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Generating a multidimensional crystalline beam in a storage ring has been known to be difficult without
a special cooling force, i.e., tapered cooling, because of the momentum dispersion induced by bending
magnets. It is, however, possible to eliminate the dispersion all around the ring by adding an electric
dipole field in each magnetic bending region. A storage ring with such unique deflectors should enable us
to reach multidimensional crystalline states with an ordinary untapered cooling force. In order to verify
this expectation, molecular dynamics simulations are performed to study beam crystallization in several
dispersion-free storage rings including the S-LSR at Kyoto University. The present results show that
various crystalline states can be established without relying on the tapered force.
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I. INTRODUCTION

In the ultimate low temperature state of an ion beam, the
perfect balance is achieved between the external focusing
force and internal Coulomb repulsive force. The ions form
an ordered structure where their relative motions are nearly
frozen out in the beam rest frame [1–5]. Such a new state of
matter is called a crystalline beam whose transverse emit-
tances are ideally equal to zero except for quantum noise.
In an actual accelerator, the beam receives discrete focus-
ing forces from quadrupole magnets and deflective forces
from dipole magnets. This realistic situation leads to two
stringent criteria for attaining a crystalline beam.
According to Refs. [6,7], we need a strong-focusing ma-
chine that operates below the transition energy. It has also
been pointed out that the phase advance of the single-
particle betatron oscillation must be below 127 degrees
per lattice period [8–10]. In practice, these two require-
ments can be met by designing a proper storage ring.
Besides them, at least two additional conditions are known
which should be satisfied by the cooling force. First, the
cooling rate must be high enough to overcome heating
from intrabeam scattering. Although the laser cooling
force, which is currently the only means toward beam
crystallization, is one-dimensional (1D), we can readily
make it work in all three directions by applying the reso-
nant coupling method [11,12]. Second, the cooling force
must have such nature as to drive the beam into a stationary
state where all particles have the same angular velocity in
the ring. Once a beam is crystallized, the path length of a
particle traveling along a radially outer orbit becomes
longer than those of inner particles; in other words, the

outer particle has to run slightly faster than the inner
particles, so the revolution frequencies are identical.
Regular cooling forces are not suitable for this specific
character of a crystalline state because they simply equal-
ize the linear particle velocity at the cooling section.
Multidimensional crystals are then exposed in bending
regions to shear that seriously affects the beam stability.
We, therefore, need the so-called tapered force to establish
stable crystalline states in a storage ring [9,13]. The ideal
tapered dissipation can be formulated as [14]

 �pz � �fz�pz � Cxsx=��; (1)

where pz is the scaled longitudinal momentum of a particle
in the beam rest frame, � is the radius of curvature in the
bending regions, the left-hand side represents the change in
pz at the cooling section, fz is the strength of the cooling
force, and Cxs is the tapering factor dependent on the
lattice structure of the storage ring. The optimum value
of the tapering factor can be determined by solving coupled
differential equations similar to the well-known beam en-
velope equations [15]. It is evident from Eq. (1) that the
longitudinal average velocity of each particle is linearly
proportional to the horizontal coordinate x in the final
equilibrium state reached by the tapered force. The tapered
cooling can thus realize all kinds of crystalline configura-
tions if the ring lattice satisfies the conditions mentioned
above [16]. The ideal tapering factor is, however, not
constant but varies along the beam orbit. Since the cooling
section extends over some distance, the perfect matching
of the tapering factor is probably impossible in practice
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whereas it is very important to adjust its magnitude for the
stabilization of a large crystalline beam [16].

An alternative idea to equalize the angular velocities of
stored particles was first proposed by Pollock [17]. His idea
is to use a horizontal electric field perpendicular to a
magnetic dipole field in each bending region. Since the
scalar potential of the electrostatic field accelerates or
decelerates particles at the edges of the deflection element,
the particles can have the same angular velocity in the
bending section and accordingly receive no shear force.
This device has been known as a dispersion-free deflector
for mass spectrometry [18,19]. The beam motion in a
storage ring with the dispersion suppressor is governed
by a Hamiltonian almost equivalent to that for a linear Paul
trap where Coulomb crystallization can be realized easily
[20].

