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An experimental study of crossing a third order uncoupled resonance was performed in a proof of
principle fixed field alternating gradient with various widths of resonance and crossing speed. We
observed that part of the beam is transported to a larger amplitude when the crossing speed is relatively
small. We derived an ‘‘adiabatic parameter’’ from a ‘‘particle trapping’’ model as a useful index for
avoiding beam deterioration due to resonance crossing. It relates the crossing speed to the resonance width
and the amount of nonlinear detuning. When the adiabatic parameter is more than 7, resonance crossing
will not affect a beam.

DOI: 10.1103/PhysRevSTAB.9.084001 PACS numbers: 29.20.�c, 29.27.�a, 41.75.�i

I. INTRODUCTION

Fixed field alternating gradient (FFAG) accelerators
have in principle constant betatron tunes when the geomet-
rical and optical scalings are realized with a scaled radial
dependence of magnetic field [1,2]. However, tunes may
change slightly because of fringing field and flux saturation
in iron poles. Even when strong resonances such as integer,
half integer, and intrinsic resonances are avoided, tunes
may cross higher order resonances. At the same time, if the
condition of constant tune is abandoned, different designs
of FFAG become possible. Such machines are called non-
scaling FFAG [3] in contrast to the original scaling FFAG.
Tunes then cross resonances, even strong resonances, re-
peatedly. For both types of scaling and nonscaling FFAG,
resonance crossing has become an important issue in beam
dynamics as we must avoid unacceptable deterioration in
beam quality.

For scaling type of FFAG, the nonlinear detuning, i.e.,
the dependence of tunes on the oscillation amplitudes, is
significant and its effect cannot be ignored. Since non-
scaling FFAG is basically composed of linear elements,
nonlinear detuning may not be as significant. However, the
fringing field and allowed poles will introduce nonlinear
components. Then nonlinear detuning may not be totally
negligible for resonance crossing.

In this paper, we study the resonance crossing with
dominant nonlinear detuning. In the past, there have been
several studies concerning resonance crossing [4–8].
Among them, Chao and Month have proposed a model of
‘‘particle trapping’’ [8] in which some particles of a beam
are trapped and subsequently transported to larger ampli-
tudes when a resonance is crossed in the presence of
dominant nonlinear detuning. There is one experimental
study that has been carried out at CERN [9] for a beam
extraction based on particle trapping. This work, however,
does not answer all the questions that we should know, for
instance, how large crossing speed should be and how
much driving term would be permitted. We have performed
a resonance crossing experiment, a single passage across
3�x � 7, with PoP (proof of principle) FFAG to clarify
these points.1

II. EXPERIMENT WITH POP FFAG

A. PoP FFAG and its remodeling

A resonance crossing of the one-dimensional uncoupled
third order resonance, 3�x � 7, has been studied with PoP
FFAG. Figure 1 is a picture of PoP FFAG and its main
parameters are summarized in Table I. PoP FFAG con-
structed at KEK [11] is the world’s first proton FFAG
accelerator. Through commissioning and subsequent ma-
chine studies [12], we have come to understand its basic
properties. Since peak beam current of PoP FFAG is a few
nA, the space charge detuning is totally negligible even*Present address: High Energy Accelerator Research

Organization, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801, Japan.
†Present address: Rutherford Appleton Laboratory, Chilton,
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1This study is part of the dissertation work by one of the
authors [10]. In this paper, we discuss only the crossing in one
direction. Crossing in the other direction is discussed in
Refs. [4,10].
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though the injection energy is very low. Beam dynamics in
this experiment can be treated as single particle dynamics.

PoP FFAG is designed as a scaling FFAG of which
magnetic field on the median plane is expressed by

 B � B0���
�
r
r0

�
k
; (1)

where B0��� is the field strength at the machine radius r �
r0, � is the azimuthal angle, and k is the field index or the
so-called k-value. Signs of B0��� are opposite in focusing
and defocusing magnets to realize alternating gradient. It is
obvious that such a field has nonlinear components. With
this field, a zero chromaticity condition is expected, and
tunes are almost constant from injection to the final energy
as shown in Table I.

Magnets of PoP FFAG were modified for this study so as
to let the horizontal tune cross the resonance, 3�x � 7. The
method used for this purpose is to insert iron plates be-
tween the upper and lower parts of magnet as shown in
Fig. 2. With iron plates of 4 mm thickness, the gap of
magnet becomes widened and the field is distorted from the
one given in Eq. (1). Iron plates were installed in all eight
magnets so that super periodicity is maintained.

The modification using iron plates works as intended.
Figure 3(A) shows betatron tunes in tune space before and
after the modification, and the beam energy dependence of
horizontal tune, calculated as well as measured, is given in
Fig. 3(B). The horizontal tune crosses the resonance of
3�x � 7 around 130 keV during acceleration. The machine
radius at the straight section corresponding to this energy is
about 0.89 m.

