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The drift motion of cooling electrons makes them able to respond to transverse perturbations of a
cooled ion beam. This response may lead to dipole or quadrupole transverse instabilities at specific
longitudinal wave numbers. While the dipole instabilities can be suppressed by a combination of the
Landau damping, machine impedance, and the active damper, the quadrupole and higher order modes can
lead to either emittance growth, or a lifetime degradation, or both. The growth rates of these instabilities
are strongly determined by the machine x� y coupling. Thus, tuning out of the coupling resonance and/or
reduction of the machine coupling can be an efficient remedy for these instabilities.
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I. INTRODUCTION

Electron cooling is an effective method to increase phase
space density of hadron beams. Since its invention by
Budker [1], and experimental proof at NAP-M [2], it has
been successfully used at many nonrelativistic ion storage
rings (see e.g. [3,4]), and recently 8:9 GeV=c antiprotons
have been electron cooled at Recycler ring, Fermilab [5].
To cool the ion beam in a storage ring, it is merged with the
a comoving electron beam in a part of the ion orbit.
Cooling results then from a thermal flux from the hot
ions to the cold electrons. Normally, the ion beam does
not need focusing elements inside the cooler, while the
electron beam is focused by a homogeneous solenoidal
magnetic field.

Being able to make beams brighter, electron cooling
brings specific problems for the cooled beams as well.
First of all, electron cooling, as any cooling, makes the
cooled beam less stable against any kind of coherent
motion [6], whether it be driven by an impedance of the
chamber, or by a stochastic cooling system, or by a struc-
ture resonance of space-charge shifted envelope modes [7].
All these issues are out of scope of this paper, devoted to
analysis of coherent interaction of the cooled (ion) beam
and the cooling electron beam.

The cooling effect is caused by interactions of ions with
single-particle, or microscopic fields of the electron beam.
However, macroscopic fields of the electron beam act on
the ions too, and this interaction can cause damage to the
cooled beam. In principle, the situation here is similar to
beam-beam effects in colliders, where the beam-beam
effects are classified as either incoherent (weak-strong)
or coherent (strong-strong) ones, see e.g. [8].

A tune shift by the space charge of the electron beam
drives high-order resonances in the ion motion, and this
incoherent effect may reduce a lifetime of the ions. This
effect was first pointed out by Reistad [9], who suggested
that as an explanation for reduction of the ion lifetime with
the electron current, observed at CELSIUS ring [10], and
called such kind of phenomena as ‘‘electron heating.’’

Theoretical and numerical analysis of this incoherent
beam-beam effect for CELSIUS parameters was given in
Ref. [11]. Another possibility for incoherent beam-beam
interaction could be an excitation of the ion oscillations by
a noise of the electron beam at the betatron sidebands of the
ions; influence of a noise of the electron current is esti-
mated in Ref. [12]. The incoherent beam-beam phenomena
are not considered in this paper.

In contrast to incoherent beam-beam effects, coherent
ones result from a cross talk of the beams, so they are
sensitive to both currents. Some coherent ion-electron
interaction may be responsible for the lifetime reduction
observed at several coolers, according to Parkhomchuk
[13,14]. Recent empirical data on various beam-beam ef-
fects can be found in Ref. [15].

Coherent ion-electron interaction was theoretically con-
sidered in a model of transversely immobile, totally mag-
netized electrons [16]; the longitudinal and the transverse
impedances introduced by the electron beam were calcu-
lated. These impedances appeared to be too low for real-
istic parameters of electron coolers, indicating that the
electron drift mobility should be taken into account. That
approach was first attempted in two simultaneous and
somewhat similar papers [17,18]. A transverse offset of
the ion beam causes a dipole electric field, forcing elec-
trons to drift in the orthogonal transverse direction. This
drift gives its own electric field, acting back on the ions.
Being linear and local, this electron response can be de-
scribed as a perturbation of the ion’s revolution matrix. At
first order, this nonsymplectic perturbation matrix is pro-
portional to a product of the electron and ion currents. The
perturbation of the cooler matrix was calculated in
Ref. [17] for arbitrary ion-electron and electron-ion phase
advances, and neglecting the Larmor phase advance of
ions. The stability analysis was then limited by a consid-
eration of the determinant of the perturbed cooler matrix. It
was found that the determinant is slightly decreased by the
small perturbation. From here, it was concluded that ion-
electron instabilities are impossible for realistic parameters
in a framework of that model. In Ref. [18], the perturbed
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cooler matrix was calculated assuming the electron-ion,
ion-electron, and ion Larmor phase advances being small.
Based on analysis of the perturbed revolution matrix, it was
shown that horizontal-vertical coupling of the unperturbed
ion motion is essential for the ion-electron instability.
Without coupling, the growth rate was proved to be zero
at lowest order over a beam-beam interaction parameter.
Slightly later, in Ref. [19], the eigenvalue analysis for the
perturbed revolution matrix was performed in a case when
the zero-current, zero-magnetic-field revolution matrix is
block diagonal, with identical blocks. The instability
growth rate was found analytically for these conditions in
the same order as in Ref. [18]. This rate, being nonzero,
seemed to contradict to the conclusion of Ref. [18] about
coupling. It is shown below how this seeming contradiction
is untangled.

