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We have developed a relativistic-fluid model of the flow-electron plasma in a steady-state one-
dimensional magnetically insulated transmission line (MITL). The model assumes that the electrons
are collisional and, as a result, drift toward the anode. The model predicts that in the limit of fully
developed collisional flow, the relation between the voltage Va, anode current Ia, cathode current Ik,
and geometric impedance Z0 of a 1D planar MITL can be expressed as Va � IaZ0h���, where
h��� � ���� 1�=4��� 1��1=2 � lnb�� ��2 � 1�1=2c=2���� 1� and � � Ia=Ik. The relation is valid
when Va * 1 MV. In the minimally insulated limit, the anode current Ia;min � 1:78Va=Z0, the
electron-flow current If;min � 1:25Va=Z0, and the flow impedance Zf;min � 0:588Z0. {The electron-
flow current If � Ia � Ik. Following Mendel and Rosenthal [Phys. Plasmas 2, 1332 (1995)], we define
the flow impedance Zf as Va=�I2

a � I
2
k�

1=2.g In the well-insulated limit (i.e., when Ia 	 Ia;min), the
electron-flow current If � 9V2

a=8IaZ
2
0 and the flow impedance Zf � 2Z0=3. Similar results are obtained

for a 1D collisional MITL with coaxial cylindrical electrodes, when the inner conductor is at a negative
potential with respect to the outer, and Z0 & 40 �. We compare the predictions of the collisional model to
those of several MITL models that assume the flow electrons are collisionless. We find that at given values
of Va and Z0, collisions can significantly increase both Ia;min and If;min above the values predicted by the
collisionless models, and decrease Zf;min. When Ia 	 Ia;min, we find that, at given values of Va, Z0, and Ia,
collisions can significantly increase If and decrease Zf. Since the steady-state collisional model is valid
only when the drift of electrons toward the anode has had sufficient time to establish fully developed
collisional flow, and collisionless models assume there is no net electron drift toward the anode, we expect
these two types of models to provide theoretical bounds on Ia, If, and Zf.
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I. INTRODUCTION

When operated at a sufficiently high voltage, a vacuum
transmission line experiences space-charge-limited emis-
sion of electrons from the line’s cathode electrode [1–3].
When the bound current carried by the line’s anode elec-
trode is sufficiently high, the resulting magnetic field in the
vacuum gap inhibits most of the electrons from striking the
anode [4–39]. Such a self-magnetically insulated trans-
mission line (MITL) is commonly used in pulsed-power
accelerators to transmit electromagnetic power and energy
to a load [40– 47].

When designing a MITL for a pulsed-power accelerator,
it is useful to have an analytic model that can make
predictions about the MITL’s electrical performance.
Analytic MITL models developed previously assume that
the electrons emitted by the MITL’s cathode are collision-
less [7–32,34–39]. In such a MITL, when a steady state
has been achieved, the net drift velocity of the electrons is
parallel to both the anode and cathode electrodes, and is in
the direction of the electromagnetic power flow.

The collisionless assumption is, of course, valid only
when the collisions to which the flow electrons are subject
can be neglected. This is true, for example, when the

collisions experienced by the electrons are dominated by
two-body-particle collisions, such as collisions between
the electrons and residual-gas ions in the MITL’s anode-
cathode (AK) gap. As discussed in Sec. II A, the frequency
of such collisions is, for conditions of interest, sufficiently
small that their effects can be neglected. However, as
discussed in Sec. II B, a number of observations suggest
that instabilities in the MITL’s flow-electron plasma can
result in electrostatic- and electromagnetic-field fluctua-
tions, and that these can subject the electrons to effective
collisions [16,21,22,24,28,29,33,48–71]. These observa-
tions imply that the frequency of such collisions can be
sufficiently high to cause the flow electrons to have a small,
but non-negligible, component of their drift velocities
directed toward the anode.

To quantify the effects such collisions can have on the
electrical performance of a MITL, we develop in this
article an analytic fluid model of a one-dimensional
MITL with collisional flow electrons. In Sec. III A, we
develop the model for a steady-state 1D planar MITL. In
Sec. III B, we use the model to estimate the time required
for collisional electrons to establish a steady-state electron-
density profile in a MITL’s AK gap. In Sec. III C, we
develop a general relation between the voltage, anode
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current, cathode current, and geometric impedance of a
collisional MITL. An expression for the flow impedance is
developed in Sec. III D.

In Sec. IVA, we calculate the minimum anode current
Ia;min required to establish magnetic insulation. It is usually
assumed [42,44] that Ia;min is the anode current of a self-
limited MITL; i.e., a MITL insulated only by the current
flowing across the AK gap at the leading edge of the
MITL’s power pulse. We follow this convention herein,
and assume that a self-limited MITL operates at Ia;min.
Several workers have speculated that the self-limited anode
current may instead be that which is obtained by a
minimum-energy calculation [12,20]. We discuss such a
calculation in Appendix A. In Sec. IV B, we examine the
operation of a steady-state collisional MITL in the well-
insulated limit (Ia 	 Ia;min).

The results presented in Secs. III and IV are developed
for a steady-state 1D MITL with planar parallel elec-
trodes. In Appendix B, we present relations between the
voltage, anode current, cathode current, and geometric
impedance of a steady-state 1D MITL with coaxial cylin-
drical electrodes, assuming that the inner conductor is at a
negative potential with respect to the outer.

Collisions are expected to broaden the electron sheath of
a MITL, and as a result, increase both the anode and
electron-flow currents of a MITL, and decrease the
MITL’s flow impedance. To estimate the extent to which
these quantities can be affected, we review in Sec. V
collisionless MITL models developed by Creedon [8,9],
Mendel, Seidel, and Rosenthal [27], and Miller and
Mendel [30]. We also present in Sec. V a collisionless
model that assumes only that (i) the flow-electron number
density is constant throughout the electron sheath, (ii) the
electrons at the sheath edge move at the E
 B drift
velocity, and (iii) the canonical energy of the electrons at
the sheath edge is conserved. The Creedon result presented
in Sec. V is valid for both planar and coaxial MITLs; the
results presented for the other three collisionless models
are valid only in planar geometry. In Sec. VI we compare,
for a planar MITL, the predictions of these four collision-
less models to those of the collisional model.

In Sec. VII, we compare the collisional and Creedon
models to experiment. The results of Secs. II–VII are
discussed in Sec. VIII.

The steady-state collisional model developed in Sec. III,
Sec. IV, and Appendix B effectively assumes that the
electron velocity throughout the sheath is, to first order,
given by the E
B drift velocity. Hence in this model
there is, to first order, no net Lorentz force per unit area
(i.e., no net Lorentz pressure) on the electrons. The four
steady-state collisionless models reviewed in Sec. V also
assume there is no net Lorentz pressure on the electron
sheath. When planar geometry is assumed, these five mod-
els use the same one-dimensional MITL geometry and
hence, the same pressure-balance equation. In Appen-

dix C, we present a general pressure-balance equation for
an arbitrary steady-state three-dimensional MITL.

II. TWO-BODY-PARTICLE AND EFFECTIVE
COLLISIONS

The flow electrons in a MITL are subject to two-body
particle collisions, and effective collisions due to plasma
collective effects. Particle collisions include electron-
electron collisions between the flow electrons themselves,
as well as electron-electron, electron-ion, and electron-
neutral collisions between the flow electrons and other
particles present in the MITL’s AK gap. The other particles
in the gap include electrons, ions, and neutrals from the
residual gas in the gap due to the necessarily imperfect
vacuum, and ions and neutrals that evolve from anode- and
cathode-electrode plasmas into the gap during the power
pulse. Effective collisions occur between the flow electrons
and electrostatic- and electromagnetic-field fluctuations
[16,21,22,24,28,29,33,48–71].

A. Two-body-particle collisions

For MITLs of interest, two-body-particle collisions are
dominated by collisions between the flow electrons and the
residual-gas ions present in the gap. The nonrelativistic
electron-ion collision frequency is given by [72]

 �ei �
niZ2e4

4�"2
0m

2v3 ln�1: (1)

In this expression ni is the ion number density, Z is the
ionization charge state, e is the absolute value of the
electron charge, ln �1 is the Coulomb logarithm [72], "0

is the permittivity of free space,m is the electron rest mass,
and v is the electron speed. (Equations in this article are
expressed in SI units throughout.)

To estimate a typical value of �ei, we consider a MITL
with a 2-cm AK gap, a 1 MV=cm electric field, and a 1 T
magnetic field. (These are characteristic of the parameters
of the Z-accelerator MITLs [45–47].) In such a MITL a
typical value of v is �0:2c, where c is the speed of light.
When ni � 1018 m�3 and Z � 1, Eq. (1) finds that �ei �
102 s�1. Hence assuming that the characteristic lifetime of
flow electrons in such a MITL is, at most, a few tens of
nanoseconds, we find that the effects of two-body collisions
can be neglected.

B. Effective collisions

1. Scaling of the effective collision frequency

The effective collision frequency due to plasma collec-
tive effects [16,21,22,24,28,29,33,48–71] may be orders of
magnitude greater than the two-body collision frequency
estimated above. To calculate the effective collision fre-
quency would require modeling the nonlinear evolution of
flow-electron-plasma instabilities until they achieve a tur-
bulent steady state [53]. To follow this evolution in a self-
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consistent and relativistically correct manner would likely
require 3D particle-in-cell simulations. Ideally, such nu-
merical simulations would model the entire width (or
circumference) of a MITL to include the full spectrum of
possible fluctuations. Such simulations would also have
sufficient spatial and temporal resolution, and a sufficient
number of particles, to model correctly interactions be-
tween the flow electrons and the fluctuating fields.