In this paper, we numerically explore the beam behavior
in dispersion-free rings, applying the molecular dynamics
(MD) technique. In Sec. II, we show the basic equations of
motion in the beam rest frame for MD simulations. The
lattice structures assumed in the present simulations are
outlined in Sec. III. The MD code CRYSTAL [21] is em-
ployed in Sec. IV to show that multidimensional crystalline
beams can be generated in dispersion-free rings without
tapering the cooling force. The structural transition of
coasting and bunched crystalline beams is studied in
Sec. V. Section VI is devoted to practical considerations
of cooling experiments at S-LSR where the dispersion
suppressor has been actually implemented. Finally, the
present results are summarized in Sec. VII.

II. EQUATIONS OF MOTION IN THE BEAM REST
FRAME

In order to apply the MD algorithm, it is convenient to
observe the dynamic motions of particles in the beam rest
frame whose origin circulates around the storage ring. The
effect of radiation at bends can be ignored because we only
consider low-energy heavy ion beams. The three axes are

taken such that they are always oriented to the radial,
vertical, and tangential directions. In this system, the par-
ticle motion becomes nonrelativistic, which considerably
simplifies the numerical computation. This effort was first
made by Wei, Li, and Sessler [6,7]. We here somewhat
generalize their approach, introducing the effect of electro-
static deflectors. Provided the gravitational force is negli-
gible, the equations of motion can be written in a general
system of coordinates as

 

DPi
d�
� Fi; FiUi � 0; (2)

where we have adopted the notations of Møller [22]. In the
present case, the nongravitational four force fFig originates
from the electromagnetic fields and satisfies the relation
Fi � �e=c�FikUk, where e is the electric charge of the
particle, and c is the speed of light. Suppose that, in the
laboratory frame, the radius of curvature in a dispersion-
free bend is � and the dipole magnet has a uniform field of
flux density B0. The scalar potential within the bend is then
given by

 �D�X; Y� � �V0

�
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�
�
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�
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�

�
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�
�1� n�
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�
Y
�

�
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� � � �

�
;

(3)

where V0=� corresponds to the strength of the dipole
electric field, and �X; Y� are the transverse coordinates in
the Frenet-Serret system set along the design beam orbit.
The field index n has been defined by n � ��=EX �
@EX=@XjX;Y�0, where EX is the horizontal electric field
given by EX � �@�D=@X. We now introduce the rectan-
gular rotating coordinate system �x; y; z; c�� whose origin
is fixed at the position of the reference particle. � is the
proper time in the beam rest frame. The z-axis points
toward the direction tangent to the design orbit while x
and y denote the radial and vertical coordinates. Moving to
this system, we obtain the following linearized electromag-
netic fields after considerable algebra [23]:
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nx
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�
; B0z � 0; (4)

where � and � are the Lorentz factors of the reference particle, and space charge fields have been dropped for brevity. The
metric tensor of the beam rest frame can be written as

 g0ij �

1 0 0 ���2z=�
0 1 0 0
0 0 1 ��2x=�

���2z=� 0 ��2x=� �2	�2�1� x=��2 � ���z=��2 � 1


0
BBB@

1
CCCA: (5)

Making use of the field components (4) and metric tensor (5) in Eq. (2) and taking the Coulomb interactions into account,
we finally reach the equations of motion,
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where rp is the classical particle radius defined by rp �
e2=m0c

2 with m0 being the rest mass, E0 � m0�c
2 is the

energy of the reference particle in the laboratory frame, the
dot stands for differentiation with respect to the path length
s � ��c � � along the design orbit, and �c is the scaled
Coulomb potential

 �c �
X
j

1��������������������������������������������������������������������
�xj � x�2 � �yj � y�2 � �zj � z�2

q : (7)

Here, the summation is performed over all the other parti-
cles j and their image charges. These equations can be
derived from the Hamiltonian
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where px, py, and pz are the scaled momenta conjugate to
the coordinates �x; y; z�. It is worthy to recognize that
Eq. (8) is identical to the Hamiltonian obtained from the
standard beam-dynamics formalism [20]. The cross term
xpz in Eq. (8), the most essential difference between a
storage ring and an ion trap, is responsible for the shear
effect that may destroy ordered structures at ultralow tem-
perature. However, we now have an additional electric
cross term due to the introduction of the deflector. By
properly choosing the strength of the deflective electric
field, it is possible to achieve eV0=�2�2E0 � 1, which
totally eliminates the cross term. The situation then be-
comes physically equivalent to that in an ion trap where
various Coulomb crystals can be formed with the conven-
tional laser cooling technique.