In what follows, first, the perturbed cooler matrix is
rederived; all the significant terms are kept at lowest order
over the small phase advances. Then, a general perturba-
tion formalism for coupled optics is described and applied
for the coherent ion-electron interaction. The instability
growth rate is analytically calculated in terms of general
4D Twiss parameters of Ref. [20]. In case a single source of
coupling is the cooler’s solenoidal field, a simple expres-
sion for the growth rate is presented. Then, a suppression of
the dipole ion-electron instability by the Landau damping,
and its suppression or obscuring by the chamber imped-
ance, are discussed. It is found that it is quite possible for
this dipole instability to be either suppressed or obscured.
The quadrupole ion-electron instabilities are discussed,
their growth rates are presented. The quadrupole instability
is concluded being possibly more effective than the dipole
one, leading either to an emittance growth or lifetime
degradation, or both. An important conclusion is that a
straightforward remedy for all orders coherent ion-electron
instabilities is tuning out of the coupling resonance and/or
suppression of the machine coupling.

II. BEAM-BEAM DIPOLE INTERACTION IN THE
COOLER

The cooling electron beam is usually round and approxi-
mately of a constant density within its radius. The cooled
ion beam is assumed hereafter to be mostly inside the
electron beam. In contrast to ion lifetime degradation due
to incoherent ion-electron effects, the coherent beam-beam
interaction is not sensitive to a small portion of the outside
ions, and gets weaker when the outside portion increases.
When the outside portion is not small, a quantitative de-
scription of the coherent beam-beam interaction should
lead to suppression of growth rates with some form factor;
however, this issue lies out of the scope of this paper.

It can be shown that a transverse density distribution of
the ion beam does not influence its dipole interaction with
electrons, as long as the electron motion reduces to a drift
in a permanent magnetic field of the cooler. This statement

is proved here in two steps. First, it is shown that the
electron beam drifts as an incompressible liquid, so its
dipole motion is insensitive to the ion distribution inside
the electron beam, as soon as the ion dipole moment is
fixed. Second, it is used that the ion response to the electron
beam offset does not depend on the specific ion position
inside the electron beam.

For the electrons, the continuity equation gives the
total time derivative of the beam density: dne=dt �
�ner � ve�r�. For the drift motion, the local velocity
ve�r� is proportional to a vector product of the quasistatic
electric field E�r� and the constant magnetic field B, i.e.
ve / E�r� � B. Substituting this into the continuity equa-
tion gives dne=dt / r � �E�r� � B� � B � �r �E�r�� �
0. Thus, in an arbitrary electrostatic field, the electron
beam drifts as an incompressible liquid. The ion dipole
perturbation moves the electron beam as a whole, and this
motion is determined by the ion dipole moment only, being
independent of the other details of the ion beam distribu-
tion. For the constant-density electron beam with a radius
ae, this means that all the density perturbations are at the
beam surface, @ne=@t / ��r� ae�.

Turning to the backreaction of the electron beam on the
ions, it is sufficient to note that the dipole electric field
inside the displaced incompressible electron beam is ho-
mogeneous. Thus, wherever an inner ion is, its response to
the electron dipole motion is independent of its position.
Thus, both electron response to the ion dipole moment and
the ion response to the electron dipole moment are inde-
pendent of the ion distribution inside the electron beam.
Whatever the real ion distribution is, the dipole beam-beam
interaction goes in the same way, as if the ions were
homogeneously distributed within the cross section of the
electron beam. That is why the parameter of the ion density
ni has to be taken here as the linear ion density �i, divided
by the cross section of the electron beam, ni 	 �i=��a2

e�,
assuming the ions are mostly inside the constant-density
electron beam.

Equations of motion for the electron and ion centroids
�e;i 	 xe;i 
 iye;i can be presented as in Ref. [18]:
 

�00i 
 k
2
ie��i � �e� 
 ikiL�

0
i � 0;

�00e 
 k2
ei��e � �i� � ikeL�

0
e � 0:

(1)

Here kie and kei are space-charge wave numbers, k2
ie �

2�neZirp=��
3�2Ai�, k2

ei � 2�niZire=��
3�2� with ni;e as

electron and ion densities (particles per unit volume of the
electron beam), Zi and Ai as the ion charge and mass
numbers (Zi � �1 for antiprotons), rp;e are the proton
and electron classical radii, � and � are the relativistic
factors, kiL � ZieB=�pic�, keL � eB=�pec� are Larmor
wave numbers for the ions and electrons in the magnetic
field B of the cooler.

