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A Vlasov equilibrium of the Kapchinskij-Vladimirskij form is obtained for a periodically twisted
ellipse-shaped charged-particle beam in a nonaxisymmetric periodic magnetic focusing field. The single-
particle Hamiltonian dynamics is analyzed self-consistently. A constant of motion analogous to the
Courant-Snyder invariant is found. The equilibrium distribution function is constructed. The statistical
properties of the beam equilibrium are studied. In the zero-temperature limit, the generalized envelope
equations derived from the kinetic equilibrium theory recover the generalized envelope equations obtained
in the cold-fluid equilibrium theory. Examples of periodically twisted elliptic beam equilibria are
presented, and potential applications are discussed. For ribbon-beam amplifier and ribbon-beam klystron
applications, the kinetic equilibrium theory predicts that the effect of beam temperature on the beam
envelopes is negligibly small.
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I. INTRODUCTION

A fundamental understanding of the kinetic equilibrium
and stability properties of high-intensity electron and ion
beams in periodic focusing fields is desirable in the design
and operation of particle accelerators [1–14], such as stor-
age rings and rf and induction linacs, as well as vacuum
electron devices, such as klystrons and traveling-wave
tubes with periodic permanent magnet (PPM) focusing.
There are two well-known equilibria for periodically
focused intense beams, including the Kapchinskij-
Vladmirskij (KV) equilibrium [7–9] in an alternating-
gradient quadrupole magnetic focusing field and the peri-
odically focused rigid-rotor Vlasov equilibrium [10,11] in
a periodic solenoid magnetic focusing field. In general, for
linear focusing forces, self-consistent beam distributions
can be formally constructed using a matrix formulation
[12,13].

It was shown formally in Ref. [12] that self-consistent
beam distributions can be obtained that allow elliptical
space-charge beams of arbitrary aspect ratio and with
arbitrary rotation angle of the ellipse as long as the field
is linear. However, obtaining concrete equilibria with non-
upright ellipses is nontrivial. The previous explicitly
known Vlasov equilibria of KV form [7,9–11] for high-
intensity, space-charge-dominated charged-particle beams
propagating in the alternating-gradient quadrupole mag-
netic focusing field and the periodic solenoid magnetic
focusing field charged-particle beams are circular on aver-
age; that is, the averages of the beam envelopes in different
transverse directions over one period are the same.

There is considerable interest in the research and devel-
opment of high-intensity charged-particle beams with a
large aspect ratio transverse to the direction of propagation.
First, large-aspect-ratio elliptic beams (or ribbon beams)
can transport larger amounts of beam currents at reduced

intrinsic space-charge forces and energies. Second, they
couple efficiently to planar or rectangular rf structures. The
combination of the space-charge reduction and efficient
coupling allows efficient rf generation in vacuum elec-
tronic devices, and efficient acceleration in particle accel-
erators. Third, elliptic beams provide an additional
adjustable parameter (e.g., the aspect ratio) which may
be useful for better matching a beam into a periodic
focusing channel [14].

One important application of ribbon beams is in the
development of advanced radiation devices such as
ribbon-beam amplifiers (RBAs) and ribbon-beam klystrons
(RBKs), which have advantages over the corresponding
conventional (circular-beam) devices in terms of efficiency
and operational parameters. Other applications include the
development of advanced accelerators capable of generat-
ing nonconventional beams, e.g., a planar radio-frequency
(rf) linac producing ribbonlike bunches of charged
particles.

Although sheet beams have been discussed in the litera-
ture for four decades, the Vlasov equilibrium of a high-
intensity, space-charge-dominated beam with a large-as-
pect-ratio elliptic cross section has not been discovered
until this paper. Sturrock [15] first suggested use of a
periodic magnetic focusing consisting of an array of
planar-wiggler magnets for rectilinear beams. Zhang et
al. [16] had some modest success in the experimental
demonstration of the transport of a low-intensity (10 A,
500 kV) sheet beam in a planar-wiggler magnetic field, and
observed considerable beam loss. Researchers made use of
the multiple-time-scale analysis and the paraxial approx-
imations to obtain the smooth-beam approximation of
high-intensity sheet beam equilibria [17,18]. Recently,
Russell et al. demonstrated the transformation of a circular
beam into a sheet beam using asymmetric lenses [19]. The
authors discovered a cold-fluid equilibrium for a high-
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intensity periodically twisted elliptic beam in a nonasym-
metric periodic magnetic focusing field [6].