III. SIMULATION PARAMETERS

A storage-ring lattice appropriate for beam crystalliza-
tion must fulfill the two conditions [6,9]; namely, for
crystal formation,

 � < �t; (9)

and for crystal maintenance [24],

 Nsp > 2
�����������������
�2
x � �2

y

q
; (10)

where �t is the transition energy, Nsp is the lattice super-
periodicity of the ring, and ��x; �y� are the betatron tunes in

the absence of space charge effects. When �x � �y, the
latter condition becomes �x�y� <Nsp=2

���
2
p

that agrees with
the original expression given in Refs. [8,9]. Note that the
maintenance condition in Eq. (10) is closely related to the
low-order resonant instability that depends on beam tem-
perature. We can actually prove that this condition is
relevant only in the crystalline regime. In order to prevent
the occurrence of dangerous linear resonance in the whole
temperature region throughout the cooling process, we
demand

 �x�y� <
Nsp

4
(11)

instead of �x�y� <Nsp=2
���
2
p

[25].
For a systematic study of beam crystallization, lattice

structures employed for simulations should meet the two
requirements Eqs. (9) and (10) [preferably Eq. (11)]. We
here consider three model rings whose bending regions
contain the dispersion-suppressing electrodes. The lattice
functions across a single focusing period are shown in
Fig. 1. While the betatron tunes in the regular operating
mode and in the dispersion-free mode have been set equal,
the corresponding lattice functions are rather different.
Other main parameters are summarized in Table I indicat-
ing that the necessary conditions have been satisfied in all
three cases. The condition of crystal formation, i.e.,
Eq. (9), is automatically fulfilled in the dispersion-free
operation [20]. The betatron tunes of Test Ring I and
Test Ring II, both of which are designed solely for this
study, have been set below Nsp=4 �� 2:5�. S-LSR is the
cooler storage ring constructed at Kyoto University [26].
This ring is being equipped with a laser cooling system and
actually has the dispersion suppressor. The tunes can be
adjusted below Nsp=2

���
2
p
�� 2:12� but, unlike the other two

rings, the condition (11) cannot be met in the dispersion-
free operation because the electrode potential enhances
transverse focusing. Although it is preferable to have
both tunes below Nsp=4 rather than Nsp=2

���
2
p

, we can
establish stable crystalline states at S-LSR with the current
parameters, provided that the line density of the beam is
low and sufficiently strong cooling forces are available in
all three directions. In what follows, we assume the ‘‘un-
tapered’’ linear friction �pz � �fzpz unless explicitly
noted. Transverse linear cooling forces �px�y� �
�fx�y�px�y� are also employed to reach perfect crystalline
states. These dissipative forces are simultaneously applied
to 24Mg� ions circulating at the total kinetic energy of
35 keV.
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TABLE I. Main lattice parameters considered in simulations.

Lattice Test Ring I Test Ring II S-LSR

Superperiodicity 10 10 6
Circumference [m] 29.4 18.5 22.557
Typical betatron tunes ��x; �y� (2.23, 2.23) (2.23, 2.23) (2.07, 2.07)
Transition gamma �t (regular mode) 2.09 2.17 1.67

(dispersion-free) 1 1 1

Field index of bending magnetic fields 0 0 0
Field index of bending electric fields n 1 1 0
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FIG. 1. Lattice functions of three storage rings in the regular operating mode and in the dispersion-free mode. The betatron functions
�x�y� and the dispersion function Dx across a unit cell have been displayed. In the dispersion-free mode, electrostatic deflectors are
turned on in all bending regions. The bare betatron tunes have been adjusted at the same numbers in both modes: ��x; �y� �
�2:23; 2:23� for Test Ring I and Test Ring II, and ��x; �y� � �2:07; 2:07� for S-LSR. Other parameters are summarized in Table I.
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IV. BEAM CRYSTALLIZATION IN THE
DISPERSION-FREE MODE