Integration of the equations (1) depends on the phase
advances over the cooler length l for all the four wave
numbers,  ie � kiel,  ei � keil,  iL � kiLl,  eL � keLl.
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The ion phases are always small,  ie;  iL � 1. The elec-
tron Larmor phase, on the contrary, is usually big:  eL �
1. First, this allows to use drift approximation for electrons,
which assumes that the second derivative term �00e is aver-
aged to zero. Second, a term k2

ie�i in the ion’s equation
takes into account small focusing perturbation from the
space charge of the electron beam. Being equivalent to a
tiny round external lens, this term is irrelevant to the
instability, and thus can be neglected. As a result, the
equations of motion are reduced to the following set:

 �00i � k
2
ie�e 
 ikiL�

0
i � 0; �0e � iked��i � �e� � 0:

(2)

with ked � k2
ei=keL as the electron drift wave number.

Usually, the electron drift phase  ed � kedl is small,
 ed � 1. Thus, the electron response to the ion offset is
only slightly modified by the drift rotation term ked�e.
However, this term and the ion Larmor term ikiL�

0
i still

could play a role if the ion coupling is strongly suppressed,
as it is shown below.

Electron response to the ion offset acts back on the ions;
in other words, ions interact with themselves by means of
electron medium. In the cooler, electron and ion beams
move with the same velocity; thus, every ion sample sees
only itself, the coherent interaction is local. A velocity
offset can be neglected if the related beam-beam slippage
at the cooler’s length is smaller than the wave length of the
perturbation. An opposite limit case was analyzed in
Ref. [21] for purposes of an ‘‘electron lens’’ in the
Tevatron. The local linear response can be described by
means of a matrix. When there is no electron beam, the
cooler’s matrix is just one of a drift, slightly modified by
the magnetic field of the cooler. With the electron beam,
this matrix gets a small perturbation, proportional to an
ion-electron interaction parameter. This parameter, as it is
clear from Eqs. (3), can be expressed as a product of
electron-ion and ion-electron phase advances,

 � 	  2
ie ed: (3)

For all coolers, this parameter is small, � ’ 10�3–10�5;
thus, a first-order perturbation approach over that small
value is sufficient.

In general, linear motion of the ion centroid in the ion
storage ring is conventionally described by means of 4� 4
matrices in the phase space of coordinates and angles
�x; x0; y; y0�. Without skew quadrupoles and solenoids,
these matrices are block diagonal; otherwise, x� y cou-
pling terms are there as well. The cooler matrix C, per-
turbed by the beam-beam interaction, can be presented as
follows:

 C � S�1
f �S0 
 �M�Sf 	 C0 
 �S�1

f MSf (4)

where Sf and S0 are the fringe (entrance) and the inner
parts of the solenoid matrix, in first order over the magnetic
field substituted as

 S f �

1 0 0 0
0 1 kiL 0
0 0 1 0
�kiL 0 0 1

0
BBB@

1
CCCA;

S0 �

1 l 0 l iL=2
0 1 0  iL
0 �l iL=2 1 l
0 � iL 0 1

0
BBB@

1
CCCA;

(5)

 C 0 

1 l 0 0
0 1 0 0
0 0 1 l
0 0 0 1

0
BBB@

1
CCCA

�

1 0  iL=2 0
0 1 0  iL=2

� iL=2 0 1 0
0 � iL=2 0 1

0
BBB@

1
CCCA; (6)

and the matrix M describes the ion-electron perturbation.
According to Ref. [18], the beam-beam matrix in a block
2� 2 form looks as
 

M �
Md �Mc

Mc Md

 !
	Md 
Mc;

Md 	
 iL
6

1=4 l=10

1=l 1=2

 !


 ed
6

1=4 l=20

1=l 1=2

 !
;

Mc 	
1

2

1=3 l=12

1=l 1=3

 !
:

(7)

Note that the diagonal part Md of the beam-beam matrix
M is small compared to its coupling part Mc; on first
glance, the diagonal part Md might look unnecessary to
keep. The reason it is still kept is that the coupling part Mc
gives zero growth rates at first order over the interaction
parameter �, when the unperturbed ion optics is un-
coupled, as was pointed out in Ref. [18]. The relatively
small diagonal part Md contains two terms. One is pro-
portional to the local coupling due to the small Larmor
phase  iL, and another is the second-order effect over the
electron drift phase  ed, resulted from the small ion focus-
ing term ked�e in the electron motion. This last contribu-
tion was neglected in Ref. [18], and is kept here for more
generality. Note that the diagonal-coupling block structure
of the matrix M is common for all rotation-invariant
matrices.

