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Spin resonance strength of a localized rf magnetic field
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Spin-resonance strength produced by a localized rf field has been a focus of recent publications
[V.S. Morozov et al., Phys. Rev. ST Accel. Beams 7, 024002 (2004).; M. A. Leonova et al. (to be
published).; T. Roser, in Handbook of Accelerator Physics and Engineering, edited by A. W. Chao and
M. Tigner (World Scientific, Singapore, 1999), p. 151.; M. Bai, W. W. MacKay, and T. Roser, Phys. Rev.
ST Accel. Beams 8, 099001 (2005).; V. S. Morozov et al., Phys. Rev. ST Accel. Beams 8, 099002 (2005).].
This paper discusses the debated factor of 2, and provides a formula to calculate the component enhanced

by the induced betatron motion.
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L. INTRODUCTION

Recent spin-manipulation experiments have made ef-
forts to understand the spin-resonance strength induced
by the rf dipole or solenoidal fields in spin manipulations
[1,2]. In particular, there is a debate on the factor of 2 in the
definition of the resonance strength induced by the rf field
[3-5], and the enhancement of the spin-resonance strength
by more than an order of magnitude [2].

Harmonic modulation to the dipole or the solenoidal
field provides a powerful tool in spin and beam manipula-
tions [6,7]. Since the spin manipulation requires absolute
knowledge of the spin-resonance strength, it is important to
be able to calculate the spin-resonance strength produced
by the rf fields. This report is intended to clarify the issue
and derive a formula to evaluate the induced spin-
resonance strength. We organize the paper as follows.
Section II discusses the intrinsic and the forced rf spin-
resonance strength. The conclusion is given in Sec. III.

II. THE SPIN-RESONANCE STRENGTH OF A
LOCALIZED RF FIELD

In the presence of an rf dipole or solenoidal field modu-
lation, the Thomas-BMT equation in the Frenet-Serret
curvilinear coordinate system is

a5 _ i x§, (1)
do

where § = § 161 + S,é, + S3é5 is the vector polarization
in the orthonormal basis of the radially outward direction
é,, the longitudinal beam direction é,, and the vertical
direction é5. The dipole bending angle 6 serves as the
independent coordinate with df = ds/p, where s is the
longitudinal path length along the reference orbit and p is
the radius of curvature. Here 6 is constant in a straight
section without dipole. The angular precession 7i-vector is
it = Gyé; — F1é, — F,é, with
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Fi=—pZ'(01+Gy)+ 1+ Gy)®,cos(w;t + x1)

X Z 8(0 — 2arn), (2)
Fy=(+Gy)Z —p(l + G)<§>/ + (1 +G6)8,

X cos(wyt + x3) Z 8(6 — 2mn). 3)

Here G =g/2—1 is the anomalous gyromagnetic
g-factor, Gy is the spin precession tune, (x,z) are the
horizontal and vertical betatron coordinates, the prime’s
are derivatives with respect to the longitudinal path length
s, ®, = B.{/Bp and w, are modulation amplitude and
angular frequency of an rf horizontal-field dipole, and
0O, = B|¢/Bp and w, are the modulation amplitude and
angular frequency of the rf solenoidal field. The §-function
indicates that the rf magnetic elements are localized kicks.

The spin-resonance strength is defined as the Fourier-
series expansion:

Fy = iFy =) exe k7. “)
K

A computer program DEPOL [8] can calculate the resonance
strength arising from the first term of Eq. (2) and the first
two terms of Eq. (3). These resonance strengths are clas-
sified into the intrinsic spin resonances, arising from the
betatron motion, and the imperfection spin resonances,
resulting from the beam closed orbit errors and the
magnetic-field and machine-alignment errors.

Now, we consider the contribution of the spin-resonance
strength produced by the rf modulation fields. The rf
modulation fields in Egs. (2) and (3) can perturb the spin
motion in two ways. The direct effect of the rf-field on the
spin motion is called the intrinsic rf spin-resonance
strength. Furthermore, the rf fields can also affect orbital
motion, and in turn the spin motion is affected. The result-
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ing effect is called the forced rf spin-resonance strength.
We will discuss their contributions as follows.

