
Transverse coupling impedance of the storage ring
at the European Synchrotron Radiation Facility

T. F. Günzel*
European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France

(Received 6 June 2006; published 27 November 2006)

The vertical and horizontal impedance budgets of the European Synchrotron Radiation Facility (ESRF)
storage ring are calculated by element-by-element wake potential calculation. Resistive wall wakes are
calculated analytically; the short range geometrical wakes are calculated by a 3D electromagnetic field
solver. The effect of the quadrupolar wakes due to the flatness of most ESRF vacuum chambers is included
in the model. It can well explain the sensitivity of the horizontal single bunch threshold on vacuum
chamber changes, in particular, in low-gap sections of the ESRF storage ring. The values of the current
thresholds on the transverse planes could be predicted correctly by the model within a factor of 2.
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I. INTRODUCTION

The European Synchrotron Radiation Facility (ESRF) is
a third-generation synchrotron light source operated by an
electron accelerator complex consisting of a 172 MeV
LINAC, a 6 GeV booster, and a storage ring of 844 m in
circumference. The machine has been successfully in user
operation since 1993. The storage ring produces photons
mainly in the hard x-ray regime (critical energy 21 keV )
with a brilliance of several 1020 photons=s=mm2=mrad2.
The storage ring operates with a number of different time
structures, namely, uniform filling, two-third filling, 16-
bunch filling, hybrid filling (two-third filling with a single
bunch in the gap), and 8� 24 filling. In order to maintain
and improve its performance with regard to the demands of
the users, all beam parameters are monitored and revised
continuously. The main parameters of the ring are given in
Table I.

A. Impedance as an important issue in storage ring
performance

In the ESRF storage ring many effects contribute
strongly to the coupling impedance and its associated
effects such as tune shifts and instability thresholds. The
storage ring has a large circumference and the majority of
the vacuum chambers are made of stainless steel.
Furthermore, the ring is equipped with a large number of
low-gap sections to make it possible for the insertion
devices (ID) to approach very closely to the beam. The
low-gap ID sections contribute essentially to the resistive
wall impedance as well as to geometrical impedance since
transitions (cross section variations) to the wider cross
section of the standard vacuum chamber are necessary.
Over a large part of the circumference, either the vertical
or the horizontal �-function assumes values of 35 m and

more (Fig. 1). This behavior of the optical functions of the
ESRF amplifies sensitively the tune shifts created by the
transverse impedance. Furthermore, the momentum com-
paction factor � (1:86� 10�4) is particularly small. This
enhances the detuning of the transverse single bunch
modes with current and makes them couple more easily.
Indeed, the installation of more and more low-gap cham-
bers in the straight sections of the storage ring deteriorated
the operation conditions, in particular, in single bunch, of
the machine. The single bunch thresholds, in particular, the
horizontal one, at zero chromaticity decreased to very low
values (0.65 mA vertically and 1.7 mA horizontally in
2004). Moreover, incoherent tune shifts strongly move
the working point, even up onto a quadrupolar resonance
[1]. The compromised operation conditions required a
thorough investigation of the sources of the transverse
impedance, which is the main subject of this article. A
campaign was started in order to localize the elements with
the highest geometrical impedance by numerical element-
by-element calculation. The use of 2D programs was in the
majority of cases obsolete because the cross section of the
vacuum chamber is mainly flat (Fig. 2), especially in the
numerous low-gap sections (Fig. 3). Such chambers can no
longer be assimilated to chambers of axial-symmetric cross
section, especially because the cutoff frequency of round

TABLE I. ESRF machine parameters.

Parameter Value

Energy (GeV) 6
Circumference (m) 844
Beam current in multibunch mode (mA) 200
Natural energy spread, rms 1� 10�3

Natural bunch length, rms (ps) 17
Revolution frequency �s 2:8
Momentum compaction factor 1:86� 10�4

Synchrotron frequency at 8 MV 1:96 kHz
Betatron tunes vertical/horizontal 14:39=36:44
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and flat chambers is not the same. Consequently, the wake
potential calculations were carried out with a 3D code
(GDFIDL [2]). Another consequence of the flat geometry
of the vacuum chamber is that the decomposition of the
wake potential in axial modes of cos�m�� is no longer
useful. However, as the ESRF uses an electron beam of