B. Crossing with rf acceleration

Since rf voltage is very high relative to the beam energy,
it is possible to examine a wide range of energy gain per
turn, resulting in a wide range of crossing speed. Magnetic
alloy (MA) cores having a broad band impedance and a
high permeability [13] are used for rf cavity to accelerate
protons. One notable feature of the machine is a fast
acceleration in less than 1 ms. From the known slope of
tune to the beam energy, the resonance crossing speed is
determined as the product of the slope and energy gain per
turn. The energy gain per turn was varied from 0.13 to
1:56 keV=turn in this study.

Because of synchrotron oscillation, it is not possible to
have the same crossing speed for all particles in a bunched
beam. For an unambiguous observation, the fluctuation of
crossing speed was controlled to be as small as possible.
Two methods were employed to reduce the fluctuation of
crossing speed.

(1) Make bunch length as short as possible.
(2) Inject the beam at the center of rf bucket.
The beam chopper was tuned to chop out a short bunch

of less than 100 ns. This length corresponds to the rf phase
of 20 degrees at injection energy. In order to inject a beam
into the center of rf bucket, a mountain view plot was used
for beam tuning. Figure 4 shows examples of mountain
view plot. During data acquisition, the mountain view plot
was regularly checked to confirm that the dipole oscillation
is acceptably small.

C. Driving term of resonance

A variable source of closed orbit distortion (COD) was
introduced to control the width of resonance. The reso-
nance of 3�x � 7 is not intrinsic with the super periodicity

TABLE I. Parameters of PoP FFAG. The ranges of values are
the variation from injection to the final energy.

Parameter Value

Number of cells 8
Lattice structure DFD triplet
k-value 2.5
Magnetic field 0.14–0.32 T(F), 0.04–0.13 T(D)
Beam energy 50–500 keV
Average radius 0.81–1.14 m
Betatron tune 2.22–2.16 (H), 1.26–1.23 (V)
Revolution frequency 0.61–1.40 MHz
rf voltage 2 kV
Acceleration period 1 ms

Radius

Iron plates

FIG. 2. Schematic view of inserted ion plates. The thickness of
the iron plate is 4 mm.

FIG. 1. (Color) A picture of PoP FFAG.
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of eight. As long as the super periodicity is retained, this
resonance will not be excited. In order to break the super
periodicity, two cells separated by three cells were selected
to be the source of COD. Coil currents of focusing magnets
of these two cells were set at different values from the
others. For the sake of convenience, we will call this
difference in coil currents ‘‘current error’’ throughout this
paper. The reason for using a pair of magnets as the error
source, instead of one, is to keep the angle of COD un-
changed at the injection septum. For beam injection, the
angle between COD and the injection septum should be at
its optimum value. The locations of two magnets are third
and sixth from injection septum. With this symmetrical
arrangement, the angle can be maintained at any magni-
tude of COD. The current errors of 0% (no current error),
�2%, and �3% were examined.

Another source of COD, which was not intended, is the
cores of rf cavity installed at the center of straight section.
They are penetrated by the fringe field of nearby magnets.
The effect of this error source will be discussed in
Sec. IVA 2.

D. Beam measurement

Two diagnostic devices were used in the study, a beam
position monitor (BPM) and a beam scraper. Figure 5 is a
schematic drawing of BPM electrodes. The BPM is avail-
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FIG. 4. Mountain view plots. (A) Off-timing injection. (B) On-timing injection. These plots are from injection tuning; injection
timing is out of tuning in (A), and after tuning in (B). The difference of injection timing between (A) and (B) is about 60 ns.
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FIG. 3. Measured betatron tunes. (A) Betatron tunes in tune space. (B) Horizontal tune vs beam energy (after modification). In (A),
FD ratio before the modification is the nominal value of 3.9 and FD ratio after the modification is 2.43. The FD ratio is simply a ratio of
focusing field to defocusing field. The errors of measured tunes are due to resolution of fast Fourier transform.
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FIG. 5. Geometry of beam position monitor electrodes.
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able not only to detect the position of beam centroid but to
measure the tunes, bunch signal, and beam intensity as
well. From the Fourier transform of signals from one
electrode, tune is obtained. The summation of signals
from either pair of electrodes corresponds to bunch signal
and the beam intensity can be found from the time integral
of bunch signals. The scraper was inserted horizontally
from the outer side of the ring and its radial position can
be changed to cover the orbit from injection to the final
energy.

