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The development of modern accelerator and free-electron laser projects often requires one to consider
wakefields of very short bunches in arbitrary three-dimensional structures. To obtain the wake numerically
by direct integration of fields is difficult, since it can take a long time for fields scattered off the structure
to catch up to the short bunch. On the other hand, no general algorithm for indirect wakefield integration
exists in the literature. In this report we review the known indirect methods to compute wake potentials in
rotationally symmetric and cavitylike three-dimensional structures. We present several extensions to the
existing techniques and then derive a new general indirect method for arbitrary three-dimensional
structures. Finally, the new method is numerically tested and applied to the problem of a rectangular

collimator.
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L. INTRODUCTION

The calculation of impedances for various accelerator
elements is an important part of the modern accelerator
design [1,2]. State-of-the-art electrodynamic computer co-
des allow direct time-domain calculations of short-range
wake potentials for the complicated geometries of real
components. However, for short bunches, a long-time
propagation of the electromagnetic field in the outgoing
vacuum chamber is required to take into account the scat-
tered fields which will reach the bunch at later times. To
drastically reduce the computational time and avoid nu-
merical error accumulation, several indirect integration
algorithms were developed for rotationally symmetric ge-
ometries [3-7].

In Sec. IT A of this paper it is shown that contrary to the
statement of [7] the Napoly-Chin-Zotter (NCZ) method
can be applied for the case of unequal beam tube radii.
In Sec. II B we derive a modification of the NCZ method
which is extended later, in Sec. III B, to three dimensions.
Section IIT A reviews the only known three-dimensional
indirect integration algorithm for cavitylike structures [8].
Finally, after generalization in Sec. IIIC of Heifets’s
method [9] on the situation required to calculate the trans-
verse wake potential, we introduce in Sec. IIID a new
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general algorithm for a treatment of arbitrary three-
dimensional structures. Several numerical examples are
presented to illustrate the accuracy and efficiency of the
new method in Sec. IV. The new integration algorithm is
numerically tested and applied to the problem of a rectan-
gular collimator.

Finite difference numerical methods to solve the prob-
lem shown in Fig. 1 were developed in [3,4,8,10—-17]. The
rigid beam picture adopted in these methods is not self-
consistent, but is an excellent approximation for relativistic
beams as far as the calculation of wakefields is concerned
[1]. The longitudinal and the transverse wake potentials are
defined as [2]

F=(xy)
ey

WG9 = 5 [ EL 5 G ol

W (7s) = é /:(El + 3 X B[P 21z, 9)ldz, ()

where Q is the total charge of the bunch, s is the distance
behind the given origin z, = ct in the exciting bunch, and
1z, 5) = (z + 5)/c.
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Charged particle bunch moving through an accelerating structure supplied with infinite pipes.
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The purpose of this paper is to show how to replace the
improper integrals in (1) and (2) by proper integrals. This is
essential for computer calculations, in particular, for short
bunches, where long beam tubes would require both ex-
cessive computer memory and CPU time, and tend to lead
to numerical errors.

In the following, only integral (1) will be considered as
the transverse potential can be derived from the longitudi-
nal one by applying the Panofsky-Wenzel theorem [18]

Jd = .
P Wi (7 s) =V W7 s). 3)

I1. INDIRECT METHODS FOR AXISYMMETRIC
STRUCTURES

For rotationally symmetric structures, an azimuthal
Fourier expansion can be used to reduce the problem to a
set of two-dimensional problems. For cavitylike structures
the integration of the wakefields can be performed along a
straight line parallel to the axis at the outgoing beam tube
radius as was suggested by Weiland in [4] and realized in
codes BCI [11], TBCI [12], and MAFIA [14]. However, this
technique only works if no part of the structure extends to
radii smaller than the radius of the outgoing tube. It has
been realized subsequently [5,6] that the potential can be
calculated by integrating the wake along the perfectly
conducting boundary of a structure. Finally, Napoly et al.
[7] have generalized the results above by showing that the
wake potentials, at all azimuthal harmonics m, can be
expressed as integrals over the wakefields along any arbi-
trary contour which spans the structure longitudinally. This
general method was implemented and tested in the code
ABCI [13]. A modified version of this method was intro-
duced in [15] and implemented in the code ECHO. An
alternative approach based on waveguide mode expansion
was introduced in [3] and realized in the code DBCI. In the
following, we first review the simplest and most general
method of Napoly et al. and then describe its modified
version used later for the 3D case.

