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We have recently considered acceleration of protons and heavy ions in a fixed-field alternating-gradient
accelerator with nonscaling lattice and linear field profile. To avoid the problem of frequency modulation
for acceleration of low-energy beams over a too short period of time, and to boost the acceleration rate, the
method of harmonic number jump (HNJ) was proposed. This method allows the use of constant frequency
acceleration, for instance using superconducting cavities, despite the fact that the beam velocity may vary
considerably. Of course in this case the accelerating voltage and rf phase will need to be programmed
accordingly as we shall show. We shall study first the motion of synchronous particles, and then of those
with deviating initial conditions. We estimate the area and height of the rf buckets that are to contain the
beam bunches with the added condition of the HNJ. We finally investigate methods to allow the program
of energy gain as required by the HNJ method, including the effect of the cavity transit time factor.
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I. ACCELERATION OF SYNCHRONOUS
PARTICLES

Let us assume that the fixed-field alternating-gradient
(FFAG) ring with nonscaling lattice and linear field profile
[1] is made of a number of rf cavities equally spaced, and
that the lattice properties and structure between two con-
secutive cavities repeat identically around the ring (see
Fig. 1). The acceleration cycle is then thought as a se-
quence of pair events: an energy kick at the location of the
nth cavity, followed by an arc An that takes the beam from
that cavity to the next. We shall investigate the proposed
[2] method of acceleration based on the harmonic number
jump (HNJ).

Let us start considering a beam made of pointlike
bunches; that is, all particles have the same energy, and
cross the cavities all together at the same instant.
Equivalently each pointlike bunch can be thought to be a
synchronous or a reference particle around which all other
particles oscillate. The total energy of the reference parti-
cle in the nth arc An is En, and the period of time that it
takes to travel the arc An is Tn � hnTrf , where Trf is the
constant rf period, and hn is the rf harmonic number local
to the arc An. Here and in the following, bold face parame-
ters apply to the reference particle. The same parameters in
plain face apply to the other particles.

Let Q and A denote, respectively, the charge state and
the mass number of the ion particle. The energy gain when
crossing the nth cavity is

 �En � �QeVn=A� sin�!rftn� � �QeVn=A� sin��n�; (1)

where Vn is the peak voltage, !rf=2� the rf frequency, tn
the instant of traversal of the cavity, and �n � !rftn the rf
synchronous phase. Both Vn and �n can vary from cavity
to cavity, and, in the same cavity, from turn to turn.

The HNJ method requires that the energy gain is ad-
justed to cause a change in the travel period Tn in the

following arc An, so that the reference particle is pushed
forward or back exactly by �h rf harmonics and appears in
an exactly identical bucket ahead or trailing by �h rf
wavelengths (see Fig. 2). Thus, by denoting

 

Tn � hnTrf (2a)

Tn�1 � hn�1Trf (2b)

hn � hn�1 � ��h; (2c)

this is accomplished by requiring the boot-strap condition:

 �En � �n
2�n

3E0�h=hn�1� �pn�n
2�; (3)

where E0 is the ion particle rest energy,�n and �n the usual
relativistic velocity and energy factors, and �pn the mo-
mentum compaction factor local to the nth arc An. The
HNJ is executed by combining Eqs. (1)–(3).
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FIG. 1. (Color) FFAG ring with multiple equally spaced rf
cavities.
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II. ACCELERATION OF NONSYNCHRONOUS
PARTICLES

Let us consider now an off-momentum particle follow-
ing (or heading) the reference particle with a time differ-
ence �n. It will cross the nth cavity at the instant
tn � tn � �n, and the corresponding energy gain is

 �En � �QeVn=A� sin�!rftn�: (4)

Subtracting side by side Eq. (1) from Eq. (4) gives the
change �"n of the energy difference "n � En � En after
crossing the nth cavity

 �"n � �QeVn=A��sin��n �!rf�n� � sin��n��: (5)

In the limit of small delay �n

 �"n � �QeVn=A��cos�n�!rftn: (6)

The change ��n of the time difference �n, in linear ap-
proximation, is given by

 ��n � �n � �n�1 � �tn � tn� � �tn�1 � tn�1�

� Tn � Tn � ��1� �pn�n2�Tn"n=�n2�n3E0: (7)

Combining Eqs. (6) and (7) gives the phase (or energy)
oscillation equation in the limit of small amplitude,

 �2�n=�n2 ��n
2�n � 0; (8)

where the oscillation angular frequency [using Eqs. (1),
(3), (6), and (7)]

 �n
2 � 2��h= tan�n: (9)

III. MOTION WITHIN rf BUCKETS

The two canonical equations (5) and (7) can be derived
from the following Hamiltonian:
 

H � �QeVn=A!rf��cos��n � wrf�n� �!rf�n sin��n��

� ��1� �pn�n2�Tn"n2=�2�n2�n3E0�: (10)

The motion of all particles is to occur in rf buckets. The
simple analogues for the usual equations for bucket fixed
points, and height, and area [3,4] may be obtained from the
Hamiltonian of Eq. (10). There is though the exception that
the energy gain per cavity is programmed according to the
combination of Eqs. (3) and (4). The rate of acceleration
cannot be given a priori, but is determined by the required
energy gain program. This is most advantageous indeed in

FFAG accelerators where the guiding field does not change
with time.