6 GeV, it can be assumed that the beam moves at the speed
of light. The longitudinal wake potential therefore fulfills
the two-dimensional Laplace equation inside the beam
tube. This allows for the existence of a quadrupolar wake
potential (also called detuning wake) which only depends
on the position of the test particle. This wake potential
gives rise to an important current dependent tune shift
which is defocusing on the vertical, and focusing on the
horizontal plane. Despite the fact that this effect was al-
ready predicted in a series of papers [3–7] it is still not
common knowledge. As this paper focuses mainly on
impedance and less on beam dynamics related aspects,
only simulations and predictions related to the transverse
mode coupled instability (TMCI) will be presented. The
threshold of the TMCI is used to validate the impedance
model. In the conclusion of this paper the limits of this
approach will be discussed. The paper is organized as
follows. In Sec. II the existence of the quadrupolar wake
is derived. In Sec. III the resistive wall impedance budget
of both planes will be presented. This is followed in Sec. IV
by the geometrical impedance budget. In Sec. V the co-
herent tune shifts and the TMC-instability thresholds are
calculated on the base of the obtained transverse imped-
ance budget. In Sec. VI the incoherent tune shifts will be
calculated and added to the already obtained coherent tune
shifts. In Sec. VII the resulting total tune shifts and the
thresholds of the TMCI will be compared to experimental
measurements at zero chromaticity.

II. THE QUADRUPOLAR WAKE

The quadrupolar wake responsible for the current de-
pendent incoherent tune shift in both planes is first pre-
sented since it is fundamental for the following. The
section closely follows Ref. [4]. Its existence in nonaxial
symmetric chambers can be shown from first principles.
We recall the definition of the longitudinal wake potential.
For an exciting charge q traveling with an offset �x0; y0�
from the beam axis, the longitudinal wake at distance s
behind the charge at the position �x; y� is given by sampling
and adding up the longitudinal electric field component Ez:

 Wl�x; y; x0; y0; s� � �
1

q

Z 1
�1

dzEz

�
x; y; z; t �

s� z
c

�
:

(1)

As long as no transverse effects are involved, the depen-
dence of the position of the exciting particle can be ne-
glected. If the beam moves closely at the speed of light the
longitudinal wake fulfills the Laplace equation with r? �
�x; y�, respectively r? � �r; ��:

 �?Wl�s; r?� � 0: (2)

Depending on the symmetry of the problem, this equation
can be solved in polar or in Cartesian coordinates. The
solution in polar coordinates is well known (the terms
r�mm> 0 can be rejected because they are singular at

 

FIG. 2. (Color) Cross section of the standard vacuum chamber
of the storage ring.

 

FIG. 3. Cross section of a 5 m long chamber of an aperture of
8 mm in an ID section.
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FIG. 1. (Color) The horizontal and vertical beta functions in one
superperiod of the ESRF storage ring optics.
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r � 0) and given in most standard textbooks [8]:

 Wl�s; r; �� �
X
m

fm�s�rm cos�m��: (3)

In the case of a more general geometry, it is more useful to
represent the solution in Cartesian coordinates:

 Wl�s; x; y� � C�s� � B�s�x�D�s�y� E�s��y2 � x2�

� F�s�xy�O�x3; y3�: (4)

Considering that the exciting and test particle are located
close to the beam axis, the higher order terms O�x3� are
very small and can be neglected. Furthermore, if the cham-
ber geometry presents a plane symmetry the longitudinal
wake must fulfill one of the following symmetry conditions
(which only remains valid as long as the exciting particle is
on axis):

 Wl�x; y� � Wl��x; y� ! F�s� � 0 B�s� � 0

Wl�x; y� � Wl�x;�y� ! F�s� � 0 D�s� � 0:
(5)

The standard vacuum chamber of the ESRF ring is sym-
metrical on the vertical plane (Fig. 2). Furthermore, the
horizontal symmetry is only slightly broken, so if the initial
vertical symmetry is broken by an intrusion the quasisym-
metry on the horizontal plane keeps the skew term F�s�xy
small. Figure 6 shows a typical longitudinal wake potential
at the middle of the bunch (s � 0:03 m for a 5 mm long
bunch) in the vacuum chamber of a low-gap section. The
term x2 � y2 can be recognized from the saddle point form
of the contour. However, if the symmetry on both planes is
broken by an important horizontal and vertical intrusion
F�s�xy can be significantly nonzero. There are only a very
few chamber geometries in the ESRF ring where this is the
case. If an offset to the exciting particle is applied, the
symmetry on the corresponding plane is broken and the
corresponding coefficient B�s� or D�s� becomes nonzero.
For a vertical offset of the exciting particle y0 Wl becomes
(neglecting the skew term) [9]
 

Wl�s; x; y; y0� � C�s� � B�s�x�D�s�y� A�s�yy0

� E�s��y2 � x2� �O�x3; y3�: (6)

Using the Panofsky-Wenzel theorem [10]

