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A technique is described for the tomographic mapping of transverse phase space in beams with space
charge. Most prior studies where performed at high energy where space charge was negligible and
therefore not considered in the analysis. The tomographic reconstruction process is compared with results
of simulations using the particle-in-cell code WARP. The new tomographic technique is tested for beams
with different intensities (both emittance and space-charge dominated), and with different initial
distributions. Effects of various errors in the data collection process on the reconstructed phase space
are discussed. It is shown that the crucial factor is not necessarily the number of projections but the range
of angles over which the projections are taken. This study also includes a number of experimental results
on tomographic phase space mapping performed on the University of Maryland Electron Ring.
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I. INTRODUCTION

Intense particle beams have applications in many differ-
ent research areas which impact our lives. Such applica-
tions of intense beams include accelerator-driven neutron
sources [1], higher-luminosity high-energy colliders, free
electron lasers (FEL) [2], and heavy-ion inertial fusion
drivers (HIF) [3]. Neutron sources and FELs have impor-
tant applications in material research, helping us better
understand the structure of matter and improving the qual-
ity of materials. Free electron lasers contribute to the
processing of components for electronics, microtechnol-
ogy, and nanotechnology. Finally, heavy-ion inertial fusion
drivers promise the production of large and unlimited
amounts of energy which can be harnessed to provide an
affordable and environmentally attractive source of elec-
trical power. All these applications are premised on the
considerable challenge of generating, transporting, accel-
erating, and focusing large amounts of particles confined in
a narrow region of phase space, without significant particle
losses or deterioration of beam quality. One nanocoulomb
of charge confined into a 300 fs bunch (line charge density
equal to 11 �C=m) with 1 �m transverse normalized emit-
tance are typical parameters for such beams, with HIF
drivers demanding much more charge per bunch.

In order to study the dynamics of such intense beams in a
cost efficient way, we have designed and recently commis-
sioned the University of Maryland Electron Ring (UMER)
[4]. Using low energy (< 10 keV) and high current (up to
100 mA), electron beams with extreme intensities can be
produced [5]. Some challenging scientific issues arise from
the space charge and collective behavior effects in such
high current beams [6]. These include emittance growth,
halo formation, collective instabilities, and x-y energy
transfer and coupling. To investigate these effects, knowl-

edge of the actual phase space distributions and emittances
of the beam in certain locations is required.

Standard methods [7] that are commonly used in the
accelerator community to map the beam phase space are
the quadrupole scan, pepper pot, and slit wire scan. In the
quadrupole scan technique, the Courant-Snyder parameters
can be obtained by measuring the beam size at a given
point some distance from a quadrupole magnet, as a func-
tion of focusing strengths. The technique has two impor-
tant limitations: First, in the analysis we make the usual
assumption that the transverse phase space distribution fills
an ellipse; and second, the method becomes questionable
when space charge cannot be neglected [8]. Pepper pots
measure the phase space distribution by using apertures to
localize specific regions in transverse space. The beam is
intercepted by a screen, or pepper-pot plate, which is
normal to the beam and contains a regular array of identical
holes over its entire surface. In order to get a good resolu-
tion of the reconstructed phase, a sufficient number of
beamlets should be produced. However, when the beam
size is small, as (for instance) in the UMER 0.6 mA beam
which is of the order of mm, very small and closely spaced
holes are needed. In this regime, construction of such a
mask would pose serious practical difficulties. Finally, in
slit-based emittance measurements, the beam is collimated
by a set of slits scanned across the beam, and then the
collimated beamlets drift a given length and finally are
analyzed by a collector upstream. The advantage of the
technique is that it allows time resolved measurements;
however, a serious problem is the limited signal to noise
ratio of the beam signal after passing the slit scanners.