The beam-beam perturbation matrix M was obtained in
Ref. [17] in drift approximation, with arbitrary drift and
ion-electron phases ed;  ie, and neglecting the ion Larmor
phase,  iL � 0. At the common region of zero ion Larmor
phase and small phases  ed;  ie, the matrices (9) and the
corresponding matrix of Ref. [17] are not quite the same:
while their coupling blocks Mc are identical, the diagonal
blocks Md differ. This difference of the diagonal blocks
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relates to the correction of ion focusing by the electron
space charge, the term k2

ie�i, omitted in this analysis and
kept in Ref. [17]. According to what was mentioned above,
this term does not change the growth rate when the ion-
electron phase is small,  ie � 1. Thus, although matrices
Md are not the same, they have to lead to identical growth
rates at that common region. Below, this agreement is
confirmed.

III. PERTURBATION THEORY FOR ARBITRARY
COUPLING

Let it be assumed that a symplectic 4� 4 revolution
matrix R�0� of a ring is affected by a small, but not
necessarily symplectic, perturbation P. As a result, eigen-
values �i of the new revolution matrix

 R 	 R�0� 
 P �R�0� 	 �I
 P� �R�0�; (8)

with 4� 4 identity matrix I, are shifted from their unper-
turbed values ��0�i . The perturbation matrix P is referred
hereafter as the normalized perturbation. The shifts of the
eigenvalues can be calculated at first order of the perturba-
tion theory, essentially in the same way as the similar
problem is solved in quantum mechanics. Indeed, while
the quantum eigenstates are described by orthonormalized
eigenvectors of Hermitian operators, the eigenvectors of
symplectic matrices are symplectic orthogonal. With a
proper definition of the scalar product, the algebraic state-
ments are absolutely identical.

In the present paper, the 4D Twiss functions formalism
of Ref. [20] is applied. For that formalism, eigenvectors
of the unperturbed revolution matrix V�0�1 ;V

�0�
�1 	

V�0��1 ;V�0�2 ;V
�0�
�2 	 V�0��2 are presented as

 V �0�1 �

� ��������
�1x

p
;�

i�1� u� 
 �1x��������
�1x
p ;

��������
�1y

q
ei�1 ;�

iu
 �1y��������
�1y

p ei�1

�
T
; (9)

 V �0�2 �

� ��������
�2x

p
ei�2 ;�

iu
 �2x��������
�2x
p ei�2 ;

��������
�2y

q
;�

i�1� u� 
 �2y��������
�2y

p �
T
; (10)

where the superscript T stands for the transposed form, and
R�0� � V�0�m � exp��i	m�V

�0�
m . Eigenvector parameters �1x,

�2y, etc. are determined by the machine optics. The sym-
plectic orthogonality can be described then as

 V �0�
n � U � V�0�n � �2i�mnsgn�m�; (11)

with the superscript
meaning Hermit conjugation, �mn is
the Kronecker symbol, sgn�m� is the sign function, and

 U �

0 1 0 0
�1 0 0 0
0 0 0 1
0 0 �1 0

0
BBB@

1
CCCA (12)

is the symplectic unit matrix.
The four perturbed eigenvectors Vn can be expanded

over the unperturbed set V�0�n as Vn �
P
mDnmV�0�m

with unknown coefficients Dnm. Substitution of this
expansion in the definition of the new eigensystem, R �
Vn � �nVnR � Vn, yields ��n � �

�0�
n �
P
mDnmV�0�m �

��0�n P
P
mDnmV�0�m . Using the symplectic orthogonality,

and neglecting the second-order terms, i. e. substituting
Dnm � �nm, the perturbations of the eigenvalues are found:

 �n � �
�0�
n �

i
2
��0�n V�0�
n � U � P � V�0�n ; �n > 0� (13)

The eigenvalues can be also expressed in terms of the
complex phase advances, �n 	 exp��i	n�. Shifts of the
phase advances �	n 	 	n �	

�0�
n then follow:

 �	n � �
1
2V
�0�

n � U � P � V�0�n : (14)

This leads to the growth rates

 �n � Im��	n�=T0 � �Im�V�0�
n � U � P � V�0�n �=�2T0�;

(15)

with T0 as the revolution time.
One more useful relation follows immediately from a

definition of the perturbation (11):

 2T0��1 
�2� � Det�R� � 1 � Tr�P�; (16)

where Det�R� and Tr�P� are the determinant and the trace
of the matrices. From this last property, it follows the off-
diagonal block B of the beam-beam matrix M gives rise to
growth rates with opposite signs, so that their sum is zero.