A. Formation of multidimensional crystalline beams

We have performed a number of systematic MD simu-
lations, assuming the lattice structures in Fig. 1. Since no
essential difference has been identified so far in the three
cases as long as the line density of the beam is relatively
low [27], we only show the results on Test Ring I in this
subsection. The strength of the untapered friction is set at
fx � fy � 0:05 and fz � 0:10 that suffice for overcoming
the heating from intrabeam scattering. Some examples of
final ion distributions after cooling are shown in Fig. 2. The
left pictures correspond to the regular operation while the
right pictures to the dispersion-free operation. We find that
1D or 2D crystals can be attained even in the regular
operating mode. At higher line density, it is no longer
possible to form an ordered configuration. As expected,
the simple untapered force works as a heating source at
ultralow temperature and destroys 3D crystals in the dis-

persive environment [9,16]. In contrast, any kinds of crys-
talline states can be reached in the dispersion-free mode
without tapered cooling. The situation is unchanged in
Fig. 3 where radio-frequency (rf) cavities have been turned
on to bunch the beam. We again observe the formation of
stable 1D, 2D, and 3D bunched crystals in the dispersion-
free mode, but fail to establish 3D crystalline states in the
regular operation.

Needless to say, the tapered cooling enables us to gen-
erate multidimensional crystalline beams even in an ordi-
nary dispersive ring as confirmed in Fig. 4. It is interesting
that the horizontal extent of the coasting crystalline beam
in Fig. 4 is greater than that in the case of Fig. 2(b)
while the two simulations are based on the same funda-
mental parameters. This can be understood by recalling the
role of the centrifugal force in either operating mode. Once
a crystalline state is reached, the centrifugal force defo-
cuses the beam horizontally because all particles must have
an identical angular velocity. In the dispersion-free mode,
the electrostatic potential of the deflector counteracts the
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FIG. 2. MD simulation results on Test Ring I with ��x; �y� � �2:23; 2:23�. The spatial configurations of coasting crystalline beams at
three different line densities have been depicted. The line density assumed in the top panels is 7:0� 103 m�1, 1:3� 104 m�1 in the
middle panels, and 1:3� 106 m�1 in the bottom panels. The linear untapered cooling forces with the friction coefficients fx � fy �
0:05 and fz � 0:10 have been applied to the beams in every lattice period.
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defocusing effect as is clear from Eq. (8). The crystal is,
therefore, more compressed in the horizontal direction.

The normalized root-mean-squared (rms) emittances of
bunched beams cooled with the untapered linear friction
have been plotted in Fig. 5. The fundamental lattice pa-
rameters are identical to those employed in Fig. 3. We
observe a significant difference between the achievable
emittances in the two operating modes. In the regular
operating mode, the equilibrium emittances linearly in-
crease as the number of ions in a bunch becomes larger,
which is consistent to the results of realistic laser cooling
simulations in Ref. [16]. The magnitudes of the final
emittances are determined by the balance between the
external cooling force and internal heating attributed to
the shear. If the cooling force is switched off, the beam
immediately blows, settling into a much hotter state. On
the other hand, no remarkable emittance growth takes
place in the dispersion-free mode even after the friction
is removed. Unlike the regular operation case, the equilib-
rium emittances are insensitive to the line density.

