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Fundamental advances in experimental nuclear physics will require ion beams with orders of magnitude
luminosity increase and temperature reduction. One of the most promising particle accelerator techniques
for achieving these goals is electron cooling, where the ion beam repeatedly transfers thermal energy to a
copropagating electron beam. The dynamical friction force on a fully ionized gold ion moving through
magnetized and unmagnetized electron distributions has been simulated, using molecular dynamics
techniques that resolve close binary collisions. We present a comprehensive examination of theoretical
models in use by the electron cooling community. Differences in these models are clarified, enabling the
accurate design of future electron cooling systems for relativistic ion accelerators.
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I. INTRODUCTION

Electron cooling is an extremely useful technique for
obtaining high-quality ion beams of high-intensity and low
momentum spread [1]. In this method, the phase-space
density of an ion beam is increased by means of a dis-
sipative force—the dynamical friction (or velocity drag)
on individual ions undergoing Coulomb collisions with a
lower temperature electron distribution. We present new
computational results, which clarify and resolve large dif-
ferences between alternate analytical descriptions of the
friction force for magnetized electrons.

Cooled ion beams enable experiments under conditions
unavailable otherwise, including the generation and stor-
age of rare nuclei and short-lived isotopes, high-precision
measurement of lifetimes for radioactive nuclides and of
isotope masses, as well as other numerous applications.
The profound impact of electron cooling on nuclear,
atomic, and molecular physics and future applications of
cooled beams has been reviewed [2–4].

Avariety of theoretical models for the friction force have
been developed [4–10]. However, the available expres-
sions make strong approximations, and the discrepancy
between theory and experiments can be large. For existing
low-energy coolers, this qualitative description was con-
sidered satisfactory.

High-energy electron cooling (i.e. for beams with rela-
tivistic parameter �� 1) can open new possibilities in
experimental nuclear physics by producing fundamentally
higher-brightness beams in colliders, and is presently con-
sidered for the Relativistic Heavy Ion Collider (RHIC) [11]
and Facility for Antiproton and Ion Research (FAIR) [12]
projects. However, the cooling times at high energy are
much longer, making order of magnitude qualitative esti-
mates unacceptable. Quantitative calculation of cooling

times requires an accurate description of the cooling force
[13].

II. PROBLEMS WITH EXISTING ANALYTICAL
MODELS

A theoretical calculation of the energy loss by an ion
passing through a cloud of electrons in an external mag-
netic field has been extensively studied by the plasma
community (see, for example, recent Refs. [14,15] and
references therein). A treatment is typically done via two
complementary approaches: binary-collision model and
dielectric linear response treatment.

In the binary-collision model, the energy loss of an ion,
due to dynamical friction, is calculated as successive en-
ergy transfers due to binary collisions between the ion and
electrons. The problem which one encounters in such an
approach is a divergent result at large impact parameters,
which requires an upper cutoff that is not clearly defined.
Also, one cannot account for possible contributions to the
friction force from collective plasma oscillations.

In the dielectric linear response approach, an ion is
treated as a perturbation to the electron plasma, and energy
loss due to friction is caused by the polarization of the
surrounding medium. For this approach, the electron
plasma is treated as a polarizable fluid, which can be
described by the phase-space distribution function of elec-
trons. The evolution of the distribution function is de-
scribed by the Vlasov-Poisson equation. By solving the
linearized Vlasov equation, one can obtain an expression
for the induced electric field which is the source of the
friction force acting on the ion. This approach also leads to
divergent results, but now at small impact parameters,
because the linearized theory cannot correctly treat close
encounters. However, such a model includes collective
phenomena such as plasma oscillations.
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In the presence of a finite-strength magnetic field, both
treatments have further complications. The binary-
collision treatment does not provide a closed form solution
anymore, because the relative motion and the center of
mass motion are now coupled. Closed form expressions
can be obtained only for the limiting case of infinite
magnetic field strength. For arbitrary magnetic field
strength, numerical simulations are required. In the dielec-
tric treatment, there exists a closed form expression for the
friction force, but it requires numerical evaluation of multi-
dimensional integrals with strongly oscillatory integrands
[6,10]. A practical expression, in the form of a one-
dimensional integral, is possible only in the limit of a
very strong magnetic field [5,8].