In this paper, it is shown that there exists a Vlasov
equilibrium for a periodically twisted large-aspect-ratio
intense charged-particle beam with uniform density in
the transverse plane propagating through a nonaxisymmet-
ric periodic magnetic focusing field. The single-particle
Hamiltonian of such a periodically twisted large-aspect-
ratio elliptic beam is investigated. The constant of motion
analogous to the Courant-Snyder invariant [20] is found.
The equilibrium beam distribution is constructed. The
beam envelope equations and flow velocity equations are
derived. In the zero-temperature limit, they are consistent
with the generalized envelope equations derived from cold-
fluid equilibrium theory [6]. Statistical properties and pos-
sible applications of the present beam equilibrium are
discussed.

II. VLASOV EQUILIBRIUM THEORY

We consider an ellipse-shaped, continuous, intense
charged-particle beam propagating with constant axial
velocity �bcez through an applied nonaxisymmetric peri-
odic magnetic focusing field. The applied nonaxisymmet-
ric periodic magnetic focusing field inside the thin beam
can be approximated by
 

Bext � �B0 sin�k0s�ez � B0 cos�k0s�
�
k2

0x

k0
xex �

k2
0y

k0
yey

�
;

(1)

where s � z is the axial coordinate, k0 � 2�=S, k2
0x �

k2
0y � k2

0, and S is the axial periodicity length. The 3D
magnetic field in Eq. (4) is fully specified by the three
parameters B0, S, and k0x=k0y. The associated magnetic
vector potential can be expressed as

 A ext � �B0 sin�k0s�
�
�
k2

0y

k2
0

yex �
k2

0x

k2
0

xey

�
: (2)

To determine the self-electric and self-magnetic fields of
the beam self-consistently in the present paraxial approxi-
mation, we assume that the density profile of the beam is
uniform inside the beam boundary, i.e.,

 nb�x; y� �
Nb

�a�s�b�s�
�
�
1�

~x2

a2�s�
�

~y2

b2�s�

�
: (3)

In Eq. (3), ~x � x cos���s�� � y sin���s�� and ~y �
�x sin���s�� � y cos���s�� represent the twisted coordinate
as illustrated in Fig. 1; ��s� is the twist angle of the ellipse;
��x� � 1 if x > 0 and ��x� � 0 if x < 0. The density of
the elliptic beam with semimajor axis a�s� � a�s� S�
and semiminor axis b�s� � b�s� S� is uniform in the
beam interior (~x2=a2 � ~y2=b2 	 1). The semimajor
and semiminor axes have the same periodicity as the

applied magnetic field with S � 2�=k0. Nb �
2�

R
1 dxdynb�x; y; s� � const is the number of particles

per unit axial length. In the paraxial approximation, the
Budker parameter of the beam is assumed to be small, i.e.,
q2Nb=mc2 
 �b, and the transverse kinetic energy of a
beam particle is assumed to be small compared with its
axial kinetic energy. Here, c is the speed of light in vacuo,
�b � �1� �2

b�
�1=2 is the relativistic mass factor, and q and

m are the particle charge and rest mass, respectively.
From the equilibrium Maxwell equations, we find that

the self-electric and self-magnetic fields, Es and Bs, are
given by

 E s�~x; ~y; s� �
2qNb

a�s� � b�s�

�
~x
a�s�

e~x �
~y
b�s�

e~y

�
; (4)

 ��1
b Bs�~x; ~y; s� �

2qNb
a�s� � b�s�

�
�

~y
b�s�

e~x �
~x
a�s�

e~y

�
; (5)

in the beam interior (~x2=a2 � ~y2=b2 	 1). It is convenient
to express the self-fields in terms of the scalar and vector
potentials defined for ~x2=a2 � ~y2=b2 	 1 by

 �s�~x; ~y; s� � ��1
b Asz�~x; ~y; s�

� �
2qNb

a�s� � b�s�

�
~x2

a�s�
�

~y2

b�s�

�
; (6)

where As�~x; ~y; s� � Asz�~x; ~y; s�ez, Es�~x; ~y; s� �
��e~x@=@~x� e~y@=@~y��s, and Bs � ��e~y@=@~x�
e~x@=@~y�Asz.

