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Space charge modeling of dense electron beams with large energy spreads
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Theoretical and numerical studies of the transport in vacuum of multi-nC, multi-MeV electron beams
are performed using several methods, including envelope models, a novel semianalytic approach using
ellipsoidal shell decomposition, a modified electrostatic particle-in-cell method, and a point-to-point
interaction model. The effects of space-charge forces on the longitudinal and transverse bunch properties
are evaluated for various bunch lengths, energies, energy spreads, and charges. An evaluation of the
various methods for studying space-charge effects in large energy spread, high charge beams is
summarized. Examples are given for beam distributions typical of those generated by plasma-based
accelerators. It is found that, for the highly correlated beams produced in the self-modulated regime, the
high energy portion of the beam can gain significant energy while propagating in vacuum due to space-
charge effects.
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I. INTRODUCTION

The propagation in vacuum of dense electron beams,
typical of those produced by plasma-based accelerators, is
examined. Such beams are typically very compact, with a
relatively high charge per bunch and a significant energy
spread (depending on experimental scheme). An important
issue is to understand how these beams evolve as they exit
the plasma. This includes the evolution of the bunch shape,
duration, energy spread, and emittance, as well as the time
scale for this evolution. This paper concentrates on two
types of beams relevant to laser wakefield accelerators
(LWFAs).

The first type is typical of that produced by the self-
modulated LWFA (SM-LWFA) [1]. The SM-LWFA typi-
cally uses a single laser pulse that is long compared to the
plasma wavelength, L > �p, and relies on self-trapping to
inject electrons into the plasma wakefield. Here L is the
laser pulse length and �p � 2�=kp � 2�c=!p, where
!p � �n0e

2=�0me�
1=2 is the plasma frequency, n0 is the

ambient plasma density, me the electron rest mass, e the
electron charge, c the speed of light in vacuum, and �0 is
the permittivity of free space. Because the electrons are
self-injected, the resulting bunch typically has a large
energy spread, characterized by an exponential distribution
in energy with a temperature ranging from 1–10’s of MeV.
The bunch can have high charge �1–10 nC, with typical
transverse dimensions �10 �m, and bunch half-length
�10 �m, giving a high number density �2:5�
1019 cm�3.
iversity of Paris XI, 91405 Orsay Cedex, France.
iversity of Nevada, Reno, Nevada 89557, USA.

06=9(6)=064402(31) 06440
The second type of beam is typical of that predicted to be
produced by LWFAs that utilize optical injection, such as
in the colliding pulse injector (CPI) [2–5]. The CPI
scheme is predicted to produce bunches of small relative
energy spread by using two to three short laser pulses of
length L & �p. The drive pulse generates the wake, and the
beating of the backward pulse with the drive pulse (or a
third pulse) injects electrons with a small phase spread
into the wakefield. This scheme offers detailed control
of the injection process, and since L & �p, Raman and
self-modulation instabilities will be suppressed. The result-
ing electron bunches carry a charge �10–200 pC, with
an average energy >10 MeV, and a relative energy
spread of 1%–10%. The bunch typical transverse dimen-
sions are�10 �m, and the bunch half-length is�2:5 �m,
corresponding to a number density of �2:5� 1017 cm�3.
This is 2 orders of magnitude smaller than in the self-
modulated regime, but the longitudinal quality of the
beam is much better because of the small relative energy
spread.

Several algorithms for computing space-charge forces
have been proposed and intensively used over the past
years to model electron beam dynamics in linacs and
storage rings [6–8]. Such methods generally assume that
the electron beam has a small energy spread. In this case
there is a single coordinate system (frame) in which all
beam particles are nonrelativistic, simplifying consider-
ably the calculation of electromagnetic self-fields. This
method may not be directly applied to beams with large
energy spreads and it is consequently useful to develop
new models allowing for fast computation of beam dynam-
ics without the necessary use of fully explicit techniques
such as particle-in-cell (PIC) codes [9,10] that are known
to be computationally costly.
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In this paper, the evolution of the electron bunch in
vacuum and in the absence of external forces is considered.
The assumptions and numerical methods (envelope equa-
tions, ellipsoidal shell decomposition, electrostatic PIC
method, and point-to-point interactions) are summarized
from Sec. II to Sec. V. Specifically, Sec. II examines a rapid
and innovative method for the calculation of space-charge
effects, assuming a paraxial approximation but capable of
handling beams with a large energy distribution [11]. This
method makes assumptions about the position space ellip-
soidal symmetry properties of the charge distribution and is
valid for a large parameter regime. In order to obtain
simple analytical expressions for the space-charge forces,
this section is further specialized to charge distributions
with radial symmetry about the axis of propagation.
Section III gives a summary of the envelope model fol-
lowed by the descriptions, in Sec. IV, of a modified electro-
static particle-in-cell code. The latter is an extension of the
model discussed in Sec. II and does not make any assump-
tions on the spatial symmetries of the electron beam. In
Sec. V, a three-dimensional (3D) point-to-point interaction
(PPI) approach will be discussed. This method applies to
large energy spread beams and does not require the para-
xial approximation. Section VI examines some electron
sources produced by CPI and SM-LWFA configurations,
Sec. VII compares PPI and PIC codes for the simulation of
space-charge dominated beams, and Sec. VIII discusses (i)
both limitations and possible generalizations of the PPI
model and (ii) emittance growth for beams with large
energy spreads. Appendices are also included to discuss
further aspects of these topics.

II. BASIC EQUATIONS FOR THE SHELL MODEL

In this section, a novel technique is described that uses
an ellipsoidal model for the beam charge distribution and
allows the treatment of arbitrarily large energy spreads.

A. Structure of the code

The six-dimensional (6D) beam phase-space distribu-
tion function is represented numerically as a collection of
macroparticles [11]. The phase-space coordinates of these
macroparticles evolve under the influence of the collective
space-charge forces. To compute these space-charge
forces, the range of longitudinal momenta spanned by the
beam is divided into a series of bins. Each bin has a
normalized longitudinal momentum width �uz �
�pz=�mc� � 1. Consequently, in the rest frame of each
bin, the macroparticles within that bin are nonrelativistic,
and the space-charge forces in that frame may be computed
from the electrostatic field of the macroparticle charge
distribution.

The macroparticle charge distribution is modeled within
a bin as a series of concentric ellipsoidal shells. The
parameters of these ellipsoidal shells, such as the root-
mean-square (RMS) radii, the density, and the average
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position, are obtained by statistical averages over the se-
lected macroparticles. Analytical expressions are used for
the electrostatic field for each ellipsoidal shell [12], which
enables a fast computational algorithm. The total electro-
static field due to the macroparticles is given by the sum
over the ellipsoidal shells.