 W�x;y��s; x; y� � �
Z s

0
r�x;y�Wl�s; x; y�ds

0; (7)

the transverse wake potentials Wx�s; x; y; y0� and
Wy�s; x; y; y0� can be derived from the longitudinal wake
potential. Lower case coefficients are used which are
linked to the uppercase coefficients by a�s� �
�
R
s
0 A�s

0�ds0 etc.:

 Wx�s; x; y; y0� � b�s� � 2e�s�x

Wy�s; x; y; y0� � d�s� � a�s�y0 � 2e�s�y:
(8)

The transverse wake can be decomposed into a monopolar
part (only depending on the longitudinal coordinate s), a
dipolar part (depending on the source particle offset y0 and
s), and a quadrupolar field. The quadrupolar field which
only depends on the test particle coordinates �x; y; s�, how-
ever, contributes to the incoherent tune shift. The found
behavior is general, i.e., it is not limited to a special type of
wake potential. As the strength of the quadrupolar field
e�s� is a function of s, it varies along the longitudinal
charge distribution of a bunch which gives rise of a spread
of the betatron tune.

As they are needed later, the definitions of transverse
wakefield and transverse impedance are recalled. The no-
tation W? as it is used in the literature denotes the first,
respectively second, component of the vector:

 W ? �

�
@Wx�s; x; y; x0; y0�

@x0
;
@Wy�s; x; y; x0; y0�

@y0

�
: (9)

Assuming that the wakes of the integrands are created by a
pointlike charge, the horizontal and vertical impedance as a
function of ! representing the angular frequency are de-
fined by

 ZH�!� �
i
c

Z 1
�1

@Wx�s; x; y; x0; y0�

@x0
e�i!s=cds (10)

 ZV�!� �
i
c

Z 1
�1

@Wy�s; x; y; x0; y0�

@y0
e�i!s=cds: (11)

Furthermore, the notion of quadrupolar impedance is in-
troduced:

 Zquad
H �

i
c

Z 1
�1

@Wx�s; x; y; x0; y0�

@x
e�i!s=cds (12)

 Zquad
V �

i
c

Z 1
�1

@Wy�s; x; y; x0; y0�

@y
e�i!s=cds: (13)

Noting that Zquad
V � �Zquad

H henceforth the simplified no-
tation Zquad � Zquad

V will be used. Furthermore, for later
use the definition of the transverse kick factor is given
(using �� as bunch length in times units):

 �?���� �
1

2�

Z 1
�1

ImZ?�!� exp��!2�2
��d!: (14)

The definition of effective impedance differs only by a
factor of 2

����
�
p

��:

 Zeff
? ���� �

������
�
p

Z 1
�1

ImZ?�!� exp��!2�2
��d!: (15)

Henceforth, if not explicitly stated differently, the sign ?
(in Z?, Zeff

? and �?) is not only used as a symbol for H
(horizontal) or V (vertical), but also for quad (quadrupolar
component) in order to generalize the definition of the
transverse kick factor and effective impedance. This allows
one to treat both coherent and incoherent mode detuning in
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an equivalent way. But in fact the generalized definition is
only used in Sec. VI. Finally, preference was given to a
distinction of the impedance of the transverse planes by H
and V instead of x and y to avoid later conflicts in notation.

III. RESISTIVE WALL IMPEDANCE

In this study the resistive wall impedance is important in
two respects. First, it shows very well the role of the
quadrupolar wake in impedance related issues. Second,
its contribution to the total impedance budget is significant.
In the whole study only the low frequency range!� c=s0

(� 10 THz in the case of the ESRF) is considered where s0

represents � b
2

Z0�
�1=3, Z0 the free space impedance, � the

electrical conductivity of the wall material, and b the half
of the vertical beam pipe extension.

A. Resistive wall wake potential decomposition

In case of resistive wall impedance the behavior of the
transverse wakes, especially the quadrupolar wake, was
already studied by [11] for a beam pipe of rectangular
and elliptical, by [7] for a beam pipe of general cross
section. The main results from these publications are re-
called now as they are very useful to introduce the subject.
The different components of the transverse resistive wall
wake are graphically represented in Fig. 4. The formal
expressions necessary for the generation of this graph
were taken from another closely related publication [12].