Computerized tomography [9] is well known in the
medical community and was originally developed to pro-
cess x-ray images. Tomography is related to a theorem by
Radon [10], who stated that an object in n-dimensional
space can be recovered from a sufficient number of pro-
jections onto �n� 1�-dimensional space. In the physics of
beams it is possible to use tomographic image reconstruc-*Present address: Microsoft Corp., Redmond, WA 98052.
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tions to map the phase space by measuring spatial projec-
tions of the electron beam. Over the past decade, phase
space tomography has been used successfully in relativistic
electron beams without space charge [11–13] and recently
applied to beams with space charge [14], by assuming
linear forces. Additionally, the idea of reconstructing an
image from projections was further extended to map the
4D distribution f�x; y; x0; y0�, for beams with space charge
[15].

Even though tomography has been used over the past
years as a diagnostic to map the beam phase space, some
questions remain about the limitations of the method. Can
the technique be used for beams with space charge? Could
a simple linear space charge approximation accurately
reproduce the beam phase space? In addition, will tomog-
raphy map the phase space for beams with different and
more complex profiles? For instance, what would happen if
the beam starts with a hollow velocity distribution (such as
is repeatedly observed on UMER)? In order to answer such
questions, we simulate a UMER beam experiment using
the particle-in-cell code WARP [16], and apply tomography
to reconstruct the phase space. In this way both space
charge and input beam distributions can be controlled by
the code, and the accuracy of tomography will be exam-
ined. The outline of our work is as follows: In Sec. II a
short general description of the tomography algorithm will
be given. In Sec. III, we will describe our approach for
applying tomography to beams. In Sec. IV, we will exam-
ine the effect of various errors in the data collection process
on the reconstructed phase space (number of projections,
rotation angle, and uncertainties in measurements). In
Sec. V, the application of the tomographic technique to
beams with space charge will be discussed. Finally, in
Sec. VI we present experimental results on tomographic
phase space mapping on UMER.

II. TOMOGRAPHY ALGORITHM

Several algorithms [17] are available to compute high
quality reconstructions from projection data, e.g., algebraic
reconstruction technique, maximum entropy tomography,
filtered-backprojection algorithm (FBA), etc. The FBA
algorithm is the most common method to reconstruct a
two-dimensional image and it is generally believed that it
provides a reconstructed image of high quality with nor-
mally available computer capacity and computational
times [17].

Suppose that f�x; y� corresponds to a two-dimensional
distribution. Then the integral

 f̂��; �� �
Z 1
�1

Z 1
�1

dxdyf�x; y����� x cos�� y sin��

(1)

defines the transverse projection of the distribution f�x; y�
along the axis � � x cos�� y sin�, placed at an angle �
relative to the x-axis. Such a projection is known as the

Radon transform of the function f�x; y�. If F�u; v� is the
two-dimensional Fourier transform of the function f�x; y�,
then its inverse Fourier transform is given by

 f�x; y� �
Z 1
�1

Z 1
�1

F�u; v�ej2��ux�vy�dudv: (2)

By exchanging the rectangular coordinate system in the
frequency domain �u; v� for a polar coordinate system
�w; ��, Eq. (2) becomes

 f�x; y� �
Z �

0

Z 1
�1

F�w; ��jwjej2�w�dwd�: (3)

Likewise, the Fourier transform of the Radon transform is

 S�w; �� �
Z 1
�1

f̂��; ��e�j2�wpd�: (4)

Using the Fourier slice theorem [17], we can write
F�w; �� � S�w; �� and therefore

 f�x; y� �
Z �

0

Z 1
�1

S�w; ��jwjej2�w�dwd�; (5)

or simpler

 f�x; y� �
Z �

0
Q��; ��d�; (6)

where Q often is called ‘‘filtered projection’’ [17].
Therefore, if a number of projections between 0 and �
are known, the distribution can be reconstructed by back-
projecting the filtered version of the projections according
to Eq. (6).