In the paraxial approximation, the transverse motion for
an individual particle in the combined self-fields and ap-
plied magnetic field is described by the normalized per-
pendicular Hamiltonian Ĥ? � H?=�b�bmc2,

FIG. 1. Laboratory and twisted coordinate systems.
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Ĥ?�x; y; Px; Py; s� �
1

2

��
Px �

�����������
�z�s�

q k2
0y

k2
0

y
�

2

�

�
Py �

�����������
�z�s�

q k2
0x

k2
0

x
�

2
�

�
K

a� b

�
~x2

a
�

~y2

b

�
: (7)

where �x; Px� and �y; Py� are canonical conjugate pairs,�����������
�z�s�

p
� qBz�s�=2�b�bmc2, K � 2q2Nb=�3

b�
2
bmc

2 is
the self-field perveance, and the normalized transverse
canonical momentum P? � �Px; Py� is related to the trans-
verse mechanical momentum p? by P? � ��b�bmc��1�

�p? � qAext
? =c�.

It is convenient to transform the Hamiltonian in the
Cartesian canonical coordinate �x; y; Px; Py� to a new ca-
nonical coordinate �x1; y1; Px1; Py1�, so that the new
Hamiltonian assumes a simpler form from which the in-
variants of motion are easily identified. The transformation
of the Hamiltonian from the Cartesian canonical coordi-

nate �x; y; Px; Py� to the canonical coordinate
�x1; y1; Px1; Py1� involves two steps.

We first transform the Cartesian canonical coordinate
�x; y; Px; Py� to a twisted canonical coordinate �~x; ~y; ~Px; ~Py�
using the generating function

 F2�x; y; ~Px; ~Py; s� � ~Px�x cos��s� � y sin��s��

� ~Py��x sin��s� � y cos��s��: (8)

It follows from Eq. (8) that

 

Px � ~Px cos��s� � ~Py sin��s�; (9a)

Py � ~Px sin��s� � ~Py cos��s�; (9b)

~x � x cos��s� � y sin��s�; (9c)

~y � �x sin��s� � y cos��s�: (9d)

The Hamiltonian in the twisted canonical coordinate is
then expressed as

 

~H?�~x; ~y; ~Px; ~Py; s� � Ĥ?�x; y; Px; Py; s� � @F2=@s

�
1

2

�
~Px cos��s� � ~Py sin��s� �

�����������
�z�s�

q k2
0y

k2
0

~x sin��s� �
�����������
�z�s�

q k2
0y

k2
0

~y cos��s�
�

2

�
1

2

�
~Px sin��s� � ~Py cos��s� �

�����������
�z�s�

q k2
0x

k2
0

~x cos��s� �
�����������
�z�s�

q k2
0x

k2
0

~y sin��s�
�

2

�
K

a� b

�
~x2

a
�

~y2

b

�
� � ~Px~y� ~Py~x�

d��s�
ds

: (10)

The equations of motion associated with the Hamiltonian in Eq. (10) are

 

~x0 �
@ ~H?
@ ~Px

� ~Px � C�s�~x� ��0�s� � �x�s��~y; (11a)

~y0 �
@ ~H?
@ ~Py

� ~Py � C�s�~y� ��0�s� � �y�s��~x; (11b)

~P0x � �
@ ~H?
@~x
� �

�
�z�s�

k4
0xcos2���s�� � k4

0ysin2���s��

k4
0

�
2K

a�s��a�s� � b�s��

�
~x� C�s� ~Px � ��

0�s� � �y�s�� ~Py

� �z�s�
�k4

0y � k
4
0x

k4
0

�
sin�2��s��

2
~y; (11c)

~P0y � �
@ ~H?
@~y
� �

�
�z�s�

k4
0xsin2���s�� � k4

0ycos2���s��

k4
0

�
2K

b�s��a�s� � b�s��

�
~y� C�s� ~Py � ��

0�s� � �x�s�� ~Px

� �z�s�
�k4

0y � k
4
0x

k4
0

�
sin�2��s��

2
~x; (11d)

where prime denotes derivative with respect to s,

 C�s� �
�����������
�z�s�

q k2
0y � k

2
0x

2k2
0

sin�2��s��; (12)
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 �x�s� � �
�����������
�z�s�

q �
k2

0x

k2
0

sin2���s�� �
k2

0y

k2
0

cos2���s��
�
; (13)

and

 �y�s� � �
�����������
�z�s�

q �
k2

0x

k2
0

cos2���s�� �
k2

0y

k2
0

sin2���s��
�
: (14)

The functions �x and �y are related to the variables �x and
�y in the cold-fluid equilibrium theory [6]. Indeed, by
adding Eqs. (10) and (11) and subtracting Eq. (10) from
Eq. (11) in [6], and carrying out the integrations on result-
ing equations with the initial condition �x�0� � �y�0� �
0, it is readily shown that the functions �x and �y in
Eqs. (13) and (14) correspond to a particular solution to
Eqs. (10) and (11) in [6].