In addition, it would be desirable for such simulations to
include nonideal conditions that are often present in a
MITL, and that may affect the effective collision fre-
quency. These conditions include (i) the presence of a
nonzero-thickness cathode plasma, which is the source of
the flow electrons; (ii) nonuniform emission of electrons
and ions from the electrodes; (iii) nonuniform evolution of
neutrals from the electrodes; (iv) AK-gap asymmetries;
(v) drive-voltage asymmetries; (vi) a voltage prepulse
that early in time desorbs neutrals from the electrode
surfaces; (vii) electromagnetic radiation from the load
and other plasmas in the system; (viii) imperfect current
contacts between MITL-electrode components; (ix) parti-
cles on the electrode surfaces; etc.

We do not present here the results of such simulations,
which would be outside the scope of this article. Instead,
we use dimensional analysis [73–76] to make the follow-
ing general observations.

We observe that the effective collision frequency �eff of
a steady-state turbulent flow-electron plasma is likely to be
determined primarily by the following variables (here we
consider only the magnitudes of these variables, and ignore
their signs): the electric force on the electrons per unit
volume neE (where n is the flow-electron number density
and E is the magnitude of the electric field), the magnetic
force per unit volume nevB (where B is the magnitude of
the magnetic field), and the electron momentum per unit
volume n�mv (where � is the usual relativistic factor).

Hence we have 4 variables: �eff , neE, nevB, and n�mv.
Assuming that v� E=B, we are left with 3 independent
variables and 2 independent dimensions (time and momen-
tum per unit volume). According to the Buckingham �
theorem [73–76], the 3 independent variables are related to
each other by a function of 3� 2 � 1 (i.e., a single)
dimensionless quantity. We can choose this quantity to be
�eff=!c, where !c � eB=�m is the relativistic electron-
cyclotron frequency, and we can write this function as
follows:

 f
�
�eff

!c

�
� 0: (2)

Hence under these idealized conditions,

 �eff / !c: (3)

As discussed in Sec. III C, Eq. (3) is also obtained in a 1D
planar MITL when the effective collision frequency �eff is
constant throughout the sheath.

For a MITL with a 2-cm AK gap, a 1 MV=cm electric
field, and a 1 T magnetic field, !c � 2
 1011 s�1. Hence
when 2��eff is within 2 orders of magnitude of !c, and
when the electron lifetime in the MITL is on the order of
tens of nanoseconds, a typical flow electron in such a
MITL is subject to a number of collisions during its
lifetime.

2. Observations that suggest effective collisions play a
non-negligible role in MITL operation

The discussion presented above can only suggest that
�eff / !c; it cannot predict the proportionality constant.
Since the above discussion cannot predict the magnitude of
�eff , it cannot predict the effects such collisions can have
on the electrical performance of MITLs of interest.
However, we note that even if such collisions affect
MITL performance at only the �10% level, they may
need to be considered when designing terawatt- and
petawatt-class pulsed-power accelerators, given the sub-
stantial investment of resources involved in such machines.

The following observations suggest that collisions can,
in fact, have non-negligible effects on the performance of
MITLs of interest.

(i) Nonrelativistic calculations performed by Buneman,
Levy, and Linson [51] show that an electron beam prop-
agating in crossed electric and magnetic fields is always
unstable (at small wavelengths) due to an electron-
cyclotron resonance when �!p=!c�

2 * 0:2, where !p is
the electron plasma frequency. For electron sheaths of
interest, �!p=!c�

2 is on the order of 1 [22,51,55,56].
{For the special case of a sheath with electrons that
move in a laminar fashion, and have zero canonical mo-
mentum and energy, �!p=!c�

2 � 1 throughout the sheath
[22,51,56]. This condition is valid for nonrelativistic
Brillouin flow [51]; it is also valid for relativistic
Brillouin flow, as demonstrated by Ott and Lovelace [56]
and Swegle and Ott [21,22].} Reference [51] also finds that
an electron beam propagating in crossed fields can, under
certain conditions, be unstable due to velocity shear, and
hence be subject to the diocotron instability.

(ii) Experiments performed by Orzechowski and Bekefi
[58] on an electron-beam vacuum diode insulated by an
externally applied magnetic field demonstrate that a leak-
age current exists across the diode’s AK gap, even when
the magnetic field is significantly in excess of that required
for insulation. (Please see, for example, Figs. 3 and 4 of
[58].) In Ref. [59], Bekefi and Orzechowski reiterate that
‘‘sizable current flows are observed even in forbidden
regions of the magnetic field in which the diode is presum-
ably insulated magnetically. This current flow is accom-
panied by copious microwave radiation.’’

(iii) Bekefi and Orzechowski [59] also observe that
‘‘under no conditions could current flow (across the diode’s
AK gap) be suppressed completely, however large the
magnetic field was made.’’ In addition, these authors ob-
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serve that ‘‘failure of complete magnetic insulation is not
confined to the above experiment but has been observed in
all cross-field diode configurations at all voltages.’’ Some
of these previous observations are described by Mouthaan
and Süsskind in Ref. [52]. In fact, as noted in Ref. [58],
leakage current across the AK gap of a magnetically
insulated diode was observed in 1925 by Langmuir [48].

(iv) In Refs. [59,61], Bekefi and Orzechowski suggest
that the leakage current and microwave radiation observed
in their vacuum-diode experiments are caused by the dio-
cotron instability of the diode’s electron sheath. Ref-
erences [22,28,51] show that this instability is stabilized
when one surface of the sheath is in contact with the
cathode; however, Buneman has noted that if the cathode
surface is covered with plasma, diocotron modes are again
possible [49]. (The cathode electrodes of vacuum diodes of
interest are covered with plasma for most of the power
pulse; it is this plasma that is the source of the diode’s
electrons.)

(v) Experiments conducted in 1973 by Bernstein and
Smith [6] on one of the 4.6-m-long 14-MV MITLs of the
Aurora accelerator demonstrate that the self-limited im-
pedance of these MITLs is 0:74Z0 (where Z0 is the MITL’s
geometric impedance). This is 13% less than the value
0:85Z0 predicted by the standard collisionless MITL
model, which is the parapotential model developed by
Creedon [8,9]. As discussed in Sec. VII, this discrepancy
is consistent with the existence of collisions in the MITL’s
electron sheath.

(vi) Bergeron and colleagues [13] describe measure-
ments performed on a 10-m-long MITL for which the
MITL cathode current is consistently 20%–25% less
than that predicted by numerical simulations. Hence, the
electron-sheath current is significantly higher than ex-
pected. This discrepancy is consistent with the existence
of collisions that broaden the sheath, and as a consequence,
increase the sheath current. The observations of Ref. [13]
are reiterated in a review article by Di Capua [26].

(vii) Measurements by Shope and colleagues [15] on a
1.37-m-long MITL powered by the HERMES-II accelera-
tor show that for peak voltages between 3.5 and 10 MV, the
self-limited MITL impedance is �0:64Z0, as indicated by
Fig. 4(b) of Ref. [15]. This impedance is 12%–23% less
than the values 0:73Z0–0:83Z0 predicted over this voltage
range by the collisionless parapotential MITL model [8,9].

(viii) Di Capua and Sullivan describe in Ref. [18] mea-
surements performed on a 1-m-long 0.7-MV MITL with a
0.5-cm gap. These show that an electron leakage flux of
12 A=cm2 exists across the MITL’s AK gap, after magnetic
insulation is established. This leakage is sufficient to result
in a loss of�18% of the total MITL current over a distance
of 1 m. The authors suggest that ‘‘this loss could arise from
instabilities in the electron flow.’’

(ix) In Ref. [16], Bergeron and Poukey describe several
2D numerical simulations of a MITL. They find that, when

a parapotential force-balanced electron sheath is launched
at the input to the MITL, the sheath ‘‘does not propagate
more than a short distance before being totally disrupted,
apparently by beam instability.’’ They also present
evidence of an electron-diffusion process at work in
their simulations, and suggest this process ‘‘may explain
the anomalous current leakage observed in some
experiments’’.

(x) In Fig. 6 of Ref. [20], Wang and Di Capua plot the
ratio of the MITL anode current to the cathode current
obtained in a variety of experiments and numerical simu-
lations. (We caution that many of the reference numbers
given in the caption of this figure are incorrect.) The
authors conclude that ‘‘most of the observations show a
larger fraction of current flowing in the (electron sheath)
than that predicted (by their collisionless MITL model).’’
Eight of the ratios plotted in this figure were obtained from
2D numerical simulations performed by Poukey and
Bergeron [14]. The simulations were performed assuming
a 5-m-long MITL, at peak voltages that range from 1 to
10 MV.

(xi) Fully relativistic calculations by Swegle and Ott
[21,22] and Swegle [28] demonstrate that the electron
sheath in a MITL can be unstable to both the diocotron
and magnetron instabilities. (As discussed above, dioco-
tron modes are possible when the MITL’s cathode elec-
trode is covered with plasma [49].) The modes with the
greatest growth rates are predicted to have frequencies on
the order of !c [21,22,28]. These predictions are in rea-
sonable agreement with the microwave measurements per-
formed on a vacuum diode by Orzechowski and Bekefi
[58,59,61]. Other calculations that examine the stability of
a MITL’s electron sheath to various perturbations are pre-
sented in Refs. [16,24,29,33,49,51,52,55,56,63,64].

(xii) Instability-induced fluctuations appear to play a
significant role in the performance of ion-beam diodes
insulated by an externally applied magnetic field
[33,62,65–70]. According to Sudan [62], an insulated
ion-diode experiences ‘‘electron loss to the anode through
instabilities generated by the velocity shear and electron
density gradient’’ of the electron sheath. Maron [65] has
observed this loss as electron bursts, which ‘‘are accom-
panied by sharp bursts in microwave radiation,’’ and pro-
poses that these bursts may be ‘‘initiated by processes in
the cathode plasma.’’ Desjarlais [66,67], Westermann and
Schuldt [69], and Pointon and co-workers [70] have devel-
oped ion-diode models that include collisional broadening
(due to field fluctuations) of the electron sheath; these
models are in substantially better agreement with experi-
ment than collisionless models.