B. On the stability of bunched crystalline beams

As pointed out in previous papers [16,21,28], the dy-
namic behavior of a bunched Coulomb crystal is much
more complicated than that in a Paul ion trap. Since
individual particles either gain or lose energy at rf cavities,
the transverse motion is seriously affected by the energy
modulation through the dispersive coupling, in other
words, the cross term xpz in the Hamiltonian. Con-
sequently, even a 1D string crystal oscillates periodically
on the horizontal plane. 3D shell crystals also execute

horizontal head-tail oscillations that have the same peri-
odic pattern as in the case of 1D strings [21,28]. This
strongly suggests that rf cavities should be placed symmet-
rically in every lattice period to stabilize a large bunched
crystalline beam. Suppose, for instance, that we have only
one cavity sitting in a ring. Then, the horizontal dispersion-
driven oscillation has the period equal to the ring circum-
ference, which implies that the lattice periodicity is ac-
tually unity, i.e. Nsp � 1. This makes it impossible to meet
the requirement in Eq. (10). In fact, it has been confirmed
that we cannot reach a multidimensional crystalline state
even with the ideal tapered force unless the lattice sym-
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almost independent of the particle number.
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FIG. 6. Bunched 3D crystalline beams produced in Test Ring
II at the operating point ��x; �y; �z� � �1:46; 2:46; 0:23�. The
momentum dispersion has been completely suppressed in both
cases. We have applied the untapered friction to 800 particles
traveling at the kinetic energy of 35 keV. In the upper picture, ten
rf cavities have been simultaneously excited in order to keep the
10-fold lattice symmetry, while the ring contains only a single
cavity in the lower picture. Although both results look similar,
the crystal of the latter case is unstable; namely, it melts in a few
hundred turns after the cooling force is removed.

CRYSTALLINE BEAMS IN DISPERSION-FREE STORAGE . . . Phys. Rev. ST Accel. Beams 9, 124201 (2006)

124201-7



metry is strictly maintained including the arrangement of rf
cavities [16].

An interesting question arises now: what happens in the
dispersion-free situation? Is it possible to generate 3D
bunched crystals with a single rf cavity excited in the
ring? In order to find the answer, we carried out MD
simulations assuming the two test storage rings. Figure 6
shows a typical result in which the lattice of Test Ring II
operated at ��x; �y; �z� � �1:46; 2:46; 0:23� has been taken.
The number of ions in a bunch is 800. As already verified in
the last subsection, it is possible to make a stable multishell
crystal without tapered cooling when 10 cavities are ex-
cited simultaneously [Fig. 6(a)]. In the lower picture, we
have shut down 9 of the 10 cavities while keeping the
synchrotron tune by increasing the rf voltage. An ordered
structure very similar to the upper case has been formed
without tapered cooling, which is never anticipated in
regular dispersive situations [16]. In both cases, transverse
normalized rms emittances less than the order of
10�13 m rad has been achieved. This is another great ad-
vantage in a dispersion-free storage ring, considering the
practical difficulty in putting an rf cavity in each lattice
period. Similar MD results have been obtained at different
operating points and/or with the lattice of Test Ring I. It
has, however, turned out that 3D crystalline beams
bunched by a single cavity are not completely stable;
they melt in a few hundred turns, unlike crystalline
bunches in a ring holding perfect high symmetry.
Although the Hamiltonian (8) indicates that the longitudi-
nal motion in the dispersion-free mode is decoupled from
the transverse motion in a single-particle point of view, we
do have the strong Coulomb potential that correlates the 3
degrees of freedom. External forces in the longitudinal
direction can, therefore, affect the transverse dynamics of
the beam through the Coulomb coupling. The influence is
not so strong as in the full dispersive operation, but defi-
nitely finite. When the ring includes only one cavity, the
period of the longitudinal breathing oscillation is equal to
the ring circumference and, accordingly, the beam can
recognize that the strict superperiodicity of the ring is
unity, i.e. Nsp � 1. This results in the weak breakdown of
the maintenance condition in Eq. (10). Even then, we can
prevent the serious emittance growth of a bunched crystal-
line beam in practice simply by keeping the cooling force
on.

V. STRUCTURAL TRANSITION OF CRYSTALLINE
BEAMS

A. Coasting crystalline beams

The structure of infinitely long Coulomb crystals in a
harmonic potential was studied extensively by Hasse and
Schiffer as a model of coasting crystalline beams [4]. It
was demonstrated that, as the linear density of particles
increases, the crystalline structure changes from 1D chain
to 2D zigzag and finally to 3D shell structures. The linear
densities of various structural transitions are uniquely de-
termined by the normalized density,

 � � �aWS; (12)

where � is the linear density of the particles in the rest
frame, and aWS is the Wigner-Seitz radius that corresponds
to the radius of the average spherical volume occupied by a
particle in a crystalline state. When the beam focusing
strengths are equal in both transverse directions, the
smooth approximation gives

 aWS �

�
3q2R2

8	"0m0�
2�2c2�2

?