Figure 6 depicts the basic idea of the measurement.
During acceleration, the orbit shifts toward the outer radius
and the beam is scraped gradually by the scraper placed at
an observation position. A decreasing curve of the beam
intensity contains information of the particle distribution in
beam emittance. The scraper position was changed to
measure beams before and after resonance crossing.

III. DATA ANALYSIS AND RESULTS

A. Correcting beam loss due to residual gas

Since the beam energy of PoP FFAG is low, beam loss
due to the residual gas is not negligible, especially near

injection energy. A correction of beam loss is necessary as
the beam loss continues during beam scraping. The domi-
nant process of beam loss is a charge transfer in which a
charged particle loses its charge and is lost through a single
process. Note that this process decreases the beam intensity
without affecting the beam emittance. Beam intensity
curves were corrected taking into account the effect of
charge transfer. Details of the correction are given in the
Appendix. Figure 7 shows an example of observed inten-
sity and the corresponding intensity normalized by the
correction.

B. Beam emittance

Beam emittance must be taken into account in this study
because we assume dominant nonlinear detuning. A dif-
ference in oscillation amplitude will result in different
single particle motion. In order to obtain beam emittance,
a normalized intensity as a function of the beam emittance
is needed. For this process, the length of orbit shift during
acceleration and the beta function are necessary. The rela-
tion between the beam energy and beam position is known
through previous machine studies [12]. As shown in Fig. 8,
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FIG. 6. Method of beam measurement. (A) Beam scraping. (B) Beam intensity during scraping.
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FIG. 7. Correction for beam loss due to residual gas. (A) Raw intensity data. (B) Normalized intensity after correction. For the
current error of �2%, the energy gain of 1:56 keV=turn, the scraper position of 948 mm.

AIBA, MACHIDA, MORI, AND OHNUMA Phys. Rev. ST Accel. Beams 9, 084001 (2006)

084001-4



the measured beam position during acceleration shows
good agreement with calculation. Since the beta function
cannot be obtained experimentally at PoP FFAG, calcu-
lated values with simulation described in Sec. IVA 2 are
employed. Figure 9 shows the normalized intensity versus
the beam emittance at 50 keV (injection) and 110 keV
when the current error is �2%. Since the injection lasts
only about four turns, the particle distribution is not smooth
at injection. It is, however, smooth at 110 keV after many
turns. The beam emittance at the 87% level, for example,
will therefore change during acceleration not from the
adiabatic damping but from the smoothing process. The
beam emittances at 110 keV will be used for the discussion
in Sec. IV as it is reasonable to use the intensity data
after the smoothing process and just before crossing
resonance. The 87% beam emittances at 110 keV were

obtained assuming Gaussian distribution. They were
830� mm mrad, 660� mm mrad, and 790� mm mrad, re-
spectively, for the current error of 0%, �2%, and �3%.

C. Particle distribution in beam emittance

A particle distribution in beam emittance can be ob-
tained by differentiating normalized intensity as a function
of beam emittance. Figure 10 shows the particle distribu-
tion obtained from the normalized intensity curve of Fig. 7.
With particle distributions in beam emittance before and
after crossing, an effect of resonance crossing will become
clear.

D. Results for fast and slow crossings

Figure 11 shows two typical results, for fast (A,B) and
slow (C,D) crossings. The curves of normalized intensity
are quite similar in shape when the crossing speed is large.
The particle distribution in beam emittance is concentrated
at the beam center in the same way. From this, one can
conclude that there is no substantial effect on the beam
arising from the resonance crossing when the crossing
speed is sufficiently large. In contrast, a two-tier structure
is clearly observed in the normalized intensity curve when
the crossing is slow. As shown in Fig. 11(D), part of the
beam is transported to a larger amplitude after crossing.
Transported particles will eventually be lost. From the two-
tier structure, the ratio of the number of transported parti-
cles to the total number of particles can be obtained.
Table II summarizes the ratios obtained in this study.

IV. DISCUSSION

A. Comparison of trapping efficiencies

We clearly observed that there is no substantial effect on
the beam with relatively fast crossing but part of the beam
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is transported to a larger amplitude with relatively slow
crossing. We will discuss the obtained ratios of transported
particles through quantitative comparison between experi-
mental data, theoretical model, and the prediction from
simulation. The theoretical model and the method of simu-
lation are explained below.

1. ‘‘Particle trapping’’

We applied a model of ‘‘particle trapping’’ [8] in which
‘‘islands’’ in phase space may trap some particles and

transport them to larger amplitudes when a high order
resonance is crossed in the presence of dominant nonlinear
detuning. An island is a stable region in phase space out-
side the central stable area and the number of such islands
is the same as the order of the resonance. This model of
particle trapping should be applicable to our case.