The above observations suggest that effective collisions
due to field fluctuations in the electron sheath of a MITL
may, in fact, produce non-negligible effects on a MITL’s
electrical performance. Hence it is of interest to develop an
analytic estimate of the magnitude of such effects.
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III. COLLISIONAL-MITL MODEL

A. Relativistic fluid-Maxwell equations

To estimate the effects that field fluctuations can have on
the electrical performance of a MITL, we make the follow-
ing simplifying assumptions. We assume that (i) the elec-
tron sheath of a MITL is unstable; (ii) the sheath insta-
bilities cause the flow-electron plasma to evolve to a
turbulent steady state; (iii) the turbulence produces electro-
static- and electromagnetic-field fluctuations that subject
the electrons to effective collisions; (iv) the turbulent flow-
electron plasma can be adequately modeled as a fluid; and
(v) the effects of fluctuations can be accounted for in a fluid
model by a collision term that is given in terms of an
effective collision frequency [53]. We develop such a fluid
model below, and use it to provide first-order analytic
estimates of collisional effects.

We begin with the following relativistic fluid-Maxwell
equations:

 

@n
@t
� r � �nv� � 0; (4)

 nm
�
@��v�
@t
� �v � r��v

�
� ne�E� v
 B� � kTrn

� �nm�v�eff ; (5)

 � �
�

1�
�
jvj
c

�
2
�
�1=2

; (6)

 r �E � �
ne
"0
; (7)

 r � B � 0; (8)

 r 
E � �
@B
@t
; (9)

 r 
 B � ��0nev�
1

c2

@E
@t
: (10)

In these expressions n is the electron number density, v is
the electron-fluid velocity, m is the electron rest mass, � is
the usual relativistic factor evaluated at the fluid speed jvj,
e is the absolute value of the electron charge, E is the
electric field, B is the magnetic field, k is the Boltzmann
constant, T is the electron temperature, �eff is the fre-
quency of the effective collisions experienced by the elec-
trons, c is the speed of light, "0 is the permittivity of free
space, and �0 is the permeability of free space.

Equations (4) and (5) are the continuity and momentum
equations, respectively. Equation (5) makes the simplify-
ing assumption that the pressure tensor is isotropic. We
assume T is defined in such a manner that Eq. (5) is
relativistically correct. In addition, we neglect in Eq. (5)
the r�� � B� force due to the intrinsic magnetic moment �

of an electron [77]; we also neglect effects due to radiation
damping [77]. Equation (6) assumes kT 
 ��� 1�mc2.
We do not assume an energy equation; instead we assume
in Eq. (5) that the electron plasma is isothermal, i.e., that
rT � 0. The effective collision frequency �eff is not cal-
culated, and is instead treated as an adjustable parameter.

Assuming the 1D planar-MITL geometry illustrated in
Fig. 1, and that a steady state has been achieved, we can
express Eqs. (4), (5), and (7)–(10) as follows:

 

@�nvx�
@x

� 0; (11)

 nmvx
@��vx�
@x

� neEx � nevzBy � kT
@n
@x

� �nm�vx�eff ; (12)

 nmvx
@��vz�
@x

� nevxBy � �nm�vz�eff ; (13)

 

@Ex
@x
� �

ne
"0
; (14)

 

@By
@x
� ��0nevz: (15)

Since we assume a 1D MITL, Eqs. (11)–(15) assume that
the quantities vy, Ey, Ez, Bx, and Bz, and all derivatives
with respect to y and z, equal 0. Hence these equations
implicitly assume that the magnetic field due to the cross-
field electron flux nvx is small, so that @By=@z ~ 0.

cathode

anodeIa

V = Va

x = 0

flow electrons

x = δ V = Vδ

V = 0

x = g

Ik

Ifx

y z

FIG. 1. (Color) Idealized 1D MITL in planar geometry. This
figure assumes that the electromagnetic power flows in the
positive z direction. The electric and magnetic fields are directed
in the negative x and negative y directions, respectively.
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From Eq. (13) we obtain

 vx �
�vz

1� �@��vz�=�!c@x�
; (16)

where

 � �
�eff

!c
; (17)

 !c � �
eBy
�m

: (18)

The quantity !c is the relativistic electron-cyclotron
(Larmor) frequency. [For the geometry illustrated in
Fig. 1, By is a negative quantity. The minus sign in
Eq. (18) guarantees that !c is positive.]

To zeroth order we have that

 

1

!c�
@��vz�
@x

�
vz
!c�

��
�mvz
eBy�

; (19)

where � is the thickness of the electron sheath, as defined
in Fig. 1. In the absence of collisions, and when the
canonical angular momentum of the electrons is conserved
as they move from the cathode into the AK gap, the
collisionless electron-sheath thickness �0 is determined
(in part) by the following equation [7–9]:

 ��mvz�jx��0
� �e

Z �0

0
Bydx: (20)

To zeroth order, we can express Eq. (20) as �mvz �
�eBy�0. Hence, when collisions are present, and broaden
the sheath substantially in excess of the collisionless value
(i.e., when �	 �0), we have that

 �
�mvz
eBy�


 1: (21)

Combining Eqs. (16), (19), and (21) gives

 vx � �vz: (22)

Combining Eqs. (12), (17), (18), and (22), we obtain the
following expression for the cross-field electron flux:

 nvx �
��nEx=By� � ��kT=eBy��@n=@x�

1� �2f1� �@��vx�=��eff@x�g
: (23)

To zeroth order, we have from Eqs. (17), (18), and (22) that

 

1

��eff

@��vx�
@x

�
vx
�eff�

��
�mvz
eBy�

: (24)

Hence we can use Eqs. (21) and (24) to approximate
Eq. (23) as

 nvx �
�nEx

�1� �2�By
�

�kT

�1� �2�eBy

@n
@x
: (25)

Since the electric force on an electron F � �eEx, we
can express Eq. (25) as

 nvx � n�?F�D?
@n
@x
; (26)

where the cross-field mobility �? and diffusion coefficient
D? are given by [54,57,78]

 �? �
��

�1� �2�eBy
; (27)

 D? �
��kT

�1� �2�eBy
: (28)

As expected, the mobility and diffusion coefficient satisfy
the Einstein relation [57,78]:

 D? � �?kT: (29)

When Eq. (3) is a reasonable approximation, Eq. (17)
suggests

 � / const (30)

throughout the electron sheath. Under this condition,
Eqs. (28) and (30) give

 D? /
kT
By
; (31)

which is identical to the scaling of D? for Bohm (i.e.
anomalous) diffusion [50,53,54,57,68,71].

It is clear from Eq. (25) that early in time, before
collisions have had a chance to significantly broaden the
sheath, the cross-field electron flux ( nvx) at the edge of the
sheath is dominated by the diffusion term [the second term
on the right-hand side of Eq. (25)]. We expect this to be the
case, since at this time, the density gradient @n=@x is large
at the sheath edge. (The density gradient is infinite at the
edge of an ideal collisionless sheath.) However, after the
gradient has had time to relax, the ratio of the two terms on
the right-hand side of Eq. (25) is approximately given by

 

kT
neEx

@n
@x
��

kT
neEx

n
�
�
kT
eV�

: (32)

The quantity V� is the voltage at the edge of the sheath, as
defined by Fig. 1. Assuming

 kT 
 eV�; (33)

we combine Eqs. (25), (32), and (33) to obtain

 nvx �
�nEx

�1� �2�By
: (34)

[When Eq. (33) is not valid, the collisional-MITL model
could be developed in terms of a generalized electric field
[72], defined as Ex;gen � Ex � �kT=ne��@n=@x�.]

Of course, when collisions are negligible, we can as-
sume � � 0. In this limit Eq. (34) predicts nvx � 0
throughout the sheath; i.e., that the cross-field electron
flux is negligible. This is, in fact, the assumption made
by all steady-state collisionless MITL models that assume
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laminar flow. (In models that assume nonlaminar flow,
there is a distribution of electron velocities at each value
of x. Such models assume that, at each value of x, the net
value of nvx � 0.) The collisional model we develop in
this article assumes � is small but non-negligible; hence
we assume

 0<�
 1: (35)

Combining Eqs. (6), (17), (18), (22), (34), and (35) we find
that, to first order in �, the electron-fluid momentum
equations [Eqs. (12) and (13)] for a collisional MITL can
be approximated as follows:

 vx � �vz � �
�eff�m
eBy

vz; (36)

 vz �
Ex
By
; (37)

 � �
�

1�
�
vz
c

�
2
�
�1=2

�

�
1�

�
Ex
cBy

�
2
�
�1=2

: (38)

Combining Eqs. (11), (36), and (37) we obtain the follow-
ing expressions for Eq. (11), the electron-fluid continuity
equation:

 

@
@x
�nvx� �

@
@x
��nvz� �

@
@x

�
�n

Ex
By

�
� 0: (39)

B. Characteristic electron-drift time

Equations (36) and (37) can be used to estimate the time
�t required for flow electrons in a MITL to drift a distance
�x across the MITL’s AK gap:

 �t�
��x�By
�Ex

: (40)

When Ex � �1 MV=cm, By � �1 T, and � � 0:1, the
characteristic time required to drift 2 cm is �2 ns.
Presently, it is not clear what value of � should be used
in such a calculation. However, it appears feasible to
determine experimentally the flux nvx of electrons that
drift across a MITL gap, and from such a measurement
[and Eqs. (36) and (37)] obtain, for a given experimental
configuration, an estimate of �.

Of course, collisions must play a significant role in any
MITL that is sufficiently long, or that has a sufficiently
small AK gap, when the characteristic electron lifetime in
the MITL is on the order of, or is greater than, the charac-
teristic time required for electrons to drift across a signifi-
cant fraction of the gap. Alternatively, collisional effects
can be neglected in any MITL at sufficiently small values
of �.