A. Napoly-Chin-Zotter method for arbitrary rotational
symmetric structures with unequal beam tubes radii

In this paper we consider only structures having per-
fectly conducting ingoing and outgoing waveguides. The
steady-state field pattern of a bunch in an ingoing perfectly
conducting waveguide does not contribute to the wake
potential. Hence, the improper integral for the ingoing
waveguide reduces to a proper integral along a finite part
of the integration path and, as will be described below, the
NCZ method is applicable for the case where the ingoing
and outgoing tubes have unequal radii (see Fig. 2).

For a bunch moving at speed of light ¢ at an offset r
from and parallel to the axis of a rotationally symmetric
structure, the source current ; can be presented as [1]

COAz/c —1)8(r — ry) < cosmg
Tr m=01 + 6m0’

j =

]m Als)ds =1,

— 00

where 8,0 =1 if m=0, 0 if m # 0, and A(s) is the
normalized longitudinal charge distribution, Q is the bunch
charge, & is the Dirac delta function.

The scattered electromagnetic field in cylindrical coor-
dinates (r, 6, z) can be written as

(ES, By, EX)r, 6,z t(z, 5)] = Z (e, by, €)™ (r, 7, 5)

m=0

X cos(m@)

(B, Ef, BO)r, 0,2,1(z, )] = D (b, ey, b.)"(r, z, 5)

m=0

X sin(m®). @)

Substituting expansion (4) in Maxwell’s equations and
combining them yields [7] at each order m

3,(r"[e, + cb,]™) = r"d_ [e, + cby — ey + cb,]™,
a,(r "le, — cbz](’")) =r "9 [e, + cby + ey — cb, ™,

where d,, 9, are partial derivatives.

S ,

|

I

C 1Cs

|

C C |

L(r) < P —————————— . S ot
7o Cs lC4 -
" >

Z:ZO C5 Z = o0 Z

FIG. 2. Contours for the indirect integration.
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That means that the 1-forms
wgm> = r"[e, + cby — ey + cb,]"dr + rle, + cbz](m)dz,
" =r e, + chy + ey — cb, ™ dr

+r e, —cb ]™dz (5)

are closed.
Recalling that the condition for 1-form w = f(r, z)dr +
g(r, z)dz to be closed is

do = (9,8 — 9.f)dr Adz =0,

it follows from Stokes’s theorem (symbol 9{) means the
boundary of domain (})

f w=fda),
a0 QO

that an integral of the closed form along a closed contour
vanishes. This property allows us to deform the wakefield
integration path and replace the infinite integration contour
with a finite one. In the following the situation shown in
Fig. 2 will be considered.

The longitudinal wake potential at mode m is defined as

1 00
Wi (r, ) = ~ 0 f e"(r, 2, 5)dz,

ud 2 ud

- (wp +a "wg) = 5
Ci3

m

_To

2a™

r a

ro

and the wake potential can be found as

and, for the general situation shown in Fig. 2, we can write

[7]
= - fw eMdz = —[ eMdz
—o0 L(ry)

m
_o

(w(m) + a—me(M))’
2 ./L("o) b §

L(rg) = C_; UC,,

(m)
ow,

where a denotes the pipe radius and other symbols are
defined in Fig. 2. Simplifying the notation and omitting the
azimuthal number, this gives

m

7
oW ==L | (wp+a M wy)
2 L(ro)
rgl —2m
= 2 . (wp +a wy)
-1
Fm
+—0 c ((A)D+a72m(l)s),
13