A. Intrinsic rf spin-resonance strength

First, we consider the effect of the rf magnetic field on
spin motion. Using the Fourier expansion, we find

cos(w,,t + x) Z 8(0 — 2mn)

1
=5 Z cos[(n + v,)0 + x], o)

n=-—00

where w,, is the modulation angular frequency (either w,
or w,) and we have used w,,t = v,,0, where v,, = w,,/ 0,
is the modulation tune, w is the angular revolution fre-
quency. Using Eq. (4), we find that the resonance strength
is

(1+Gy)& %‘6,
|€1<| = ’

dipole field modulation

(1+G)= in I;'g solenoidal field modulation
(6)
for all sidebands at Gy = n + »,, provided that v,, is not

an integer or half-integer. This is the formula provided in
Refs. [3,4].

On the other hand, if the modulation tune is either a half-
integer or an integer, two revolution harmonics coherently
contribute to give

{(1 + G‘y)2l
€x =

(1 )27,- Bp COS/\/Z

dipole field modulation

solenoidal field modulation,

(7

at all sidebands. The cos y; and cosy, factors show that the
phase of arrival time of the particle is important to kick
strength. If a particle arrives at the peak of the modulation
wave, i.e. yj or y, is either O or 7, the resulting spin-
resonance strength is twice the strength defined by Eq. (6).
If the particle arrives at the zero of the modulation wave, it
will receive zero kick at all time, and the spin-resonance
strength is 0.

The factor of 2 in the resonance strength used in
Eq. (4.85) of Ref. [9] reflects the fact that the modulation
frequency of the solenoidal field has an integer v,, for K =
2 resonance and its synchrotron sidebands. The induced
longitudinal electric field of the rf solenoid can act as an rf
cavity to capture beam particles in the bucket with y, = 0
[10-12]. Spin manipulation with accelerators equipped
with a snake may have a spin tune of 1/2, and thus the
spin modulation tune is usually also 1/2. The intrinsic rf
spin-resonance strength is given by the formula shown in
Eq. (7).

In a storage ring with many bunches, the choice of the rf-
frequency for spin manipulation becomes very important.
For example: a storage ring with revolution frequency f,

and bunches filled to each bucket with harmonic number #,
the modulation frequency must be i f,/2 or hAf, in order to
attain equal modulation strength for each bunch. If the spin
tune is 1/2, a possible modulation frequency is hf,/2,
where the harmonic number # must be an odd number. If
the modulation frequency were f,/2, some bunches might
receive zero spin kick. One can intentionally use this
feature to spin flip selected bunches in a storage ring.

B. Resonance strength due to the forced
betatron motion

Now, we examine the effect of the rf magnetic field on
particle motion. The forced betatron or synchrotron motion
can give rise to enhancement or reduction of the resonance
strength. Since a pure solenoidal field produces little per-
turbation to betatron motion unless the horizontal and
vertical betatron tunes are equal. We will not discuss its
enhancement.

On the other hand, the horizontal magnetic field can
produce a sizable forced betatron oscillation as shown in
the Appendix [13]. The forced betatron excitation is

(S) @] \/Bz(s BZO z

n=—oo

X COS[(” + Vrn)¢z(s) + /\/1]’ (8)

z - -
x 1/—(n+1/)2

where ®, = B,{/Bp is the amplitude of the rf-dipole kick
angle, B,y is the betatron amplitude function at the rf
kicker location. The resonance strength at harmonic K is

1
EK:ET

- i[(l + Gy)zl — p(1 + G)(%)l}}eimd& )

2
{—pz{s’x(l + Gy)

Such an integral can easily be evaluated in DEPOL [8]. We
will derive an approximate expression for a simple accel-
erator lattice as follows.