C. General relation between Va, Ia, Ik, and Z0

We expect that the effects of collisions on the electrical
performance of a MITL are greatest when the flow-electron
sheath has had time to expand across the entire MITL gap;
i.e., when a collisional MITL has achieved a steady state.
Hence in this section we use the results of Sec. III A to
develop a relation between Va, Ia, Ik, and Z0 for a steady-
state collisional MITL. We define these quantities as fol-
lows: Va is the voltage across the MITL gap, Ia is the
magnitude of the bound current flowing in the MITL
anode, Ik is the magnitude of the bound current flowing
in the MITL cathode, and Z0 is the geometric vacuum
impedance of the MITL; i.e., the transmission line imped-
ance in the absence of flow electrons.

For the 1D planar MITL illustrated in Fig. 1 (which
assumes an arbitrary sheath thickness), we have that

 Ex � �
@V
@x
; (41)

where V � V�x� is the voltage as a function of x. Hence the
voltage at the MITL anode Va � V�g� can be expressed as
[27]:

 Va � �Eag� �Ea�� V��; (42)

where

 Ea � Ex�g�; (43)

 Ex � �
e
"0

Z x

0
ndx; (44)

 V� � �
Z �

0
Exdx: (45)

In these equations Ea is the electric field at the anode
(which is identical to the electric field at the edge of the
sheath), g is the MITL’s AK gap, � is the thickness of the
electron sheath, and V� is the voltage at the sheath edge;
i.e., V� � V���. (Please see Fig. 1.) Equation (44) assumes
Ek � Ex�0� � 0; i.e., that the emission of electrons from
the cathode is space-charge limited.

Assuming that the width (in the direction perpendicular
to the page) of the MITL illustrated in Fig. 1 is w, and that
g=w
 1 (i.e., that transmission-line-edge effects can be
neglected), the vacuum impedance Z0 of a 1D planar trans-
mission line is given by

 Z0 �

�
�0

"0

�
1=2 g
w
: (46)

Under these conditions, we find from Ampere’s law that
the magnitudes of the MITL anode and cathode currents, Ia
and Ik respectively, can be expressed as

 Ia �
��������Baw�0

��������; (47)
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 Ik �
��������Bkw�0

��������: (48)

The quantities Ba � By�g� and Bk � By�0� are the mag-
netic fields at the anode and cathode, respectively.

Equations (41)–(48) are, of course, valid for both colli-
sional and collisionless MITLs [27]. Equations (41)–(48)
are used in this section, as well as in Sec. V for the
discussion of collisionless MITLs.

Combining Eqs. (14), (15), and (37) we obtain

 � Ex �
�B2

y � B2
k

"0�0

�
1=2
� c�B2

y � B
2
k�

1=2: (49)

(For the system outlined in Fig. 1, Ex is a negative quan-
tity.) Equation (49) assumes that Ek � Ex�0� � 0. When
x � g, Eq. (49) becomes

 � Ea � c�B2
a � B

2
k�

1=2: (50)

Equation (50) is a general relation, approximately valid
for the collisional planar MITL considered here, as well as
for collisionless MITLs [7,27], and can be obtained for
conditions other than those assumed in this section. (Please
see, for example, Ref. [7].) In fact, as discussed in
Ref. [27], and Appendix C of the present article, Eq. (50)
is approximately valid for any steady-state 1D planar
MITL whenever Ek � Ex�0� � 0, and when all forces
per unit area (i.e., all pressures) on the flow electrons other
than the Lorentz pressure can be neglected.

Combining Eqs. (18), (38), and (49) we find that for a 1D
planar MITL,

 !c � �
eBy
�m
� �

eBk
m

; (51)

i.e., that !c is constant throughout the electron sheath.
Hence according to Eqs. (17) and (51), whenever the
effective collision frequency �eff is constant throughout
the sheath, so is �. Consequently, Eq. (30) is valid when
either the dimensional analysis presented in Sec. II B 1 is
valid, or when �eff is constant throughout the sheath.

Combining Eqs. (42), (46)–(48), and (50), we obtain

 Va � Z0�I
2
a � I

2
k�

1=2 � �Ea�� V��: (52)

{Equation (52) is also obtained in Ref. [27].} The term
�Ea�� V�� is referred to as the space-charge term [30].
Equation (52) is a general relation, valid for both colli-
sional and collisionless MITLs, whenever Eqs. (42), (46)–
(48), and (50) are applicable [27].

To evaluate the right-hand side of Eq. (52) for the colli-
sional MITL modeled in Sec. III A, we consider Eq. (39),
which implies

 �nvz / �n
Ex
By
/ const: (53)

When �> 0, the electron sheath (in the steady state)
extends across the entire AK gap of the MITL. In this

case the edge of the sheath is at the anode (� � g), and
from Eqs. (42) and (45) we find that Eq. (52) becomes
simply

 Va � V� � �
Z g

0
Exdx: (54)

To determine Ex, we recall that the dimensional argu-
ments presented in Sec. II B 1 suggest � is constant
throughout the electron sheath [Eq. (30)]. As discussed
above, Eq. (30) is also obtained whenever �eff is constant.
In either case, if we assume Eq. (30), then Eq. (53) suggests
nvz is also constant. Under this condition Eq. (15) finds
that By is a linear function of x:

 By � Cx� Bk; (55)

 C �
Ba � Bk

g
: (56)

Combining Eqs. (49) and (56) gives

 Ex � �c�C
2x2 � 2CxBk�

1=2: (57)

Combining Eqs. (46)–(48), (54), (56), and (57) we obtain
[79]

 Va � IaZ0h���; (58)

where

 h��� �
1

2

��
�� 1

�� 1

�
1=2
�

ln��� ��2 � 1�1=2�

���� 1�

�
; (59)

 � �
Ia
Ik
: (60)

Equation (58) is a general relation between Va, Ia, Ik,
and Z0 for a 1D planar collisional MITL in the steady state,
assuming � is constant and that 0<�
 1. It is interest-
ing to note that under these conditions, the relation be-
tween Va, Ia, Ik, and Z0 is independent of �. Equation (58)
can also be expressed in terms of the MITL electron-sheath
current, which we refer to as the electron-flow current If.
As suggested by Fig. 1, If is defined as follows:

 If � Ia � Ik: (61)

Equation (58) assumes a 1D planar collisional MITL
with parallel-plate electrodes. In Appendix B, we extend
this model to coaxial cylindrical electrodes, assuming that
the inner electrode is at a negative potential with respect to
the outer. In this case the general relation between Va, Ia,
Ik, and Z0 is given as Eq. (B1). We note that Eq. (B1) is not
given explicitly in terms of Z0, since Eq. (B1) is more
naturally expressed in terms of the MITL AK gap and
the radius of the inner MITL conductor.
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D. Flow impedance Zf
References [35–38] define the electrical flow imped-

ance Zf of a MITL by the following expression:

 Va � Zf�I
2
a � I

2
k�

1=2: (62)

As discussed in Ref. [36], the electrical flow impedance
is to be distinguished from the magnetic flow impedance.
For a 1D planar MITL, the electrical flow impedance Zf �
g0Z0=g, where g0 is the distance between the MITL anode
and the centroid of the MITL’s flow-electron charge den-
sity [36]. Similarly, the magnetic flow impedance is pro-
portional to the distance between the anode and the
centroid of the MITL’s flow-electron current density
[36]. Following the convention established in Ref. [36],
we refer to the electrical flow impedance Zf, which is
defined by Eq. (62), as simply the flow impedance.

Combining Eqs. (58)–(60) and (62), we find that the
flow impedance of a collisional planar MITL can be ex-
pressed as follows:

 Zf �
Z0

2

�
�

�� 1
�

ln��� ��2 � 1�1=2�

��2 � 1�1=2��� 1�

�
: (63)

We can readily verify Eq. (63) in one limit. Equations (37),
(47)–(49), and (60) predict that when �! 1, the electron
speed vz ! c throughout the sheath. In this limit Eq. (53)
predicts that the electron-charge density n approaches a
constant value throughout the sheath. Hence in this case the
charge-density centroid approaches a point midway be-
tween the anode and cathode; i.e., g0 ! g=2. This is con-
sistent with Eq. (63), since as �! 1, Zf ! Z0=2.

Since collisions move the charge-density centroid to-
ward the anode, they decrease Zf. Hence, when Va is held
fixed, then Eqs. (47), (48), (50), and (62) predict that such
motion of the centroid increases Ea, and hence (from
Gauss’s Law) the total flow-electron charge per unit area
in the MITL. Collisional drift of the electrons toward the
anode also increases the average value of the electron
speed vz, since whenever Eqs. (37) and (49) are valid,
the magnitude of vz increases as x increases. Con-
sequently, we expect the drift of electrons toward the anode
to increase the electron-flow current If, in addition to
decreasing Zf.

The arguments above suggest that collisions also move
the current-density centroid closer to the anode. Such
movement decreases the effective impedance of a colli-
sional MITL, as seen by the MITL’s driving circuit.
Consequently, for a given MITL configuration, at a given
value of Va, we expect collisional broadening to increase
the MITL anode current Ia above the value obtained in the
absence of collisions.

These predictions are quantified in Sec. VI using the
results developed above, in Sec. IV, and in Sec. V.

IV. COLLISIONAL-MITL OPERATION IN THE
MINIMALLY INSULATED AND WELL-INSULTED

LIMITS

A. Collisional-MITL operation when Ia � Ia;min

In this section we present an estimate of the minimum
anode current required to establish magnetic insulation in a
1D planar collisional MITL. Strictly speaking, the flow
electrons of a collisional MITL are not insulated, since the
electrons drift across the magnetic field until they strike the
anode. In this case, we define insulation to be achieved
when the pressure balance given by Eq. (50) is approxi-
mately satisfied, so that Eq. (58) is valid.