3
C13 = U Ci‘
i=1

For a perfectly conducting outgoing pipe the last integral
becomes

rm
wp+a Meg) + —2 w
,/Cl( D S) 2a2m /C3 S

faKg + r—Z)[er + cby] + (i—: — ;—:)[ee — cb,]}dr + QFm(s)

o 2 }cbz>d2

[a{(am + r—m>[e, + cby] + <a—m - %)[eg - cb,]}dr + Fim(s),
Yo a Mmoa

B. Modification of the NCZ method

In this paragraph we introduce a modification of the
NCZ method. The main feature of the modified method
is that (as in the direct method) we integrate only the

Y S O e P 7 B
I 20a™ Je \[la™ z am o
'
2Q0a™ r
where
AG) (e -
Fm(s) = 27eg 1112(r0), m =0,
A (3 =), m>o0

Following the NCZ method we have thus managed to
replace the improper integration along the contour C, by
the proper integral along the finite contour C;.

egm)(r, z, 5) component of the scattered electromagnetic
field along a straight line C_, at radius r,, and use other
field components only at the end of the structure. This
property of the method allows us to apply it for 3D calcu-
lations as described in Sec. III B.

For the general situation shown in Fig. 2 we can write
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QWl(lm) = —f ez = —f eMdz = —f e dz —[ e dz,
—o0 L(ro) 1 Co

m 1 m o —m )y, B (m)) _ 1 ( f mo M) o —m )y _ B
- e; dz = —= rgwp +ry"wg’) +— 0] == rowp’ T rg"wg’) — —
fCO z 2 ([Co( 0D 0 S ) am Cis S 2 C13( 0D 0 N ) am

() el

L(ro) = C—l U Co,

w(sm))
Cis

o o

For a perfectly conducting geometry this last equation reduces to

(m) ;. _ 1 f ( m . (m) —m , (m) B (m)> _ B f (m):|
e dZ = = Iy @ - T, w —w - w R
/ ) z 2 |: 1 0D 0 S n S M , N

and the wake potential can be found as

QWl(lm) = — f egm)dz + £ fa r"[e, + cby — ey + cb,"™dr
c_, 2a™ Jo

2 r

o

Again we have managed to replace the improper inte-
gration along the contour C by proper integrals along the
finite contours Cj, Cg.

III. INDIRECT METHODS FOR 3D STRUCTURES

In the previous chapter a general solution for rotationally
symmetric geometries was described. However, the NCZ
method does not generalize easily to three dimensions and
so we look here for alternative techniques. In Sec. III B we
generalize the NCZ method to the case of general 3D
structures with outgoing round pipe. In Sec. III C we ex-
tend Heifets’s method [9] to the situation required to
calculate the transverse wake potential. Finally, in
Sec. IIID we introduce a new general algorithm for a
treatment of arbitrary three-dimensional structures.

A. Method for cavitylike structures or structures with
small outgoing waveguide

In a similar manner to the rotationally symmetric case,
the integration through a waveguide gap results in a simple
and efficient algorithm [8].

As shown in [8], the longitudinal wake potential is a
harmonic function of the transverse coordinates

1 a m —m m —m
_1 f {(’9” + %)[er + cby]™ + (:% - :‘1—,”>[e,, - cbr](m)‘ldr. ©6)

AL Wy(# s) =0, F=(xy) € Ot (7)

where Q. is the transverse area defined by the intersec-
tion of all transverse cross sections (see, for example,
Fig. 3) and A is the two-dimensional Laplace operator.
Hence, for cavitylike structures the relation QL = QL
holds and we perform the integration at the transverse
position of the outgoing waveguide boundary 9€Q2L,. The
longitudinal wake potential for any position inside the
waveguide is then obtained as a solution of Laplace’s
equation (7) with the Dirichlet boundary condition

Wy (7 s) = Wﬁirea(?, s), F=(x,y) € 00&,.
However, this method does not work if the area Q- is
smaller than the outgoing waveguide intersection Q%,. In
the following, we suggest methods which are appropriate
for just such a situation.

B. Method for general 3D structures with outgoing
round pipe

In this paragraph we consider the situation where an
arbitrary three-dimensional structure is supplied with a
round outgoing pipe. In this case we can easily generalize
the method of Sec. II B as follows.

FIG. 3.