In beam physics, we usually measure projections of the
4D phase space onto a 2D configuration-space imager. Our
goal is to obtain information on the velocity space distri-
bution by combining the ideas of tomography with the
systematic scanning of quadrupole magnets, which induce
rotations of the beam in phase space [11]. The idea is the
following: Suppose that ��x0; x

0
0�z0

is the phase space
distribution at a certain location z0 in the beam line. If
��x1; x

0
1�z1

is the phase distribution at another location z1,
then by assuming that we have a linear system, the particle
motion at the two positions obeys

 

x1

x01

� �
� M1

x0

x00

� �
; (7)

where M1 � �
M11
M21

M12
M22
� is the transport matrix between z0

and z1. The transport line consists of drift sections and
thick quadrupole(s). Thus, M1 is a function of the quadru-
pole current(s).

Integration of the phase space distribution ��x1; x
0
1�z1

along x01 is equivalent to the beam profile along x1 and is
given by

 C�x1� �
Z
��x1; x01�z1

dx01: (8)

Using the Dirac delta function, it can be written in the
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equivalent form

 C�x� �
ZZ

��x1; x01�z1
��x1 � x�dx1dx01: (9)

According to Liouville’s theorem, the particle density
remains constant, therefore

 ��x0; x
0
0�z0
� ��x1; x

0
1�z1

: (10)

Hence, by combining Eq. (9) with Eq. (10), we can write

 C�x� �
ZZ

��x0; x
0
0�z0

��M11x0 �M12x
0
0 � x�dx0dx

0
0:

(11)

In order to relate Eq. (11) to the Radon transform, we
define the scaling factor s [11] by

 s �
�����������������������
M2

11 �M
2
12

q
; (12)

and the phase space rotation angle � [11] by

 tan� �
M12

M11
: (13)

Now, using Eqs. (12) and (13), Eq. (11) becomes
 

C�x;�� �
1

s

ZZ
��x0; x

0
0�z0

��x0 cos�� x00 sin����dx0dx
0
0;

(14)

where � � x=s.
Comparing Eq. (1) with Eq. (14) we can write

 f̂��; �� � sC�x; ��: (15)

From Eq. (15) we can deduce that a simple scaling
equation relates the spatial beam projections to the
Radon transform, f̂��; ��, of the transverse phase space.
This is a very useful result since the beam spatial distribu-
tion can be easily obtained in experiments, e.g., using a
phosphor screen. Both scaling factor and angle of the
projection can be easily calculated from the beam line
overall transport matrix and are functions of the quadru-
pole focusing. Therefore, any variation of the quadrupole
strength can result in a number of phase space projections
at various angles that can be used according to Eq. (6) to
recover the actual phase space.

III. EXPERIMENTAL CONFIGURATION AND
COMPUTER MODEL

In our transport line we employ three quadrupoles, Q1,
Q2, and Q3 to achieve a full 180� phase space rotation.
Figure 1(a) presents a simplified diagram showing the
orientation of these quadrupoles, and Fig. 1(b) shows the
actual photo. DP1 and DP2 are bending dipoles which are
ignored in the analysis. The beam profiles of a 10 keV

beam are obtained by means of a phosphor screen placed at
point z1 downstream of Q3. We also choose the same
position for the phase space to be reconstructed, which
implies z0 � z1. In that way we can directly compare the
recovered phase space with the actual spatial distribution.
Along with the experimental configuration, the relevant
matrix representations are also illustrated in Fig. 1. In
our case, the phase space ��x0; x

0
0�z0

to be reconstructed
is the one where Q1 is operated at I1 � 1:884 A and Q2
and Q3 are turned off. Therefore, the inverse of the matri-
ces D0, MQ1;0 needs to be included in the transfer matrix
analysis where

 D0 �
1 L
0 1

� �
(16)

is the drift matrix and

 MQ1;0 �
cos

����
�
p
z 1���

�
p sin

����
�
p
z

�
����
�
p

sin
����
�
p
z cos

����
�
p
z

 !
(17)

is the quadrupole matrix; � is the focusing strength in m�2

of the quadrupole corresponding to the current I1.
If MQ1;MQ2;MQ3 are the matrices of Q1, Q2, and Q3,

then the overall transport matrix, M1, from z0 to z1 will be
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FIG. 1. (Color) Tomography experimental configuration: (a)
simplified diagram; (b) actual experimental setup.
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 M1 � D3MQ3D2MQ2D1MQ1�D0MQ1;0�
�1: (18)