The minimum anode current is calculated using
Eq. (58). The calculation is performed by finding, for given
values of Va and Z0, the value of � that minimizes Ia. This
is also the value of � that maximizes h���. We find
numerically from Eq. (58) that the minimum anode current
is approximately given by

 Ia;min � 1:78
Va
Z0
: (64)

Since h��� is independent of Va, the constant on the right-
hand side of Eq. (64) is also independent of Va.

The anode current is a minimum (Ia � Ia;min) when

 �min �
Ia
Ik

��������min
� 3:35: (65)

(The quantity �min is the value of � at which Ia � Ia;min.)
When Ia � Ia;min, the flow-electron current If is given by

 If;min � 0:701Ia;min � 1:25
Va
Z0
: (66)

According to Eqs. (63) and (65), the flow impedance of a
collisional MITL when Ia � Ia;min is approximately

 Zf;min � 0:588Z0: (67)

We note that a flow impedance on the order of Z0=2 is
observed in the MITL experiments described by Cuneo and
co-workers [43]. However, as demonstrated by Rosenthal
[41], this low impedance is caused by electrons emitted
from the multiple cathodes of the positive-polarity MITL-
voltage adder used in the experiments, and is not due to
collisional effects.

B. Collisional-MITL operation when Ia 	 Ia;min

When the anode current Ia is significantly in excess of
the minimum required to establish magnetic insulation
(i.e., when Ia 	 Ia;min), it can be shown from Eqs. (58)
and (59) that

 �! 1: (68)

In this limit we obtain from Eqs. (62) and (63) the follow-
ing expression:
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 Va �
2
3Z0�I2

a � I2
k�

1=2: (69)

Equation (69) is an approximate relation between Va, Z0,
Ia, and Ik for a steady-state collisional MITL in the well-
insulated limit. When expressed in terms of If, Va, Z0, and
Ia, Eq. (69) can be written as

 If �
9V2

a

8IaZ2
0

: (70)

As indicated by Eqs. (62) and (69), in the limit �! 1,

 Zf �
2Z0

3
: (71)

Consequently, according to Eqs. (67) and (71), the flow
impedance of a well-insulated collisional MITL (i.e., when
Ia 	 Ia;min) is �13% greater than it is when Ia � Ia;min.

V. COLLISIONLESS-MITL MODELS

As suggested by Eq. (34), we expect that in the absence
of collisions (i.e., when� � 0 and � � �0), the flux nvx of
flow electrons equals 0 for all values of x inside the
electron sheath:

 nvx � 0: (72)

In this section, we briefly review three analytic steady-state
collisionless MITL models that are developed in
Refs. [8,9,27,30]. In addition, we describe a fourth model
that makes assumptions that differ slightly from those
made previously. (We note that the four models predict
somewhat different values for the collisionless sheath
thickness �0.)

The Creedon model, which is reviewed below, assumes
laminar flow, and hence Eq. (72). The other three models
assume nonlaminar electron flow, and hence implicitly
assume that at each point in the sheath there is a distribu-
tion of electron velocities. Nevertheless, these models also,
in effect, assume Eq. (72), since these models assume that
at each point in the sheath, the net value of nvx � 0.

The four models are valid in 1D planar geometry. The
Creedon model [8,9] is also valid for a MITL with coaxial
electrodes in cylindrical geometry, when the inner elec-
trode is at a negative potential with respect to the outer.

A. Creedon

The 1D steady-state MITL model developed by Creedon
in Refs. [8,9] is often referred to in the literature as
the parapotential MITL model. This model assumes
Eqs. (37), (38), and (72)—i.e., that the flow electrons
move in a laminar fashion at the E
B drift velocity.
References [8,9] also implicitly assume Eqs. (41)–(50)
and (52) (when a planar MITL is assumed). In addition,
Refs. [8,9] assume that the flow electrons are born at the
cathode, and that the canonical momentum and energy of
the electrons are constant throughout the sheath; i.e., that

for 0 � x � �0,

 �mvz � �e
Z x

0
By�u�du; (73)

 ��� 1�mc2 � �e
Z x

0
Ex�u�du: (74)

Under these assumptions Creedon [8,9] finds that
 

Va � Z0�I
2
a � I

2
k�

1=2 �
mc2

e
f��2 � 1�1=2


 ln��� ��2 � 1�1=2� � �1� ��g; (75)

where � is defined by Eq. (60).
As mentioned above, Eq. (75) is also valid for a MITL

with coaxial electrodes, when the inner electrode is nega-
tive. In this case, the geometric MITL impedance is given
by Z0 � ��0=4�2"0�

1=2 ln�ra=rk�, where ra and rk are the
radii of the outer and inner electrodes, respectively.

We note that Ron, Mondelli, and Rostoker [7] develop a
semianalytic 1D collisionless MITL model that does not
assume laminar flow. Instead of Eqs. (37) and (38), Ref. [7]
assumes that the electrons are born at the cathode, follow
cycloidal-like orbits in the sheath, and have constant ca-
nonical momentum and energy throughout. (Reference [7]
does implicitly assume Eq. (72); i.e., that at every x be-
tween 0 and �0, the net value of nvx � 0. However, at each
value of x, half the electrons have a positive nvx, and the
other half a negative nvx.g Although these electron orbits
are considerably different than the laminar orbits assumed
by Creedon, the two models give similar expressions for
Va, as discussed in Ref. [9].

B. Mendel, Seidel, and Rosenthal

The 1D steady-state planar-MITL model developed by
Mendel, Seidel, and Rosenthal in Ref. [27] is similar to the
model developed by Creedon [8,9], since both use
Eqs. (41)–(48), (50), (52), and (72). However, Ref. [27]
does not assume that the electron flow is laminar; i.e.,
Ref. [27] does not require Eqs. (37), (38), and (49) to be
valid. Instead, Ref. [27] considers more general flows, and
obtains an expression for Va in terms of form factors F and
G (defined in [27]). The expression obtained for Va (in
terms of Ia, Ik, and Z0) is insensitive to the precise value of
F, and for many flows of interest, G� 1 [27]. When F �
G � 1 (as is assumed in Ref. [30]), the expression for Va
becomes

 Va � Z0�I2
a � I2

k�
1=2 �

mc2

e
��� 1�f�2��� 1��1=2 � 1g:

(76)

C. Miller and Mendel

In Appendix A of Ref. [30], Miller and Mendel develop
an expression for Va that is simpler than either Eq. (75) or
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(76). Reference [30] uses nonrelativistic arguments to
estimate that, near the cathode, the electron number density
n is given by

 n �
"0B

2
k

m
: (77)

Reference [30] then makes the ansatz that the density is
constant throughout the sheath at the value given by
Eq. (77). Combining Eq. (41)–(48), (50), (52), (72), and
(77) gives

 Va � Z0�I2
a � I2

k�
1=2 �

mc2

2e
��2 � 1�; (78)

which is the expression presented in Appendix A of [30].

D. Constant-electron-density model

Although Eq. (78) is considerably simpler than either
Eq. (75) or (76), Eq. (78) requires the assumption that the
electron density throughout the sheath is given by Eq. (77).
We find that an expression similar to Eq. (78) can be
obtained without making this assumption.

Following Refs. [30,32], we assume that the electron
number density in the sheath is constant. Following
[8,9,32], we assume that the electrons at the sheath edge
(x � �0) move at the E
 B drift velocity:

 vz��0� �
Ex��0�

By��0�
: (79)

Assuming that the canonical energy of the electrons at the
sheath edge is the same as at the cathode [27], the relativ-
istic factor � of the electrons at the edge is given by

 ���0� �

�
1�

�
vz��0�

c

�
2
�
�1=2

� 1�
eV�0

mc2 : (80)

Combining Eqs. (41)–(48), (50), (52), (72), (79), and (80),
we obtain the following relation:

 Va � Z0�I
2
a � I

2
k�

1=2 �
mc2

e
��� 1�: (81)

This relation can also be obtained from the model devel-
oped in Ref. [27] (and reviewed in Sec. V B) if one assumes
that the form factors F and G defined in [27] are given by
F � 1 and G � �1� �eV�0

=2mc2���1=2.
Although Eqs. (78) and (81) are similar, the former is

easier to work with analytically, since Eq. (78) can be used
to give Ia as a 3rd-order polynomial in �2, whereas
Eq. (81) gives Ia as a 4th-order polynomial in �.

Lawconnell and Neri [32] also develop a 1D steady-state
MITL model assuming a constant-electron-density profile.
(In addition, these authors develop a model that assumes a
quadratic density profile [32].) The semianalytic models of
Ref. [32] assume laminar flow [Eqs. (37) and (72)], and are
developed for MITLs with coaxial electrodes.

VI. COMPARISON OF THE COLLISIONAL AND
COLLISIONLESS MODELS

A. Ia � Ia;min

The 1D planar collisional-MITL model developed in
Secs. III and IV predicts that the minimum anode current
Ia;min required to satisfy Eq. (58) is given by Eq. (64). To
calculate Ia;min for the four collisionless models repre-
sented by Eqs. (75), (76), (78), and (81), we express each
of these equations in the following form:

 IaZ0 � H�Va; ��; (82)

where H�Va; �� is a function that differs for each of the
four models. For each model, we use Eq. (82) to find
numerically the minimum value of the product IaZ0 as a
function of Va.