The forced betatron motion is dominated by the har-
monic n such that #,, = |n + v,,| = v_. For example, for a
proton beam with G = 1.7928 and y = 2.45, we have
Gy = 4.4. We consider the case that v,, = 0.6, and v, =
3.575. The most important forced betatron oscillation is
located at n = 3 with 7,, = 3 + v,, = 3.6. On the other
hand, for a deuteron beam with G = —0.14301, vy =
1.3985, and Gy = —0.20, we can choose v, = 0.80. If
the vertical betatron tune of the accelerator is v, = 3.60,
both #,, =3+ v, =3.80 and 7,, = | — 4 + v,| = 3.20
terms may contribute to the forced betatron oscillation. The
first term is 0.20 unit away from v, and the second term is
0.40 unit away. The amplitudes of these two components
only differ by a factor of 2, and thus they should both be
included in the calculation. When v,, is an integer or a half-
integer, two harmonics may contribute equally to the
forced betatron excitation

074001-2



SPIN RESONANCE STRENGTH OF A LOCALIZED RF ...

Phys. Rev. ST Accel. Beams 9, 074001 (2006)

Since Eq. (9) is linear in z,, we can separately calculate
the contribution of each term. We consider a forced beta-
tron oscillation term:

z (s)=®L(S)'Bzo

1277_(1}2 _ 172) Cos[ﬁm(bz(s) + X[] (10)

The integral in Eq. (9) is dominated by the first term in the
bracket. Using the relation z” + K.(s)z = 0, where K_(s)
is the focusing function, we find

+ .
e%rced ~ (1 G?’)®1VA. BZO fKZ(S)

472 (v — 72)

X /B (s) cos[ 7, ¢, (s) + x ]eKPds.  (11)

Now, we consider an accelerator lattice made of P super-
periods with M FODO cells in each superperiod, where
each FODO cell is made of the focusing and defocusing
quadrupoles separated by dipole magnets. These M-
FODO-cell units are connected by insertion sections with-
out dipoles. Nonzero resonance strength only occurs at
K = kP = p,, (k = integer), given approximately by

ored ~ (L OVOWBry (oo pr 575

8m2[v? — 2]
— gDA /ﬂZ(D)ei[(K"'ﬁB)/(MP)]W] + Xi‘;s}ei/\/l

+ E;{E;/[[gFV :81(F)

— €DA /'BZ(D)ei[(K_f’B)/(MP)]W] + Xi;s}e_i/\/l)r
12)

where g and gp are quadrupole strengths of the FODO
cell, B.(F) and B,(D) are the values of the vertical betatron
function evaluated at the horizontal focusing and defocus-
ing quadrupole locations, X;.. are contributions from the

insertion, E; and Ej; are enhancement factors due to the P
superperiods and the M FODO cells, respectively, i.e.,

% — (1 _ eiZw(th»m))/(l _ eiZW[(Ktz"zm)/P]) (13)

Eﬂi/'[ — (1 _ eiZW[(KtT/B)/P])/(l _ eiZW[(KtﬂB)/(PM)])’ (14)

pp = ¥,,vg/v., and vy is the total betatron tune in dipole
cells. Strong forced rf spin resonances are located at K =
k* v, =mPM=* ig.

The intrinsic spin-resonance strength for a particle at the
normalized rms emittance ey is

intrinsic (1 + G‘Y) €N
epimic = 20 O K(0yBo

X cos[#,¢.(s) + £leKds, (15)

where B7 is the relativistic Lorentz factor and ¢ is the
phase of an rms particle. Since 7,, = v,, the forced rf spin-
resonance strength can be approximated by

|6f0rced B | ~ (1 + G7)®l F
K=kP*7p, 20

, (16)

lv, — 7l

VB

F =
2(1 + Gy)\ en

77-B’yleintrinsic |
K=kP*xyp I

a7
This means that all important forced rf spin resonances are
located near all strong intrinsic spin resonances of the
betatron motion.