A perturbation approach to the coupled beam optics was
recently examined in Ref. [22]; a resulting tune shift
formula, essentially equivalent to Eq. (17), was derived
there.

The described perturbation formalism is correct, if the
tune shifts (17) are smaller than the unperturbed tune
separation,

 j�	1;2j � j	
�0�
1 �	

�0�
2 j: (17)

If this condition is not satisfied, an unconditioned applica-
tion of the perturbation formalism generally leads to in-
correct results. In the degenerated case, 	1 � 	2, the
unperturbed basis is not unique; in fact, there is a one-
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parametric family of the symplectic bases (12), all being
eigenvectors of the same revolution matrix. Similar to the
case in quantum mechanics, it can be shown that the
perturbation formula (18) is still valid for the degenerate
eigenvalues, if the correct basis is chosen. Namely, the
correct basis makes the perturbation diagonal on its sub-
space, V�0�
1 � U � P � V�0�2 � V�0�
2 � U � P � V�0�1 � 0. An
eigensystem problem can be treated in this way if an
opposite to (20) condition is satisfied, j	1 �	2j �
j�	j � 1.

IV. BEAM-BEAM GROWTH RATES

For symmetry’s sake, the reference point of the revolu-
tion matrix is taken here in the middle of the cooling
solenoid. Then the beam-beam matrix M, Eq. (9), leads
to the normalized perturbation of Eq. (11):
 

P � �C�1=2
0 � S�1

f �M � Sf � C�1=2
0 	

P d �P c

P c P d

 !

	 Pd 
 Pc; (18)

where C�1=2
0 is an inverse matrix for one-half of the

solenoid, edges are included.
It is convenient to treat the diagonal and coupled con-

tributions to the perturbation matrix (21), P d and P c,
separately. The diagonal block P d contains additional
small parameters, the ion Larmor and the electron drift
phases  iL and  ed, so this block can be neglected initially.
For this purpose, the block Md and the edge matrices Sf
have to be omitted, Sf ! I, and the inverse half-solenoid

matrix C�1=2
0 has to be taken as the inverse half-drift

matrix, C�1=2
0 ! D�1=2, leading to

 P ! Pc � �D�1=2 �Mc � D�1=2: (19)

From here, two consequences follow. First, the trace of the
normalized perturbation Pc is zero; thus, the two transverse
modes get growth rates of opposite signs, according to
Eq. (19). Second, the rates are equal to zero if the unper-
turbed optics is uncoupled, as this was pointed out in
Ref. [18]. Indeed, the skew matrix Pc transforms the un-
coupled eigenvector V�0�n purely into the orthogonal plane,
giving a zero scalar product with the original vector. Since
electrons are drifting in a direction orthogonal to the
original direction of ions, the field of the electron beam
is orthogonal to a velocity of the uncoupled ion beam; thus,
work done by this force is equal to zero, so the rate is zero
as well. Finally, direct analytical calculation (as done by
this author using MATHEMATICA [23]) leads to a following
growth rates, caused by the coupled part of the perturba-
tion:

 �c � �
�
xy
2T0

; 
xy 	

���������������
�1x�1y

p
l

sin�1; (20)

where the coupling parameter 
xy 	
���������������������
�1x�1y=l2

q
sin�1 ����������������������

�2x�2y=l2
q

sin�2 was introduced. By a general property of

the Twiss parameters
���������������
�1x�1y

p
sin�1 �

���������������
�2x�2y

p
sin�2

(see Ref. [20]). If the mode offsets �x; y� seen turn-by-
turn in the reference point belong to a so thin ellipse, that
it is almost a line, i.e. sin�1  sin�2  0, this would lead
to a strong suppression of the growth rate, even if other
coupling parameters are not small. Note that such sort of
coupling maintains planar modes, just tilted from the origi-
nal directions. That sort of coupling is excluded by a
rotation of the coordinate system; that is why it does not
yield any growth rate.

For the Fermilab Recycler Ring, where antiprotons are
cooled by 4.35 MeV DC electron beam [5,24], assuming
300� 1010 antiprotons, evenly distributed over 50% of the
circumference, and cooled with 0.5 A electron beam of
3.5 mm radius inside of a 20 m long cooler with 100 G
field, taking the coupling parameter 
xy � 0:3 (until re-
cently, the working point was located at the coupling
resonance), the rate is calculated as ��1

c � 1:5 s. For
more bunching, this value grows as the local density;
thus, it could easily be 10–20 times higher while com-
pressed bunches are prepared for extraction.