�
1=3
; (13)

where R is the average radius of the storage ring, "0 is the
dielectric constant in vacuum, and �? represents the effec-
tive transverse tune in the beam rest frame. In a regular
dispersive ring, the net radial focusing force received by a
crystalline beam is proportional to �2

x � �2 instead of �2
x

[7]. This basically comes from the fact that the centrifugal
force in the bending regions works as defocusing in a
crystalline state because all particles must have the same
angular velocity. Therefore, in order to apply the definition
in Eq. (13), the transverse bare tunes should not be equal in
both directions but rather chosen such that �2

x � �
2 �

�2
y�� �2

?�. Table II summarizes the transition densities
identified by MD simulations in which the lattices of Test
Ring I and Test Ring II have been assumed. The operating
betatron tunes are fixed at ��x; �y� � �2:44; 2:23� for the
regular operating mode and ��x; �y� � �2:23; 2:23� for the
dispersion-free mode (because the net radial focusing is no
longer weakened by the centrifugal force after the disper-
sion is eliminated). As expected, a transition from one
structure to another takes place in a dispersion-free ring
at the line density close to the theoretical prediction with

TABLE II. Normalized linear densities of structural transitions.

Normalized linear density
Test Ring I Test Ring II Test Ring I Test Ring II

Crystal structure Hasse-Schiffer [4] (dispersion-free mode) (dispersion-free mode) (regular mode) (regular mode)

String (1D) 0< �< 0:709 0< �< 0:70 0< �< 0:69 0< �< 0:65 0< �< 0:69
Zigzag (2D) 0:709< �< 0:964 0:70< �< 0:94 0:69< �< 0:95 0:65< �< 1:1 0:69< �< 1:1
Single shell (3D) 0:964< �< 3:10 0:94< �< 3:2 0:95< �< 3:2 1:1< �< 3:0 1:1< �< 3:3
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the harmonic potential model. We also observe reasonable
agreement between the theory and simulations even when
the dispersion is finite. As far as the present MD results are
concerned, it appears that the ring dispersion tends to push
down the 1D-to-2D transition threshold while pushing up
the 2D-to-3D transition threshold. The amount of the shifts
weakly depends on the lattice designs.

B. Bunched crystalline beams

Coulomb crystals confined in an ion trap are similar to
bunched crystalline beams (rather than coasting crystalline
beams). Both crystals are compressed by external forces in
all three directions and thus spatially localized. The nature
of such three-dimensionally bounded Coulomb crystals
was theoretically studied by Schiffer [29] and Dubin
[30], who considered the simple time-independent uniform
confinement of charges. According to their analysis, the
structural transitions can be well described by the anisot-
ropy parameter 
 � !z

2=!r
2 where !z and !r denote the

strengths of the longitudinal and transverse particle con-
finement fields. A crystal is more compressed in the lon-
gitudinal direction as 
 increases; we can then convert a
1D string into a 2D zigzag crystal without increasing the
number of particles in a bunch. This happens also in
discrete alternating-gradient (AG) focusing systems [21].
By further increasing 
, a zigzag can be transformed to a
twisted helical structure [29]. These specific transitions are
expected to take place at [30]

 
i�N� �
�

8

3xiN

�
2
	ln�3xiN=23=2� � 1
; i � 1 or 2;

(14)

where x1 � 2:05, x2 � 1:29, and N is the number of par-
ticles in the trap. 
1 and 
2 are the threshold of 1D to 2D
and that of 2D to 3D transitions, respectively. For example,
when N � 100, Eq. (14) predicts that the transition from
string to zigzag occurs at 
1 � 7:41� 10�4 and the tran-
sition from zigzag to helix at 
2 � 1:67� 10�3.