In recent years, numerical simulations have been used to
explore in detail the collisions between ions and magne-
tized electrons for arbitrary magnetic field strengths [15].
However, to the best of our knowledge, a systematic com-
parison with the friction force formulas used by the elec-
tron cooling community has not been reported. In this
paper, we present a systematic comparison between avail-
able formulas and simulation results from the VORPAL code
[16], which includes a recently implemented algorithm to
explicitly resolve close binary collisions [17]. To enable
validation of VORPAL results at least for some limiting
cases, like the limit of zero and very strong magnetic field,
numerical integration over Gaussian electron velocity dis-
tributions has been added to the BETACOOL code [18].

III. DESCRIPTION OF THE NUMERICAL
APPROACH

When pairwise forces are computed directly for N par-
ticles, O�N2� operations are required for each time step,
making this approach prohibitively slow. For typical beam
and plasma applications, one would use the electrostatic
particle-in-cell approach (PIC) [19,20], where the grid
mediates interparticle forces, resulting in O(N) scaling.
However, PIC algorithms do not capture the Coulomb
collisions that are central to the physics being simulated
here.

A specialized 4th-order predictor-corrector algorithm
has been developed [21,22] for use with the O�N2� pairwise
field calculations, which tolerates aggressive variation of
the time step independently for each particle and, hence, is
more efficient than a fixed-time-step tree-based algorithm
for �106 particles or less.

For the simulations presented here, we generalized this
predictor-corrector algorithm to accommodate charged
particles in a magnetic field [17,23] and implemented it
in VORPAL. New positions and velocities for the ith particle
are predicted from a Taylor expansion in time, using the
following acceleration and its time derivative:
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where rij and vij are the relative positions and velocities of
particles i and j, and rc is the ‘‘cloud radius’’ or ‘‘softening
parameter,’’ which we typically choose to be zero. The
more complicated corrector step follows Ref. [21], except
that retaining 4th-order accuracy requires the v� B force
to be recalculated with the predicted velocity, and one of
the coefficients must be changed for terms that include B.

For high-energy coolers, the interaction between ions
and electrons is typically limited by the time of flight
through the cooling section. For example, for a cooling
section of a length L � 13 m and relativistic factor � �
108 for the Au�79 ions in RHIC [11], such a time of flight
in the beam rest frame is � � L=���c� � 0:4 ns, which is
the value used in simulations presented here. Because this
interaction time is less than a plasma period for expected
beam frame electron densities, collective electron dynam-
ics play no significant role and one can neglect electron/
electron collisions.

In the general case, the subscripts i, j in Eqs. (1) and (2)
range over all electrons and ions. To neglect electron/
electron and ion/ion interactions, one restricts the subscript
i to range only over the ions, while j ranges over the
electrons, and then vice versa.

For all VORPAL simulations presented in this paper, the
electron/electron interactions are neglected. For simula-
tions of a single ion interacting with a given electron
distribution, this effectively reduces the scaling of the run
time from O�N2� to O(N). Because our simulations typi-
cally include of order 105 electrons, this change in the
scaling is essential to make the problem numerically
tractable.

An ion moving through an electron distribution experi-
ences a net velocity drag (the dynamical friction) force,
due to Coulomb collisions; however, these collisions also
lead to small diffusive changes in the ion velocity vector.
The velocity change due to friction increases linearly with
the interaction time, while the diffusive changes accumu-
late in a random walk fashion as the square root of the
interaction time. For sufficiently short interaction times,
the diffusive velocity changes will completely obscure the
velocity drag. For sufficiently long interaction times, the
velocity drag will dominate and diffusive effects will be a
noiselike perturbation. In a high-energy ion ring, the ions
will make many millions of passes through the electron
cooling section, so that any diffusive dynamics due to the
electrons will be suppressed by a factor greater than 1000
with respect to the friction force.