If the vacuum chamber is round, the horizontal and
vertical dipolar wake are identical, whereas the quadrupo-
lar wake components are zero. If the chamber undergoes a
transition to an elliptical form, in the extreme case up to
two horizontal parallel plates, the vertical dipolar wake
becomes smaller and assumes asymptotically the value of
�2

12 (normalized to the value of the round chamber), whereas
the horizontal dipolar wake decreases even stronger to half
of that value, i.e. �

2

24 . On the other hand, the quadrupolar
wake components, zero for a round chamber value, both
become nonzero, are of opposite sign, and their absolute
value increases to the value of the horizontal dipolar wake,
i.e. �

2

24 . This result is resumed by the following expressions

for the transverse impedance per unit length [with 	�!� ������������������������������������
�2c�=��Z0 j ! j�

p
as skin depth].

Circular cross section with radius b:

 ZV � 	sign�!� � i

Z0

2�b3 	�!� (16)

 ZH � 	sign�!� � i

Z0

2�b3 	�!� (17)

 Zquad � 0: (18)

Parallel plate geometry (b is the half distance between
the parallel plates):

 ZV �
�2

12
	sign�!� � i


Z0

2�b3 	�!� (19)

 ZH �
�2

24
	sign�!� � i


Z0

2�b3 	�!� (20)

 Zquad �
�2

24
	sign�!� � i


Z0

2�b3 	�!� (21)

 Zquad
V � ZV=2 Zquad

H � �ZH: (22)

All impedances depend only on one single geometrical
parameter, the vertical half-extension, respectively radius,
of the chamber b. If the test particle and the exciting
particle have the same offset in a parallel plate geometry,
the impedance Zcomp composite of dipolar and quadrupolar
parts can be written

 Zcomp
V � ZV � Z

quad �
�2

8
	sign�!� � i


Z0

2�b3 	�!� (23)

 Zcomp
H � ZH � Zquad � 0: (24)

If the exciting particle and test particle have the same
offset, the test particle is subjected to an increased defo-
cusing force in the vertical direction whereas it does not
feel any force in the horizontal direction. However, this
does not mean that the horizontal impedance ZH is zero, it
is only compensated by the focusing force of the quad-
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rupolar field expressed by Zquad. Finally henceforth the
ratios of the resistive wall wakes as they are represented
in Fig. 4 are referred to as form factors.

B. Resistive wall budget

For the time being, there is no numerical code available
which calculates a wake from an arbitrary geometry in-
cluding the resistive wall contribution. For this reason, the
resistive wall budget of the vertical and horizontal dipolar
components of the wake has to be computed separately
from the numerical evaluation of the geometrical imped-
ance. The vacuum chambers are considered as two parallel
plates. This is justified because, even for chambers which
are not completely flat, the form factors are already very
close to the values of two parallel plates. So apart from the
rf cavities which are of round cross section, the form
factors for flat chambers are applied to the standard resis-
tive wall impedances. In addition, each contribution is
weighted by the local �-function of the corresponding
element. The overview of the resistive wall budget can be
found in the Table II. The walls of nonevaporable getter
(NEG)-coated vacuum chambers in the storage ring were
considered as a double layer of 1 �m, respectively
0:5 �m, NEG (nonevaporable getter out of Ti=Zr=V) and
the underlying metal (1 mm aluminum or 35 �m copper).
Reference [13] showed that a NEG layer mainly increases
the imaginary part of the transverse impedance and does
not affect the real part. However, in order to adopt a
simplified model the !�0:5 behavior of the resistive wall
impedance was maintained (both for the real and the
imaginary part) but scaled in order to provide the correct
kick factor of the double layer (Fig. 5). This method over-
estimates the real part of the transverse impedance, but
reproduces fairly accurately the imaginary part which is
responsible for the tune shift. The double layer model
seems to be a fair representation of NEG-coated aluminum
chambers[14]. A large discrepancy was, however, found
between the measured and calculated impedances for the

NEG-coated copper-covered stainless steel chambers [14].
It is very well possible that the model used here of a double
layer cannot be applied for the three layer case
(NEG=Cu=stainless steel).

The in-vacuum undulators are not of primary impor-
tance in the budget because, apart from one, all are in
odd-numbered cells with moderate horizontal and low
vertical �-functions. Furthermore, they are 2:5 (the proto-
type even 3.125) times shorter than standard low-gap
chambers and are inside equipped with a CuNi-sheet pro-
viding good conductivity. Their contribution to the total
resistive wall budget increases by about 5% if they are
closed to a gap of 6 mm. In the table, the values for the
open undulators are also quoted, because in Sec. VII they
are compared to results of threshold measurements which
were only possible under this condition.

The largest contribution to the �-weighted vertical re-
sistive wall impedance is the standard storage ring vacuum
chamber (Fig. 2), because the vertical �-function assumes
its highest values outside of the low-gap sections. On the

TABLE II. Resistive wall budget vertical and horizontal plane. SS stands for stainless steel, NEG is explained in the text. All in-
vacuum undulators are 2 m long except the prototype of 1.6 m length (therefore a fractional quantity is written). The first line is only
given for information and not taken into account in the budget.