As a second step, we apply another transformation from
the twisted canonical variables �~x; ~y; ~Px; ~Py� to the canoni-
cal variables �x1; y1; Px1; Py1� using the generating function
 

~F2�~x; ~y;Px1; Py1; s� �
1

2

�
w0x�s�
wx�s�

� C�s�
�

~x2

�
1

2

�w0y�s�
wy�s�

� C�s�
�

~y2

�
~xPx1

wx�s�
�

~yPy1

wy�s�
; (15)

where wx�s� � wx�s� S� and wy�s� � wy�s� S� are pe-
riodic functions solving the differential equations

 

w00x �s�
wx�s�

� C0�s� � C2�s� � �y �
2K

a�s��a�s� � b�s��

�
1

w4
x�s�

; (16)

 

w00y �s�

wy�s�
� C0�s� � C2�s� � �x �

2K
b�s��a�s� � b�s��

�
1

w4
y�s�

: (17)

It follows from Eq. (15) that
 

~Px �
�
w0x�s�
wx�s�

� C�s�
�

~x�
Px1

wx�s�
; (18a)

~Py �
�w0y�s�
wy�s�

� C�s�
�

~y�
Py1

wy�s�
; (18b)

x1 �
~x

wx�s�
; (18c)

y1 �
~y

wy�s�
: (18d)

The Hamiltonian in the canonical coordinate
�x1; y1; Px1; Py1� is then expressed as

 

H1?�x1; y1; Px1; Py1; s� � ~H?�~x; ~y; ~Px; ~Py; s� �
@ ~F2

@s

�
1

2

�
P2
x1

w2
x�s�
�

P2
y1

w2
y�s�
�

x2
1

w2
x�s�

�
y2

1

w2
y�s�

�

�
d’�s�
ds
�y1Px1 � x1Py1�; (19)

where we have introduced and demanded

 

d’�s�
ds

�
wy�s�

wx�s�

�
d��s�
ds
� �x

�
�
wx�s�
wy�s�

�
d��s�
ds
� �y

�
:

(20)

Following Eq. (20), it can be shown that the twisted angle
��s� has to satisfy the differential equation

 

d��s�
ds

�
w2
x�s��y�s� � w

2
y�s��x�s�

w2
x�s� � w2

y�s�
: (21)

The motion described by the simplified Hamiltonian in the
new canonical coordinate �x1; y1; Px1; Py1� in Eq. (19) is
described by the equations
 

x01 �
@H1?

@Px1
�

Px1

w2
x�s�
�
d’�s�
ds

y1; (22a)

y01 �
@H1?

@Py1
�

Py1

w2
y�s�
�
d’�s�
ds

x1; (22b)

P0x1 � �
@H1?

@x1
� �

x1

w2
x�s�
�
d’�s�
ds

Py1; (22c)

P0y1 � �
@H1?

@y1
� �

y1

w2
y�s�
�
d’�s�
ds

Px1: (22d)

From Eq. (22), it is readily shown that

 E � x2
1 � y

2
1 � P

2
x1 � P

2
y1 (23)

is an exact single-particle constant of the motion for the
Hamiltonian in Eq. (19).

We consider the following trial choice of the Vlasov
equilibrium distribution function:
 

fb�x1; y1;Px1;Py1; s� �
Nb
�2"T

��x2
1� y

2
1�P

2
x1�P

2
y1� "T�;

(24)

where dfb=ds � 0, "T � const> 0 is an effective emit-
tance, and ��x� is the Dirac � function. As will be shown in
Sec. III, the density profile of the beam described by the
distribution function fb is consistent with the uniform-
density profile within an ellipse, which is the key require-
ment for the quantity E � x2

1 � y
2
1 � P

2
x1 � P

2
y1 to be a

constant of motion. Therefore, the distribution function
defined in Eq. (24) is indeed a Vlasov equilibrium, i.e.,
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@fb
@s
� 0: (25)