An analogous argument should apply to bunched beams
propagating in storage rings. In that case, the focusing
parameters !z and !r are replaced, respectively, by the
synchrotron tune and betatron tunes; namely, we redefine
an anisotropy parameter as ~
 � �2

z=�
2
? that is generally

much less than unity. Figure 7 shows MD results where the
lattice of Test Ring I has been adopted. Owing to the same
reason as discussed in the last subsection, the betatron
tunes for the regular mode have been fixed at 2.44 in the
horizontal direction and 2.23 in the vertical direction (thus,
�? � 2:23). The synchrotron tune �z is taken as a variable
to change ~
. Ten cavities placed around the ring at equal
intervals have the same rf amplitude to ensure the strict
lattice symmetry. Tapered cooling has been applied in the
regular operating mode. We see that Eq. (14) well explains
the structural transitions of 2D and 3D crystalline beams in
the dispersion-free ring when N is small. In particular,

excellent agreement between the theory and MD simula-
tions has been obtained for 
1 (1D to 2D transition). With
regard to the regular dispersive operation, both types of
transitions occur at ~
 smaller than the theoretical predic-
tion in Eq. (14). It is also found that ~
2 tends to be more
deviated from the theoretical line as N increases, no matter
whether the ring has dispersion or not.

VI. APPROACH TO BEAM ORDERING AT S-LSR

A possible combination of low transverse tunes at S-
LSR operated in the regular mode is ��x; �y� � �1:44; 1:44�
that satisfies the condition in Eq. (11). Since the dispersion
suppressor enhances the transverse focusing force, the tune
exceeds 1:5�� Nsp=4� in the dispersion-free operation. We
then expect serious disturbance of cooling due to linear
resonance crossing especially when the line density of the
beam is high. It is, however, possible for the ring to satisfy
the maintenance condition in the ultralow temperature
regime, i.e., Eq. (10), which means that an ordered state
could be stable if it is reached somehow. At low line
density, it is probably feasible to form a crystal because
the growth rates of linear coherent resonances that must be
crossed during a cooling process depend on the line density
of the beam; the instability is actually weaker at lower
density. In order to figure out how much can be done in S-
LSR, we here simulate cooling at the operating point
��x; �y� � �2:07; 2:07� that is possible in both regular and
dispersion-free modes.

We start from an ideal case where strong 3D cooling
forces are available. The friction coefficients are set at
fx � fy � 0:05 and fz � 0:10. Figure 8 shows the nor-
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FIG. 7. Anisotropy parameter ~
 of bunched crystalline beams.
The two lines represent the boundaries of the 1D-to-2D transi-
tion and of the 2D-to-3D transition theoretically predicted by
Dubin [Eq. (14)]. The theory says that, in the region below the
solid line, the crystalline configuration is the 1D string while it
becomes a 3D shell above the dotted line. MD results are
indicated with open and filled marks corresponding, respectively,
to the dispersion-free and regular operations of Test Ring I.
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malized rms emittances achieved in the final equilibrium
states. Six rf cavities have been switched on to bunch a
35 keV 24Mg� beam. In contrast to the previous MD
results in Fig. 5, the equilibrium emittances monotonically
increase at higher beam intensity even when the ring
dispersion is completely suppressed. The emittances in
the dispersion-free mode are more than 2 orders of magni-
tudes higher than those in Test Ring I. No stable crystalline
states have been established even in the dispersion-free
operation when the particle number in a bunch exceeds
about 40. This suggests that the reachable emittance has
been limited by the resonance instability rather than the
shear effect in the present case.

Finally, we turn off the transverse cooling force, recall-
ing that laser cooling is effective only in the longitudinal
direction. The longitudinal dissipation can be easily ex-
tended to the other directions by resonantly coupling the
degrees of freedom [11,12]. In the dispersion-free opera-
tion, a special rf cavity excited in a deflective mode is
necessary [31] to develop a linear coupling between the
transverse and longitudinal directions. We thus place a
coupling cavity in one of the straight sections for horizontal
cooling. The dissipative effect can be further brought to the
vertical direction through a coupling provided by a sole-
noid magnet (or a skew quadrupole magnet or a vertical
coupling cavity). S-LSR is actually equipped with a sole-
noid for electron cooling. In order to maximize the indirect
cooling efficiencies in the transverse directions, the oper-
ating point of the ring must be sufficiently close to linear
difference resonances [11,12]; namely, the tunes must be
chosen such that �x � �z � integer and �x � �y �
integer. The fundamental simulation parameters are listed