To calculate the force on a given macroparticle at each
time step, we iterate through each momentum bin, and,
from the electrostatic fields of the macroparticles in that
bin, calculate the space-charge force on the given macro-
particle in the rest frame of that bin. We then transform this
space-charge force into the lab frame. The total force on
the macroparticle is the vector sum of the Lorentz-
transformed space-charge forces due to all the momentum
bins. This procedure is repeated for each macroparticle,
giving all the forces needed to evolve the macroparticle
distribution to the next time step.

Note that the binning by momentum, and the calculation
of the ellipsoid parameters characterizing the macropar-
ticle charge distribution associated with each bin, is done at
every time step.

B. Adaptive longitudinal momentum grid

In order to be able to approximate the space-charge
fields as purely electrostatic, the collection of charges
generating these fields must be nonrelativistic in their
common rest frame. Such an approximation requires that
the normalized momentum spread in the rest frame be
small, namely �pcm=�mc� � �ucm � �� 1. This condi-
tion is achieved in the code by using an adaptive binning
technique to break the longitudinal momentum distribution
up into bins (the transverse momentum spread is small
because of the small angular spread in the beam). This
can be done as follows: Performing a Lorentz transforma-
tion on the 4-vector normalized momentum u� � ��; ���
gives the relationship between the momentum spread in the
laboratory frame �uz and the momentum spread in the rest
frame �ucm

z [7],

 �ucm
z ’ � � ���uz � ����: (1)

Assuming the paraxial approximation (j�?j � j�zj) gives
�2 ’ 1	 u2

z and ��� ’ uz�uz or �� ’ ��uz. Inserting
�� ’ ��uz into Eq. (1) yields

 �uz ’ �� ’ �
��������������
1	 u2

z

q
: (2)

Using Eq. (2), the bin width requirement in terms of
laboratory longitudinal (z) momentum, for a laboratory
momentum uzk in bin k, is found to be

 �uz � uzk	1
� uzk ’ �

����������������
1	 u2

zk

q
; (3)

and in the limiting case �� 1,

 

duz�k�
dk

’ �
��������������
1	 u2

z

q
; (4)
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hence, the longitudinal momentum bins are defined by

 uzk � sinh�k�	 sinh�1uz0
�: (5)

The bin index for a given momentum uz is

 k � b
sinh�1uz � sinh�1uz0

�
c: (6)

Note that uz0
is taken as the lowest momentum of the

distribution function; it defines the first bin.

C. Total force calculations

For the macroparticles in momentum bin k, we compute
in the laboratory frame the transverse (a1k and a2k along x
and y) and longitudinal (a3k along the coordinate z) RMS
sizes of the bunch, and the mean longitudinal position of
the bunch (�zk). As noted above, radial symmetry is as-
sumed, so that a1k � a2k � ak, in order to be able to use a
simple analytical solution for the fields.

The quantities ak and a3k define an ellipsoid that models
the shape of the macroparticle distribution. This ellipsoid is
decomposed into a number of concentric ellipsoidal shells
sk � 1; 2; . . . ; Nk. The inner boundary of shell sk is desig-
nated m0�sk�ak radially and m0�sk�a3k longitudinally; and
the outer boundary is m1�sk�ak radially and m1�sk�a3k
longitudinally. The numbers m0�sk� and m1�sk�, that
range from 0 to �m [maximum ellipsoidal coordinate of
the distribution function �2 � �x2 	 y2�=a2

k 	 �z�
�zk�2=a2

3k], are chosen such that the volume of each of the
ellipsoidal shells is the same. The density of macroparticles
	0sk

within shell sk is calculated numerically from the

macroparticle distribution. Using the Lorentz transforma-
tion

 

�Esk � �kE0sk � �
2
k��k 	 1��1�k��k 
 E0sk�;

cBsk � �k�k � E0;
(7)

one can calculate the electromagnetic field produced by an
ellipsoidal shell, acting at the coordinate fx; y; zg in the
laboratory frame,

 E�x�sk �
	0sk

2�0
a2
k�ka3kxAsk�u1k ; u0k�; (8)

 E�y�sk �
	0sk

2�0
a2
k�ka3kyAsk�u1k ; u0k�; (9)

 E�z�sk �
	0sk

2�0
a2
k�ka3k�z� �zk�A3sk

�u1k ; u0k�; (10)

and

 cB�x�sk �x; y; z� � ��kE
�y�
sk �x; y; z�; (11)

 cB�y�sk �x; y; z� � �kE
�x�
sk �x; y; z�; (12)
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 cB�z�sk �x; y; z� � 0; (13)

in which Ask (A3sk
) is the transverse (longitudinal) space-

charge coefficient (see Appendices A and B for further
details), and �k � �1� �2

k�
�1=2 is the relativistic factor of

the kth bin. The space-charge coefficients are
Ask�u1k ; u0k� � g0k�u0k� � g0k�u1k�, A3sk

�u1k ; u0k� �

h0k�u0k� � h0k�u1k�, with

 g0k�u� � �a
2
k � �

2
ka

2
3k
��1

� ���������������������
�2
ka

2
3k
	 u

q
a2
k 	 u

	
tan�1�

���������������������
�2
ka

2
3k
	 u

q
=
�����������������������
a2
k � �

2
ka

2
3k

q
������������������������

a2
k � �

2
ka

2
3k

q
�
; (14)

and

 h0k�u� �
2

a2
k � �

2
ka

2
3k

�
��2

ka
2
3k
	 u��1=2

	
tan�1�

���������������������
�2
ka

2
3k
	 u

q
=
�����������������������
a2
k � �

2
ka

2
3k

q
������������������������

a2
k � �

2
ka

2
3k

q
�
: (15)

We also have u0k�x; y; z� � �k�x; y; z;m2
0�sk��=m

2
0�sk�, and

u1k�x; y; z� � �k�x; y; z; m
2
1�sk��=m

2
1�sk�, where

 2�k�x; y; z; m
2� � x2 	 y2 	 �2

k�z� �zk�
2 �m2a2

k

�m2�2
ka

2
3k 	 ��x

2 	 y2 	 �2
k�z� �zk�2

�m2a2
k �m

2�2
ka

2
3k�

2 	 4m2�2
k�a

2
3k�x

2

	 y2� 	 a2
k��z� �zk�2 �m2a2

3k���
1=2:

(16)

If �x2 	 y2�=a2
k 	 �z� �zk�

2=a2
3k < m2, then

�k�x; y; z;m
2� � 0.