In the presence of space charge, calculation of transport
matrix elements becomes more complicated. In order to
simplify the analysis, some assumptions need to be made
about the density distribution and the resulting space
charge forces. One method that has been proposed [14] is
to use linear space charge forces, which are estimated from
the beam envelopes, to correct the transfer matrices be-
tween different locations. Its accuracy will be analyzed in
the computer simulation, as shown later in this paper. The
detailed process is as follows: Assuming linear space
charge forces, the net focusing strengths become [6]

 �x � �x0 �
2K

X�X� Y�
(19)

 �y � �y0 �
2K

Y�X� Y�
; (20)

where �x0; �y0 are quadrupole focusing strengths and X; Y
are the 2xrms beam envelope sizes for x and y directions,
respectively. In our analysis, for the low intensity beam
(0.6 mA), only the terms �x0; �y0 were used in generating
the transfer matrices; however, for a more intense beam the
defocusing space charge terms� 2K

X�X�Y� and� 2K
Y�X�Y� must

be included in the matrix analysis.
In order to obtain the net focusing strength, knowledge

of the beam sizes X and Y is needed. Calculation of the
beam size is not easy since it is a function of z and the
quadrupole focusing function also. Looking over the ex-
perimental setup in Fig. 1, we do not have any diagnostic
over the distance crossing the three quadrupoles to get any
information of the evolution of X and Y. However, assum-
ing no emittance growth we can calculate the beam enve-
lopes using the Kapchinskij-Vladimirskij envelope
equations [6] given by

 X00 � �xX�
2K

X� Y
�
"2
x

X3 � 0 (21)

 Y00 � �yY �
2K

X� Y
�
"2
y

Y3 � 0 (22)

starting with estimated initial beam sizes and slopes before
the first quadrupole. We can check our assumptions by
comparing the calculated and measured beam sizes at the
phosphor screen location. In case they do not agree well,
we adjust the initial conditions and repeat our envelope
calculations until we get agreement.

Once the evolution ofX; Y with respect to z is known, we
can calculate the net focusing functions given by Eqs. (19)
and (20). The new transfer matrix can be modeled by the
superposition of many hard edge subelements. Finally,
from Eqs. (12) and (13) we can calculate the rotation angle
and scaling factor.

We simulated the above experimental setup with the
particle-in-cell code WARP [16], developed at the
Lawrence Livermore National Laboratory. The advantage
of WARP is that it self-consistently includes space charge
effects and has been successfully benchmarked against
UMER experimental data [18]. For each quadrupole cur-
rent setting, we run a WARP simulation, collect a snapshot
of the beam density in configuration space at the phosphor
screen location, and then process it to look like a phosphor
screen image. The quadrupole scan results in a large num-
ber of photos, each associated with a different projection,
and hence a different phase space rotation angle and scal-
ing factor, as defined from the transfer matrix by using
Eqs. (12) and (13). For image processing we developed a
code based on PYTHON. The PYTHON code processes each
photo to obtain profiles along x and y, and then scales them
to obtain the Radon transform of the phase space distribu-
tion. Operating on a number of projections, the code uses
the algorithm described in Sec. II to recover the original
phase space distribution.

While scanning the quadrupoles there are some con-
straints that we need to keep in mind, especially when
doing experiments. First, the beam at the measurement
point must remain within the phosphor screen. Second,
the beam must be well aligned throughout the transport
section to eliminate image-charge effects. Third, the quad-
rupole current cannot exceed �3:5 A due to the possible
overheating and power supply limitations.

In summary, in order to reconstruct phase space we use
the following process: (1) we generate a table containing
the desired quadrupole current settings and the correspond-
ing rotation angles and scaling factors; (2) repeatedly run
the simulation code and obtain a beam photo at the phos-
phor screen location for each setting; (3) process the im-
ages using the PYTHON code to calculate the beam profile
by integration for each photo; (4) calculate the modified
projectionQ��; ��; (5) integrate the filtered projection over
all rotation angles using Eq. (6).