In order to apply their model, which is specifically for
fifth order resonance, to our case, analytical expressions for
the third order resonance have been derived following their
treatment. First, we consider the phase space topology of
uncoupled third order resonance in the presence of non-
linear detuning due to octupole. The single particle motion
of betatron oscillation can be written as

 y��� � �a��������1=2 cos���� ’����; (2)

where y is the displacement from closed orbit, � is the
independent variable of azimuthal angle, � is the betatron
tune, and � is the beta function. Canonical variables a and
’ satisfy the equations of motion

TABLE II. Transported particle ratios in experiment. For en-
ergy gain more than 0:49 keV=turn, a two-tier structure was not
observed. The errors are evaluated from the ambiguity in the flat
part of the two-tier structure.

Energy gain 0:13 keV=turn 0:21 keV=turn

Current error 0% 17:0� 1:3 11:9� 1:5
�2% 12:0� 3:7 8:0� 1:5
�3% 22:3� 2:4 15:3� 3:4

Current error: -2%, energy gain: 1.56kV/turn
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FIG. 11. (Color) Typical results for fast and slow crossings. (A) Normalized intensity (fast). (B) Particle distribution (fast). (C)
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 a0 � �
2

��
@H�1�

@’
; (3)

 ’0 �
2

��
@H�1�

@a
; (4)

where a0 and ’0 are the derivatives with respect to �, and
H�1� is the perturbation term of Hamiltonian. Obviously, a
and ’ are constants of motion in the absence of the
perturbation term. For the uncoupled third order resonance,
H�1� is

 H�1� � O���y4 � S���y3; (5)

where O��� and S��� are proportional to the strength of
octupole and sextupole, respectively. By using Eq. (2) for y
in Eq. (5), we find the phase-independent term and the term
slowly varying in time:

 H�1� � ���3B0a
2 � jApja

3=2 cos3 �; (6)

where

 jApj �
h�1=2i

8��

Z 2�

0
d�e�ip�S���; (7)

 B0 �
h�i

16��

Z 2�

0
d�O���; (8)

  � �13p� ���� ’�
1
3�; (9)

and � is the phase factor, h�i is the average value of beta
function. For the sake of simplicity, ‘‘smooth approxima-
tion’’ in which the beta function is assumed constant is
employed here. The tune is close to the third order reso-
nance excited by the pth harmonic sextupole component.
With Eqs. (3), (4), and (6),

 a0 � �6jApja
3=2 sin3 ; (10)

 ’0 � 12B0a� 3jApja
1=2 cos3 : (11)

For further convenience, we define
a0: the average emittance of the initial particle distribu-

tion divided by �,
� � a=a0: the relative emittance,
�L �

1
3p� �: the linear tune shift,

�NL � �12B0a0: the nonlinear tune shift at a0,
�e � �3jApja

1=2
0 : the excitation width at a0,

B0: the nonlinear detuning source (simply ‘‘nonlinear
detuning’’),
jApj: the resonance driving term (simply ‘‘driving

term’’),
� � 3�L=2�e,
� � 3�NL=4�e.
With these parameters, the above equations for a and ’

become

 ��1=2�0 � �e� sin3 ; (12)

  0 � �L � �NL�� �
1=2�e cos3 : (13)

An invariant of the motion is

 C � ��� ��2 � �3=2 cos3 : (14)

A particular value of C defines a trajectory in phase space.
The fixed points can be obtained by solving the following
equations:

 

@C
@�

��������f
� 0; (15)

 

@C
@ 

��������f
� 0; (16)

where f is the coordinate (�, ) for fixed points. Whether
these points are stable or unstable is determined as follows:

 

@2C

@�2

��������f
	
@2C

@ 2

��������f
>0: stable; (17)

 

@2C

@�2

��������f
	
@2C

@ 2

��������f
<0: unstable: (18)

The fixed points are summarized in Table III, and Fig. 12
shows a phase space topology for various values of �.

During crossing the third order resonance, the phase
space topology changes as shown in Fig. 12. It is seen
that three islands are created and become larger as �
decreases. As shown in the last line of Table III, stable
and unstable fixed points are almost at the same amplitude
when �
 1 and � is not close to zero. Since the islands

TABLE III. Fixed points for third integer resonance (� > 0).