III. STATISTICAL PROPERTIES

The distribution function described in Eq. (24) has the
following statistical properties. First, the distribution is
consistent with the assumed density profile in Eq. (3), i.e.,

 nb�~x; ~y; s� �
1

wxwy

ZZ
fdPx1dPy1

�

�
Nb=��"Twxwy�; if x2

1="T � y
2
1="T 	 1;

0; otherwise:

(26)

The beam has the uniform-density profile given in Eq. (3),
provided that a �

������
"T
p

wx and b �
������
"T
p

wx are satisfied.
Under these self-consistent conditions, Eqs. (16), (17), and
(21) can be expressed as
 

d2a

ds2 �

�b2��2
x� 2�x�y��a2�2

y

a2�b2

�
�������
�z0
p k2

0x� k
2
0y

k0
cos�k0s� sin�2��� 2

�������
�z0
p

�y sin�k0s�
�
a

�
2K
a�b

�
"2
T

a3 ; (27)

 

d2b

ds2 �

�a2��2
y� 2�x�y��b2�2

x

a2�b2

�
�������
�z0
p k2

0x� k
2
0y

k0
cos�k0s� sin�2��� 2

�������
�z0
p

�x sin�k0s�
�
b

�
2K
a�b

�
"2
T

b3 ; (28)

 

d�
ds
�
a2�y � b

2�x
a2 � b2 : (29)

Equations (27)–(29) are written in a form similar to the
generalized envelope equations in the cold-fluid equilib-
rium theory [6]. They are identical to the generalized
envelope equations of a�s�, b�s�, and ��s� in the cold-fluid
equilibrium theory, except that the emittance terms appear-
ing on the right-hand side of Eqs. (27) and (28) are zero in
the cold-fluid equilibrium theory. Therefore, they are more
general than the cold-fluid equilibrium theory.

Second, in the normalized units, the average (macro-
scopic flow) transverse velocity of the beam equilibrium
described by Eq. (24) is given in the twisted coordinates by

 V ? �
�

Nb
�"Twxwy

�
�1 1

wxwy

Z
v?fdPx1dPy1

�

�
w0x
wx

~x� �x~y
�
e~x �

�w0y
wy

~y� �y~x
�

e~y: (30)

The flow velocity in Eq. (30) is identical to the flow
velocity derived by the cold-fluid equilibrium theory [6]
provided that the relations �x � a0=a � w0x=wx and �y �

b0=b � w0y=wy are satisfied.
As a third statistical property, the beam equilibrium

described by Eq. (24) has the effective transverse tempera-
ture profile (in dimensional units)
 

T?�~x; ~y;s� �
�

Nb
�"Twxwy

�
�1m�b

2

Z
�v? �V?�2fdPx1dPy1

�
mc2�b�

2
b"

2
T

2

�
1

a2�
1

b2

��
1�

~x2

a2�
~y2

b2

�
: (31)

As the fourth property, the rms emittances of the beam in
the ~x and the ~y directions are
 

"th~x �
1

�cc

����������������������������������
h~x2ih�v~x � V~x�

2i
q

�
"T
4
; (32a)

"th~y �
1

�cc

����������������������������������
h~y2ih�v~y � V~y�

2i
q

�
"T
4
: (32b)

Finally, the Vlasov elliptic beam equilibrium has two
limiting cases which are well known. It recovers the famil-
iar periodic (circular) rigid-rotor Vlasov equilibrium [10]
by setting the major-axis equal to the minor axis of the
beam ellipse. It also recovers the familiar constant-radius,
uniform-density rigid-rotor Valsov equilibrium [9] by tak-
ing the limit of a uniform magnetic field with Bz � B �
const.

IV. EXAMPLES

We illustrate examples of periodically twisted Vlasov
elliptic beam equilibria in a periodic nonaxisymmetric
magnetic focusing field and the temperature effects with
numerical calculations. A numerical module in the PFB2D
code [6,21] has been developed to solve the generalized
envelope equations (13), (14), and (27)–(29), which deter-
mines the rotational flow velocity, the outer equilibrium
major axis a�s� and minor axis b�s� of the beam ellipse, and
the twisted angle ��s�.