The diagonal contribution to the perturbation matrix, Pd,
compared with the coupling part Pc, contains additional
small phases  iL and  ed. That is why it is reasonable to
limit its consideration by an uncoupled optics, when other-
wise dominating coupled-part contribution is zeroed. In
this case, the two uncoupled modes get the same growth
rate:

 �d �
�

2T0

�
 iL
24
�
 ed
12

�
: (21)

There are several noticeable features of this result. First, it
does not depend on details of the ion optics. Second, it has
an odd dependence on the ion’s charge, �d / Z

3
i .

Depending on which phase dominates, this term either
drives an instability for positively charged ions and stabi-
lization for antiprotons or vice versa. Third, usually the
phases are small,  iL,  ed & 0:1� 0:01; thus, the
coupling-driven rates �c obscure the uncoupled rates �d,
unless the coupling is extremely small, j
xyj &

10�2–10�3. The second-order term over the electron drift
phase in Eq. (24) was found in Ref. [17], and the ion
Larmor term was derived in Ref. [18].

In Ref. [17], the analysis was based on consideration of
the determinant of the cooler matrix. Because of that, the
only rate found there is the second term in Eq. (24), yield-
ing damping for positively charged ions. Neither coupling
nor the ion Larmor phase were taken into account. Slightly
later, in Ref. [19], the two-beam problem was treated for a
following revolution matrix:
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R � D�1=2 �Ro � D�1=2C;

Ro �
Ro 0

0 Ro

 !
;

Ro �
cos	 �o sin	

� sin	=�o cos	

 !
:

(22)

Here the cooler matrix C was taken as in Eq. (6), D�1=2 is
the inverse half-drift matrix, and the matrix Ro describes
the revolution transformation when both electron current
and the cooler field are off. This form of the revolution
matrix assumes that there is no coupling and the tunes are
equal when both the electron current and the cooler’s
magnetic field are off. When the electron current is off,
but the field is on, the cooler matrix reduces to a solenoid
matrix, causing some coupling, proportional to the Larmor
phase advance of the ions. For that machine optics, the
growth rate was derived in Ref. [19] as

 �1;2 � �
��o
4T0l

: (23)

This result seems to contradict a conclusion of Ref. [18]
and Eq. (23), since it is in the same order as Eq. (23), but
does not depend on the machine coupling, represented in
this case by the ion Larmor phase advance  iL. The growth
rate (27) remains the same even for no-coupling case,
 iL � 0. This contradiction is resolved, however, when
the degeneration of the revolution matrix (25) at  iL � 0
is taken into account. Indeed, with that degenerate matrix,
the eigenvectors are not unique. For instance, they can be
taken as uncoupled:
 

V�0�1 � Vx 	 �
������
�o

p
;�i=

������
�o

p
; 0; 0�T ;

V�0�2 � Vy 	 �0; 0;
������
�o

p
;�i=

������
�o

p
�T:

(24)

These eigenvectors, being applied to the growth rate for-
mula (18), yield zero. The eigenvectors can also be taken as
totally coupled circular modes:

 V �0�1 � �Vx 
 iVy�=
���
2
p

; V�0�2 � �iVx 
 Vy�=
���
2
p
; (25)

leading exactly to the rates of Eq. (27). According to
conclusion of the previous section, the correct set of the
eigenvectors diagonalizes the normalized perturbation in-
side the degenerated subspaces. The circular modes, being
the eigenvectors for rotations, diagonalize the rotation-
invariant beam-beam perturbation. Thus, the normalized
circular basis (29) constitutes the proper linear combina-
tions for this degenerate case, and the result (27) just
follows from Eq. (23).

This example shows that the growth rate at the coupling
resonance, 	1 � 	2, does not depend on a strength of the
coupling term. However, if the tunes are separated from
each other, the growth rate would go down, since a role of
the coupling gets smaller. In the tune space, there is a size
of the coupling area, conventionally associated with the

minimal tune split. The growth rate, plotted as a function of
the tune separation, forms a resonance curve with a width
equal to the width of the coupling area. In case of no
machine coupling, the width of the growth rate resonance
plotted against the tune separation, is determined by the
ion-electron interaction itself. The phase separation in-
duced by the ion-electron interaction is about �T0 �
��o=�4l�, and that tiny width would be just undetectable
for many practical cases. Thus, without machine coupling,
the growth rate is zero everywhere except extreme vicinity
of the coupling resonance.

Dependence of the ion-electron growth rate on the tune
separation was studied numerically in Ref. [25]: the rate
was calculated for parameters of Recycler (FNAL) and
ACR (RIKEN). The revolution matrix perturbed by the
cooler was presented in the same form as Eq. (25), but
with different tunes:
 

R � D�1=2 �RD � D�1=2C;

RD �
Rx 0

0 Ry

 !
;

Rx;y �
cos	x;y �o sin	x;y

� sin	x;y=�o cos	x;y

 !
:

(26)

The growth rate as a function of the phase separation 	x �

	y for ACR parameters was numerically calculated in
Ref. [25] from the eigenvalues of the perturbed revolution
matrix, and it is reproduced here in Fig. 1 for the same
parameters: � � 5:4� 10�4,  iL � 0:10, �o=l � 2:8.