Round to rectangular transition and the maximal area for wake potential calculation.

102002-4



INDIRECT METHODS FOR WAKE POTENTIAL INTEGRATION

Phys. Rev. ST Accel. Beams 9, 102002 (2006)

FIG. 4. The tapered cavity and area Q- X I around the bunch.

Let us suggest that we are interested in the wake poten-
tial in area 0 X I around the bunch as shown in Fig. 4.
As in the rotationally symmetric case, let us take the
integration path L(7,) as the union of the path C_, ()
through the 3D structure up to the point z, and the path
Cy(Fy) completely inside of the outgoing round pipe:
L(7p) = C_1(7y) U Cy(7o), Fo € QL.

The wake potential can be written as

QW”(’—:O; S) = - f E;C[I_:O, Z, Z(Z, S)]dz
C-y (7o)
- f Eic[;o’ 2, l‘(Z, S)]dz, 70 (S QJ'.
Co(7o)
3)

Our purpose is to replace the second improper integral by
proper integrals. This can be achieved by straightforward
generalization of the method described in Sec. II B.
Indeed, after the bunch has arrived in the round pipe, we
can use an azimuthal Fourier expansion to reduce the 3D
problem to a set of 2D problems. However, in contrast to
the rotationally symmetric case of Sec. Il, the electromag-
netic field components are now complex quantities due to
the fields scattered before by the 3D structure.
Let us represent the scattered electromagnetic field F=
(E*, B) as
F(z r,0) = Re Z F,.(z, r)e=im?
m=0

= Re Z [FRe(z, 1) + iF™(z, r)]e~ ™,
m=0

> 2T , do
F,(zr)= 2[ F(z, 1, 0)e™ —,
0 2m

> 27 deé
Fo(z, r)Z[ F(z, 1, 0)—.
0 2

Then the equations for the azimuthal harmonics at each
number m separate into two independent sets, each of
which can be written in the form (we simplify the notation

and omit the azimuthal number)

;%(rbr) + %be + a%bz =0,
%%(re,) +¥€0 + aizeZ =0,
M d d
sz - a—zbo = %e,,
M d d
ST T T
d d d
02 Tl T gt
d d d
P T T
%aﬁ(reg) +—e, = %bz,
where M = m for eR, eR¢, pRe, pIm, pIm el and M = —m

for eim, elm, blem, bfe, bRe, elge .

Following the approach in Sec. II B, we can show that
the following relations hold:

1 B
Re(m) g — _ L )y mm ) P ()
[CO e; < 2|:jcl<r0 wp ryg " Wg s g )

L Bl Il SO

The second integral in relation (8) can be written as

f EX(Fo, z, 8)dz = Z [[ eRetm g, cos(mé,)
Co(7) Co

m=0

+ f ™ g, sin(mHo)}
Co
FO = (ro, 00) e QJ',

and substitution of Egs. (9) reduces this improper integral
along the z-axis to a sum of proper integrals along the
radius.

C. Method based on the directional symmetry
of wake potential

The methods introduced in the previous sections are not
completely general. The method of Sec. III A allows us to
treat only structures where the cross section of the outgoing
waveguide is covered by any other cross section along the
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structure. For example, if we are interested in the wake for
the transition from a round pipe to a rectangular one, as
shown in Fig. 3, then this method does not work. The
method of Sec. III B is not applicable directly either.

However, often we are able to apply one of the two
methods when the bunch direction of motion is reversed.
For example, the inverse transition from a rectangular to a
round pipe can be treated with the algorithm of Sec. III B.

In this section we describe a method which allows us to
calculate the wake potential for one direction from the
wake potential for the reversed one.

