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The current final focus systems of linear colliders have been designed based on the local compensation
scheme proposed by Raimondi and Seryi. However, there exist remaining aberrations that deteriorate the
performance of the system. This paper develops a general algorithm for the optimization of beam lines
based on the computation of the high orders of the transfer map using MAD-X and Polimorphic Tracking
Code. The algorithm is applied to the CLIC beam delivery system.
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I. INTRODUCTION

The minimization of aberrations in beam lines has al-
ways been a concern. Already in 1973 [1] an analytical
approach was derived up to the second order but particle
tracking had to be used for higher orders. More recently
with the advent of the local compensation scheme [2] the
demand for design and optimization algorithms that take
into account higher orders has largely increased [3–6].
This paper describes a general optimization algorithm
that takes as figure of merit the rms beam sizes at the end
of the beam line. These are analytically computed from the
coefficients of the transfer map to an arbitrary order. A
particular application to the CLIC beam delivery system
(BDS) [7] is shown as a proof of principle.

II. MATHEMATICAL GROUND

The transfer map between two locations of a beam line is
expressed in the form

 xf �
X
jklmn

Xjklmnx
j
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where xf represents any of the final coordinates (xf, pxf,
yf, pyf), the initial coordinates are represented with the
zero subindex and Xjklm are the map coefficients of the
corresponding final coordinate. The MAD-X [8] code to-
gether with the Polimorphic Tracking Code (PTC) [9] can
provide Xjklm up to the desired order.

The quadratic standard deviation of the final density
distribution hx2

fi is given by the following integral:

 hx2
fi �

Z
x2
f�fdvf; (2)

where dvf represents the differential volume of the final
phase space. Assuming that the transfer map is symplectic
�fdvf � �0dv0 and using Eq. (1),
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To perform this integral a Gaussian centered bunch is
assumed in the transverse planes and a rectangular distri-
bution is considered in relative energy deviation (for the
application to CLIC), given by the following expression:
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where ��z� is the rectangular function which vanishes
when jzj> 0:5 and takes the unit value elsewhere. This
distribution is representative for the beam expected at the
end of the CLIC linac. Note that assuming this particle
density imposes constraints in the Twiss functions at the
initial location. The horizontal and vertical alpha functions
and the closed orbit must be zero. This assumption is
fundamental to gain speed in the numerical computation
of hx2

fi as will be shown below. Moreover, this constraint is
not critical since even in the case that the initial location
has a nonzero � function it is possible to add a matching
section meeting our constraints in the new initial point but
leaving the initial beam line unchanged.

To compute the integral above the following results are
used:
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where ��z� is the Gamma function. From these equations
the gain in computational speed thanks to the chosen
symmetry is patent. Using the above equations the standard
quadratic deviation of the particle distribution at the end of
the beam line is given by

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 9, 081001 (2006)

1098-4402=06=9(8)=081001(5) 081001-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.9.081001


 hx2
fi �

X
jklmn

X2
jklmn�

�
1� 2j

2

�
�
�

1� 2k
2

�
�
�
1� 2l

2

�
�
�
1� 2m

2

�
2j�k�l�m�2n

�2n� 1��2 �
2j
x �2k

px�
2l
y �2m

py �2n
�

�
X

jklmn>j0k0l0m0n0
2XjklmnXj0k0l0m0n0�

�
1� j� j0

2

�
�
�
1� k� k0

2

�
�
�
1� l� l0

2

�
�
�

1�m�m0

2

�

�
2��j�k�l�m�j

0�k0�l0�m0�=2��n�n0

�n� n0 � 1��2 �j�j
0

x �k�k
0

px �l�l
0

y �m�m
0

py �n�n0
� : (7)

The following sections describe means to extract the in-
formation concerning the nature of the aberrations.