Knowing the electromagnetic field from a single shell,
one can easily deduce the resulting total force per unit
charge acting on a given macroparticle by summing over
all ellipsoidal shells sk, and then over all momentum bins
k:

 Fx �
X
k

�1� �z�k�
X
sk

E�x�sk ; (17)

 Fy �
X
k

�1� �z�k�
X
sk

E�y�sk ; (18)

 Fz �
X
k

X
sk

E�z�sk 	 �x
X
k

�k
X
sk

E�x�sk 	 �y
X
k

�k
X
sk

E�y�sk ;

(19)

where � � ��x;�y; �z� is the macroparticle normalized
velocity.
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The shell approach has been compared to several other
methods such as the direct integration of the coupled
envelope equations [7,13,14], a modified electrostatic
PIC code, and a 3D point-to-point interaction code [15].
Each of this methods has its own set of approximations that
we review in Sec. III.

III. ENVELOPE EQUATIONS

This section gives a summary of the envelope equations
derived for both ellipsoidal symmetric beams and finite
cylinders of charge. Limitations of this approach will be
further discussed in Sec. VI.

A. Coupled envelope equations in ellipsoidal geometry

In the following we will assume that the electron bunch
has an ellipsoidal symmetry with a circular cross section
throughout the interaction. The envelope equations can be
defined as (see Appendices C and D for further details)

 
00? �
3

2

Nre
�2

0�
2
0

�3
?A�
?; �0
z� �
~�2
x


3
?

� 0; (20)

 
00z �
3

2

Nre
�2

0�
2
0

�3
zA3�
?; �0
z� �
~�2
z


3
z
� 0; (21)

where N is the number of electrons in the bunch, re �
e2=�4��0mec

2� the classical electron radius, �0 � v0=c
and v0 the average velocity of the bunch, �0 �

�1� �2
0�
�1=2 the relativistic factor, 
? the transverse

RMS radius, and 
z the longitudinal RMS half-length.
Here, ~�x and ~�z are the longitudinal and transverse RMS
geometric (or ‘‘trace-space’’) emittances, which are in
general given by

 

~� x �
���������������������������������������
hX2ihX02i � hXX0i2

q
; (22)

 

~� z �
��������������������������������������
hZ2ihZ02i � hZZ0i2

q
; (23)

where X and Z are the particle positions relative to the
bunch centroid, X0 � px=p0, Z0 � �=�2

0, � � �pz �
p0�=p0, px and pz are the transverse and longitudinal
electron momenta, p0 � me�0�0c the average momentum

of the electron bunch, ~� � �2
0�

2
0

����������
hZ02i

p
is the RMS energy

spread, and the angular brackets represent an ensemble
average over the particles in the bunch. Within this enve-
lope formulation, however, the emittance is assumed to be
constant. Consequently, the evolution of the emittance can
not be described within this envelope model and instead
one of the macroparticle based methods must be used, such
as the shell, the particle-in-cell, or the point-to-point
model.

The quantities Ai (see Appendix A) and �3 can be
viewed as geometrical factors related to space-charge ef-
fects [12,16,17], and are give by
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 Ai�
?; 
z� �
Z 1

0

du

�
2
i 	 u���u�

; (24)

 ��u� � �
2
? 	 u��


2
z 	 u�

1=2; (25)

and

 A � A1 � A2: (26)

It was shown by Lapostolle et al. [18] and Sacherer et
al. [16] that for ellipsoidal bunches, where the RMS emit-
tance is either constant or specified in advance, evolution
of the RMS beam projections are nearly independent of the
density profile. This means that, for the calculation of the
RMS dynamics, the actual distribution can be replaced by
an equivalent uniform beam, which has the same RMS
values. In this case, we have �3 � 1=�5

���
5
p
�.

In the shell approach, we have made use of homoge-
neous ellipsoidal beams to model dynamics of more gen-
eral electron distributions under space-charge blowup. As a
matter of consistency, it is also more convenient for the
envelope description to use the radius of the uniform
ellipsoid �a; a3� instead of RMS quantities, where ai ����

5
p

i. The envelope equations for a bunched beam can also

be rewritten to underline the transverse-longitudinal cou-
pling through the space-charge forces [7]. Further making
use of the relation [12] 2A	 A3 � 2=�a2�0a3� and writing
A3 is terms of the aspect ratio x � a=��0a3�,

 A3�a; �0a3� � ��
3
0a

3
3�
�1g0�a=��0a3��; (27)

 g0�x� �
Z 1

0
�x2 	 u��1�1	 u��3=2du; (28)

allows the envelope equations to be written as

 a00 �
3

2

Nre
�3

0�
2
0

1

aa3

�
1�

a2

2�2
0a

2
3

g0

�
a

�0a3

��
�
�2
x

a3 � 0

(29)

and

 a003 �
3

2

Nre
�5

0�
2
0

1

a2
3

g0

�
a

�0a3

�
�
�2
z

a3
3

� 0; (30)

where �2
x � 5~�2

x and �2
z � 5~�2

z are the transverse and lon-
gitudinal full emittances, respectively.

Section VI compares the envelope model to the other
numerical methods introduced in this paper and will fur-
ther define a range of application for the use of the enve-
lope equations. In the next section, we discuss envelope
models but for the specific case of beams with cylindrical
shape. This specific geometry was first introduced by Chao
et al. [14] to describe evolution of beams produced by
plasma sources under space-charge interaction. The latter
approach is more restrictive than using ellipsoids [13]
because an approximate analytical derivation of the force
may be obtained only for beams with small aspect ratios
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a=��0a3� � 1. Vacuum propagation of space-charge
dominated beams often leads to aspect ratios that increase
and may greatly exceed unity. The requirement of small
aspect ratio however may not introduce much error if the
space-charge interaction is orders of magnitude smaller
when a=��0a3� � 1. Note also that this method cannot be
used to describe nonrelativistic beams with pancake shape.
The derivation of the force is tedious and is shown in
Appendix E for the specific configuration discussed by
Chao et al. [14], i.e., a cylindrical beam with a uniform
transverse and quadratic longitudinal density profile.

B. Coupled envelope equations in cylindrical geometry

The use of envelope equations is limited to the assump-
tions of small energy spread (up to �50%) and divergence
(few tens of mrads) [13,14]. As mentioned above, the paper
by Chao et al. [14] studied the limited case of beams with
small aspect ratios a=��0a3� � 1, assuming a bunch with
cylindrical symmetry and a uniform radial and quadratic
longitudinal line-charge density profile of the form

 ��z� �
3N

4a3
3

�a2
3 � z

2�; for jzj  a3: (31)

Chao et al. [14] used the envelope equations

 a00 �
3

2

Nre
�3

0�
2
0

1

aa3
�
�2
x

a3 � 0; (32)

where the transverse envelope equation is equivalent to the
Kapchinskij-Vladimirskij (KV) equation [7]. The longitu-
dinal space-charge coefficient g1�x� assumes a long beam
x � a=��0a3� � 1 and is given by

 g1�x� � 2
�

ln
� ����������������

5x2 	 1
p

���
5
p
x

�
	

1

2

�
: (34)

Figure 1 shows the ratio g0�x�=g1�x� as a function of the
aspect ratio x � a=��0a3�. These two models, beside the
fact that the geometry is different (ellipsoids versus cylin-
ders), exhibit similar behaviors. Basically there is a quali-
FIG. 1. Ratio of longitudinal forces g0�x�=g1�x� (dashed line)
and transverse forces 1� x2g0�x�=2 (solid line) are shown as a
function of the aspect ratio x � a=��0a3�.