In [9], a directional symmetry of the impedance

(o) . o
Zyj(w, 7) = / W(r, De o7dr, 7= (xy)
— 00
was considered and the relation between the forward im-
pedance Z'(w,7,) and the “reversed” impedance
7™ (w, 7,) at the exciting charge position 7, was found:

2 > 5
Z(0,7) — Z* (@, 7) = —2Re< f EY X B da(P)
0 ol

RN N 1
Z Qwr%rﬂ-—Z+Umrprﬁ:=Zp
E+

ﬁ(71: 7’2, 7) =

In order to calculate the right-hand side, we note that at
infinity the field pattern of the charge can be found by
solving the two-dimensional Poisson equation:

Ap,(F) = Z,Q6(F — 7)), FeE{QL QL)
ei(7F) =0, FE{0Q4, 004,

i i=12,
where Z; is the impedance of free space.
To show this observe that electric fields at infinity can be
written as

12)

E (7, 7, 2) = e RET (7, 7) = e "RV, (),
E_(Fy F,2) = €®E (75, ) = eV, (7). (13
Substituting this representation into Maxwell’s equation,
VXVXE, =(0/c)Es — iou]™,
J*=1(0,0,J7),

yields Eq. (12). Additionally, from representations (13) and
Maxwell’s equation

V X Ei = _ia)ﬂﬁi,

(7, F) X H (F, F) — E~ (7, ) X H (74, P).

where Q- denotes the ingoing and %, is the outgoing
pipe cross section. However, in order to apply the
Panofsky-Wenzel theorem and find the transverse wake
potential, we need to know the longitudinal wake potential
not only at the position of the exciting point charge 7, but
in the vicinity of it.

In the following we generalize Eq. (10) in order to also
be able to calculate the transverse wake potential. Let us
consider a perfectly conducting structure traversed by two
point charges traveling parallel to the z-axis in opposite
directions and with offsets 7, and 7,, respectively. The
current densities in frequency domain are

JF (7 2) = Q8(F — F))e ik, k=w/c,
J7G.2) = Q8 - Pt

where Q is the charge.
From the Lorentz reciprocity theorem [19], we obtain

([, P o)~ [ Fee 7 )

out

(11

[

we obtain that at infinity the following relations hold:
. 1, S5 . 1. o
H™=—¢,XE", H =—-——¢,XE .
Zy Zy

Hence, Eq. (11) can be written as

Z (@, 72, 7)) — Z (@, F1, Fp) = 2Z°(Fy, 1),

! ( [%(wl, Ve, )du(P)

Ze(f”], ;’)2) = —Q220

- fm Ve, Vsoz)dﬂ(?))

out

and the forward and reverse wake potentials are related
according to

W= (s, Py, F1) — WF (s, F1, o) = 2W°(s, 7y, F),

We(s, ;’)1, ;2) = /S

wé(s — s )A(s")ds' = cZ¢(Fy, 72) Als),

0 I dw N
Wfs(s) = /1 Ze(rl"’z)el(m/c)sﬁz c8(s)Z¢(7, 7).

(14)
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Hence, in order to find the wake potential of the round to
rectangular transition we can calculate the wake potential
of the inverse transition with the method of Sec. III B. Then
we need to calculate fields (13) in both pipe cross sections.
This is a two-dimensional problem and can be solved either
analytically or numerically. Finally, we use Eq. (14) to
obtain the required wake potential. The numerical appli-
cation of this method for the calculation of the wakes can
be found in [20].

D. General method for arbitrary 3D geometries

In this section we present a new general method for
arbitrary 3D geometries. The method is derived through a
waveguide mode expansion and is sketched in Fig. 5. In the
following we will show how to replace the direct integra-
tion along infinite contour C, by a solution of mathemati-
cal problems in waveguide cross section g,.

The longitudinal component E, of the scattered electric
field in the outgoing waveguide can be written as a linear
combination of the z-components of the TM waveguide
modes [19],

EX(f,20) = > E,Mgz 0,  F=(xy) € Qg

n

15)

(e 1) = [ " an(@)el B0 de, (16)

where 3, is a propagation factor associated with mode
E, (7).

In the general case, we can again represent the wake
potential as sum of two integrals

oW, (7o, 5) = — / ExTFy, 2, 1z, 5)]dz
C_1(Fo,z0—5)

- f EX°[7o, z, 1(z, 5)]dz,
Co(Fo,z0—s

z+s
t(z, s) = ,
c

where z, is located inside of outgoing waveguide as shown
in Fig. 5.

FIG. 5.