Range of � Stable fixed points Unstable fixed points

� > 9
32� �1=2

s � 0 None

� � 9
32� �1=2

s � 0; 3
8� None

9
32� > � > 0 �1=2

s � 0; 3
8� �1�

�������������������
1� 32�

9 �
q

� �1=2
u � 3

8� �1�
�������������������
1� 32�

9 �
q

�

� � 0 �1=2
s � 3

4� �1=2
u � 0

� < 0 �1=2
s � 0; 3

8� �1�
�������������������
1� 32�

9 �
q

� �1=2
u � 3

8� ��1�
�������������������
1� 32�

9 �
q

�
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are too small to trap the particle when � is nearly zero,
particles are mostly trapped at the amplitude for which the
above approximation is valid. Then, �1=2

s and �1=2
u are

approximately

 �1=2
s � �1=2

u �

�������� �
2�

��������
1=2
: (19)

Equation (19) indicates that the shape of each island will be
approximately an ellipse. The equation for the separatrix,
which is the border of islands, is

 C � ��u � ��
2
u � �

3=2
u � ��� ��2 � �3=2 cos3 :

(20)

By taking cos3 � �1, we can find � corresponding to
the outer and inner edges of islands in the radial direction.
We define them as �� � �u � 	�, �� � �u � 	�, re-
spectively. Expand Eq. (20) keeping up to the second order
of 	. Then we find

 	� � �
�

2

�
�3=2
u

�
1=2
; (21)

where j	�j � j	�j is assumed. The difference between
two solutions 	� � 	� is the width of the island along the
radial direction multiplied by 2�1=2

u ;

 	� � 	� � 2�1=2
u ��

1=2
� � �

1=2
� �: (22)

The island width of phase direction is simply 2
3��

1=2
u .

Hence the total area of three islands is approximately

 A � 3�
�
�1=2
� � �

1=2
�

2

��
2��1=2

u =3

2

�
: (23)

With Eqs. (21)–(23), we find

 A �
�2���

2
p ���1=2��3=4

s : (24)

When � changes dynamically, the stable fixed points
move outward at the rate

 ��1=2
s �0 �

�0

3=2� 4��1=2
s

: (25)

From Eqs. (12) and (25), a criterion for adiabaticity is

 j�ej�

�0

3=2� 4��1=2
: (26)

If we replace the inequality by the equality in Eq. (26) and
solve for �, we can define adiabatic parameter, which
describes how fast the crossing is compared to the fully
adiabatic condition:

 �1 �

�



4��NLj�ej

�
2=3
; (27)

where 
 is the change of �L per revolution and �
 1 is
assumed again. To follow the island center so that it will be
trapped, a particle must have sufficiently rapid amplitude
change, i.e.,

 � � �1: (28)

If a Gaussian amplitude distribution is assumed for the
trapping efficiency, the particle density is given by

 D��1=2�d�1=2 � 2�d�1=2 exp����; (29)

 

Z 1
0
D��1=2�d�1=2 � 1; (30)

where the second equation is the normalization in which
the total number of particles is unity. With Eqs. (28)–(30),
trapping efficiency is

 PT �
A

���1=2
s �2

exp���1�; (31)

where �s is ‘‘typical trapping amplitude,’’

 �1=2
s �

�
�1=2

1 ; if �1 > 1;
1; if �1 < 1:

(32)

The meaning of Eq. (32) is as follows. When �1 > 1, a
typical particle being trapped will be around the lower limit
of �1=2

1 . When �1 < 1, the denser distribution satisfying
�> �1 is around � � 1.

In Eq. (31), the factor A=���1=2
s �2 represents a normal-

ization by total island area divided by beam radius of
‘‘typical trapping amplitude.’’ For third order resonance
crossing, Eq. (31) can be expressed as

 PT �
����
2
p ���1=2����1=4�

s exp���1�: (33)

(a) ξ=0.01 (b) ξ=0.00281 (c) ξ=0.0026

(d) ξ=0 (e) ξ=-0.02

FIG. 12. Phase space topology for third integer resonance, � �
100.
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In order to compute trapping efficiency with Eq. (33),
the following values are used. The crossing speed is de-
termined from the slope of tune relative to beam energy
described in Sec. II A together with the energy gain per
turn, the beam emittance is found from the analysis given
in Sec. III B, and the driving term and nonlinear detuning
have been derived from simulations as will be explained in
Sec. IVA 2. These values are summarized in Table IV.

2. Simulation

Simulation is based on field calculation and numerical
tracking of particle motions. The field calculation was
performed with TOSCA and it includes the current errors
and the rf cavity cores described in Sec. II C. Tracking is
based on numerical integration with the fourth order
Runge-Kutta method. We employed a single particle simu-
lation since the space charge effect is negligible in this
study.

In order to confirm whether the particle trapping model
is applicable to our case or not, numerical tracking with
acceleration was carried out. Figure 13 shows an evolution
of particle distribution in phase space for no current error
and the energy gain of 0:13 keV=turn. It is clear that some
particles are trapped by islands and transported to larger
amplitudes. We have confirmed that the picture of particle
trapping model works in a third order resonance crossing.