06440
tatively good agreement for a range 0< x< 0:1 and within
20% up to x < 0:5.

However, further comparing both derivations of the
space-charge force, in the case of a cylindrical charge
distribution, showed a few conceptual differences (which
are summarized in Appendix E). The expression we found
for the fields in the interior of a cylinder, in the ‘‘long beam
limit’’ approximation (x� 1) and for jzj< a3, using a
quadratic density profile [Eq. (31)], is

 Ez � �
�0�z�

2��0�2

�
ln
�2�

����������������
a2

3 � z
2

q
a

�
�

1

2

�
1	

r2

a2

��
; (35)

and

 Er �
��z�r

2��0a
2 ; (36)

leading to a set of coupled envelope equations,

 a00 �
6

5

Nre
�3

0�
2
0

1

aa3
�
�2
x

a3 � 0 (37)

and

 a003 �
3

2

Nre
�5

0�
2
0

1

a2
3

g2

�
a

�0a3

�
�
�2
z

a3
3

� 0; (38)

where

 g2�x� � �2 ln
�
x
�3

�
; (39)

and

 �3 ’ 0:6723: (40)

As mentioned in the previous section, the weaknesses of
using cylinders comes from the limiting assumptions that
are required for an analytical expression for the fields.
Assuming x� 1 allows only for an accurate description
of space-charge blowup over short distances (typically on
the order of 25–50 mm from the source for the specific
case studied in [14]), as can be seen in Fig. 2 for example.
FIG. 2. Aspect ratio x � a=��0a3� versus propagation distance
s (mm) for an initial transverse radius a � 19 �m, longitudinal
half-length a3 � 77 �m, divergence x0 � 2:5 mrad, energy
spread � � 42:8% and beam relativistic factor �0 � 13:7.
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A direct comparison of the two models (constant density
ellipsoids and parabolic cylinders) is impossible. While
Eq. (29) converges to the KV equation in the limit
�a3��a, Eq. (37) does not (a cylinder with constant
longitudinal density profile would lead to the KV
equation).

IV. MODIFIED ELECTROSTATIC PARTICLE-IN-
CELL CODE

In this section we describe an electrostatic particle-in-
cell (PIC) code that may be used to model large energy
spread beams. The latter characterizes an extension of the
shell model (Sec. II) and does not make any assumptions
on the spatial symmetries of the electron beam. The PIC
result is obtained from a 3D Poisson solver [19] that
calculates the electrostatic field of an arbitrary charge
distribution in its rest frame. The resulting field is then
Lorentz transformed to the laboratory frame. The large
energy spread beam is handled through binning in momen-
tum following Eq. (6). This method is based on the as-
sumption of a rest frame for the beam that neglects
transverse currents effects and, hence, the longitudinal
magnetic field Bz. The total force per unit charge, as in
Eq. (19), can be written in the form

 Fx �
X
k

�1� �z�k�E
�x�
k ; (41)

 Fy �
X
k

�1� �z�k�E
�y�
k ; (42)

 Fz �
X
k

E�z�k 	 �x
X
k

�kE
�x�
k 	 �y

X
k

�kE
�y�
k ; (43)

where Ek � �E
�x�
k ; E

�y�
k ; E

�z�
k � is the electrostatic field in the

laboratory frame of the kth bin. This PIC method will be
compared to other approaches in Sec. VI.

V. POINT-TO-POINT INTERACTION MODEL

This section describes the basic set of equations for a 3D
point-to-point interaction model (PPI). This method allows
for the calculation of space-charge dominated electron
beam dynamics without the requirement of paraxial ap-
proximation, as in the previous models [Secs. II, III, and
IV]. In the PPI approach, the 6D beam distribution function
is also represented numerically as a collection of macro-
particles. The electromagnetic fields generated by this
method are calculated directly from relativistic particle-
particle interaction, outlined in Ref. [15]. Radiation effects
are not included and retardation effects are approximated.

Evaluation of the fields is based on a Lorentz trans-
formation and assumes, at each time step, a constant
velocity for the electrons. This assumption implies that
the change in velocity must remain small (moderate
space-charge interaction) during the time interval �t �
06440
t� tRET where t is the observation time (i.e., associated
with the force evaluation) and tRET the retarded time, i.e.,
the time when the macroparticle j emitted the electromag-
netic field seen at t by macroparticle i. The retarded time is
defined as follows:

 tRET � t� jr� rj�tRET�j=c; (44)

where r is the observation position vector and rj is the
position vector of the jth particle. Further details on how
the retarded time is approximated in the PPI model is
discussed in the following section.

To calculate the fields generated by particle j at the
position of particle i, first both particle coordinates are
transformed to the rest frame of particle j,

 r 0ij � rij 	
�2
j

�j 	 1
�rij 
 �j��j; (45)

where rij � ri � rj is the particle separation measured in
the laboratory frame and r0ij is the distance in the rest
frame. Within the rest frame of particle j only an electric
field is present. This Coulomb field is given by

 E 0
j!i �

Qm

4��0

r0ij
jr0ijj

3 ; (46)

where Qm � �Nme is the charge of the macroparticle.
Transforming this electric field back to the laboratory
frame and summing over all particles yields the electro-
magnetic fields at the position of particle i,

 E i �
X
j�i

�j

�
E0j!i �

�j
�j 	 1

�E0j!i 
 �j��j

�
; (47)

 cBi �
X
j�i

�j�j � E0j!i: (48)

Each macroparticle represents a large number Nm of ele-
mentary electrons. In order to reduce the large angle scat-
tering effect, which overestimates the real collision cross
section in PPI models, the macroparticles should be con-
sidered as particle clouds of radius r0. Under this assump-
tion, within the cloud, the Coulomb repulsion force
decreases to zero when two clouds completely overlap,
that is

 E 0
j!i �

Qm

4��0

r0ij
r3

0

; if jr0ijj< r0: (49)