In particular, we consider a nonrelativistic elliptic beam
with voltage Vb � 2:29 keV, current Ib � 0:11 A, aspect
ratio a=b � 6, and nonaxisymmetric periodic permanent
magnet focusing with B0 � 337:5 G, S � 1:912 cm, and
k0y=k0x � 1:6, which is corresponding to a beam design for
a high-efficiency 200 W RBA under development at
Massachusetts Institute of Technology (MIT) and beam
power technology for wireless communication. For such
a system the matched solution of the generalized envelope
equations (13), (14), and (27)–(29) is calculated numeri-
cally as shown in Figs. 2 and 3 for several maximum (on-
axis) temperature choices and fixed parameters: k0x �
1:90 cm�1, k0y � 3:03 cm�1,

�������
�z0
p

� 1:04 cm�1, and
K � 1:52� 10�2. The solutions to the generalized enve-
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lope equations (13), (14), and (27)–(29), displayed as solid
and dotted curves in Figs. 2 and 3, show that the semiaxes
of the elliptical beam remain almost constant with small-
amplitude oscillations, that the orientation of the ellipse
twists periodically with an amplitude of ten degrees.

The solid lines in Figs. 2 and 3 represent the beam
envelopes and twisted angle with zero temperature which
is corresponding to a cold beam, while the dotted curves
represent the beam envelopes and twisted angles with 1 eV
on-axis temperature in Fig. 2 and 10 eV on-axis tempera-
ture in Fig. 3, respectively. The aspect ratio of the beam
reduces from 6 to 4 as the on-axis temperature of the beam
increases from 0 to 10 eV, i.e., the elliptic beam becomes
more circular. However, the twisted angle is almost un-
changed as the on-axis temperature increases from 0 to
10 eV. For the elliptic beam designed for the 200 W ribbon-
beam amplifier, the temperature of the beam is estimated to

be 0.1 eV from simulations [22,23]. In such a case, the
temperature effect is negligible.

To further illustrate the effects of beam temperature, we
consider a relativistic elliptic beam with Vb � 198:5 keV,
current Ib � 85:5 A, aspect ratio a=b � 5, and nonaxi-
symmetric periodic permanent magnet focusing with B0 �
2:4 kG, S � 2:2 cm, and k0y=k0x � 1:52. [Such a relativ-
istic elliptic beam could be used in a 10 MW L-band RBK
for the International Linear Collider (ILC).] For such a
system the matched solution of the generalized envelope
equations (13), (14), and (27)–(29) is calculated numeri-
cally with the corresponding parameters: k0x �
1:57 cm�1,

�������
�z0
p

� 0:732 cm�1, and K � 1:13� 10�2.
As shown in Fig. 4, the solid lines represent the beam
semiaxis envelopes and twist angle with zero temperature
which is corresponding to a cold beam, while the dotted

FIG. 2. Plots of (a) envelopes a�s� and b�s� and (b) twist angle
��s� versus the axial distance s for the nonrelativistic twisted
elliptic beam. The solid curves are the generalized envelope
solution for a zero-temperature beam, whereas the dotted curves
are for a 1 eV on-axis temperature beam.
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FIG. 3. Plots of (a) envelopes a�s� and b�s� and (b) twist angle
��s� versus the axial distance s for the nonrelativistic twisted
elliptic beam. The solid curves are the generalized envelope
solution for a zero-temperature beam, whereas the dotted curves
are for a 10 eV on-axis temperature beam.
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curves represent the beam envelopes and twist angle with
2.5 keV on-axis temperature. It is evident in Fig. 4 that the
temperature effects on the beam envelopes and twist angle
are negligibly small. Since an actual relativistic elliptic
beam in a well designed system will have a temperature
which will be considerably less than 2.5 keV, the results in
Fig. 4 imply that the temperature effect on the beam
envelopes and twist angle is expected to be negligibly
small.

V. CONCLUSIONS

The single-particle Hamiltonian of a periodically
twisted large-aspect-ratio elliptic beam in a nonaxisym-
metric periodic magnetic focusing field has been investi-
gated. A constant of motion analogous to the Courant-
Snyder invariant has been found such that the self-

consistent beam equilibrium can be constructed as a func-
tion of the constant of motion. The beam envelope equa-
tions and flow velocity equations have been derived. They
are consistent with the generalized envelope equations
derived from the cold-fluid equilibrium theory [6] when
the temperature is taken to be zero. Statistical properties of
the present Vlasov elliptic beam equilibrium have been
studied. For current applications of interest, namely, the
RBA and RBK, the temperature effects have been found to
be negligibly small on periodically twisted large-aspect-
ratio elliptic beams.
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