The conditions for this calculation are as follows. Initial
particle distributions are assumed to be Gaussian and the
beam emittance is taken from Table IV. The motion is
confined on the median plane and energy gain per turn is
constant so that vertical and longitudinal motions are not
included. Their effects will be discussed later. The trapping
efficiency obtained by simulation has a statistical error. As
described in Ref. [8], it is

 	PT � �

��������������������������
m�1�m=n�

p
n

; (34)

where n is the number of total particles and m is the
number of trapped particles. For n � 350, the statistical
error is expected to be less than or comparable to the error
of experimental results.

Since it is not possible to find the strength of the driving
term and the amount of nonlinear detuning from beam
study, they were estimated from the calculated field. Two

approaches are possible: one is to calculate multipole
coefficients of the field directly and integrate them
throughout the ring, and the other is to locate the fixed
points in phase space and relate their positions to the
driving term and the nonlinear detuning. The first is
straightforward but we employed the second approach
for the following reason. It is difficult to estimate multipole
coefficients with sufficient accuracy in the fringe field
region. Furthermore, the driving term may be affected by
the so-called feed-down effect of higher order multipoles,
and one may also need to include the second-order effects
of sextupoles [14]. Figure 14 shows a phase space with no
current error. Even with no current error, COD induced by
rf cores excites the third order resonance, and we found
three unstable fixed points and three outer islands in addi-
tion to the central stable area.

3. Comparison

Trapping efficiencies versus energy gain per turn are
presented in Fig. 15. Theoretical predictions for three
different values of current error are much lower than the
observed ones. We have examined the possibility that a
small � results in an underestimate of trapping efficiency
since �
 1 is assumed in the model. The range of � in our
study is from 1.6 to 2.1. We calculated Eqs. (23) and (27)
without any approximation and applied them to Eq. (33).
The results are, however, essentially the same to Fig. 15.
Therefore, a small � does not explain the discrepancy
directly. However, in Ref. [8], they says the normalization
in the equation of trapping efficiency fails when � is small.
For instance, the factor in Eq. (33) should be

 

����
2
p ���1=2����1=4�

s & 1: (35)

That might be one of the reasons for the discrepancy. At the
same time, the simulation study ensures that the model
works qualitatively even for our small � case, and we
found that the observed trapping efficiencies are in good
agreement with the results from simulation.

B. Vertical and longitudinal motion

Although the effects of vertical and longitudinal motions
are not included in the model, they may be important since
a beam must have a finite vertical as well as longitudinal

TABLE IV. Parameters for theoretical calculation. Eg is the energy gain per turn. For beam emittance, the adiabatic damping from
110 to 130 keV is assumed. When Gaussian distribution is assumed, the average beam emittance is one-half of the 87% beam
emittance.

Current error 0% �2% �3%

Crossing speed �8:3
 10�4Eg �7:0
 10�4Eg �6:9
 10�4Eg
87% beam emittance 760� mm mrad 600� mm mrad 720� mm mrad
Driving term 1:30
 10�2 m�1=2 1:04
 10�2 m�1=2 1:51
 10�2 m�1=2

Nonlinear detuning 3:63
 10�1 m�1 4:06
 10�1 m�1 4:22
 10�1 m�1
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emittance. We will discuss the effect of these motions,
separately.

1. Effect of vertical motion

Vertical motion is a possible cause for modification of
the nonlinear detuning. With vertical motion, a contribu-
tion from octupole component to the perturbation
Hamiltonian is

 H�1�oct � O����38a
2
x�2

x �
3
2axay�x�y �

3
8a

2
y�2

y�; (36)

where a is the canonical variable for oscillation amplitude,
� is the linear lattice parameter of the ring, and subscripts x
and y denote horizontal and vertical directions, respec-
tively. Taking a partial differentiation of Eq. (36) with
respect to ax, we get

 ’0x �
@H�1�oct

@ax
� O���

�
3

4
ax�2

x �
3

2
ay�x�y

�
; (37)

where (ax, ’x) are the canonical variables and ’0x is the
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FIG. 13. Simulation results; an evolution of particle distribution during crossing.
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FIG. 14. Fixed points in phase space for the current error of
0%.
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derivative with respect to �. This equation shows that the
nonlinear detuning is a combination of ax and ay terms.
Since a and � are always positive, the horizontal detuning
(the first term) is weakened by the second term represent-
ing the contribution of vertical motion or, if the second
term is larger than the first term, the sign of detuning will
be reversed.