In Fig. 2, we plot Ia;minZ0=Va as a function of Va for the
collisional model and the four collisionless models, assum-
ing 1D planar-MITL geometry. Figure 2 demonstrates that
in spite of the substantially different physical assumptions
made by the four collisionless models, all predict a similar
dependence of Ia;minZ0=Va on Va. This can be explained as
follows [27,30]: The first term on the right-hand side of
each of Eqs. (75), (76), (78), and (81) is identical to the first
term on the right-hand side of Eq. (52). The second term on
the right-hand side of each of Eqs. (75), (76), (78), and (81)
is different for each of the four models, since the models

collisional model [Eq. (58)]
Creedon [Eq. (75)]
MSR [Eq. (76)]
MM [Eq. (78)]
constant n model [Eq. (81)]

0
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m
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FIG. 2. (Color) The ratio Ia;minZ0=Va as a function of Va for a
1D planar MITL, plotted for 50 kV � Va � 50 MV. The quan-
tity Ia;min is the minimum anode current required to establish
magnetic insulation. The ratio is plotted for the collisional model
[Eq. (58)] and four collisionless models [Eqs. (75), (76), (78),
and (81)]. Equation (75) is obtained by Creedon [8,9], Eq. (76)
by Mendel, Seidel, and Rosenthal [27], and Eq. (78) by Miller
and Mendel [30]. [Eq. (81) is obtained in the present article.]
When Va * 1 MV, experimentally observed values of Ia;min are
expected to fall between the collisional and collisionless limits.
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give different expressions for the space-charge term [the
second term on the right-hand side of Eq. (52)]. Never-
theless, the four models predict a similar dependence of
Ia;minZ0=Va on Va since, as first observed by Refs. [27,30],
the space-charge term is, for the collisionless models,
typically much less than the first term on the right-hand
side of Eq. (52).

As indicated by Fig. 2, when Va * 1 MV, the collisional
model predicts that more anode current is required to
establish magnetic insulation than is required by the four
collisionless models.

When Va < 1 MV, the collisional model predicts that
less current is required; however, this prediction is not
meaningful. We expect that in any MITL, collisional ef-
fects can be neglected at the location in the MITL when the
flow electrons are first launched, and that a steady-state
collisional profile can only develop downstream. Hence
before collisional effects become significant, a MITL is
effectively collisionless, and the current required to estab-
lish insulation at that point is that calculated by the colli-
sionless models. Consequently the minimum value of Ia
required to establish insulation must always be greater than
or equal to that predicted by the collisionless models.
Hence as indicated by Fig. 2, when Ia � Ia;min, Eq. (58)
can only be valid when Va * 1 MV.

Figure 3 plots the quantity If;minZ0=Va as a function of
Va for the collisional model and four collisionless models.

Figure 4 plots Zf;min=Z0 as a function of Va. All five plots
in each of Figs. 3 and 4 assume Ia � Ia;min, where Ia;min is
the minimum anode current required to establish magnetic
insulation, as determined by each model.

As indicated by Fig. 3, the normalized flow current
If;minZ0=Va predicted by the collisional model is greater
than that predicted by the four collisionless models. As
indicated by Fig. 4, the normalized flow impedance
Zf;min=Z0 is less (at high voltages). For the reasons dis-
cussed above, Figs. 3 and 4 are meaningful only when
Va * 1 MV.

B. Ia 	 Ia;min

For some applications, routine and reliable MITL op-
eration requires that the MITL be well insulated during
most of the power pulse [45–47]. We define a MITL to be
well insulated when Ia 	 Ia;min. It can be shown that, for
the collisional and collisionless models, when Ia 	 Ia;min

then �! 1; the converse is also true.
Assuming the 1D planar collisional model developed in

Secs. III and IV, and that �! 1, the electron-flow current
If and flow impedance Zf are given by Eqs. (70) and (71),
respectively.

For all four of the collisionless models described in
Sec. V, we find that when �! 1,

 Va � Z0�I
2
a � I

2
k�

1=2: (83)

collisional model [Eq. (58)]
Creedon [Eq. (75)]
MSR [Eq. (76)]
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FIG. 3. (Color) The ratio If;minZ0=Va as a function of Va for a
1D planar MITL, plotted for 50 kV � Va � 50 MV. The quan-
tity If;min is the electron-flow current when Ia � Ia;min. The ratio
is plotted for the collisional model [Eq. (58)] and four collision-
less models [Eqs. (75), (76), (78), and (81)]. Equation (75) is
obtained by Creedon [8,9], Eq. (76) by Mendel, Seidel, and
Rosenthal [27], and Eq. (78) by Miller and Mendel [30].
[Eq. (81) is obtained in the present article.] When Va *

1 MV, experimentally observed values of If;min are expected
to fall between the collisional and collisionless limits.

collisional model [Eq. (58)]
Creedon [Eq. (75)]
MSR [Eq. (76)]
MM [Eq. (78)]
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FIG. 4. (Color) The ratio Zf;min=Z0 as a function of Va for a 1D
planar MITL, plotted for 50 kV � Va � 50 MV. The quantity
Zf;min is the flow impedance when Ia � Ia;min. The ratio is
plotted for the collisional model [Eq. (58)] and four collisionless
models [Eqs. (75), (76), (78), and (81)]. Equation (75) is ob-
tained by Creedon [8,9], Eq. (76) by Mendel, Seidel, and
Rosenthal [27], and Eq. (78) by Miller and Mendel [30].
[Eq. (81) is obtained in the present article.] When Va *

1 MV, experimentally observed values of Zf;min are expected
to fall between the collisional and collisionless limits.

W. A. STYGAR et al. Phys. Rev. ST Accel. Beams 9, 090401 (2006)

090401-12



Hence, in this limit, the electron-flow current If and the
flow impedance Zf can be approximated as

 If �
V2
a

2IaZ
2
0

; (84)

 Zf � Z0: (85)

According to Eqs. (70) and (84), at given values of Va,
Ia, and Z0, the electron-flow current If of a well-insulated
collisional planar MITL is a factor of 9=4 greater than it is
when the MITL is collisionless. According to Eqs. (71) and
(85), the flow impedance of a well-insulated collisional
MITL is 33% less. These comparisons are summarized in
Table I.

We note that Eqs. (70), (71), (84), and (85) are valid for
arbitrary values of Va, Z0, and Ia, requiring only that Ia 	
Ia;min (i.e., that �! 1).

VII. COMPARISON OF THE COLLISIONAL AND
COLLISIONLESS MODELS WITH EXPERIMENT

The collisional model [Eqs. (58) and (B1)] is valid only
when the drift of electrons toward the anode has had
sufficient time to broaden the electron sheath until a
steady-state configuration has been achieved. The colli-
sionless models [Eqs. (75), (76), (78), and (81)] are valid
in the opposite limit; i.e., when collisional broadening of
the sheath can be neglected. Consequently, we expect that
experimentally observed electrical parameters of a real
MITL will fall between the values predicted in these two
limits.

A definitive comparison of theory with experiment may
not be presently possible because of the limited data avail-
able in the literature on long MITLs with small AK gaps;
i.e., in the parameter regime most likely to be significantly
affected by collisions. In addition, as is well known, mea-
surements of MITL voltages and currents at magnitudes of
interest are inherently difficult to perform with great accu-

racy. Nevertheless, in this section we compare available
data with predictions. The comparison suggests that colli-
sions can, in fact, have non-negligible ( * 10%) effects on
the electrical performance of physically relevant MITLs.

The data and corresponding predictions are summarized
in Table II. Most of the measurements summarized in the
table were performed on self-limited MITLs. We define a
MITL to be self-limited when it is insulated only by the
current flowing across the AK gap at the leading edge of
the MITL’s power pulse. We follow conventional practice
[42,44] and assume that when a MITL is self-limited, Ia �
Ia;min; i.e., that the anode current of a self-limited MITL is
the minimum required to establish magnetic insulation.
Hence we also assume that when a MITL is self-limited,
If � If;min and Zf � Zf;min. Consequently, the compari-
sons in Table II between the self-limited-MITL results and
corresponding predictions are valid only to the extent that
the minimum-current assumption is valid. (Some authors
have speculated that a self-limited MITL operates not at
the minimum anode current, but instead at the current that
is obtained in a minimum-energy calculation [12,20]. We
discuss such a calculation in Appendix A.)

For all of the self-limited experiments summarized in
Table II, we list measured values of Va and Z0 in the first
column, and measured values of Ia;min, If;min, and Zf;min in
the second. To compare the self-limited measurements
with theory, we make the arbitrary and simplifying as-
sumption that the measured values of Va and Z0 are given
quantities, and use these to predict values of Ia;min, If;min,
and Zf;min, as determined by the collisional and collision-
less models.

One set of measurements listed in Table II was per-
formed on a MITL that was not self-limited. In such a
case, the total anode current Ia is determined, in part, by
the load. To compare these measurements with theory, we
make the arbitrary and simplifying assumption that the
measured values of Va, Z0, and Ia are given quantities,
and use these to predict values of If and Zf.

Most of the measurements summarized in the table were
performed on MITLs with coaxial cylindrical electrodes
(with the inner conductor at a negative potential); one set of
measurements was obtained in an approximately planar
geometry. For the coaxial-geometry experiments, the pre-
dictions of Eq. (B1) are given in the third column of
Table II; for the single experiment conducted in planar
geometry, the collisional predictions of Eq. (58) are given.
The collisionless predictions given in the fourth column are
those of the parapotential (Creedon) model [Eq. (75)],
which appears to be the collisionless model most often
quoted in the literature [42,44]. Equation (75) is valid for
planar electrodes, as well as for coaxial electrodes when
the inner electrode is at a negative potential with respect to
the outer.

The data presented in Table II that were obtained by
Bernstein and Smith [6] were taken on a 4.6-m-long coax-

TABLE I. Theoretical expressions for the electron-flow cur-
rent If and flow impedance Zf of a steady-state 1D planar MITL
in the well-insulated limit (i.e., when Ia 	 Ia;min). The colli-
sional predictions are given by Eqs. (70) and (71); the collision-
less predictions by Eqs. (84) and (85). The collisional predictions
are also valid to first order for coaxial MITLs when Z0 & 40 �;
the collisionless predictions are valid for coaxial MITLs with
arbitrary impedance. We expect that experimentally observed
values of If and Zf will fall between the idealized collisional and
collisionless values.