The second integral can be written as

f E§°[70, z, 1(z, 5)]dz
Co(7p,20—5)

f ZEn(ro) foo an(w)ei[BnZ_a)(Z‘Fs)/c]dde’
Z —o0

078 n

a7)

where we have used Eq. (15). Changing the integration and
the summation we obtain

f E<[Fy, 2 1z, 5))dz
Co(Fo,20—5)

= ZEn(FO) ]oo an((u) foo ei[.BnZ_w(Z+S)/c]dZdw
n - —5

eilBu(zo=s)—w(zo/c)]

=—ZE(ro)f a,(w) B =9 dow.

Finally, we can write

) a( ) eilBa(z0=5)~w(z0/0)]
E, (7 w i dw
Z °f i(B, —2)

= ZEn(7o) foc a,(w)elPrlzo=s)=wl/dl; de

:8 2—2
-2

[ o, ()eBrlzo9)~0lz0/o)] i< B, + ﬁ>dw,
00 c
where k2 = (wc

ber for mode n [19].
From the last expression and Eq. (16), we obtain

foo EX[Fo, z, 1z, 5)]dz = ZE (7o) |:as + %}
=5, to), (18)

E ("0

~1)2 — B2 is a squared cutoff wave num-

X gn(ZO

where 1) = zpc¢™ " and

gn(29 — 8, 1) = fm E¥(x,y,20 — 5, t0) E,(x, y)dxdy.

19)

Equation (18) represents the main result of this paper. It
reduces the improper integral along the z-axis to the sum of

The rectangular collimator. Contour C_; for direct integration and cross section QL for indirect integration algorithm.
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proper integrals (19) in the transverse waveguide cross
section QL.

Let us now describe a numerical algorithm. As a first
step we should find the eigenmodes {E,(¥)} and the eigen-
values {k2} from the solution of the eigenvalue problem
[19]:

o ->
f E?(”o, 3,
0—S

AE,(7) = —kE,(7), F=(xy) €Qqe  (20)

Next we have to find coefficient functions (19) at two
instants of time: 7, — 0.5A¢ and ¢, + 0.5A¢. Finally, we
approximate Eq. (18) as

>d B ZEn(rO) [6s Caati|gn(zo > tO)

+ O(As?),

ZE A (7o) [g,,(zo s +0.5As, 1, + 0.5A7) —

where As = cAt.

Note, that problem (20) is a two-dimensional one and
can be solved by an eigenvalue solver for Laplace’s
equation.

The algorithm based on Eq. (18) has been implemented
in the three-dimensional version of the code ECHO [16] and
used for calculations presented in [21,22].

After submission of this paper, we have realized that the
sum in the right-hand side of Eq. (18) constitutes an
eigenmode expansion of the solution u of Poisson’s equa-
tion:

R a9 . R
Au(7, s) = _[a + E}Eic(h 20— S, fo), re Q(J)Im
u(@s)=0 FE INL,. 1)

Indeed, if we write

< E(roa d
_Z k%l |:£+ ati|gn(ZO SIO)

n

u(7, s)

and apply Laplace’s operator to this equation, we will
obtain Eq. (21). Hence, the longitudinal wake potential
can be written as

OW) (Fy. 5) = — [ E¥[Fy, 2 1(z, $)]dz — u(Fy, 5),
1(Fo,z0—5)

z+ s

t(z, 5) =

Above we derived an algorithm where the right-hand
side of Eq. (21) is required at the time #, but for different
positions z = zo — s along the structure. Alternatively, we
can derive another representation

OWio )=~ [ G t(a )z~ wiio.o)
C-1(Fo.20
s J J
Aw(F,s)=|— ES(Fzo,t =ty +s/c), FEQL,
az cot
w(# s)=0, FEINL, (22)

where the right-hand side of Eq. (22) is required at the
same position z,, but for different times ¢ = 1, + s/c.

8n(zo — 5 — 0.5As, 1 — 0.5A¢)
As :|

\
Equation (22) has been obtained with an alternative tech-
nique by Henke and Bruns [23].