The primary approximations used in the PPI model are
the neglection of radiation, an approximation of the re-
tarded time, the use of a finite number of macroparticles,
each representing Nm electrons, and the introduction of the
parameter r0. The comparisons presented in the following
sections indicate that the PPI model yields the most accu-
rate results for large energy spread beams compared to the
two other methods (shells or PIC).
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FIG. 3. (Color) Simulation of the space-charge blowup of an
initially cold spherical electron distribution with parameters:
Charge Q � 1 nC, beam energy E0 � 0, radius a1 � a2 � a3 �
24 �m, energy spread � � 0, divergence x0max � 0, average
distance between macroparticles n�1=3

0 ’ 1:74 �m, and cutoff
radius r0 � 100 nm. Beam radius and RMS momentum spread
along the three coordinate axes are shown as a function of
propagation distance s.
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A. Benchmarking

The benchmarking of the PPI algorithm has been done
by simulating the blowup of an initially cold homogeneous
spherical electron distribution. This test problem was
chosen since there exists an exact analytical calculation
of the initial total energy of the system. The energy con-
servation law for a system ofNm macroparticles interacting
with an electromagnetic field is given by [20]

 

@
@t

�XNm
i

��i � 1�mec
2 	

Z
V
d3x

�
�0E2

2
	

B2

2�0

��

	
I
S
dSn 
 S � 0; (50)

where S is the Poynting vector, V is a volume containing
the entire charged particle system, S the corresponding
surface enclosing the volume V, and n a unit vector normal
(outward) to the surface S. The electron distribution is
taken initially cold, which implies that the total energy at
t � 0 is purely electrostatic (assuming radiation fields are
negligible), that is

 Hi �
NmU0

Ne
; (51)

together with

 U0 �
Z
V
d3x

�0E2

2
�

3Q2

20�R�0
; (52)

where integration is over all space and Ne is the total
number of real electrons. In deriving Eq. (52), the expres-
sion of the electrostatic field of a spherical homogeneous
charge distribution E � 	r=�3�0� has been used along
with the charge density 	 � 3Q=�4�R3�. With the initial
condition of a sphere of charge Q and radius R, the PPI
simulation is run until the space-charge interaction is neg-
ligible and the electron motion is purely ballistic. At the
final time step, the expression for the total energy becomes

 Hf �
XNm
i

��i � 1�mec
2: (53)

Energy conservation requires �H � jHf �Hij � 0.
Figure 3 shows the time evolution of the equivalent

uniform-density bunch with dimensions a1, a2, and a3

(the equivalent uniform-density quantities are obtained
from the RMS values by multiplication by

���
5
p

), and the
RMS normalized momentum �ux, �uy, and �uz, for the
following initial beam parameters: charge Q � 1 nC, ra-
dius R � a1 � a2 � a3 � 24 �m, average energy E0 �
0, energy spread � � 0, and divergence x0max � 0. An
identical time evolution of the beam RMS dynamics along
each of the three axes (Ox, Oy, Oz) is found as expected.
06440
The corresponding relative error in the energy conser-
vation is shown in Fig. 4(a), for various sizes r0, where � �
�Hf �Hi�=�Hf 	Hi�. An estimate of the typical distance

between macroparticles in the system d � n�1=3
0 has been

introduced through the initial macroparticle density n0,
that is

 n0 �
3Nm

4�a2a3

; (54)

where Nm � jQm=ej is the number of macroparticles. As
can be seen in Fig. 4(a), choosing r0 > n�1=3

0 introduces an
excessive smoothing of the electromagnetic fields leading
to a deviation from energy conservation.

Figure 4(b) plots the energy conservation relative error
for the case of a moving ellipsoidal charge distribution
with identical initial parameters as Fig. 4(a) except for
E0 � 1:12 MeV and a3 � 10:92 �m, corresponding to a
cold spherical electron distribution in its rest frame, i.e.,
a01 � a02 � a03 � 24 �m (a03 � �0a3). The initial total en-
ergy of the system can be calculated analytically, i.e.,
according to relativistic principles, any quantity of rest
energyW0 will be attributed the value �0W0 by an observer
who sees it being transported with a velocity v0 � c�1�
��2

0 �
�1=2 [21]. The above calculations for a spherical

charge distribution in the beam rest frame may thus be
generalized to any arbitrary inertial frame, giving an ex-
pression for the total energy (kinetic plus potential)

 Hi � Nm��0 � 1�mec
2 	

�
Nm
Ne

�
�0U0: (55)

Figures 4(a) and 4(b) show a similar behavior, that is, for
r0 < n�1=3

0 the PPI method reaches convergence. The rela-
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FIG. 4. Energy conservation relative error � versus cutoff parameter r0 for (a) an initially cold spherical electron distribution with
parameters: Charge Q � 1 nC, beam energy E0 � 0, radius a1 � a2 � a3 � 24 �m, energy spread � � 0, divergence x0max � 0,
typical distance between macroparticles n�1=3

0 ’ 1:74 �m, and (b) a moving ellipsoidal charge distribution with identical parameters
except for E0 � 1:12 MeV and a3 � 10:92 �m, corresponding to a cold spherical electron distribution in its rest frame, i.e., a01 �
a02 � a03 � 24 �m (a03 � �0a3). The latter allows for a direct comparison with analytical estimates.
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tive error is found to be less than�5� 10�2% for the case
of Fig. 4(a), providing an accurate calculation of beam
dynamics, and within 6:75% for Fig. 4(b). Those two
particular examples are collisionless, indicating that there
is no additional requirement on r0 beside the condition
r0 < n�1=3

0 . For systems where collisions may play an
important role, the relative error in the energy conservation
is expected to remain unchanged for r0 < n�1=3

0 because
the collisions are purely elastic. To get a correct estimate
for the minimum value of r0, conservation of phase-space
structure may be considered as an alternate means. For
these systems, r0 � n

�1=3
0 is considered best.