IV. ERROR ANALYSIS

When using tomography to reconstruct beam phase
spaces several questions arise. For instance, how accurate
is the FBA algorithm? How many projections are needed?
What happens when the phase space rotation is less than
180�? How sensitive is the reconstruction to uncertainties
in the input parameters? To answer such questions we
model a quadrupole scan for a low current electron beam
and follow the process described in Sec. III to tomograph-
ically reconstruct the phase space. The tomography-
reconstructed phase space is compared to the phase space
generated directly by WARP. The phase space generated by
WARP does not make the assumptions that tomography does
(constant emittance, linear forces, no image forces) and
therefore can be used as a prototype to establish the quality
of our tomography method. For the simulation, we use a
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low-current (0.6 mA), nonrelativistic (10 keV) electron
beam. We use a 512� 512 grid for the Poisson solver, a
step size of 2 mm along z, and 64 000 particles. Running a
large number of test simulations with more particles or
higher resolution resulted in no perceptible difference in
the final result.

Figure 2 shows reconstructed phase spaces by tomog-
raphy when a full 180 rotation is achieved but a different
number of projections is used. Figure 2(d) depicts recovery
for 210 projections. Figure 2(c) shows recovery for 105
projections (every other one) and Fig. 2(b) for 70 (every
third one). Finally, for Fig. 2(a) only 30 projections where
used (every fifth one). The near absence of streaking
artifacts in Fig. 2(d) indicates that 210 projections are
enough for complete recovery.

Figure 3 compares the above phase space constructed by
tomography [Fig. 3(a)] to that generated directly by WARP

[Fig. 3(b)]. From the phase space distribution we are able
to calculate the effective emittances by using the following
relation:

 "eff � 4"rms � 4
�����������������������������������
hx2ihx02i � hxx0i2

q
(23)

and we get "eff � 5:4 �m, and "eff � 5:5 �m for the
direct WARP and tomography processed phase space, re-
spectively. Thus, as far as calculating the emittance of a
low-current beam, tomography exhibits excellent agree-
ment, resulting in a prediction within 1.8% of the actual

value. In order to verify the recovered phase space, we
calculate the beam size from the phase space distribution
and compare it with the size obtained from the spatial
distribution at the same point. The results are 2xrms �
1:26 mm from the phase space and 2xrms � 1:30 mm
from the spatial distribution.

Next, we are interested in performing recovery for the
case where the total rotation angle is less than 180�. Care
was taken that our number of projections was above 105 in
order to avoid aliasing effects from the number of projec-
tions. Our results are shown in Fig. 4. In Fig. 4(a) recovery
is done when the phase space is rotated a total angle of
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FIG. 2. (Color) X0X tomographic recovery of the 0.6 mA (pencil
beam) using a different number of projections. (a) 30 projec-
tions, (b) 70 projections, (c) 105 projections, (d) 210 projections.
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FIG. 3. (Color) X0X phase space for the 0.6 mA electron beam:
(a) using tomography; (b) direct WARP.
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170� (127 projections). Figures 4(b) and 4(c) represent
recoveries for 175� (178 projections) and 178� (192 pro-
jections) rotations, respectively. Finally, Fig. 4(d) corre-
sponds to the case where a full 180� rotation is achieved.
We conclude that in order to recover a phase space with
minimum background noise we need to collect projections
within the full 180� range.

Finally, since real experiments involve an uncertainty
between the actual value and the set value in quadrupole
current, we want to address the issue of quadrupole current
systematic errors in the phase space recovery process.
Figure 5 depicts the recovered electron beam phase space
using 210 projections, with (a) 1% simulated systematic
error, (b) 2% simulated systematic error, and (c) 4% simu-
lated systematic error. We conclude that the uncertainty in
the quadrupole current values will affect the recovered
phase space. Quantitatively, if we measure the beam emit-
tance we get 5:6; 5:7; 5:8 �m for the cases where we have
2%, 3%, and 5% error, respectively. Comparing these
values to the emittance that we found for the case where
no uncertainties in currents where present (5:5 �m), we
conclude that small systematic errors in the quadrupole
current have a moderate impact on the resulting
emittances.