The VORPAL simulations accurately capture both the
friction and the diffusive aspects of the ion velocity
changes, but the goal is to determine the dynamical friction
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force. For the very short interaction times during a single
pass through the cooling section (which is simulated here),
the rms spread in the small changes of the ion velocity
vector due to diffusion is significant and can be larger than
the velocity reduction due to friction. This makes it diffi-
cult to accurately extract the friction force from simulated
ion velocities. Hence, for each VORPAL data point shown in
the figures, corresponding to a single initial ion velocity,
we have generated 100’s of ion trajectories, Ntraj, and
plotted the mean friction force. According to the central
limit theorem, the uncertainty in these mean values is
roughly 	1 rms=

���������
Ntraj

p
, which is what we have used for

the error bars.

IV. FRICTION FORCE WITH ZERO MAGNETIC
FIELD

With no magnetic field, the friction force on an ion
inside a uniform density electron plasma with velocity
distribution function f�ve� is given by [24]
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m

Z ~Vi 
 ~ve
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where Z is the ion charge number, e is the electron charge,
ne is the electron density, m is the electron mass, Vi and ve
are the ion and electron velocity, and L is the Coulomb
logarithm L � ln��max=�min�, where �max and �min are the
maximum and minimum impact parameters, respectively.
In the general case, an anisotropic velocity distribution
(typical situation for electron coolers) can be approximated
by a Maxwellian distribution with different temperatures
for the longitudinal and transverse degrees of freedom.
Simple asymptotic expressions for the case when the trans-
verse rms velocity spread of electrons �e;? is much larger
than the longitudinal one �e;k have been obtained [5]. They
agree within a factor of 2 with direct numerical integration
of Eq. (3).

If an accurate force description is required, and the
criterion �e;? � �e;k is not satisfied, the friction force
components can be accurately calculated using numerical
evaluation of the integral in Eq. (3). A comparison of
VORPAL simulations with the integration of Eq. (3) imple-
mented in BETACOOL (solid line), for the case of an aniso-
tropic Maxwellian distribution of electrons f�ve� with the
rms velocity spreads of �e;? � 4:2� 105 and �e;k �

1:0� 105 m=s (Z � 79, ne � 2� 1015 m
3), is shown in
Fig. 1. We find agreement between VORPAL simulations
and numerical integration of Eq. (3) to be satisfactory for
this and other benchmark tests of zero magnetic field with a
typical difference of 10%–20%, depending on the
parameters.

V. FRICTION FORCE WITH FINITE MAGNETIC
FIELD

The presence of a longitudinal magnetic field changes
the collision kinetics, because it limits the transverse mo-
tion of electrons. In the limit of a very strong magnetic
field, the transverse degree of freedom does not take part in
the energy exchange, because all collisions are adiabati-
cally slow relative to the electron Larmor oscillations. In
this limit, the friction force is independent of the transverse
electron velocities and, hence, is limited only by their
longitudinal velocity spread. In typical low-energy electro-
static coolers, the longitudinal electron velocity spread is
much smaller than the transverse. The combination of this
velocity anisotropy with a moderate longitudinal magnetic
field can greatly enhance the longitudinal friction force and
provide fast magnetized cooling. In applications to high-
energy cooling, this advantage is somewhat reduced, be-
cause imperfections in the longitudinal field of a realistic
solenoid magnet can lead to a significant increase in the
effective velocity spread of electrons. For example, in the
magnetized cooling concept for the RHIC-II cooler [25],
making the optimistic assumption of longitudinal magnetic
field imperfections with an rms distribution of angles at the
level of 10
5 radians, the effective angular spread of
electron trajectories in the beam frame becomes rather
large, of order 10
3 radians, due to the large relativistic
factor � � 108.

Expressions for the friction force in the presence of
magnetized electrons, based on the dielectic linear re-
sponse of a plasma, were carried out by Derbenev and
Skrinsky [6,7]. The final results of the derivation were
also summarized in Refs. [5–8], including the presentation
of collision integrals but leaving out specifics of how these
integrals were evaluated. As a result, the analysis presented
in Ref. [5] is typically referred to as a binary-collision
model, even though these integrals were actually evaluated
using the dielectric plasma response approach [6,26]. A
general treatment based on the dielectric approach was
later reported in Refs. [9,10]. Reference [10] also discusses
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FIG. 1. (Color) Nonmagnetized force (eV=m) vs ion velocity
(� 105 m=s) for an anisotropic velocity distribution: solid
line—Eq. (3) implemented in BETACOOL; points with error
bars—simulations using VORPAL.
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complications arising in numerical evaluations of the
integrals.