A. The order-by-order approach

By truncating the map at order q we only consider the
coefficients Xjklmn such that j� k� l�m� n 	 q. The
resulting standard deviation is represented by hx2

fiq. Thus

defined,
�����������
hx2
fi1

q
corresponds to rms size given by the linear

Twiss functions,
�����������
hx2
fi2

q
takes into account the effect of

chromatic aberrations and sextupoles,
�����������
hx2
fi3

q
incorporates

octupolar fields, etc. The final finite size of the bunch is
given by hx2

fiq when q tends to infinite. However, there
must be a finite order p that gives a satisfactory approxi-
mation. The evaluation of hx2

fiq � hx
2
fiq�1 gives the con-

tribution of the order q to the final rms beam size. From this
contribution the order of the most relevant aberrations is
inferred, and subsequently the appropriate multipolar cor-
rectors are chosen. However, the optimum location of the
correctors still needs to be identified.

B. Chromatic versus achromatic correctors

This section gives the recipe to decide if the correctors
should be placed in locations with or without dispersion.
hx2
fiq;���0 is defined as the rms size of a monochromatic

beam; it is given by
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with j� k� l�m 	 q and j0 � k0 � l0 �m0 	 q. If the
contribution from the most relevant order q, hx2

fiq �

hx2
fiq�1, is much larger than its corresponding monochro-

matic contribution, hx2
fiq;���0 � hx

2
fiq�1;���0, the correc-

tors should be placed in dispersive locations possibly
together with achromatic correctors to cancel the arising
geometric aberrations. In the opposite case, only achro-
matic correctors should be placed.

III. OPTIMIZATION OF THE CLIC BEAM
DELIVERY SYSTEM

The CLIC BDS consists of a collimation section and a
final focus system (FFS). The Twiss functions of the BDS
are plotted in Fig. 1. The collimation section has a length of
about 2 km. The first 70 m serve as a matching section
between the main linac and the BDS. After these 70 m the
� functions are zero and therefore this location is taken as
the initial location for the computation of the transfer map.
The horizontal and vertical normalized beam emittances
are �x � 68� 10�8 m and �y � 1� 10�8 m, with a rela-
tivistic gamma of � � 3� 106. The full energy width of
the beam is �� � 0:01. The rms beam sizes at the IP are
computed using Eq. (7) and plotted up to the ninth order in
Fig. 2. The nominal beam as well as the monochromatic
beam (�� � 0) are shown leading to the conclusion that
most of the aberrations are chromatic. Only sextupolar and
octupolar geometric aberrations appear in the vertical
plane. It is striking that the vertical aberrations are relevant
up to the highest orders. The most relevant horizontal
aberrations are the first order dispersion and the chroma-
ticity (of sextupolar order). The total number of nonzero
coefficients of the ninth order transverse map is 4002, of
which 2070 are horizontal and 1932 are vertical. These
large numbers make the evaluation of the rms beam size
very slow. A better approach for an optimization of the
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FIG. 1. (Color) Twiss functions of the CLIC beam delivery
system.
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beam sizes is to consider the collimation section and the
final focus separately.

Figure 3 shows the rms beam sizes at the end of the
collimation system versus the maximum order considered
in the map, again for the nominal and the monochromatic
beams. It is obvious that the collimation section needs only
a better adjustment of the chromaticity sextupoles. In this
context this is efficiently achieved by matching the rms
beam sigmas of order 2 to those of order 1 by varying the
strengths of the chromaticity sextupoles. In principle, any
optimization algorithm can be used to carry out this task.
The code MAPCLASS [10] was expressly written for this

purpose with an implementation of the simplex method
[11]. The resulting beam sizes at the IP are shown in Fig. 4
versus order. The direct effect on the second order is patent.
More interestingly, the contributions from orders above six
have been significantly reduced both in the horizontal and
vertical planes.