V. TOMOGRAPHY FOR SPACE CHARGE
DOMINATED BEAMS

A. Space charge beams and initial distribution

In UMER, we are able to control the beam current of a
10 keV electron beam by collimation at the gun exit. Beam
currents within the 10–100 mA range can be generated this
way. For lower currents, the thermal pressure force is
higher than the space charge force and the beams are
referred to as emittance dominated. For higher currents,
the space charge force exceeds the thermal pressure force
and the beams are known as space charge dominated.
These two regimes are distinguished by using the intensity
parameter �, which is defined as the ratio of the space
charge force relative to the external focusing force [5]. If
0<� 	 0:5 the beam is emittance dominated; if 0:5<
�< 1 it is space charge dominated. Having applied to-
mography successfully for emittance dominated beams in
Sec. IV, we then endeavored to extend the technique to
beams with space charge.

We start our simulation for a UMER beam with current
equal to I � 7 mA and intensity parameter � � 0:72.
Since this is an intense beam, when doing tomography
space-charge forces must be taken into consideration;
however, as discussed in Sec. III, we will assume that
linearity still holds. We begin our simulation with a
semi-Gaussian (S-G) initial distribution, which is com-
monly used for modeling space-charge-dominated beams.
In such a distribution the particle density is uniform across
the beam, while the velocity profile is Gaussian with
uniform temperature. The recovered phase space is dem-
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onstrated in Fig. 6(a). Figure 6(b) represents the phase
space generated directly (without tomography) from
WARP. Next, we wish to compare emittances calculated
from these two phase spaces. From tomography we get
"eff � 13:7 �m and from WARP simulation "eff �
14:5 �m. In addition, calculation of the 2xrms beam sizes
from the tomo-recovered phase space and the correspond-
ing spatial distribution (shown on Fig. 7) yields 2xrms �
1:88 mm and 2xrms � 1:80 mm, respectively. For both
beam size and emittance values, there is about 5% differ-
ence between the results from tomography and those from
WARP.

In beam physics the initial beam density profile is an
important factor in determining its evolution. Part of the
challenge of any distribution measurement technique is
that it should make no a priori assumptions about those
initial distributions but instead should be equally accurate
for different input profiles. Therefore, instead of using a S-
G we model our tomography process for beams starting
with a hollow velocity distribution. Such a distribution has

been experimentally observed in UMER [18]. In order to
model such a beam profile, we rotate a Gaussian distribu-
tion with width �th and offset 	 from the origin around a
circle of radius 	 [18]. The parameters �th and 	 are
obtained empirically such that rms size and emittance of
the hollow distribution are the same as the semi-Gaussian
distribution in the previous section. In this way both beams
are equivalent. It should be noted that the spatial density is
still uniform.

Figure 8(a) shows the recovered phase space by tomog-
raphy and Fig. 8(b) shows the phase space from direct
WARP simulation for the 7 mA beam. Figure 9 illustrates
the corresponding spatial distribution, which also displays
a hollow structure. From the tomography processed phase
space we obtain "eff � 14:1 �m and from WARP simula-
tion we get "eff � 14:4 �m. There is a 2% difference in the
emittance measurements. By comparing the beam sizes
from the recovered phase space and the corresponding
spatial distribution (shown in Fig. 9), we obtain 2xrms �
1:85 mm and 2xrms � 1:87 mm, respectively. Table I con-
tains a summary of emittance measurements for both pen-
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with a Gaussian velocity distribution.
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FIG. 8. X0X phase space distribution of the 7 mA electron
beam starting with a hollow velocity distribution: (a) by tomog-
raphy; (b) by direct WARP simulation.
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FIG. 9. Spatial distribution of the 7 mA electron beam starting
with a hollow velocity distribution.
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cil and 7 mA beams under different initial distributions
obtained by WARP and tomography.