On the other hand, application of Eq. (18) leads to a
following compact result:

 �c � �
��o
4T0l

1�������������������������������������������
1
 �	x �	y�

2= 2
iL

q ; (27)
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FIG. 1. (Color) Ion-electron growth rate as a function of the
phase advance separation 	x �	y, reproducing Fig. 1 of
Ref. [25]. The solenoidal coupling is not compensated.
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which is an exact analytical expression of the resonance
curve of Fig. 1.

A width of this resonance curve changes dramatically, if
solenoid-driven coupling is compensated. It can be done,
for instance, by a following or a mirror-symmetric anti-
solenoid. In that case, the revolution matrix is represented
slightly differently than in Eq. (30):

 R � C�1=2
0 �RD � C�1=2

0 �C: (28)

As a result of that compensation, the width of the growth
rate reduces by several hundreds, as it is seen from Fig. 2,
generated for the same parameters as Fig. 1 above.

To conclude, it can be stated that compensation of the
machine coupling, and staying further away from the cou-
pling resonance, are essential tools for the instability
suppression.

Finally, it is interesting to calculate the ion-electron
growth rate if there is no magnetic field at all in the cooler,
as it is discussed for RHIC [26]. In this case, the beam-
beam interaction is uncoupled, and the beam-beam matrix
M is block diagonal:
 

M �Md �
Md 0

0 Md

 !
;

Md �
 2
ei 

2
ie

6

1=4 l=20

1=l 1=4

 !
:

(29)

Application of Eqs. (18) and (21) leads to the growth rate

 �d � �
 2
ei 

2
ie

24T0
/ �Z2

i < 0: (30)

This growth rate is always negative; in other words, the
beam-beam interaction damps the coherent motion. The
value of this rate for that case is rather small though.

Assuming 109 fully stripped gold ions at 15 mm mrad of
the normalized 95% emittance, inside a bunch with 30 cm
of the rms length, � � 100, cooled with identical electron
bunches with 6� 1010 electrons per bunch, both the cooler
length and beta function of 60 m, this gives ��1

d � 5 h.
That low rate cannot play any role.

V. STABILIZATION BY IMPEDANCE

So far, the dipole ion-electron motion has been consid-
ered, and the growth rates have been found and discussed.
However, the instability does not reveal itself if it is either
suppressed by Landau damping [27,28], or obscured by the
ring impedance. The growth rate calculated above for the
Recycler does not look high, it is at the range of�0:1–1 ss.
For the same antiproton beam, the resistive wall instability
is about 100 times faster for the lowest frequency mode.
Does it mean that here the two-beam interaction is too
weak to make the ion beam unstable?

To answer that question, the beam modes have to be
considered in more details. First of all, being caused by a
local interaction, the ion-electron rates do not depend on
the longitudinal wave number. So, for high wave numbers
the beam-beam rates could be comparable with the
impedance-driven rates. Ion-electron rates depend neither
on the value nor on the sign of the longitudinal wave
number. The rates are identical for the fast modes (n >
0) and slow modes (n < 0). That makes a difference with
the conventional impedance-driven oscillations, where
only the slow modes can be unstable (see, e.g., Ref. [29],
pp. 81, 364).

The Landau damping �L�n� at the longitudinal wave
number n is proportional to the longitudinal distribution
function at �p=p ’ ��sc=j�� n�j, where � is the
chromaticity, � � 1=�2

t � 1=�2 is the slippage factor,
and ��sc is the incoherent space-charge tune shift.
There is an interval of the longitudinal numbers n� �
�n & n & n� 
�n with n� 	 �=� and �n ’
�0:2–0:3���sc=�j�j�p=p�, where there is no Landau
damping, as soon as j�j�p=p� ��sc. To avoid
impedance-driven instabilities at these wave numbers, a
sign of the chromaticity is usually kept the same as the sign
of the slippage factor. If so, then n� > 0, and the modes
n  n� are damped due to the conventional impedance
itself. If, for the critical mode numbers n  n�, the
impedance-related damping exceeds the electron-ion
growth, and for the higher numbers, n� n�, the growth
is suppressed by the Landau damping, the ion-electron
dipole instability would not be seen at all. For the
Recycler, n�  800, and with the parameters above, the
impedance-related damping time is 0:1 s. This time is
definitely shorter than the beam-beam growth time for
the cooling regime with a long bunch, and can be compa-
rable with the beam-beam growth time for compressed
bunches [24].
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FIG. 2. (Color) Growth rate for the same parameters as in Fig. 1
above, except the solenoid coupling is compensated. The peak
maximum is the same, but the width is reduced more than 2
orders of magnitude.
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VI. QUADRUPOLE INSTABILITY

Let it be assumed that the dipole ion-electron instability
is somehow suppressed—either by a combination of the
Landau damping and the ring impedance, or by an active
damper. If so, could the ion-electron interaction give rise to
instabilities for quadrupole and higher order modes?