The remaining aberrations originate entirely in the FFS.
The CLIC FFS has been designed based on the local
chromaticity correction scheme proposed in [2]. This
scheme basically consists of two pairs of sextupoles, one
pair for the horizontal plane and the other for the vertical.
The sextupoles of each pair are separated by a 180
 phase
advance to compensate chromaticities and the subsequent
geometrical aberrations. The compensation of the higher
order aberrations can be achieved by correctors of the
appropriate order arranged like the sextupoles. We assume
that the pairs of sextupoles are combined magnets includ-
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FIG. 3. (Color) Horizontal and vertical rms beam sizes at the end
of the CLIC collimation section as a function of the maximum
order considered in the transfer map. Both the nominal and
monochromatic beams are considered. The horizontal aberra-
tions are purely chromatic.
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FIG. 4. (Color) Horizontal and vertical rms beam sizes at the
CLIC IP for the nominal collimation system and the one with
optimized chromaticity.
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FIG. 5. (Color) Horizontal and vertical rms beam sizes at the
CLIC IP for the nominal BDS and the one fully optimized.
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FIG. 2. (Color) Horizontal and vertical rms beam sizes at the
CLIC interaction point as a function of the maximum order
considered in the transfer map. Both the nominal and mono-
chromatic beams are considered. The horizontal aberrations are
purely chromatic and only a small part of the vertical aberrations
are geometric.
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ing octupolar and decapolar magnetic components. Using
all these nonlinear elements (sextupoles, octupoles, and
decapoles) in the FFS the rms beam sizes at the IP are
minimized with the simplex method. Initially the optimi-
zation works efficiently by truncating the map at forth
order. After a few iterations it is mandatory to increase
the order up to sixth order. Otherwise the rms beam size is
minimized at fourth order but increases in the following
orders. The required computing time largely increases for
this higher order. The result of the optimization of the FFS
is shown in Fig. 5 together with the initial configuration.
This confirms the compensation of the aberrations up to the
higher orders.

Exactly the same algorithm can be used to optimize the
linear parameters. Now that the nonlinear aberrations have
been compensated it is possible to focus more (decrease the
beta functions at the IP) in order to reduce the beam size
and gain luminosity. The rms beam sizes up to order 5 are
minimized again using the simplex method as before. The
difference now is that only the strengths of the quadrupoles
are used in the minimization. The result is shown in Fig. 6
together with the initial configuration. Both the horizontal
and vertical beta functions have been reduced at the IP as
can be seen at the first order of the plot. The horizontal beta
function at the IP has been reduced by 19%. The horizontal
nonlinear aberrations stay well compensated, while in the
vertical plane small aberrations have arisen as a conse-

quence of the focusing. This implies that for further reduc-
tion of the beam sizes more iterations correcting nonlinear
and linear orders are required.

The real benefit of reducing the rms size at the IP is
luminosity, and therefore it has been computed for all the
former stages of the optimization. Bunches of 10 000 elec-
trons have been tracked trough the CLIC BDS using
PLACET [12]. The same beam parameters as mentioned
above have been used and the effect of synchrotron radia-
tion has been included, which is not taken into account by
the described optimization procedure. The luminosity has
been computed using the code GUINEA-PIG [13]. The rela-
tive reduction of the beam sizes with and without radiation
together with the relative luminosity increase is shown in
Table I. The total luminosity (Ltot), the luminosity coming
from the collisions with energy larger than 99% of the
maximum energy (L1%), and their ratio (L1%=Ltot) are
shown in the table. Both the total luminosity and the
luminosity in the energy peak increase as the horizontal
rms beam size gets smaller. It is interesting to see that after
the first step the variation of the rms sizes with radiation is
smaller than the variation of the rms sizes without radia-
tion. Indeed the relative changes of the luminosities seem
to be more related to the rms sizes without radiation,
reinforcing the described optimization algorithm. The ratio
of the luminosities slightly decreases but not in a signifi-
cant manner.

IV. CONCLUSIONS AND OUTLOOK

A general algorithm has been developed for the non-
linear optimization of beam lines. This optimization is
conceived as a second step after the beam line optics has
been designed. It has been applied to the CLIC BDS,
obtaining a luminosity increase of 45% over the nominal
design luminosity. The feasibility of the proposed corrector
configuration still needs to be assessed from the point of
view of magnet design, but also alternative configurations
are under study. Further applications of this algorithm can
be found in [14–16].
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linearly optimized.

TABLE I. CLIC luminosities for the different optimizations stages. All numbers are in percent units.

Case � ��x
�rms
x

(no rad) � ��x
�rms
x

(rad) �
��y
�rms
y

(no rad) �
��y
�rms
y

(rad) �Ltot

Ltot

�L1%

L1%

L1%

Ltot

Nominal 0 0 0 0 0 0 43
Corrected collimation section 12 30 14 58 9 6 42
Corrected FFS nonlinearities 20 35 35 69 31 19 39
Lower �x and �y at IP 27 37 34 64 45 29 38
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