MITL
parameter

Prediction of the
collisional model
when Ia 	 Ia;min

Prediction of the
collisionless models

when Ia 	 Ia;min

If 9V2
a=8IaZ

2
0 V2

a=2IaZ
2
0

Zf 2Z0=3 Z0
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ial MITL with Z0 � 47 � and a 34-cm AK gap. At 14 MV,
the MITL’s self-limited anode current Ia;min � 400 kA
(i.e., the self-limited impedance Va=Ia;min � 35 �). As
indicated by Table II, the measured value of Ia;min falls
between the collisional and collisionless predictions.

The measurements by Bergeron, Poukey, Di Capua, and
Pellinen [13] listed in Table II were performed on a 10-m-
long coaxial MITL with Z0 � 41:6 � and a 2.86-cm AK
gap. These authors find that at an axial distance of 7.5 m
from the point at which the power pulse is launched into
the MITL, the measured values of Va, Ia;min, If;min, and

Zf;min are approximately 1.5 MV, 64 kA, 37 kA, and 26 �,
respectively [13]. Assuming that the measured values of Va
and Z0 are correct, we compare in Table II the measure-
ments of Ia;min, If;min, and Zf;min with the predictions of the
collisional and collisionless models.

Shope and colleagues [15] describe measurements
performed on a 0.5-m-long coaxial MITL with Z0 �
11 � and a 1.3-cm AK gap. When Va is 1.3 MV, the
measured value of Ia;minZ0=Va is �1:9. [Please see
Fig. 4(a) of [15]. This figure actually plots the ratio
Va=Ia;minZ0 as a function of Va.] The measured value of

TABLE II. Comparison of measurements with theoretical predictions. The steady-state collisional-MITL model [Eqs. (58) and (B1)]
is valid only when the drift of electrons toward the anode has had sufficient time to broaden the electron sheath until a steady-state
configuration has been achieved. The parapotential collisionless model [Eq. (75)], developed by Creedon [8,9], is valid in the opposite
limit; i.e., when collisional broadening of the sheath can be neglected. We expect experimentally observed MITL parameters to fall
between the values predicted in these two limits. For the planar-MITL experiment listed in the first column, we present in the third
column the predictions of Eq. (58). For the coaxial-MITL experiments, we present the predictions of Eq. (B1). We note that all the
discrepancies in this table between the measurements and collisionless predictions can be accounted for by experimental uncertainties.
However, all the discrepancies are in a direction that would be consistent with the existence of collisions.

Predictions of the
collisional model

Predictions of the
parapotential collisionless model

Reference Measurements [Eq. (58) or (B1)] [Eq. (75)]

Bernstein and Smith [6] Ia;min � 400 kA Ia;min � 590 kA Ia;min � 350 kA
(Va � 14 MV,
Z0 � 47 �,
coaxial, self-limited)

Bergeron, Poukey, Ia;min � 64 kA Ia;min � 70 kA Ia;min � 57 kA
Di Capua, and Pellinen [13] If;min � 37 kA If;min � 48 kA If;min � 22 kA
(Va � 1:5 MV, Zf;min � 26 � Zf;min � 23 � Zf;min � 33 �
Z0 � 41:6 �,
coaxial, self-limited)

Shope and colleagues [15] Ia;minZ0=Va � 1:9 Ia;minZ0=Va � 1:82 Ia;minZ0=Va � 1:64
(Va � 1:3 MV,
Z0 � 11 �,
coaxial, self-limited)

Shope and colleagues [15] Ia;minZ0=Va � 1:56 Ia;minZ0=Va � 2:46 Ia;minZ0=Va � 1:37–1:21
(Va � 3:5–10 MV,
Z0 � 139 �,
coaxial, self-limited)

Di Capua and Pellinen [17] Ia;min � 71 kA Ia;min � 84 kA Ia;min � 66 kA
(Va � 1:8 MV, If;min � 41 kA If;min � 57 kA If;min � 27 kA
Z0 � 41:6 �, Zf;min � 28 � Zf;min � 23 � Zf;min � 34 �
coaxial, self-limited)

Sanford and colleagues [40] If � 11 kA If � 14 kA If � 6 kA
(Va � 0:85 MV, Zf � 20 � Zf � 19 � Zf � 27 �
Z0 � 28:3 �,
Ia � 84 kA,
planar, not self-limited)

Sanford and colleagues [42,44] Ia;min � 655 kA Ia;min � 1038 kA Ia;min � 621 kA
(Va � 18:4 MV, If;min � 470 kA If;min � 710 kA If;min � 406 kA
Z0 � 34 �, Zf;min � 29 � Zf;min � 19 � Zf;min � 32 �
coaxial, self-limited)
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Ia;minZ0=Va is somewhat higher than the prediction of the
collisional model.

Shope and colleagues also describe measurements per-
formed on a 1.37-m-long coaxial MITL with Z0 � 139 �
and a 68.5-cm AK gap [15]. When Va is varied between 3.5
and 10 MV, the measured values of Ia;minZ0=Va remain
roughly constant at �1:56. [Please see Fig. 4(b) of [15].
This figure actually plots the ratio Va=Ia;minZ0 as a function
of Va.] As indicated in Table II, the measurements fall
between the predictions of the collisional and collisionless
models.

The measurements by Di Capua and Pellinen [17] were
performed on a 10-m-long coaxial MITL with Z0 �
41:6 � and a 2.86-cm AK gap, which is the same MITL
described in [13]. At an axial distance of 7.5 m from the
point at which the power pulse is launched into the MITL,
the estimated value of Va is 1.8 MV, and the measured
values of Ia;min and Ik;min are 71 and 30 kA, respectively.
(Please see Fig. 6 of [17].) Hence If;min and Zf;min are
approximately 41 kA and 28 �. Assuming that the mea-
sured values of Va and Z0 are correct, the measured values
of Ia;min, If;min and Zf;min fall between the predictions of the
collisional and collisionless models.

In Ref. [40], Sanford and co-workers report measure-
ments performed on an approximately planar MITL with
Z0 � 28:3 � and an AK gap of �2:2 cm. At peak voltage
(Va � 0:85 MV) this MITL is not self-limited (because of
the load), and the measured values of Ia, If, and Zf are
84 kA, 11 kA, and 20 �, respectively. Assuming that the
measured values of Va, Z0, and Ia are given quantities, we
compare in Table II the measured values of If and Zf to the
collisional and collisionless predictions.

References [42,44] describe experiments performed by
Sanford and colleagues on the HERMES-III accelerator.
The coaxial HERMES-III MITL has a vacuum impedance
of Z0 � 34 � and a 14.1-cm AK gap. When the measured
MITL voltage Va is 18.4 MVand the MITL is self-limited,
the measured values of Ia;min, If;min and Zf;min are 655 kA,
470 kA, and 29 �, respectively [42,44]. (Reference [42]
presents a detailed discussion of the HERMES-III voltage
measurements. This article concludes that the peak voltage
for the experiments in question is 18.7 MV, which is an
average of the 5 measurements listed in Table I of
Ref. [42]. Since one of the 5 measurements uses the
collisionless parapotential MITL model, we exclude this
measurement, and obtain from the remaining 4 measure-
ments a value of 18.4 MV.) Assuming that the measured
values of Va and Z0 are correct, we find that the measured
values of Ia;min, If;min and Zf;min fall between the values
predicted by the collisional and collisionless models, as
indicated in Table II.

Other evidence of collisional broadening of the electron
sheath exists in the HERMES-III data, as indicated by
Fig. 8 of Ref. [44]. This figure suggests that measured
spatial distributions of the flow electrons are significantly

broader than predicted by particle-in-cell simulations.
In addition, Ref. [44] observes that 2D particle-in-cell
simulations of the experiments show evidence of
electromagnetic-field fluctuations, which increase the en-
ergy of some of the electrons to 24 MV, significantly above
the nominal MITL voltage.

We note that the experimental results and theoretical
predictions listed in Table II have not been corrected for
the decrease in the MITL AK gap due to the expansion of
the cathode plasma. Assuming this plasma expands at
2 cm=�s, and that it is a perfect conductor, we find that
the plasma does not significantly affect the results pre-
sented in Table II, due to the large gaps and short pulse
lengths of the experiments. The most significant correction
would be to the 1.3-MV measurements reported by Shope
and colleagues [15], since these were performed with a 1.3-
cm AK gap. Assuming that the cathode plasma had ex-
panded for 40 ns by the time these measurements were
made, the MITL impedance Z0 would have been reduced
from 10.94 to 10:21 �, which would have reduced the
measured value of Ia;minZ0=Va from 1.9 to 1.77. The cor-
responding collisional-model prediction for this experi-
ment would change by less than 1%, since the theoretical
value of Ia;minZ0=Va is an insensitive function of Z0. The
corresponding collisionless-model prediction for the ratio
Ia;minZ0=Va is independent of Z0.

We caution that the discrepancies summarized in
Table II between the measurements and collisionless-
model predictions can be accounted for by the usual ex-
perimental uncertainties involved in measuring MITL volt-
ages and currents. However, all the discrepancies appear to
be in a direction that would be consistent with the existence
of collisions.

We also caution that the measurements listed in Table II
can be meaningfully compared to the theoretical predic-
tions only if most of the flow electrons in the experiments
were emitted from the MITL cathode, and not from other
vacuum-section components, such as the insulator surfaces
of the MITL’s vacuum interface.

VIII. DISCUSSION

The principal prediction of this article is that the mea-
sured electrical parameters of a MITL will fall between the
values predicted by the idealized collisional and collision-
less models. We also predict that, when all other quantities
are held constant, collisional effects will increase as the
length of a MITL is increased (i.e., as the electrons are
given more time to drift across the AK gap), or as the AK
gap is decreased (as the time required to drift across the gap
is decreased).