In one recent experiment [2], the rf spin-resonance
strength measured for polarized proton is strongly en-
hanced at Gy = 4.39 = 8§ — ,,, which is near a strong
intrinsic spin resonance at 8 — v,. On the other hand, the
resonance strength for polarized deuteron at Gy = —0.20
did not observe enhancement at k = 7,, = —4 + 3.80 be-
cause the betatron tune of v, = 3.60 was far away from the
modulation tune of #,, = 3.80 and furthermore there was
no strong intrinsic spin resonance at this location for the
COSY lattice [14]. A more accurate calculation can be
carried out by using the DEPOL program [8]. Although we
stated earlier that the sideband 7,, = 3.20 may substan-
tially contribute to the forced betatron oscillation, its effect
on the spin motion may be different. For example, if the
Gy = —0.20, then the spin resonance of this component of
the forced betatron motion is located at Gy = 3 — 7,,. For
an accelerator with superperiod P = 2, the spin resonance
at 3 — 7, can arise only through the gradient error, and
thus its resonance strength is much reduced.

III. CONCLUSION

This paper points out that the intrinsic rf spin-resonance
strength depends on the modulation tune. If the modulation
tune is an integer or a half-integer, the maximum intrinsic
rf spin-resonance strength can be twice that of the case
when the modulation tune is not an integer or a half-
integer. We also derived an approximate formula to calcu-
late the strengths of the enhanced spin resonances, and
explained the enhancement of the rf spin-resonance
strength for polarized protons observed at the COSY cooler
synchrotron.

In general, two nearby harmonics can also contribute to
enhance or reduce the rf driven betatron oscillation. Each
harmonic can be calculated independently in Eq. (11).
Although we can explain the enhancement of the rf spin-
resonance strength for polarized protons, the reduction of
the rf spin-resonance strength observed for the polarized
deuteron beam in Refs. [1,2] needs detailed calculation.

Besides the forced oscillations, there is an induced
betatron oscillation at the betatron tune, where A and B
coefficients of Eq. (A3) are determined by the initial
condition. The resonance strength of this induced betatron
oscillation can also produce enhanced resonance strength
at K = kP * v,. If the spin manipulation does not cross
the betatron resonance line, we do not need to calculate this
enhanced strength. However, the induced betatron oscilla-
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tion plays an important role in overcoming intrinsic spin
resonances with rf dipoles [6].
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APPENDIX: EFFECTS OF RF-DIPOLE FIELD ON
BETATRON MOTION

In the presence of a localized rf dipole, Hill’s equation is

d’y -
ZZ + K(s)y =0, cos(w,,t + ) S8(s — nC),
e y =0, X D>

n=—o0

(A

where ®, = B_{/Bp and w,, are, respectively, the kick
angle and the angular frequency of the rf dipole, C is the
circumference, s is the longitudinal path length, and t =
s/ Bc is the time. The periodic delta function reflects the
fact that the beam particles encounter the kicker field only
once per revolution.

Performing the Floquet transformation to Eq. (A1) with

y & 1 [(sds
77 = — = - 5
VB v Jo B
and using 8(s — nC) = (1/|ds/d¢|)6(¢d — 2mn), Hill’s
equation becomes

1/2 )
By O S o + 1,06 + x)

n=—o0

2
—d L ving=—2—
do? 21

(A2)

where v,, = w,,/w, is the modulation tune, B, is the value
of the betatron amplitude function at the rf-dipole location,
and w, is the orbital angular frequency. The solution of the
inhomogeneous Hill’s equation is

N = N T AcosSved + Bsinve + 1, (A3)

where A and B are the amplitudes of the induced betatron
motion determined by the initial condition, and the par-
ticular solution 7, is the time dependent forced oscillation
term:

Sy cos[(n + v,,)p + xl

(A4)

Note that the discrete nature of the localized kicker
generates error harmonics n + v,, for all n € (—oo, ).

For example, if the modulation tune is »,, = 0.8, the rf
field produces sidebands |n + v,| = 0.2,0.8, 1.2, 1.8, ...
around the revolution lines. The most important forced
betatron oscillation is located at 7,, = |n + v,,| = v. In
some cases, two nearby harmonics can simultaneously
contribute to the forced betatron oscillation.
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