Normally, if the dipole modes are stable, the quadrupole
modes are even more so. On the contrary, when there is an
unstable dipole mode, the beam would be lost most likely,
whatever happens with quadrupole modes. That is why the
quadrupole stability is almost never an issue. The quadru-
pole growth rate scales as 2�ai=b�

2, compared with the
dipole rate (see Ref. [29], p. 196), where ai and b are the
ion beam rms radius and the aperture radius respectfully.
With b=ai ’ 10–20, this gives something like 2 orders of
magnitude for additional suppression for the quadrupole
mode. For the ion-electron interaction, though, this sup-
pression is not so strong. A role of the aperture radius in
this case is played by the electron beam radius ae, which
value in many cases is comparable with the ion radius.
Applying the quadrupole form factor 2�ai=ae�

2, the ion-
electron growth rate of the quadrupole modes follows:

 ��2�1;2 � �
�
xy
T0

�
ai
ae

�
2
: (31)

If the electron radius is much smaller than the machine
aperture, the impedance stabilization, discussed in the
previous section, could easily not work for the quadrupole
and higher order modes. For the above Recycler example,
the quadrupole resistive growth/damping time is calculated
as 10 s, which is much longer than the antiproton-electron
growth time for the presented parameters. To stabilize the
fast microwave n� � �n & n & n� 
 �n quadrupole
modes against the ion-electron instability, the coupling
has to be probably suppressed to a level where the growth
is slower than the electron cooling. If the coupling is not
weak enough, the quadrupole instability develops until it is
stopped by its own nonlinearity. After that, the persistent
quadrupole oscillations of the cooled beam will just stay at
that self-stabilized level. At a center of these wave num-
bers, n � n�, there is no Landau damping, but edges of this
instability interval, n ’ n� � �n are just determined by an
equilibrium between the growth rate and the Landau damp-
ing. Thus, for these edges, the coherent quadrupole oscil-
lations are transferred into the incoherent transverse
motion, and so the instability drives either emittance
growth, or the lifetime degradation, or both of them.

Note that the quadrupole mode rate (31) is proportional
to the beam emittance—as long as ions are mostly inside
of the electron beam.

VII. CONCLUSIONS

Coherent beam-beam interaction between a cooled had-
ron beam and a cooling electron beam has been analyti-

cally considered here. A previous conclusion of the author
[18] about a crucial role of the machine coupling for the
beam-beam stability is confirmed and detailed. A compact
expression for the growth rate is found in terms of 4D
Twiss parameters of an arbitrary coupled lattice. A reso-
nant shape of the growth rate is found to be described by a
simple formula when a single source of the machine cou-
pling is the cooler’s solenoid. In many cases, the dipole
beam-beam rate is either suppressed or obscured by a
combination of the Landau damping, the chamber imped-
ance, and the active damper, while the quadrupole beam-
beam instability can still develop. The quadrupole fast
modes within a specific interval of the longitudinal num-
bers are way less likely to be suppressed, and can be
excited near the coupling resonance, leading either to the
emittance growth or the lifetime degradation, or to both of
them. Tuning out of the coupling resonance or/and reduc-
tion of the machine coupling give an efficient remedy for
the ion-electron coherent instabilities of all orders.

This conclusion was tested recently at the Recycler.
Until not long ago, the Recycler stayed just at the coupling
resonance. At that working point, an emittance growth and
a lifetime degradation were observed, both associated with
the antiproton peak current [24]. Recent experimental
studies indicate that, while these phenomena depend on
the tune position along the coupling resonance line, they
are insensitive to the tune separation [30,31]. Based on
these observations and results of the present theoretical
study, the coherent antiproton-electron interaction can be
excluded as a main reason for these antiproton intensity
phenomena in the Recycler. It is not clear for the author if
this instability ever played a role for any cooler, where
some kind of ‘‘electron heating’’ was observed. In future
studies, checking the influence of horizontal-vertical cou-
pling resonances appears to be a useful test to verify
whether the coherent ion-electron instability causes the
observations. Avoiding coupling resonances should be
considered as a remedy against the instability, since
horizontal-vertical coupling is its necessary (but not suffi-
cient) condition.
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