Chamber type Material Length [m] Half-gap [mm] Quantity �V [m] �H [m] ��Z�eff
V [M�] ��Z�eff

H [M�]

In-vacuum undulators (closed) Cu 2 3 7.8 3.53 8.75 0.138 0.171

In-vacuum undulators (open) Cu 2 15 7.8 3.53 8.75 0.001 0.001
Low-gap chamber SS 5 5.5 8 3.4 20.0 0.372 1.091
Low-gap chamber 1 �m NEG Al=NEG 5 5.5 2 3.64 35.19 0.029 0.143
Low-gap chamber 1 �m NEG SS=Cu=NEG 5 4 1 3.51 35.19 0.032 0.164
Low-gap chamber 1 �m NEG Al=NEG 5 4 6 3.36 25.06 0.214 0.795
Low-gap chamber 0:5 �m NEG Al=NEG 5 4 3 3.36 35.19 0.087 0.462
Remaining elements 0.133 0.218
Standard storage ring chamber SS 672 16.5 1 24.6 16.6 1.643 0.555
Total (in-vacuum open) 2.511 3.429
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other hand, since in the low-gap sections the values of the
horizontal �-function are much higher than the vertical
ones (Fig. 1), the �-weighted transverse impedance of the
low-gap sections in the horizontal plane is much higher
than in the vertical plane (the smaller form factor in the
horizontal plane cannot compensate for this effect). This is
still the case after the addition of the�-weighted transverse
impedance of the standard storage ring vacuum chamber
outside of the low-gap sections. Consequently, contrary to
the vertical, the horizontal resistive wall impedance budget
is much more sensitive to the reduction of the vertical gaps
by the installation of new vacuum chambers in the ID
sections.

The transverse impedance of the kickers created by the
ceramic chamber covered with a TiN layer surrounded by a
ferrite was not taken into account. An estimation carried
out with the formulas of [15] shows that even when varying
the titanium resistivity of 
 � 7� 10�7 �m by a factor of
2, respectively 0.5, the �-weighted transverse impedance
on both planes is not more than 160 k� above 1 GHz and
decreases strongly at higher frequencies. So the effect on
the total budget is small, in particular, if the high-frequency
part of the transverse impedance spectrum is considered.
However, the variation of the shape of the kicker chamber
is taken into account in the geometrical impedance budget.

IV. GEOMETRICAL IMPEDANCE

In this section the calculation of the transverse geomet-
rical impedance with the program GDFIDL is described. The
decomposition of the wakes in dipolar and quadrupolar
parts is illustrated. Finally, the budget of the geometrical
impedance is established.

A. GDFIDL simulations

The 3D code GDFIDL [2] was chosen in order to establish
the impedance budget of all elements of the ESRF ring
caused by cross section variation. With GDFIDL running on
several processors in parallel, the calculation of wake
potentials in large geometries on a fine mesh is feasible.
At the beginning of this study, results of GDFIDL were
compared to those of ABCI [16] and MAFIA [17]. For taper
pairs with a circular cross section the results of GDFIDL and
ABCI agree up to a frequency of almost 20 GHz [18]. In
order to obtain the wakes inside the beam tube, the longi-
tudinal electrical field is integrated along the beam tube
wall. It is advantageous to use only convex structures for
this type of calculations. This ensures that, at the entry and
exit of the structure, the integration path for the longitudi-
nal component of the electrical field is on the conducting
material where this field component is zero. However,
apart from cavitylike structures, most geometries, in par-
ticular, low-gap chambers equipped with tapers, are of
concave form and cannot be dealt in this manner (keeping
the integration path on the border of the exit tubes the path
would traverse zones outside of the tube and becomes

useless). The usual way [19] to overcome this problem is
to invert the geometry, i.e., to exchange the larger outer
beam tubes with the inner low-gap chamber. This is called
the indirect method. The second possibility is to place the
integration path inside of the entry and exit beam tube so
that it remains inside along the whole structure (direct
method). But in the latter case the result is exposed to
larger numerical noise, and is therefore less precise. Most
low-gap chambers were simulated by using the indirect
method to avoid the noise. However, for structures with
variable gap, i.e., different types of in-vacuum undulators,
the direct method was applied. Furthermore, in taperlike
structures the distance between the tapers was optimized.
The distance was increased until the impedance no longer
shows any significant signs of change. For the few cases
where the direct method was used, the computed imped-
ance at zero frequency was very close to the value com-
puted by the indirect method. At higher frequencies larger
deviations appear. The use of the indirect method generates
a systematic error of the impedance calculation, most
important at higher frequencies. The existence of the quad-
rupolar wake was checked with GDFIDL. An example is
shown in Fig. 6. To obtain the impedance budget, the
geometry of the storage ring was decomposed into differ-
ent elements which were simulated independently. The
results were added up linearly. However, this assumes
that the different elements of the ring do not interact with
each other which is a simplification. In particular, at the
entry of low-gap ID chambers many different elements like
pumps, beam position monitors (BPMs), shielded bellows
(rf fingers), and tapers closely follow each other. Limited
computing resources have not, up until now, made a simu-
lation of such combinations possible.
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B. Wake potential decomposition