We evaluated approximately the effect of vertical mo-
tion for the case when the maximum trapping efficiency is
observed, for instance, the current error of �3% and the
energy gain per turn is 0:13 keV=turn. We assume that ax
and ay are 980� mm mrad and 30� mm mrad, respec-
tively. They are the emittance corresponding to ‘‘typical
trapping amplitude’’ defined by Eq. (32) and the vertical
average emittance, respectively, at the crossing energy.
The vertical average emittance has been taken from the
previous beam study [12]. Figure 16 shows the beta
function for one cell. In the region of focusing and defo-
cusing magnets, average beta functions are ��x;�y� �
�0:73 m; 0:46 m� and ��x; �y� � �0:38 m; 0:52 m�, respec-

tively. With these values, the terms in Eq. (37) are calcu-
lated and they are listed in Table V. In this calculation, we
assumed that octupole component is expected to be mostly
in the main body of focusing and defocusing magnets.

We see that the contribution of vertical motion is less
than 5% of the horizontal contribution. The effect of
vertical motion must be negligible in the present case.
Generally speaking, in the radial scaling type of FFAG
[2], the contributions of vertical motion in focusing and
defocusing magnets tend to cancel each other.

2. Effect of longitudinal motion

Crossing speed for particles in a bunched beam is not the
same because of synchrotron oscillation. A fluctuation of
crossing speed may or may not cause a net change in
trapping efficiency. If the period of synchrotron oscillation
is much shorter than the time scale for particle trapping, the
longitudinal motion should not be significant as the aver-
age crossing speed for any particle would nearly be the
same as that of synchronous particle. If the period of
synchrotron oscillation is much longer, different particles
would have different crossing speed depending on the
phase at the time of crossing. In the latter case, trapping
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FIG. 15. (Color) Summary of trapping efficiencies.
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FIG. 16. (Color) Beta function for one cell (without COD).

TABLE V. Estimation of the effect of vertical motion. Terms
in Eq. (37) are calculated for focusing and defocusing magnet,
respectively, and normalized by the first term for focusing. Note
that the FD ratio, that is, the ratio of focusing field to defocusing
field, is now 2.43. The integrated octupole component in the
focusing magnet is then 2.43 times larger than the defocusing
magnet.

First term Second term Second/First

Focusing 1.0 �0:039 �0:039
Defocusing �0:11 0.0093 �0:084
Sum 0.89 �0:029 �0:033

RESONANCE CROSSING EXPERIMENT AT A PROOF OF . . . Phys. Rev. ST Accel. Beams 9, 084001 (2006)

084001-11



efficiency should increase because the dependence of effi-
ciency is not proportional to the acceleration speed and its
second derivative with respect to the energy gain is positive
as seen in Fig. 15. The latter case is the maximum estimate
of the effect of longitudinal motion.

Table VI shows an estimate of how much the phase of
synchrotron oscillation advances during the trapping pro-
cess. The period of synchrotron oscillation is shorter than
the time scale for trapping. Therefore the effect of syn-
chrotron oscillation may increase trapping efficiency but it
might be less than the maximum estimate. The effect is
evaluated with particle tracking simulation more precisely.
We again examine the case for which the maximum trap-
ping was observed, the current error of �3% and the
energy gain per turn of 0:13 keV=turn. In order to clarify
the dependence of trapping efficiency on the synchrotron
oscillation phase, the initial longitudinal condition is
chosen as shown in Fig. 17. Table VII lists results of the
tracking simulation.

It is seen that the trapping efficiency varies with the
initial phase. However, the efficiency averaged over phase
is almost the same as that of the synchronous initial con-
dition. Even when the quadrupole mode of synchrotron
oscillation is strong, the averaged efficiency should not
vary much because particles in antiphase balance each
other. We can neglect the effect of synchrotron oscillation,
at least when the bunch length is less than or equal to that
of this experiment.

C. Criterion to avoid trapping

The most important purpose of our study is to find the
criterion to avoid any deterioration in beam quality arising
from resonance crossing. We observed in our study that
there is no clear evidence of adverse effects on the beam
when the crossing speed is sufficiently large. However, the
crossing speed is not the only factor affecting the trapping
efficiency. The adiabatic parameter, �1 in Eq. (27), is a
measure of how fast the center of islands move compared
with the speed of the particle moving in phase space away
from center. It contains all the relevant factors, that is,
crossing speed, strength of driving term, amount of
nonlinear detuning, and beam emittance. We employ the
adiabatic parameter as an index for avoiding beam dete-
rioration due to resonance crossing. Figure 18 shows the
observed trapping efficiency as a function of the adiabatic
parameter.

We found from Fig. 18 that particles are not trapped
when the adiabatic parameter is more than 7. At the same
time, � in Eq. (33) is another factor to determine trapping
efficiency. A few percent current error is unrealistically
large from the viewpoint of magnetic field for accelerator,
and the large driving term is excited. Even with no current
error, the driving term is comparable to the ones with a few
percent current error because the field error due to the rf

ϕ

dP/P

1

2

3

4 0

FIG. 17. Initial points of particle in simulation.

TABLE VI. Estimation of synchrotron phase advance during
trapping process.