In the limiting case of a very strong magnetic field, one
can obtain a practical expression, in the form of a one-
dimensional integral. Such a result for the magnetized
friction force was first obtained by Derbenev and
Skrinsky [5,6]:
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is the relative velocity of the ion and
an electron ‘‘Larmor circle,’’ with transverse electron ve-
locities assumed to be completely suppressed (i.e. approxi-
mation of infinite magnetic field). The actual values of the
magnetic field and transverse rms electron velocity spread
enter only via the cutoff parameters under the Coulomb
logarithm, which is defined as LM � ln��max=�L�, where
�L � mc�e;?=�eB� is the radius of Larmor rotation.

The function in Eq. (4) has asymptotes in the region of
small (V � �e;k) and large (V � �e;k) ion velocities. For
example, for V � �e;k, the electron distribution can be
approximated by the delta function, and integration of
Eq. (4) gives [5]
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which are the expressions describing adiabatic collisions of
the magnetized type. Once again, the expressions in
Eqs. (5) and (6) were originally derived based on a pertur-
bative treatment of the collective plasma response. It was
later argued by Parkhomchuk [27] that one gets slightly
different asymptotic expressions (for V � �e;k) when us-
ing the ‘‘binary-collision’’ approach to evaluate the colli-
sion integrals:
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In general, one should account for all possible types of
collisions such as nonmagnetized (fast), magnetized (adia-
batic), and cyclic collisions where the ion can interact
several times with the same electron (see, e.g., Ref. [4]).
However, in most practical situations for magnetized cool-
ing, any contribution from fast collisions is negligible
compared to the adiabatic collisions, since in the fast
collisions the relative velocity includes the (much larger)
transverse component of the electron velocity. This is true

for the parameters of the RHIC cooler discussed in this
paper, so we now restrict our attention to the problem of
magnetized or ‘‘adiabatic’’ collisions.

Recently, to account for the finite value of the magnetic
field, an empirical expression for the magnetized friction
force was suggested by Parkhomchuk [28]:

 

~F � 
 ~V
4Z2e4neLp

m
1

�V2 � �2
e;eff�

3=2
; (9)

where �e;eff is the effective electron velocity spread. The
Coulomb logarithm in Eq. (9) is given by

 Lp � ln�
�max � �min � �L

�min � �L
�: (10)

Numerical simulations in Ref. [28] showed disagreement
with the asymptotic formula of Ref. [5] [i.e. our Eq. (5),
with the nonlogarithmic term omitted]. However, the simu-
lations in Ref. [28] assumed perfectly cold electrons, a
limit where the friction force actually decreases with in-
creasing magnetic field. The strong disagreement between
the cold-electron simulation results in Ref. [28] and the
empirical formula being advocated by that work [i.e. our
Eq. (9) above] is also confusing.

Furthermore, the possibility of including the nonlogar-
ithmic term in Eq. (5) was not discussed. In fact, the main
argument in Ref. [28] against Eq. (5) is that it goes to zero
for ion motion along the magnetic field lines (zero trans-
verse ion velocity), which is the case only in the absence of
the nonlogarithmic term.

These issues are addressed through VORPAL simulations
with both cold and warm electron distributions. We com-
pare our simulation results not just with the asymptotic
expressions in Eqs. (5) and (6), but also with the more
complete theoretical formula in Eq. (4), from which these
asymptotic expressions were obtained. Accurate numerical
integration of Eq. (4) has been implemented in the
BETACOOL code as well.