GDFIDL was also used to decompose the calculated wake
potentials in the dipolar and the quadrupolar part. The
different proportions of the total wake which are attributed
to the dipolar and the quadrupolar wake after the decom-
position are similar to those which are obtained in the case
of the resistive wall. In the program it is possible to
compute the transverse wake potentials for independent
transverse offset of the source and test particle. As a result,
both the dipolar and the quadrupolar wakes can be derived.
Figure 7 represents a vertical wake computed for a taper
geometry with a flat polygonal cross section. The magenta
curve is the dipolar wake computed with the test particle
undisplaced. The green curve is a wake computed with

both particles displaced. The difference between the green
and the magenta curve is the quadrupolar wake drawn in
blue in Fig. 7. The same procedure is applied in the
horizontal plane whose result in shown in Fig. 8. The
blue curve is the quadrupolar wake. As expected, the
quadrupolar wakes computed in both planes are equal but
of opposite sign as shown in Fig. 9. The described decom-
position is always applied to separate the dipolar wakes
from the quadrupolar wakes in both planes. This made it
possible to determine both components of the wake for all
simulated vacuum chamber elements.

Also existing in chambers without up-down or left-right
symmetry is a nonzero monopolar wake [b�s� and d�s� in
Eq. (8)]. In the wakefield decomposition it is also sub-
tracted from the total wake. For simplicity reasons, this
wake has been neglected in this paragraph.

C. Budget

For numerous elements of the ESRF-ring the dipolar and
quadrupolar component of both transverse wakes were
determined. A total of 1776 elements were taken into
account, thereof 569 flanges, 448 horizontal pumps, 293
rf fingers, 277 BPMs, 134 vertical pumps, 27 transitions to
standard low-gap chambers, 8 in-vacuum undulators, 6
cavities, 3 tapers to the cavities, 2 scrapers, and 9 other
elements. The vertical and horizontal impedance of each
element was calculated from the corresponding dipolar
component. The quadrupolar component is later used for
the calculation of the incoherent tune shift in Sec. VI. The
impedances of the different elements were multiplied by
their local�-function. The resulting spectra of the different
types of elements are added up and shown in Figs. 10–13.
The vertical impedance budget is created by many different
elements, amongst which the shielded bellows and the
flanges play a major role. In fact, the low-gap chambers
only contribute 20% to the vertical budget. However, the
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low-gap chambers make up a much larger part of the
horizontal budget and dominate together with the BPMs.
As in the case of the �-weighted resistive wall impedance
budget, the low-gap chambers dominate more in the hori-
zontal plane than in the vertical one. A composition of 5 (6)
broadband resonators was fitted to the spectra in the verti-
cal (horizontal) plane for further computation of the insta-
bility thresholds. Particular attention was paid to the
vacuum chambers in the bending magnets. They can be
considered as horizontal tapers. But the computed horizon-
tal effective impedance of all bending magnet chambers
only is Zeff

H � 90 m�
m for a 5 mm bunch length [20]. This

confirms that the geometry variation on the horizontal
plane has far less impact on the transverse impedance
than a geometry variation on the vertical plane.
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FIG. 12. (Color) Spectrum of the �-weighted imaginary part of
the horizontal impedance due to geometrical variation.
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Combining the �-weighted geometrical impedance and
resistive wall impedance, the �-weighted effective imped-
ance for all elements was calculated in both planes
(Fig. 14). It confirms the fact that the �-weighted vertical
impedance is distributed all along the machine whereas the
�-weighted horizontal impedance is dominated by the
low-gap ID chambers and the BPMs. The �-function dis-
tribution along the ring is mainly responsible for this
peculiar behavior. Closing all 8 in-vacuum undulators to
a gap of 6 mm increases both transverse �-weighted
impedances by about 12%.