IV. NUMERICAL EXAMPLES

In this section we present several numerical tests which
confirm the accuracy and high efficiency of the suggested
indirect methods for wake potential integration.

The wakes of the round-to-rectangular transition shown
in Fig. 3 are calculated by the methods of Secs. III B and III
C in Ref. [20]. Hence, we consider here only numerical
tests for the most general indirect method described in
Sec. III D.

As the first example, we consider the round stepped
collimator shown in Fig. 6 with dimensions a = 8 mm,
b =5 mm, and ¢ = 20 mm. The longitudinal wake poten-
tial for a Gaussian bunch moving along the axis with the
rms length o = 20 um is shown on the left-hand side of
Fig. 7. We compare the wake potentials calculated by the
direct method [see Eq. (1)] against the wake potential
calculated by the indirect method of Sec. II B. The wake
potentials are obtained by direct integration of the longi-
tudinal electric field component E, at the radius r =
2.5 mm along the z-axis for different distances between
0.25 and 4 m. This numerical check shows that the catch-up
distance is more than 4 m. The above numerical results are
obtained with the code ECHO in a rotationally symmetric
geometry [15]. In order to check the implementation of the
3D indirect method of Sec. III D, we have calculated the
same example with the 3D version of the code ECHO [17].

For 3D calculations we used the same longitudinal mesh
YA
'A\r
Ad— “7/4
‘

FIG. 6. The round stepped collimator.
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FIG. 7. Wake potentials for the round stepped collimator calculated with direct and indirect methods. Comparison of indirect wake
potentials calculated with 2D (Sec. II B) and 3D (Sec. III D) methods.

step as for the 2D code. The comparison of 2D and 3D
results is shown on the right-hand side of Fig. 7.
Additionally, we have found that the numerical results
agree well with the analytical approximation for the
stepped collimator [2]. This analytical result is shown by
circles in Fig. 7.

W [V/pC]

direct (1m)

indirect
10/ X (0.002m)|
direct (0.25m)

30— ‘ ‘ ‘
4
s/o

FIG. 8. Wake potential of rectangular collimator calculated
with direct and indirect (Sec. III D) methods.

TABLE I. Comparison of CPU times for the example of the
rectangular collimator.

Method CPU time (sec)
Indirect, Eq. (18) 5
Indirect, Eq. (21) 51
Direct (along 1 m) 1.5 x 10*

As the next example, we consider a rectangular colli-
mator shown in Fig. 5. Figure 8 compares the wake poten-
tials for a Gaussian bunch moving along the axis with the
rms length o = 200 wm, calculated by the direct method,
and the wake potential calculated by the indirect method of
Sec. IIID. The wake potentials are obtained with direct
integration up to distances 0.25 and 1 m after the collima-
tor. We again see that the indirect method applied at zo =
2 mm after the collimator yields an accurate result, which
agrees with the direct calculation up to 1 m.

The calculation time for the indirect integration algo-
rithm is comparable with one integration step of the time-
domain numerical scheme for Maxwell’s equations. The
direct integration in an outgoing waveguide requires not
only many time steps, but also the usage of special nu-
merical schemes without dispersion in the longitudinal
direction [16,17] to avoid an accumulation of errors. For
the example of the rectangular collimator the CPU times
for the direct and the indirect methods are given in Table 1.
The result for Eq. (18) was obtained with 50 modes calcu-
lated in advance. Equation (21) was solved with a conju-
gate gradient method. The direct integration was done
along a distance of 1 m in the outgoing rectangular wave-
guide with the numerical scheme for Maxwell’s equations
described in [17].

The new indirect method was also used for the accurate
calculation of collimator wakefields [22]. It was interesting
to observe that the kick factor [1] depends strongly on the
length of the interior collimator pipe, the effect not de-
scribed in the literature so far. Note that this problem was
very difficult to treat in three dimensions satisfactorily with
the old techniques.

V. CONCLUSION

In this paper we extended available techniques and
introduced a new general method for indirect integration
of the wake potential in three dimensions. The algorithms
developed are checked numerically and their efficiency is

102002-9
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confirmed by the solution of real accelerator problems
[20-22,24].
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