As discussed in Secs. II B 2 and VII, several measure-
ments suggest that collisional effects can, in fact, have non-
negligible effects on the electrical performance of physi-
cally relevant MITLs. Hence collisions may have to be
considered in the design of pulsed-power accelerators that
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use MITLs to deliver electromagnetic power and energy to
a load.

We note that collisions may be relatively less trouble-
some for applications in which the MITL delivers power
and energy to an electron-beam-diode load. In this case,
even if the flow electrons drift across most of the MITL gap
by the time the power pulse arrives at the diode, the flow
electrons may simply join the electrons generated at the
diode, without adversely affecting the electrical perform-
ance of the MITL-diode system. However, even in this case
collisional effects would alter the electrical characteristics
of the MITL.

When a MITL delivers power to other types of loads,
such as a z pinch [45–47], then when collisions signifi-
cantly increase the current flowing in the electron sheath,
less bound current is carried by the MITL’s cathode. In this
case, less bound current (i.e., less than predicted by the
collisionless models) is available to drive the load.

For either type of application, the collisional model
developed in Sec. III, Sec. IV, and Appendix B provides
upper bounds on the effects collisions can have on the
electrical performance of a MITL.
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APPENDIX A: MINIMUM-ENERGY OPERATING
POINT

As discussed in Secs. I, IVA, and VI A, we assume in
this article that, when a MITL is self-limited, the MITL
anode current Ia � Ia;min, where Ia;min is the minimum
required to establish magnetic insulation.

Several workers have speculated that a self-limited
MITL may operate not at Ia;min, but instead at the anode
current that is obtained when a nominal value of the total
MITL energy per unit length W is minimized [12,20]. This
energy is assumed to be the sum of the following compo-

nents: the energy of the steady-state electric field, the
steady-state magnetic field, and the laminar component
of the flow-electron velocities. This sum can be expressed
as follows [12,20,31]:

 W � w
Z g

0

�
B2
z

2�0
�
"0E

2
x

2
� nmc2��� 1�

�
dx: (A1)

The quantities Va, w, and g are held constant while �
[Eq. (60)] is varied to determine the anode current at which
W reaches its minimum value.

We have calculated the minimum-energy operating
point of a collisional MITL using the method described
above, and find that the anode current and flow impedance
at minimum total energy are, to first order, the same as the
values obtained at minimum anode current. This agree-
ment, which is similar to the agreement demonstrated in
Refs. [12,20,31] for collisionless MITL models, is ex-
plained by Slutz in Ref. [31].

However, it is not clear that the correct energy to
minimize is the total energy, as defined above, instead of
a suitably defined potential energy, as is normally done
for a stability analysis [50,54]. It is also not clear
whether the minimum-energy calculation described
above is consistent with other stability analyses that
have been performed for MITL-flow electrons
[16,21,24,28,29,33,49,51,52,55,56,63,64]. In addition, it
is not clear what dissipative mechanism is involved when
a MITL relaxes from a higher total-energy state to a lower
one. Furthermore, the minimum-energy calculation de-
scribed above neglects any change in the nonlaminar com-
ponent of the flow-electron velocities as a MITL relaxes to
a lower-energy state. The calculation also neglects any
change in the energy of fluctuating electrostatic and elec-
tromagnetic fields. It is also not clear that the voltage of a
propagating power pulse in a self-limited MITL stays
constant as the pulse relaxes to a lower-energy state, while
the pulse propagates along the line. In fact, for the experi-
ments described in Ref. [11], the MITL voltage is observed
to decrease linearly with the distance that the pulse has
propagated, as indicated by Fig. 2 of [11].

A rigorous proof that a self-limited MITL operates at
minimum total energy has not yet been presented in the
literature. (In Ref. [20], Wang and Di Capua mention that
such a proof was being derived, but apparently it has not
yet been published.) It is important to note that a proof that
a self-limited MITL operates at minimum anode current
has also has not yet been published. The only motivations
for the use of either assumption appear to be that they are in
approximate agreement with other, and with experiment.
In other words, there presently appears to be no theoretical
justification for either assumption.

A resolution of this issue is outside the scope of the
present article. Instead, we simply follow previous work
[42,44], and assume in this article that when a MITL is
self-limited, the MITL anode current is, at given values of
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Va and Z0, the minimum required to establish magnetic
insulation.

APPENDIX B: COLLISIONAL MITL WITH
COAXIAL ELECTRODES

The collisional-MITL model developed in Secs. III and
IV assumes that the MITL has planar electrodes in a
parallel-plate geometry. The model also assumes that the
MITL is 1D; i.e., that the AK gap is small compared to the
width of the electrodes. Under these assumptions, the
general relation between Va, Ia, Ik, and Z0 is given by
Eq. (58).

When we assume that the MITL consists of coaxial
cylindrical electrodes, and that the inner electrode is at a
negative potential with respect to the outer, we obtain
instead of Eq. (58) the following relation:

 Va �
c�0rk
�g

Ia
��� 1�1=2

�
�h1 � h2 � h3�: (B1)

The quantity rk is the radius of the inner (cathode) con-
ductor; the terms h1, h2, and h3 are defined as follows:

 h1 �
�g=rk� � �� 1

��� 1�1=2
sinh�1

�
�� 1

2

�
1=2
; (B2)

 h2 � �

�
2g
rk
� �� 1

�
1=2
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�
�2g=rk� � �� 1

�� 1

�
1=2
;

(B3)

 h3 �
g��� 1�1=2

2rk
: (B4)

The geometric impedance of the MITL is given by

 Z0 �

�
�0

4�2"0

�
1=2

ln
�
rk � g
rk

�
: (B5)

Equations (B1)–(B5) give the general relation between
Va, Ia, Ik, and Z0 for a steady-state collisional MITL with
coaxial electrodes, assuming that the inner conductor is
at a negative potential with respect to the outer. Equa-
tions (B1)–(B4) are given explicitly in terms of Va, Ia,
and Ik; these equations are given implicitly in terms of Z0,
since these equations are more naturally expressed in terms
of g and rk.

Equation (B3) is, of course, applicable only when

 

�
2g
rk
� �� 1

�
� 0: (B6)

When instead

 

�
2g
rk
� �� 1

�
� 0; (B7)

then

 h2 �

�
�� 1�

2g
rk

�
1=2

tanh�1

�
�� 1� �2g=rk�

�� 1

�
1=2
:

(B8)

In planar geometry, since h��� [Eq. (59)] is independent
of Va and Z0, the constants on the right-hand sides of
Eqs. (64)–(67), (70), and (71) are also independent of Va
and Z0. In coaxial geometry, the sum h1 � h2 � h3 of
Eq. (B1) is independent of Va, but not Z0. Hence the
constants on the right-hand sides of Eqs. (64)–(67), (70),
and (71) are, for the coaxial case, functions of Z0.

When Z0 � 40 �, and when a MITL is minimally in-
sulated (Ia � Ia;min), we obtain instead of Eqs. (64)–(67)
the following relations:

 Ia;min � 1:94
Va
Z0
; (B9)

 �min �
Ia
Ik

��������min
� 3:13; (B10)

 If;min � 0:681Ia;min � 1:32
Va
Z0
; (B11)

 Zf;min � 0:543Z0: (B12)

The constants on the right-hand sides of Eqs. (B9)–(B12)
are within 9% of the constants of Eqs. (64)–(67). The
differences between the planer and coaxial relations de-
crease as Z0 is decreased from 40 �; the differences
become negligible as Z0 ! 0.

When Z0 � 40 �, and when a MITL is well insulated
(Ia 	 Ia;min), we obtain instead of Eqs. (70) and (71) the
following relations:

 If �
1:30V2

a

IaZ2
0

; (B13)

 Zf � 0:621Z0: (B14)

The constant on the right-hand side of Eq. (B13) is within
16% of the constant of Eq. (70); the constants of Eqs. (B14)
and (71) are within 7%. As before, the differences between
the planar and coaxial relations become negligible as Z0 !
0.

APPENDIX C: FORCE-BALANCE EQUATION FOR
A STEADY-STATE 3D MITL

According to Stratton [80], the total electric force on an
arbitrary steady-state 3D charge distribution inside a vol-
ume �, that is enclosed by the surface �, is given by

 �
Z

�
enEdv � "0

Z
�

�
�E � n�E�

E2

2
n
�
da: (C1)

In this expression dv is the differential volume element, n
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is the unit vector normal to the surface � at differential
surface element da, and E is the magnitude of E.

The total magnetic force on an arbitrary steady-state 3D
current distribution in a volume � enclosed by surface � is
given by [80]

 

Z
�

j
 Bdv �
1

�0

Z
�

�
�B � n�B�

B2

2
n
�
da; (C2)

where j is the current density and B is the magnitude of B.
Assuming that the only significant forces on the flow-

electron sheath in a 3D MITL are the electric and magnetic
forces given by Eqs. (C1) and (C2), respectively, then a
necessary condition for a 3D MITL to be in a steady state is
that the total Lorentz force on the MITL’s electron sheath
equals zero. This condition can be expressed as

 

Z
�

�
�E � n�E�

E2

2
n
�
da � c2

Z
�

�
B2

2
n� �B � n�B

�
da:

(C3)

Equation (C3) is valid only when other forces on the flow
electrons [such as those due to collisions, the r�� � B�
force due to the intrinsic magnetic moment � of the
electron [77], and radiation damping [77] ] can be
neglected.

For the steady-state 1D planar MITL illustrated in Fig. 1,
Eq. (C3) reduces directly to Eq. (50) when Ek � Ex�0� �
0. Hence Eq. (50) is approximately valid for any steady-
state 1D planar MITL whenEk � Ex�0� � 0, and all forces
on the electrons other than the Lorentz force can be
neglected.
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