VI. FRICTION FORCE SIMULATIONS FOR FINITE
MAGNETIC FIELD

A. Longitudinal component of the force

The longitudinal force for the case of zero transverse ion
velocity is plotted in Fig. 2. The VORPAL simulations are
done for the following parameters: B � 5 T, time of inter-
action in the beam frame � � 0:4 ns, the rms velocity
spreads of the electron beam �e;? � 1:1� 107 m=s,
�e;k � 1:0� 105 m=s, Z � 79, and the density of elec-
trons in the beam frame ne � 2� 1015 m
3. It is shown
that the friction force expressions, which were constructed
based on the asymptotic limits to cover a full range of
relative velocities [4] can overestimate force values near
the force maximum, which is not surprising since the
validity condition for the asymptotic expressions is not
satisfied there.
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The use of Eq. (4) instead of the asymptotic expression
helps to avoid an overestimate of the friction force in the
vicinity of the longitudinal spread of the electrons.
However, the accuracy of the expression in Eq. (4) is itself
of a concern since it was obtained with several approxi-
mations, including an approximation of a very strong
magnetic field. Also, in the limiting case of zero transverse
ion velocity (zero angle of the vector of ion velocity with
respect to the magnetic field lines), Eq. (4) results in
‘‘enhanced’’ force values compared to VORPAL results or
Eq. (9). More details of such a behavior are provided
elsewhere [29].

On the other hand, for the same case of zero transverse
ion velocity, we find that Eq. (9) is in remarkable agree-
ment with our simulation results. An agreement observed
is not unreasonable, because Eq. (9) was obtained through
systematic parametric fitting of longitudinal friction force
measurements from experiments with ion beams that were
already cooled and so had small transverse velocity spread.
However, for the design of future high-energy electron
coolers, it is extremely important to have an accurate
description of the friction force for the initial state of the
ion beam, when transverse velocities are still large. Thus,
we next consider the longitudinal friction force as a func-
tion of the angle between the ion velocity vector and the
magnetic field lines.

An important feature of a rigorous description in a
strong magnetic field is that, for relative velocities higher
than the longitudinal rms electron velocity, the longitudinal
and transverse components of the force have very different
forms, as can be seen from Eqs. (5)–(8). A dependence on
the transverse angle between the ion velocity and the
direction of the magnetic field is plotted in Figs. 3 and 4
for the longitudinal component of the friction force and
ion velocity V � 3� 105 m=s (B � 5 T, Z � 79, ne �
2� 1015 m
3).

Figure 3 shows (upper curve and points) that the agree-
ment between simulations and Eq. (5) is good if perfectly
cold (zero-temperature) electrons are assumed in simula-

tions. However, this ‘‘cold-beam’’ approximation is far
from being valid in real situations. Similar dependence of
the force on angle was shown by Parkhomchuk using direct
numerical computation of the friction force [28]. For finite
temperature of the electrons our simulations show even
weaker dependence on angle than for the case of the zero-
temperature electrons, as shown in Figs. 3 and 4.

Another important property of the magnetized friction
force is its dependence on the strength of the magnetic field
in the cooling section with the logarithmic increase of the
force values with the magnetic field strength being ex-
pected. However, numerical simulations reported by
Parkhomchuk [28] show a reduction in the friction force
as the strength of the magnetic field is increased, which is
due to an assumption of zero-temperature electrons. In our
simulations with the zero-temperature electrons we con-
firmed such a dependence on the magnetic field. The
reason for such a behavior are the fast collisions which
contribution is not suppressed by the electron temperature
in this case [29].
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FIG. 3. (Color) Longitudinal component of the force: solid blue
line—Eq. (5); dashed green line—Eq. (9); pink dots with error
bars—VORPAL results for ‘‘cold’’ electrons; open circles with
error bars—VORPAL results for finite-temperature electrons.
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FIG. 4. (Color) Longitudinal component of the force: (1) For
�e;? � 4:2� 105 m=s: red (dot-dashed) line—Eq. (5); red
short-dashed line—Eq. (9); dots with error bars—VORPAL re-
sults. (2) For �e;? � 1:1� 107 m=s: blue solid line—Eq. (5);
green long-dashed line—Eq. (9); open circles with error bars—
VORPAL.
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FIG. 2. (Color) Longitudinal component of the force (eV=m) vs
ion velocity (� 105 m=s). BETACOOL results: solid line
(green)—Eq. (9); dot-dashed line (gray)—asymptotics [4];
dashed line (blue)—Eq. (4); VORPAL results: dots with error bars.
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If the electrons have finite temperature, our simulations
show that the friction force increases logarithmically with
the magnetic field strength, corresponding to an increased
magnetized logarithm, as shown in Fig. 5.