in Table III. Figure 9 shows a spatial configuration of a
cooled bunch consisting of 76 ions. We observe the for-
mation of an imperfect but clear 3D ordered structure. The
normalized rms emittances of this beam are 4:44�
10�12 m rad in the horizontal directions and 4:23�
10�12 m rad in the vertical directions, both of which are
much lower than ever recorded in real cooling experiments.
As pointed out in Ref. [16], we can never reach such a 3D
ordered state in a regular dispersive storage ring with

TABLE III. Parameters for 3D cooling at S-LSR

Ion species 24Mg�

Kinetic beam energy 35 keV
Betatron tunes (2.07, 2.07)
Synchrotron tune 0.07
Bending radius 1.05 m
Field strength of the bending magnets 0.252 T
Field strength of the electrostatic

deflector for dispersion-free operation
66:7 kV=m

Nsp (without the cavities) 6
Ring circumference 22.557 m
Axial length of the solenoid 0.80 m
Strength of the solenoid field 40 G
Harmonic number of the rf cavity 100
Amplitude of the rf voltage 21.0 V
Harmonic number of the coupling cavity 100
Amplitude of the coupling rf field 200 V=m
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FIG. 9. Spatial configuration (top view) of a bunched beam in
S-LSR at the operating point ��x; �y; �z� � �2:07; 2:07; 0:07�.
The momentum dispersion of the ring has been suppressed by
the electrostatic deflectors. The simple, untapered linear cooling
force with fz � 0:20 is applied only in the longitudinal direction
once in every turn. The transverse cooling has been accom-
plished by the resonant coupling method based on a special
coupling cavity [11] and on a solenoid magnetic field. In order to
recover the lattice symmetry, we have switched off the coupling
cavity after the cooling is completed.
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realistic cooling. At lower line density, it is certainly
possible to generate 1D string and 2D zigzag crystals.

VII. CONCLUSIONS

We have demonstrated, through systematic MD simula-
tions, that it is possible to produce multidimensional crys-
talline beams in a dispersion-free storage ring without
relying on the special tapered longitudinal force.
Provided that the lattice fulfills the two necessary condi-
tions, i.e., Eqs. (9) and (11), and that the cooling force
applied is sufficiently strong, various coasting and bunched
crystalline states can be reached with the simplest linear
friction. This suggests that the conventional laser cooling
technique enables us to generate large 3D crystalline
beams, which is impossible in the common dispersive
situations. Even when a beam is bunched by a single rf
cavity that breaks the strict lattice symmetry, we can form
and maintain a multishell ordered state by keeping the
cooling force on. MD simulations based on the lattice of
S-LSR at Kyoto University have been performed, confirm-
ing that 3D beam ordering can be achieved in the
dispersion-free operation without direct transverse cooling
(Fig. 9). By exciting not only a regular rf cavity but also a
coupling rf cavity, the longitudinal cooling force can be
extended to the transverse directions [11].

The structural transitions of crystalline beams in regular
and dispersion-free storage rings have also been investi-
gated. It is found that, in the case of coasting beams, the
transition line densities in a dispersion-free storage ring
agree fairly well with the predictions from the Hasse-
Schiffer theory. On the other hand, we encounter some
discrepancy between the theory and MD simulations with
regular dispersive lattices. Comparison of transition den-
sities has also been made between bunched crystalline
beams and Coulomb crystals in ion traps. The Dubin’s
formula (14) seems applicable to crystalline beams in a
dispersion-free ring. In particular, the threshold of 1D-to-
2D transition can be predicted precisely by Eq. (14) even
when the beam is exposed to spatially inhomogeneous, AG
focusing forces. In a regular dispersive ring, a string (zig-
zag) crystal is transformed to the zigzag (single-shell)
configuration at the ~
-value lower than the theoretical
expectation.
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