B. Transverse density waves

Beam particle distributions normally reach an equilib-
rium state only after traversing a long distance in a linear
transport system, or after many turns in a circular machine.
Thus, beams are typically far from equilibrium near their
source. Many factors contribute to the beam evolution
towards equilibrium, causing emittance growth in the pro-
cess: envelope mismatch, nonlinearities and anisotropies in
the focusing system, dispersion and bending, collimation,
etc. An example of a nonequilibrium beam distribution is
the S-G distribution introduced above. It can be used, for
example, to model the wavelike beam evolution described
by Bernal et al. [19]. A space-charge-dominated electron
beam emerging from an aperture develops a ring of charge
near its edge that progresses towards the beam’s center as
the beam propagates in a solenoid or quadrupole system.
Simulations with WARP starting with a S-G distribution
accurately reproduce the density modulation in the experi-
ment. In a similar fashion, Kishek et al. [20] reports space-
charge modes, similar to those observed before, in simu-
lations of nonequilibrium charged particle beams with
anisotropy. We are interested in using tomography as a
diagnostic tool to study nonequilibrium dynamics in space-
charge-dominated beams. In order to do that, we simulate
the 7 mA beam starting with a SG distribution and observe
the beam evolution by mapping its phase space. The phase
space is recovered by scanning quadrupoles Q1, Q2, and
Q3, as described in Sec. III, downstream of Q3. Since we
are interested in investigating beam propagation over a
long distance, we add a series of alternating-gradient quad-
rupole (FODO) cells downstream of Q1 with appropriate
strength so that the beam remains matched as it passes
through them. Our results are shown in Fig. 10, which
demonstrates that tomography is powerful enough to cap-
ture the details of the distribution including the ‘‘wings’’
that correspond to the propagating space charge waves.

The sharp edges of the initial spatial distribution result in
a strong force imbalance at the beam edges. As a conse-
quence, the beam-edge particles experience forces that are
very different from those affecting the bulk particles. Edge
particles tend to move outside the beam as the latter is

transported in the FODO lattice [Figs. 10(c) and 10(d)].
However, the strong external focusing brings the edge
particles back near the beam edge [Fig. 10(e)], creating a
wavelike density modulation downstream. The quality of
the tomography process can be established by its ability to
capture the wavelike behavior on the recovered phase
space, in good agreement with the WARP-generated phase
spaces. Table II summarizes the emittance measurements
as calculated by tomography and WARP. Beside the very
good agreement between the WARP and tomographic phase
spaces, the emittance values agree also very well with error
close to 5%.

VI. EXPERIMENTAL RESULTS

In this section we present preliminary experimental
results of phase space mapping in UMER using tomo-
graphic techniques. Our experiment will be along the in-
jector line [21]. The phase space to be reconstructed is for
the case whenQ1 is operated at 0.884 A andQ2 andQ3 are
turned off. Details of the beam parameters are shown in
Table III. We map the phase space by scanning Q1, Q2,
and Q3 according the discussion in Sec. III. A phosphor
screen downstream of Q3 displays the electron particle

TABLE I. Summary of emittance measurements for different
input distributions and beam currents.

Distribution Semi-Gaussian Hollow velocity
Beam current (mA) 0.6 7 0.6 7

"x, WARP (�m) 5.4 14.5 5.5 14.4
"x, Tomo (�m) 5.5 13.7 5.8 14.1
% error 1.8 5.5 5.5 2
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FIG. 10. Phase space from simulations of the 7 mA beam after
propagating for different distances, clearly indicating the propa-
gation of transverse density waves: tomography (top) vs direct
WARP result (bottom) (cf. Ref. [19]). Phase space after passing
through (a) 3; (b) 5; (c) 7; (d) 9; and (e) 11 quadrupoles.

TABLE II. Beam emittances at different positions along the
beam line as calculated from the phase spaces generated by
tomography and WARP.