B. Origin of finite longitudinal force at zero transverse
angles

Another feature seen in Fig. 3 is the behavior at zero
angle (i.e. zero transverse ion velocities), which would lead
to zero friction force in the absence of a nonlogarithmic
term in Eq. (5). The origin of this constant term in Eq. (5) is
due to collective plasma waves [6,7] (see Sec. II for dis-
cussion). In a typical low-energy cooler, plasma effects
may become important (depending on the parameters) so
that inclusion of a term resulting from the collective
plasma oscillations is essential. For high-energy coolers,
the time of flight of an ion through the cooler in the beam
frame becomes extremely short due to the large relativistic
factor, so the maximum impact parameter is determined by
the finite interaction time rather than dynamic Debye
screening.

In our simulations, using parameters of the RHIC cooler,
the interaction time in the beam frame is less than one
plasma period, which excludes any contribution from
plasma waves. Thus the nonlogarithmic term in Eqs. (4)
and (5) cannot be justified in our case, so that zero longi-
tudinal friction force at zero transverse angles may be
expected for ion velocities much higher than the longitu-
dinal velocity spread of the electrons.

Recently, it was pointed out by Pestrikov [30], that for
ion velocities smaller or comparable to the longitudinal
velocity spread of the electrons, the integral in Eq. (4) does
not go to zero even without the nonlogarithmic term when
the transverse velocity of an ion is zero and results in the
finite value for the longitudinal component of the force.
Such a behavior at zero transverse angle with respect to the
magnetic field line is sometimes attributed to the limitation

of the approach in which Eq. (4) is derived [29]. For the
limiting case of the zero transverse ion velocity, the force
value in Eq. (4) without the nonlogarithmic term vanishes
completely for the ion velocity equal to 4�e;k or higher.

Simulations with VORPAL show finite friction values at
zero angle, even for relatively high ion velocities V >
4�e;k. We attribute these finite force values, in the absence
of any collective plasma effects, to incomplete electron-ion
collisions, resulting from short interaction times. We also
find that this simulated finite longitudinal force scales with
the magnetized logarithm, with maximum impact parame-
ter �max determined by the finite interaction time. This is
shown in Fig. 4 for �e;? � 4:2� 105 m=s (LM � 5:6) and
1:1� 107 m=s (LM � 2:3). Here, B � 5 T, time of inter-
action in the beam frame is 0.4 ns, �e;k � 1:0� 105 m=s,
Z � 79, and the electron density in the beam frame is ne �
2� 1015 m
3.

Our conclusion is that the finite friction force, for purely
longitudinal ion motion with V � �e;k, is due to finite
interaction times disrupting the adiabaticity of the magne-
tized collisions. The nonlogarithmic term in Eq. (4) par-
tially captures this physical effect, although it does not
scale correctly with the magnetized logarithm. The para-
metric model Eq. (9) captures finite values at zero angle
quite accurately.

A complete description of the effects of finite interaction
times is beyond the scope of this work and will be reported
in the near future.