The difference in the relative error shown in Fig. 4 may
be explained using geometrical arguments and is mainly
caused by the approximate way retardation effects are
handled in the PPI method. Figure 5 shows a simplified
configuration of two macroparticles, which is sufficient to
FIG. 5. (a) Two macroparticles in the laboratory frame are shown. T
with the assumptions in the PPI method. (b) Corresponding two mac
at the origin (we discuss the electromagnetic fields emitted by the latt
of the second macroparticle). r0�t0 � 0� is the actual distance used to
the macroparticle had a constant velocity during the time interval i
observation. For the case of a velocity spread the macroparticle was l
is the retarded time. This is the error introduced in the PPI method
effects are not neglected in the PPI method but simply approximate

06440
describe the problem because the PPI method calculates
the interaction force between two macroparticles at a time
(N-body). Obviously this is not the case for the other
methods introduced in this paper (the shell approach, for
instance, smooths the macroparticle distribution). The PPI
method uses the position of the macroparticle and the point
of observation at the present time to calculate the fields. As
explained earlier, a Lorentz transformation to the frame
comoving with the macroparticle is performed and the
distance r0�t0 � 0� [Fig. 5(b)] is used to evaluate the elec-
trostatic field in the rest frame (the macroparticle is static).
This approach does not neglect retardation but instead
performs an approximate evaluation. Actually, the
Lorentz transform yields the exact retarded time for a
particle moving at a constant velocity. This can be illus-
trated by considering a macroparticle that has a constant
velocity in the lab frame. Then, in the rest frame, its
location remains at the origin at all times t0 (the location
heir respective positions are shown at the present time; consistent
roparticles in the frame comoving with the macroparticle located
er and seen by the observer, assumed to be located at the position
calculate the force in the PPI method; the latter would be exact if
t takes the light to travel from the macroparticle to the point of
ocated at another position than the origin at t0 � t0RET, where t0RET

, explained using geometrical arguments. Note that retardation
d as explained above.
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of the macroparticle is chosen to be at the origin for
convenience). In this particular case, the position r0�t0 �
0� remains valid even at the retarded time t0 � t0RET, which
is the actual time the observer sees the electromagnetic
field emitted by the macroparticle. In other words, in this
case the electromagnetic field calculated in the lab frame is
exact and includes retardation. Furthermore, radiation is
absent because the velocity is constant.

In actuality, however, the macroparticle will experience
acceleration due to the space-charge force of the surround-
ing particles and, hence, the above Lorentz transform
method no longer yields the exact retarded time. This error
in the retarded time will be small if the acceleration is
small. Specifically, if during the time interval �t0 � t00 �
t0RET � jr

0�t0RET�j=c (in the rest frame), the change in ve-
locity is small, �v0=v�t0RET� � �v�t

0
RET� � v�t

0 �
0��=v�t0RET� � 1, then retardation effects are approxi-
mately correct, i.e., �r0=r0�t0RET� � jr

0�t0RET� � r
0�t0 �

0�j=r0�t0RET� � 1 (see Fig. 5).
Using the above argument, the difference in the relative

error found in Fig. 4 between the spherical charge distri-
butions at rest or moving with �0mec2 ’ 1:12 MeV may be
explained as follows. Comparing two identical events in
the beam frame (for example the space-charge interaction
between two macroparticles at the same time t0 in both
cases), the distance �r0 will artificially change for the
moving bunch introducing a greater error �r0=r0�t0RET�.
For ultrarelativistic beams however (�0 � 1), �r0 will
reach an asymptotic value, leading to a constant error in
the evaluation of the fields.
VI. SIMULATION RESULTS

In this section, the different analytical and numerical
methods introduced in this paper will be compared and
ranges of applicability for each method will be determined.
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These methods will be further used for the simulation of
vacuum transport of electron beams produced by plasma
sources.

A. Compact electron sources

1. Small energy spread

The validity of the envelope approach requires small
divergence (up to a few tens of mrads), low peak current,
and low energy spread (� & 50%). In Fig. 6, we plot the
equivalent uniform-density bunch radius and bunch length
as a function of propagation distance using, respectively,
the shell approach, the coupled envelope equations (29)
and (30), and the 3D-PPI code. The bunch charge is Q �
100 pC, the initial radius a � 6 �m, length a3 � 2:5 �m,
divergence x0 � 2 mrad, energy spread � � 5%, average
beam energy E0 � 5:25 MeV, aspect ratio x �
a=��0a3� ’ 0:23, and cutoff radius r0 � 100 nm. Good
agreement is found between the three models, within a
4:8% margin. For such beams the coupled envelope equa-
tions can be applied accurately [13]. This typical example
is also found to be an upper limit for the usability of either
the shell or the envelope models and corresponds to a
maximum current given by

 

�I � �Imax �
3Q
4a3

�0c ’ 9 kA: (56)

It is possible to define a general quantity for the beam in
order to better characterize the space-charge blowup and
also the range of applicability of either the shell method or
the envelope equations. It can be expressed as the ratio of
the beam current normalized with respect to the Alfvèn
current, that is

 �b �
�I

�0IA

1:8� 102

a2
��m�

; (57)
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where IA � 17� 103�0�0. The ratio �b approximately
characterizes the initial averaged magnitude of the space-
charge force assuming a ‘‘long’’ beam under the paraxial
approximation, i.e., when transverse current is negligible.
For �I � �Imax, �b ’ 1 and in general �b  1 is necessary
for using the envelope and shell description.

2. Large energy spread

For beams with large energy spread, Eqs. (29) and (30)
do not apply anymore but the shell model is found to be a
very accurate method. Figure 7 plots the uniform-density
bunch radius a, bunch length a3, energy spread �, and the
RMS transverse normalized momentum �ux as a function
of propagation distance s and for the three models, i.e.,
envelope, shell, and PPI. The electron bunch energy is
E0 � 6 MeV, the initial bunch radius a � 6 �m, bunch
length a3 � 2:5 �m, divergence x0 � 2 mrad, energy
spread � � 65%, and total charge Q � 100 pC.

Figure 8 shows the same quantities, i.e., a�s�, a3�s�,
�ux�s�, and ��s�, but for a long bunch. The electron energy
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radius a and transverse RMS momentum spread �ux, (b) longitudina
distance s is shown using the envelope model (solid), 3D-PPI (dash
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is E0 � 8:5 MeV, the initial bunch radius a � 19 �m,
bunch length a3 � 76:8 �m, divergence x0 � 3 mrad, en-
ergy spread � � 74:5%, and total charge Q � 1:6 nC. In
this case the energy spread ��s� exhibits a typical behavior
that is a direct contribution of the terms �xBy � �yBx in
the longitudinal force. These terms are naturally neglected
in the envelope equation, under the paraxial approxima-
tion, but included in the shell and PPI. From Figs. 7 and 8,
it is found that the shell and PPI codes provide a similar
description of the RMS bunch dynamics within an 4%
margin whereas the difference with respect to the coupled
envelope equations is more than 27% relative error.

B. Application to plasma sources

1. Colliding pulse injection

Test particle simulations of the colliding pulse LWFA
injector [2–5], in which two counterpropagating laser
pulses are used to inject electrons from the background
plasma directly into the wake, indicate the production of a
trapped bunch withN � 108 electrons, a low energy spread
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FIG. 9. Vacuum propagation of a compact electron beam produced by plasma-based accelerators using the colliding pulse injection
scheme. Input parameters: Beam energy E0 � 15 MeV (solid line) and E0 � 45 MeV (dashed line), radius a � 6 �m, half-length
a3 � 2:5 �m, energy spread � � 4%, and divergence x0max � 2 mrad. Estimates for (a) the beam divergence and (b) energy spread as
a function of charge is shown for a beam located in vacuum at s � 10 cm from the plasma exit.
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�< 1–5%, low normalized emittance �x � 1 mm-mrad, a
transverse size on the order of the laser spot size 
? �
6 �m and of ultrashort duration, 
z � 1–5 �m. Such test
particle simulations, however, neglected the space-charge
effects of the accelerated bunch.