V. TMCI THRESHOLDS

In order to compute the mode coupling in single bunch
at zero chromaticity, the parameters describing the differ-
ent broadband resonators obtained from the spectral fits
were entered into MOSES [21] together with a parametriza-
tion of the resistive wall impedance. The original source
code of MOSES was modified for this purpose to accept
multiple broadband resonators and resistive wall imped-
ance. The status of the in-vacuum undulators was consid-
ered as open to allow for the comparison of the
computation to the measurements of the tune shifts.
Furthermore, a current dependent bunch length was as-
sumed according to a simplified parametrization derived
from bunch length measurements [22] �� � ��0�1�
I	mA
=2:3� (with I as single bunch current). In addition,
it is assumed that the product of bunch length and
incoherent synchrotron tune is current independent
���I��s�I� � const [23,24]. This assumption is reasonable
as long as the single bunch current is below 2 mAwhere the
bunch length is still in the potential well regime (but it has
neither been experimentally checked nor cross-checked
with the distortion of the potential well). As a consequence,
the incoherent synchrotron tune becomes current depen-
dent. The mode coupling calculated under this assumption
by MOSES (Fig. 15) is reached at 1.06 mA in the vertical
plane and at 1.15 mA in the horizontal plane. It should be
kept in mind that the threshold values can sensitively vary
if another parametrization of the bunch length as a function
of the current is chosen or if the product of bunch length
and synchrotron tune is not constant as assumed.

VI. INCOHERENT TUNE SHIFTS

Despite the fact that the quadrupolar wakes do not
contribute to the mode coupling, they nevertheless give
rise to an incoherent tune shift, which can be calculated by
using the same formulas as a corresponding coherent tune
shift with !s as the synchrotron angular frequency, e as
elementary charge, and E as energy of the beam, i.e.,

 

��
�I�s

�
e

4
����
�
p

!s��E

X
i

�iIm�Z
eff
?i� �

e
2!sE

X
i

�i�?i;

(25)

where i enumerates the different elements and �? repre-
sents the transverse kick factor:

 �? �
1

�

Z 1
0
j ~
�!� j2 ImZ?�!�d!; (26)

where ~
�!� represents the Fourier transformation of the
bunch distribution in time domain. The chosen normaliza-
tion of the tune shift on the current dependent synchrotron
tune in the equation has the advantage that it makes the
factor before the summation of the �-weighted effective
impedance constant according to the explanation in the last
section. In the next section, the current dependent synchro-
tron tune �s will be replaced by the zero current synchro-
tron tune �s0 to make comparison to measured data
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possible. Consequently, the independence of the factor on
current is lost, whereas the independence on the rf voltage
remains. The horizontal, vertical coherent, and incoherent
tune shifts were calculated either by using ZH, ZV , or Zquad

as Z? in the kick factor definition. Figure 16 shows that the
incoherent horizontal tune shift is opposite to the coherent
one which leads to a compensation of both. However, the
vertical incoherent and coherent tune shift add up posi-
tively. The �-weighted geometrical and resistive wall im-
pedance contribute almost equally to the total �-weighted
vertical kick factor, whereas the �-weighted resistive wall
impedance contributes twice more to the �-weighted hori-
zontal kick factor than the �-weighted geometrical
impedance.

VII. COMPARISON OF THE CALCULATED MODE
DETUNING TO MEASUREMENTS

The complete mode detuning vs current is obtained by
adding the incoherent tune shifts to the coherent ones. This
changes the slopes of the coherent mode detuning, but not
the thresholds (Fig. 15). In addition, the slopes of the mode
detuning are also changed by a different normalization of
the tune shifts, namely, henceforth on the zero current
synchrotron tune �s0. The calculated detuning curves are
compared to measurements taken with the tune monitor. In
order to make the coherent beam modes visible, a very
slight positive chromaticity was applied and the beam was
excited by a monochromatic shaker whose frequency was
swept over the observed frequency range. The peaks dis-
played by the tune monitor were attributed to the different
coherent modes and the measured frequencies of the peaks
normalized on the synchrotron frequency measured at a
current close to zero. However, in order to measure the
values of the threshold current, the beam was injected at
zero chromaticity without external excitation until beam
blowup and current saturation occurred.

A. Vertical plane

The calculated vertical modes 0 and �1 have a weaker
detuning and couple at a higher current than the measured
detuning (Fig. 17). The variation of the rf voltage is ex-
pected only to change the effective impedance in Eq. (25)
through the change of the bunch length. Therefore the
variation of the tune shift at different rf voltages provides
some information of the impedance spectrum. At varying
rf voltage the calculated modes in the vertical plane behave
in the same way as the measured data (Fig. 17). The
spectral representation of the vertical impedance modeling
seems to therefore be correct. After the replacement of a
NEG-coated Cu-covered stainless steel chamber by a
NEG-coated aluminum chamber of 5 m length and 8 mm
aperture, the slope of the measured vertical mode detuning
was only slightly weaker and threshold current only
slightly higher.