C. Transverse component of the force

For the transverse component of the force, VORPAL

simulations show ‘‘antifriction’’ as predicted by the
asymptotic formulas in Eqs. (6)–(8). This is shown for
the case of an rms electron velocity spread of �e;? �
4:2� 105 m=s (LM � 5:6) and 1:1� 107 m=s (LM �
2:3) in Figs. 6 and 7, respectively. The strength of the
antifriction (negative force values on the graphs), as well
as the angle value at which the transverse component of the
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FIG. 5. (Color) Longitudinal friction force (eV=m) for
�Vion;k; Vion;?� � �3� 105; 0� m=s vs magnetic field B (T), for
the finite-temperature electron beam with (�e;k;�e;?� � �1�
105; 1� 107� m=s. Solid curve—Eq. (9); dots with error bars—
VORPAL results.
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FIG. 6. (Color) Transverse component of the force. Comparison
for �e;? � 1:1� 107 m=s: blue dot-dashed line—Eq. (6); red
dashed line—Eq. (8); green solid line—Eq. (9); dots with error
bars—VORPAL results.
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friction force changes sign, seems to more closely follow
Eq. (8), which was derived using the binary-collision ap-
proach [27]. It was argued in Ref. [26] that the difference
between the asymptotic expressions in Eqs. (5) and (6), as
compared to Eqs. (7) and (8), is caused not by a difference
between the dielectric plasma response and binary-
collision approaches, but rather by different choices of
the cutoff parameters, with the one used in the derivation
of Eqs. (7) and (8) judged to be more physical. Equation (9)
overestimates transverse friction force at small angles,
since it does not show any antifriction.

D. Convergence between asymptotic and numerical
results

Note that for our comparison of an angular dependence
at Vion � 3� 105 m=s, with �e;k � 1� 105 m=s, the con-
dition Vion � �e;k is not quite satisfied. The choice Vion �
3� 105 m=s was made in order to avoid unnecessary
problems with numerical accuracy at much larger veloc-
ities, for which the friction-induced velocity change be-
comes extremely small. For example, the force value of

344 eV=m at zero transverse angle in Fig. 3 corresponds to
a velocity change of only 0:07 m=s from the initial ion
velocity of 3� 105 m=s in VORPAL simulations. An ex-
ample of how an asymptotic expression in Eq. (6) and
numerical integral in Eq. (4) converge is shown for the
ion velocities of 3� 105 and 6� 105 (with �e;k � 1�
105 m=s) for the transverse component of the force in
Figs. 8 and 9, respectively. For the longitudinal component
of the force, one gets similar convergence.

VII. DISCUSSIONS

Our computational results show that the asymptotic
limits of Eq. (4) given in Eqs. (5)–(8), while useful quali-
tative guides, are not sufficient for use in electron cooling
system design, where an accurate description of the friction
force is needed for a large range of relative velocities
between the ions and electrons. The use of asymptotic
limits to construct a friction force expression to cover a
full range of relative velocities [4] leads to an overestimate
of the force.

The use of Eq. (4) directly by means of a numerical
evaluation of the integral avoids an overestimate of the
friction force compared to the asymptotic expressions.
However, it requires the use of the nonlogarithmic term
(not necessarily justified in some cases) to prevent unphys-
ical behavior at high relative velocities. Also, its functional
behavior at zero transverse ion velocity with the enhanced
values for the force may be attributed to the limitation of
the linearized dielectric approach to treat accurately close
collisions.

Equation (9) does not provide a correct description of
the magnetized friction force for ion motion at nonzero
angles with respect to the magnetic field lines. However,
this model overestimates the friction force for some angles,
while underestimating it for others. Also, any anisotropy
introduced by the magnetic field (ignored by this equation)
is very weak for finite-temperature electrons. For a simple
estimate of the net cooling power and for finding basic
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FIG. 8. (Color) Transverse component of the force at ion veloc-
ity 3� 105 m=s (�e;? � 1:1� 107 m=s, �e;k � 1:0� 105 m=s,
B � 5 T): gray dot-dashed line—Eq. (6); blue dashed line—
Eq. (4).
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FIG. 9. (Color) Transverse component of the force at ion veloc-
ity 6� 105 m=s (�e;? � 1:1� 107 m=s, �e;k � 1:0� 105 m=s,
B � 5 T): gray dot-dashed line—Eq. (6); blue dashed line—
Eq. (4).
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FIG. 7. (Color) Transverse component of the force. Comparison
for �e;? � 4:2� 105 m=s: blue dot-dashed line—Eq. (6); red
dashed line—Eq. (8); green solid line—Eq. (9); dots with error
bars—VORPAL results.
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parameters needed for the cooler, the use of empirical
expression in Eq. (9) seems sufficient.

For an accurate description of the friction force in a
magnetic field of arbitrary strength, with accuracy better
than factor of 2, direct numerical simulations with a code
like VORPAL are required.
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