Z (cm) 45.2 77.2 109.2 141.2 173.2
"x, Tomo (�m) 13.7 15.2 14.8 14.1 15.7
"x, WARP (�m) 14.5 14.7 14.5 15.0 14.8

D. STRATAKIS et al. Phys. Rev. ST Accel. Beams 9, 112801 (2006)

112801-8



distribution (time integrated over many pulses) and the
beam intensity pictures are captured with a charge coupled
device (CCD) camera and then digitized and analyzed
using associated hardware and software. While collecting
the images, care was taken to avoid sensor saturation. The
collimating of the electron gun aperture is set at 0.25 mm in
order to produce a beam current of 0.6 mA. To validate this,
we measured the beam current with a fast Bergoz current
transformer located between the second and third quadru-
poles in the straight section. A set of six steering magnets
were used to keep the beam aligned [22]. Steering dipoles
and quadrupole currents were monitored and controlled
using Lab View software.

The recovered phase space is shown in Fig. 11. Because
of beam expansion outside the phosphor screen, our pro-
jections were limited within the 0–175� range. As a veri-
fication of the reconstructed phase space we calculate the
beam sizes from the phase space and compare it with the
results from the spatial distribution. The comparisons are
summarized in Table IV. Next, from the phase space dis-
tribution we calculate beam emittances by using Eq. (23).
The results are "x � 5:8 �m and "y � 6:8 �m for x and y,

respectively. It should be noted that the values of the
emittance have errors that arise from the image processing
analysis and uncertainty in the quadrupole currents. An
independent way to measure emittance is by means of a
quadrupole scan technique by curve-fitting rms beam sizes
as a function of quadrupole current. A very good fit is
obtained along the x-axis that gives "x � 6:0 �m which
is in good agreement with tomography. However, we were
unable to estimate the emittance along the y-axis due to a
very poor fit. Another way to estimate emittance for the
pencil beam is by simply scaling it with aperture radius.
The emittance and radius of the full beam behind the
collimating aperture are 60� 12 �m, and 3.2 mm, respec-
tively. Therefore, by assuming a uniform distribution at the
aperture plate the emittance of the pencil beam is 4:7�
1:0 �m. It should be noted that while scanning the quadru-
poles the beam centroid was moving close to 1 cm in the
vertical (y) direction. Such large centroid errors could lead
to nonlinear forces (for instance image forces) which in-
crease errors, distort the beam, and can cause emittance
growth. Such effects could explain the poor fit obtained
from the quad scan and the higher emittance measured in
the vertical direction; however, future experiments are
needed in order to verify this.

VII. CONCLUSIONS

Using the particle-in-cell code WARP we have simulated
a UMER beam experiment and applied tomography tech-
niques to map the phase space for beams in both emittance-
and space charge-dominated regimes. For beams with
space charge we are applying our tomography algorithm
by assuming linear forces and no emittance growth. The
validity of our reconstructed phase space was tested by
comparing our results to the phase space generated directly
by WARP (without tomography) which is highly accurate
since it is not making the assumptions that our tomography
algorithm does. For low current beams, we found excellent
agreement between tomography and simulation. For more
intense beams where space charge effects are present, still
very good agreement exists, with the error close to 5%.
Furthermore, we applied tomography for beams with dif-
ferent, more complex, particle distributions. In each case,
tomography reconstructs the beam phase space with equal
accuracy; this indicates that the technique makes no as-
sumption about the initial distribution. Finally, preliminary
results of tomographic experiments performed on UMER
were presented.

TABLE III. Experimental beam parameters.

Beam energy 10 keV

 ( � v=c) 0.2
Beam current 0.6 mA
Generalized perveance 8:96� 10�6

Aperture radius 0.25 mm
Solenoid current 5.56 A
Quadrupole peak gradient 3:61 G=cm
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FIG. 11. Phase space tomography results along the UMER
injector line: (a) spatial distribution at the point where recovery
is done; (b) Y0Y tomographic recovery of the electron beam; (c)
X0X tomographic recovery of the electron beam.

TABLE IV. Beam envelopes along x and y calculated from
phase space and spatial distributions.

Distribution Spatial x-phase space y-phase space

X (mm) 3.07 3.04
Y (mm) 2.65 2.49
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