B. Horizontal plane

The measured independence of mode 0 on increasing
current and on varying rf voltage is due to the compensa-
tion of the coherent and incoherent tune shift. This effect is
in good agreement with the prediction. However, the com-
puted slope of mode 1 is weaker than the measured slope.
The poor reproduction is possibly linked to an imperfect
parametrization of the bunch length and incoherent syn-
chrotron tune as a function of current (see Sec. V). The
measured data of mode �1 are less certain because during
the measurements the mode was difficult to recognize at
nearly zero chromaticity. So the reproduction of this mode
through the model data is only poor (Fig. 18).

However, when a NEG-coated Cu-covered stainless
steel chamber of 8 mm gap was exchanged for a NEG-
coated aluminum chamber a large change occurred. The
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threshold originally measured at 1.3 mA moved to 1.7 mA
despite the fact that the corresponding change in the model
was only small. Measurement of the transverse impedance
of this type of chamber using the bump method [14] had
already revealed that the NEG-coated Cu-covered stainless
steel chambers present an abnormally high impedance
which cannot be explained by the model presented in this
paper. In fact after the replacement of this chamber the
obtained discrepancy between the measured data and the
impedance model reveals that the �-weighted horizontal
impedance predicted by the model seems to be too large
compared to the measurements. Furthermore, recent mea-
surements showed that, in the horizontal plane, the increase
of the rf voltage decreases the value of the horizontal
threshold contrary to the behavior on the vertical plane.
So the vertical effective impedance decreases with smaller
bunch length, whereas the horizontal effective impedance
increases with smaller bunch length. A possible explana-
tion for this is the different positions of the resonances in
both impedance spectra. The vertical impedance spectrum
is dominated by a resonance of about 2 GHz, whereas most
resonances of the horizontal spectrum are at a much higher
frequency ( � 6:6 GHz BPM resonance). For a resonance
at high frequency !r�� � 1 the effective impedance de-
creases with increasing bunch length �� (neglecting for the
time being the resistive wall impedance):

 Zeff
? ���� � const

�
1�

1

2�!r���2

�
1�

1

Q2

��
: (27)

Q is the quality factor of the resonance. However, the
condition !r�� � 1 would be only correctly fulfilled if
the frequency of the BPM’s principal resonance were at a
higher value. For an improved modeling the resistive wall

would have to be less pronounced and the resonances
would have to be at higher frequency than in the actual
model.

VII. CONCLUSION

The developed impedance model based on a distinct
transverse impedance evaluation on the vertical and hori-
zontal plane is in rather good agreement with the measured
mode detuning on both planes. This achievement was
possible through the identification of the role of the quad-
rupolar part of the wake potential induced by the flat
geometry of the vacuum chambers. The sensitivity of the
horizontal single bunch threshold on vacuum chamber
changes, in particular, in low-gap sections could be well
explained by the developed model. A simple analysis, with
the impedance calculated assuming the same offset for the
leading and trailing particle, i.e. without decomposition
into dipolar and quadrupolar parts, would have resulted
in a very high current threshold of the horizontal TMC
instability. This is in contradiction with our measurements
which show similar current thresholds in both planes. The
understanding of this effect has been given in this paper as
a cancellation (addition) of the dipolar and the quadrupolar
wake in the horizontal (vertical) plane. One important
consequence is that any change of the vertical profile of
the chambers does not only generate impedance in the
vertical plane, but also in the horizontal plane. At the
ESRF, the large horizontal �-function in many ID sections
has further amplified the effect to a point that the gradual
replacement of 19 and 15 mm chambers by 10 mm cham-
bers has caused a stronger reduction of the TMC instability
current threshold in the horizontal plane than in the vertical
plane. This study also showed that the ESRF storage ring is
very sensitive to impedance related effects because of the
high modularity of its vacuum system and has potential of
improvement.

Nevertheless the model is still incomplete. The com-
puted vertical TMCI threshold is too high compared to the
measured one whereas the computed horizontal TMCI
threshold is too low. If for instance Landau damping due
to betatron tune spread intervenes, the value of the TMCI
threshold can no longer be taken as a pure measure of the
transverse impedance. The horizontal plane could particu-
larly be concerned. Therefore the beam dynamics has still
to be better understood by the realization of further mea-
surements as well as by a better model also including the
betatron tune spread caused by the quadrupolar wake.
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