Parameter Value

Synchrotron tune 1:5
 10�2

Number of turns during trapping 44
Phase advance during trapping 240 deg

TABLE VII. Simulation results for longitudinal motion.

Initial condition Trapped Total Efficiency

0 92 350 26:3� 2:4
1 90 350 25:7� 2:3
2 87 350 24:9� 2:3
3 96 350 27:4� 2:4
4 107 350 30:6� 2:5
Average for 1– 4 95 350 27:1� 1:2
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FIG. 18. (Color) Trapping efficiency as a function of adiabatic
parameter.
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cores is relatively large for the low energy beam. This fact
results in small �. In general, smaller values of adiabatic
parameters will be permitted when � is larger than the ones
in this study. A crossing should then be harmless when the
adiabatic parameter is more than 7.

V. CONCLUSION

Beam dynamics of resonance crossing has been studied
with the experiment at PoP FFAG. In this paper, the details
of experiment are described. The experiment shows that no
substantial effect on the beam results from resonance
crossing when the crossing is relatively fast but part of
the beam is transported to a larger amplitude when the
crossing is relatively slow. It is clearly seen with the
simulation study that part of the beam is trapped by islands
in phase space when crossing is relatively slow. Then, the
theoretical model of particle trapping should be applicable
to our case and its prediction agrees with the experimental
results qualitatively. The quantitative discrepancy could be
explained by the fact that the normalization in the equation
of trapping efficiency fails with the parameters of this
experiment. At the same time, there is a good agreement
between the prediction from simulation and the experimen-
tal results. We have derived the adiabatic parameter to be
used as a criterion for avoiding a deterioration in beam
quality when a resonance is crossed. This parameter con-
tains all the relevant factors so that one can judge whether a
crossing should be regarded as ‘‘slow’’ or ‘‘fast’’ for given
conditions. We conclude that a crossing should be harmless
when the adiabatic parameter is more than 7.
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APPENDIX: CORRECTION OF BEAM LOSS

In the energy range of PoP FFAG, 50 to 500 keV, beam
loss by the residual gas is not negligible, especially near
injection energy. The background vacuum pressure in PoP
FFAG is about 1
 10�7 Torr while the pressure during
operation is about 6
 10�7 Torr. Hydrogen from the iron
source is the main component of the residual gas during
operation. In this energy range, the dominant interaction
between proton beam and hydrogen gas is a charge transfer
since the cross section of an elastic scattering is negligible
compared with that of charge transfer. The cross section of
charge transfer is shown in Fig. 19.

With only single interaction of charge transfer, a particle
loses its charge and will be lost. Therefore, the beam
emittance does not grow but the beam intensity decreases
in this process. For correction, it is sufficient to normalize
intensity by the beam loss rate. Specifically, the procedure

is to find a suitable fitting function and apply it to the beam
intensity curve.

When the beam energy is unchanged, the intensity curve
should simply follow an exponential decay. However, the
beam is being accelerated and a suitable fitting function is
not simply exponential anymore. A lifetime of exponential
decay depends on beam energy. Therefore the lifetime
changes during acceleration and it should be derived as a
function of beam energy. Since the beam intensity was
obtained as a function of turn number, a function of turn
number is more convenient. The lifetime is inversely pro-
portional to the cross section,

 � /
1

S�n�
; (A1)

where S�n� is the cross section as a function of turn number
n during acceleration. As shown in Fig. 19, in the energy
range of PoP FFAG, the cross section is almost propor-
tional to the particle velocity in logarithmic scale, i.e.,

 lnS � A1v; (A2)

FIG. 19. Cross section of charge transfer (taken from
Ref. [15])
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where S is the cross section, v is the particle velocity, and
A1 is a constant. With nonrelativistic approximation, the
relation between the particle velocity and energy can be
expressed by

 Ek �
1
2mv

2; (A3)

where Ek is the kinetic energy and m is the rest mass of
proton. Beam energy is given by

 Ek � Einj � nEg; (A4)

where Einj is the injection beam energy, n is the number of
turns during acceleration, and Eg is the energy gain per
turn. From Eqs. (A2)–(A4), we can obtain

 S � exp�A2

�����������������������
Einj � nEg

q
�; (A5)

where A2 is a constant. The lifetime is then

 � �
A3

exp�A2
�����������������������
Einj � nEg

p
�
; (A6)

where A3 is also a constant. The beam intensity can be
expressed as

 I � I0 exp
�
�
n
�

�
; (A7)

where I0 is the initial intensity. Finally, the fitting function
can then be expressed in the form with four fitting parame-
ters (P1; P2; P3; P4),

 I � P1 exp��P2n exp�P3

����������������������
Einj � nP4

q
��: (A8)
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