IV. CONSEQUENCES OF THE HARMONIC
NUMBER JUMP

The procedure we have followed applies correctly to the
case when beam energy is constantly below the transition
energy, namely, when �pn�n

2 < 1. We have indeed set
Eqs. (1) and (3) explicitly for this case, that requires a
decreasing harmonic number as acceleration proceeds. In
the opposite case when the beam energy is above the
transition energy, namely, that �pn�n2 > 1, the harmonic
number will increase monotonically. Thus Eq. (2c) is to be
replaced with hn � hn�1 � ��h, and a minus sign is to be
placed in front of the right-hand side of Eq. (3). Obviously,
to avoid unnecessary beam losses, the number of bunches,
which is a constant during acceleration, ought to be always
less than the harmonic number at all times. On the other
end, because of the change of the revolution period due to
the beam velocity variation, the number of rf buckets will
vary. The actual distribution of the beam bunches with
respect to the available buckets during acceleration is
shown in Fig. 3(a) for the case of acceleration below the
transition energy, and in Fig. 3(b) for the case above.

It is seen that in the case below transition energy the
beam longitudinal extension at injection ought to be
shorter than the revolution period and at most equal to
the revolution period at extraction. That is, the number of
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FIG. 3. (Color) Bunch to bucket configuration below transition
energy (a) and above transition energy (b).

FIG. 2. (Color) rf bucket jump at cavity crossings by �h rf wavelengths (harmonic number).
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injected bunches cannot be larger than the rf harmonic
number at extraction. The situation is different when the
beam is injected at one energy above the transition energy
value. In this case the revolution period decreases and the
harmonic number increases during acceleration. The ratio
of the harmonic number at extraction to that at injection is
equal to the ratio of the corresponding values of the beam
velocity �c for the case above transition energy, and to the
inverse of that for the case of acceleration below the
transition energy. The creation of a beam gap during
acceleration above the transition energy may be useful
for a variety of applications, for instance to allow time
for the extraction kickers.

V. ENERGY GAIN PROGRAMMING

The acceleration method by HNJ requires that the en-
ergy gain at the nth cavity is given by the combination of
Eqs. (1) and (3), that is,

 eVn sin��n� � A�n
2�n

3E0�h=Qhn�1� �pn�n
2�: (11)

As an example, we show in Fig. 4 the energy gain per
cavity required for the case of the injector FFAG ring
proposed recently for the proton driver of the neutrino
factory [5]. What is shown is eVn sin��n� versus the actual
radial position of the beam during acceleration as directly
given by Eq. (11) for �h � 1. The ring accelerates protons
from 400 MeV to 1.5 GeV, and has a circumference of
807.091 m. Acceleration occurs at the constant rf fre-
quency of 805.2 MHz with 2 diametrically opposite groups
each of 8 equally spaced, independently phased, super-
conducting, single-gap cavities. Let �n denote the average
axial field in the cavity made of one single elliptically
shaped cell with gap g operating in half-wavelength
mode. Let also � denote the rf wavelength. The cavity
voltage can then be expressed as

 Vn � g�nTTF��0=��; (12)

where

 g � ��0=2 (13)

and

 TTF ��0=�� � sin���0=2��=���0=2�� (14)

is the transit time factor (TTF) that is a function of the
beam velocity �, and �0 is a reference value that corre-
sponds to the gap g for which the TTF has been optimized.
Typically �0 is adjusted to the value of the beam velocity in
the middle of the acceleration cycle [6,7].

The profile of Fig. 4 can be realized with four different
modes of operation.

1. Constant rf phase.—The average axial accelerating
field �n is shown in Fig. 5 across the radial aperture for
�n � 60�. The realization of such a field profile across the
radial aperture is problematic but not impossible. It could
be made with ordinary pill-box cavities resonating in
TM010 mode but displaced horizontally [2]. A cavity
that provides a longitudinal kick proportional to the radial
displacement of the beam is the one operating in TM110
mode. Such cavity introduces also transverse deflecting
modes that should be evaluated first and their impact to
the beam compensated or at least reduced.