Space-charge effects can limit the amount of charge that
can be transported in an ultrashort, tightly focused electron
bunch, i.e., space charge can lead to a increase in both the
longitudinal and transverse bunch dimensions. In a LWFA,
space-charge effects may not be of concern while the
bunch is in the plasma wave, since the longitudinal and
transverse fields of the wake are typically much greater
than the space-charge forces of the bunch. This is not the
case, however, as the bunch exits the plasma into a vacuum
region with no applied fields. In this case, space charge can
lead to a rapid blowup of the bunch.
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FIG. 10. (Color) Ratio of the radius asc=a and half-length
a3sc=a3 as a function of charge is shown for a typical beam
produced by colliding pulse injection. This calculation has been
performed using the envelope model where asc�s� assumes the
beam is space-charge dominated. Regimes where asc=a� 1 are
emittance dominated and asc=a ’ 1 are space-charge dominated,
respectively. Input parameters: Bunch energy E0 � 15 MeV,
radius a � 6 �m, half-length a3 � 1:5 �m, energy spread � �
4%, divergence x0max � 2 mrad, and the beam is taken to be
located in vacuum, s � 10 cm from the plasma exit.
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Figure 9 plots the bunch divergence x0 and energy spread
�, by solving Eqs. (29) and (30), as a function of charge Q
(at s � 10 cm) assuming an electron bunch energy E0 �
15 MeV (solid line) and E0 � 45 MeV (dashed line), an
initial bunch radius a � 6 �m, bunch length a3 �
2:5 �m, divergence x0 � 2 mrad, energy spread � � 4%,
and a total amount of charge from 0 to 150 pC. The
beam was initially assumed to be at focus, i.e., a0�0� �
a03�0� � 0.

Figure 10 plots the ratios asc=a and a3sc=a3 at s �
10 cm, where ai is the bunch radius, obtained by solving
Eqs. (29) and (30) for the same parameters as Fig. 9, and
asc�s� is the bunch radius assuming the beam is space-
charge dominated, i.e., in this case the terms �2

x=a3 and
�2
z=a

3
3 are removed from Eqs. (29) and (30). Note that

Fig. 10 allows for a clear separation of the two regimes:
(i) emittance dominated asc=ai � 1 and (ii) space-charge
dominated asc=ai ’ 1.

These figures show that a fairly high energy electron
bunch with a total charge of several pC produced by
colliding pulse injection can rapidly blow up via space
charge due to its very compact size. For this typical bunch,
below 5 pC the beam is emittance dominated, i.e., in this
case one can neglect the effect of space charge. Above this
value space charge must be considered and clearly partic-
ipates in the beam growth. However, for electron beams in
the energy range �45 MeV, space-charge effects will be
greatly reduced. A plasma-based accelerator using the CPI
scheme should operate in that regime.

2. SM-LWFA injectors using model distributions

The development of high intensity short laser pulses has
made it possible to study high energy electron production
on a tabletop. Relativistic electrons have been observed
worldwide in many experiments over the past years [22–
32]. The common setup for these experiments was a single
intense incoming laser pulse focused on a supersonic gas
jet without a preformed plasma channel. The typical di-
ameter of the gas jets ranged on the order 0:5–2 mm. It was
found that the number of electrons versus energy produced
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FIG. 11. (Color) Simulation of the space-charge blowup of typical beams produced by plasma accelerators in the self-modulated
regime. Input parameters: Charge Q � 5 nC, beam temperature kBT � 4 MeV, radius a � 6 �m, half-length a3 � 10 �m, diver-
gence x0max � 2 mrad, typical distance between macroparticles n�1=3

0 � 422 nm, and cutoff radius r0 � 100 nm. Evolution of (a)
transverse radius a and transverse RMS momentum spread �ux, (b) longitudinal half-length a3 and longitudinal RMS momentum
spread �uz as a function of propagation distance s is shown using the 3D-PPI model (solid), electrostatic PIC (dashed), and shell
method (dot-dashed).

FIG. 12. Electron bunch energy density for the same initial
parameters as Fig. 11, that is, total beam charge Q � 5 nC,
temperature kBT � 4 MeV, radius a � 6 �m, half-length a3 �
10 �m, divergence x0max � 2 mrad, average distance between
macroparticles n�1=3

0 � 422 nm, and cutoff radius r0 � 100 nm.
Part (a) shows the input electron distribution and (b) after a
vacuum propagation of s � 1:5 mm.
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in those single-beam experiments fits either a single or a
double exponential decay law dN=dE / exp��E=Te�,
where Te is the electron temperature that was experimen-
tally found to be typically on the order of 4 MeV.

In Fig. 11, we plot the equivalent uniform-density bunch
radius, bunch length, divergence, and relative momentum
spread, as a function of propagation distance, for the SM-
LWFA case. The equivalent uniform-density quantities are
obtained from the RMS values by multiplication by

���
5
p

.
The initial phase-space density was assumed uniform, with
a bunch charge of Q � 5 nC. The initial bunch longitudi-
nal momentum ranges from pz0 � 0:1! 23 MeV=c, cor-
responding to an exponential distribution with kT �
4 MeV (Fig. 12). The initial bunch radius was a �
6 �m, initial length a3 � 10 �m, and initial divergence
x00 � 2 mrad. From Fig. 11(a) we see a good agreement for
the transverse RMS size among the three models: shells
(dot-dashed line), PPI (solid line), and PIC (dashed line).
However, the beam distributions exhibit differences and
this may be an issue for beams with large energy spread,
i.e., RMS quantities may not provide enough information
and higher order moments may need to be included.

It is also found, from Fig. 11(a), that transverse space-
charge effects vanish at a very early stage (� 200 �m),
whereas the longitudinal dynamics are more persistent as
can be seen in Fig. 11(b). This plot shows, on the contrary,
disagreement between the three models. This indicates that
paraxial approximation is not valid and that more general
space-charge models such as PPI or fully 3D electromag-
netic PIC codes are needed. Figure 11(b) shows clear
evidence that neither the shell (Sec. II) nor the electrostatic
PIC model (Sec. IV) apply anymore. Recall that the main
difference between electrostatic PIC and shells comes from
the smoothing of the density within an ellipsoidal shell.
This explains the incapability of the shell model to describe
beam dynamics when the local beam phase-space correla-
tions play an important role.
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For this particular example of an initial beam distribu-
tion with a Boltzmann energy profile, the low-energy high-
density region will experience both transverse blowup and
longitudinal acceleration. The latter results in a substantial
increase of the energy spread over long distances, i.e., at
s � 1:5 mm (not shown in Fig. 11). The energy spread is a
factor of 2 higher than its initial value. The longitudinal
dynamics reach the ballistic state after a propagation dis-
tance of s� 1:5 mm. Note that the dynamics of the low
energy region lead to a general change of the final beam
profile, as shown in Fig. 12, i.e., the distribution peaks
around uz ’ 45.

