
bias. Had we chosen for investigation some other physics
courses that differed in pedagogy or learning goals, the DIF
results perhaps would have been different. This is not to say
that we must hastily change the assessment every time we
identify DIF. Instead, as our study has illustrated, infer-
ences and decisions derived from evidence-based reasoning
and supported by both quantitative and qualitative analysis
often can be more beneficial in the long run.

C. Significance and implications

While this study focuses primarily on the technicality of
BEMA and provides long-missing but much-needed jus-
tifications for its use as a measurement tool, the signifi-
cance goes beyond the targeted assessment. As discussed
earlier, science concept assessments can be designed into
different types. Depending on the breadth of its content
coverage, an assessment can test either a narrow topic (in
the case of concept inventories) or a broad range of topics
(in the case of concept surveys) [9]. When it comes to the
latter, extra caution must be taken to empirically verify the
existence of a single construct [14]. Otherwise, the action of
using an aggregate score to represent student performance
on the assessment is not warranted. Even when mounting
evidence is accumulated to support an overall single
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construct at the assessment level, there may still be item-
level or even finer-level issues that are in discordance with
the overall construct, such as item locations, content
variations, and contextual features. These issues are likely
to be revealed through a set of evaluations like those we
conducted with BEMA. To this end, it is important to weigh
both the totality and the individuality of evidence to draw a
balanced inference. It is useful to remember that no
assessment is perfect. The more closely one inspects an
assessment, the more issues one will discover. However,
these issues, at the very least, can provide key guidance to
the effective revisions of assessment items.
Also illustrated in this study is the significance of using

available evidence from assessments to make valid infer-
ences about learning and teaching. For example, had we not
sought potential biases in BEMA, we would have over-
looked the differential functioning in some items. Although
there is no indication to nullify the overall better perfor-
mance of the M&I students, seeking and documenting
this empirical evidence is crucial for making credible
arguments. In this study, the reported evidence allows
our heightened confidence in the effectiveness of the
M&I curriculum in promoting students’ core content
knowledge. Of course, there are other confounding factors
that may need additional investigation or technical issues

that can be further improved. For instance, the sample sizes
in the current study were relatively small, which may have
limited the analysis power of detecting DIF with moderate
size. Nevertheless, the evaluation practices like those
presented in this paper can undoubtedly help us accumulate
evidence for proper interpretation and use of educational
assessments. With increasing evidence at hand, our con-
fidence in the extent to which our inferences and con-
clusions are valid will also increase. After all, educational
assessment is an “evidence-based reasoning” process, and
it indeed, as aptly stated by Messick [53], is “an integrated
evaluative judgment of the extent to which empirical
evidence and theoretical rationales support the adequacy
and appropriateness of inferences and actions based on test
scores or other modes of assessment.”
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