2. Constant average axial field �n.—This is obtained by
programming the rf phase during the acceleration cycle.
The result is shown in Fig. 6 that corresponds to the same
axial field in all cavities �n � 15:74 MV=m. That includes
also the transit time factor TTF. This mode of operation
requires that the rf cavities are properly phased with re-
spect to each other, and that the phase in all cavities varies
from turn to turn. In both cases the axial field may be
exceedingly too large. It could be lowered with multicell
cavities, though at the same time the transit time factor
behavior may get more irregular due to the large beam
velocity change. It is better to operate with a group of
localized single-gap cavities independently tuned from
each other as done in this example.

Notice that the largest phase change per cavity group
crossing does not exceed 1�, and that it occurs at the end of
the acceleration cycle. It may be possible to combine this

Number n of Cavity Crossings 

∆E n (MV/m) 

FIG. 4. (Color) Energy gain �En � eg�nTTF��0=�n� sin��n�
vs number n of cavity crossings.
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FIG. 5. (Color) Average axial field �n versus radial beam posi-
tion x with �n � 60�.
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method with the previous one to soften the requirements on
both the change of the axial field �n and of the rf phase�n.

3. Modulation of the harmonic number jump.—
Inspection of Eq. (11) shows that, for the case below
transition energy and �pn�n2 	 1, the energy gain pro-
gram increases with the cube of the particle total energy,
for constant harmonic number jump �h. If on the other
side the latter is also programmed accordingly, for instance
as �h
 �n�2�n�3, which is a large value at injection that
then decreases to unit at top energy, it is possible to reduce
the variation of the axial field along the radius of the orbit.
When this method is applied to the example above, we
found that the required axial field is given by the plot of
Fig. 7. The maximum value of �n is about unchanged, and
the range of the change is considerably reduced to only a
factor of two, instead of ten. As expected the acceleration
rate is higher, a total of 126 revolutions against the 347 in
the case of constant �h � 1. Nevertheless, because the
harmonic number can decrement by only an integral
amount, the shape of the axial field program is fragmented,
and it is not obvious how to implement it. This method may
be more useful in the case of acceleration above the
transition energy when �pn�n2 � 1. In this case the en-

ergy gain program varies linearly with the total particle
energy. It could be flattened by allowing the amount �h of
the harmonic number jump also to decrease, but this time
only linearly, during acceleration.

4. Matching of the acceleration period with the cavity
filling time.—It takes a finite amount of time to fill up with
power the rf cavities which is about given by [6,7]

 TF � 1:4�Q0=!�=�2� Pb=Pw�; (15)

where !=2� is the field frequency, Q0 the unloaded figure
of merit of the cavity, Pb the beam average power, and Pw
the dissipated average power. Typically TF is a fraction of a
millisecond and it can be made, with a proper choice of
parameters, to match in magnitude the time Ta required for
acceleration over the desired energy range. In the example
we have studied, the required energy gain, as seen by
inspecting Fig. 4, shows about an order of magnitude in
the field variation over about half a millisecond. The beam
could be injected just a little after rf power is poured in the
cavities. As the beam is accelerated the cavities are filled
with more power until they are topped at the end of the
acceleration cycle. During the filling the axial field will
increase correspondingly as required.

This method sounds more feasible than it may be sug-
gested here. Although the cavity time constant is both a
tool and an impediment to tailoring the voltage profile
versus time, all cavity-modulator systems are equipped
with amplitude and phase loops, or full vector feedback,
and so following a voltage program with high accuracy is
eminently possible—even if it calls for changes which are
faster than the cavity time constant, provided that they are
modest and the required overpower is available.

VI. CONCLUSIONS

We have investigated a method of low-energy hadron
beam acceleration in FFAG accelerators with constant
frequency rf superconducting cavities. The method re-
quires an energy gain at each cavity adjusted to allow the
beam to skip one or more rf wavelengths between cavities.
The energy gain program can be obtained either by requir-
ing a radial profile of the accelerating electric field with the
proper design of the cavity, or by setting a constant accel-
erating field throughout the cycle together to a prescribed
program of rf phase. In both approaches, transit times
factors are evaluated and taken into account as the beam
changes velocity over an appreciable range. It is also
possible to program accordingly the harmonic number
jump �h to maintain about constant the required axial
field across the radial aperture. Also the beam could be
injected and accelerated in parallel to the filling of the
cavities with rf power. The analysis performed shows
that the longitudinal motion occurs in rf buckets of calcu-
lable height and area.

n (MV / m) 

x (cm) 

ξ

FIG. 7. (Color) Average axial field �n vs radial beam position x
with �n � 60� by varying the amount �h of the harmonic
number jump during acceleration.
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FIG. 6. (Color) rf phase �n program versus number n of cavity
crossings.
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