In order to investigate the validity of the paraxial ap-
proximation, the PPI algorithm is modified so as to include
the latter assumption, i.e., the transverse normalized veloc-
ities in the field solver are neglected �xj � �yj � 0
and �j � �zjez, where ez is the axial unit vector.
Equations (47) and (48) become
-12
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FIG. 13. (Color) Comparison between the reduced 3D-PPI model in the paraxial approximation (solid line) and the electrostatic PIC
(dashed line) for the case of a large energy spread beam with an exponential energy profile. Input parameters: Charge Q � 5 nC,
temperature kBT � 4 MeV, radius a � 6 �m, half-length a3 � 10 �m, divergence x0max � 2 mrad, typical distance between macro-
particles n�1=3

0 � 422 nm and cutoff radius r0 � 100 nm. Evolution of (a) transverse radius a and transverse RMS momentum spread
�ux, (b) longitudinal half-length a3 and longitudinal RMS momentum spread �uz as a function of propagation distance s is shown.
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 E?i �
X
j�i

�jE0?;j!i; (58)

 E zi �
X
j�i

E0z;j!i; (59)

 cBi �
X
j�i

�j�zjez �Ei; (60)

where E0j!i is given by Eq. (49), and �j � �1	 u2
zj�

1=2 is
the relativistic factor. Figure 13 compares Eqs. (58)–(60)
to the electrostatic PIC method (Sec. IV), which is a para-
xial code. There is agreement both in the transverse and
longitudinal dynamics of the electron bunch. The differ-
ences between Fig. 13 and Fig. 11 for the PPI results show
the deviation from the paraxial approximation.

3. SM-LWFA injectors using PIC distributions

In this section we will address the need to use macro-
particle distributions containing realistic phase-space cor-
relations as found in SM-LWFA beams, and discuss space-
charge effects using distributions produced by fully elec-
tromagnetic PIC codes.

Experiments and simulations using both uniform plas-
mas and channel guided plasmas have observed substruc-
tures in the beam distribution function. Formation of
electron bunches with small energy spread followed by a
bulk of low energy electrons was observed [33–35] when
the plasma length, after injection of background plasma
electrons into the plasma wave through the wave breaking
process, was on the order of the dephasing length. This
length corresponds to the typical distance for a trapped
electron to overcome the accelerated region of the wake-
field. Typically those electron beams have a high charge on
the order of a few nCs and compact dimensions (on the
order of the laser pulse size), while the small energy spread
sub-bunch has a charge�500 pC and a length of the order
of a plasma wavelength �p � 2�c=!p, where !p �
064402
�4�n0e
2=me�

1=2 is the plasma frequency and n0 is the
plasma density. These beams hence have a very high
average density �nb � 1019 cm�3 and, for electrons with
MeV range total energy, space-charge force may play an
important role in the beam dynamics while propagating in
vacuum.

It has been previously shown (Sec. VI A 1) that the
dynamics of beams with small energy spread and diver-
gence are well described by an envelope equation.
Furthermore, for moderate space-charge interaction and
beams in the space-charge dominated regime, i.e., where
the emittance term in the envelope equation is typically
small compared to the space-charge term, ellipsoidal sym-
metric beams with identical initial RMS parameters will
exhibit similar growth during propagation. For these beams
the effect of initial position space-energy correlation are
negligible, whereas for beams with large energy spread, it
will strongly affect the changes in time of the distribution
function. The full knowledge of the six-dimensional (6D)
initial phase-space distribution function is then required for
accurate description of the beam dynamics.

Figure 12 shows the beam energy distribution after a
propagation distance of 1.5 mm from an initial constant
density electron distribution in real and momentum space.
Figure 14 shows a distribution that initially has a linear
correlation in the z� pz space after a propagation distance
of 9 mm. The linear correlation means that electrons at the
front of the bunch have the highest energies and propor-
tionally electrons at the back are the slowest. The input
beam parameters were assumed to be a total charge Q �
5 nC, a temperature Te � 4 MeV, a radius a � 6 �m, a
half-length a3 � 10 �m, and a divergence x00 � 2 mrad.
The space-charge simulations were performed using PPI
model (Sec. V). Analysis of the final beam distributions for
the two cases of Figs. 12 and 14 confirm the hypothesis that
the knowledge of the initial phase-space correlations
within the beams are crucial for an accurate description
of its time evolution. The beam of Fig. 12 exhibits a peak at
-13



FIG. 14. Final energy distribution for a beam with an initially
exponential energy decay law and a longitudinal z� pz linear
correlation. Initial parameters: total charge Q � 5 nC, tempera-
ture Te � 4 MeV, radius a � 6 �m, half-length a3 � 10 �m,
and divergence x00 � 2 mrad.
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pz ’ 25 MeV=c, whereas the example of Fig. 14 shows
formation of two peaks. This obviously does not agree with
experimental measurements. Note that both cases experi-
ence some structural change and, in addition, a substantial
gain of energy. This strongly suggests that similar beams
parameters may be sensitive to space-charge effects.

In order to get a correct understanding of experimental
results, realistic beam distributions may be obtained from
self-consistent simulations such as particle-in-cells (PIC)
codes [9,10]. The mechanism responsible for electron
production is the self-modulated laser-wakefield-
accelerator (SM-LWFA) regime [1] in which the laser
pulse length L is on the order or greater than the plasma
wavelength. PIC simulations using the code VORPAL [36]
showed the production of a small energy spread electron
bunch in front of a bulk of a high-density electron beam for
both an initially uniform plasma and with a preformed
plasma channel [33]. The electron bunch lies in the first
bucket of the plasma wave and typically has a higher
average energy than the rest of the beam, allowing for
extraction using a magnetic spectrometer. For moderate
laser strength, this can be explained by the combined effect
FIG. 15. (Color) z� pz phase-space projection of a 3D electron distr
a preformed plasma channel and (b) z versus beam divergence x
parameters were a laser strength a � 2:15, carrier frequency �0 � 0:8
nominal plasma density n0 � 1:8� 1019 cm�3, and channel radius
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of beam loading and laser pulse evolution that together turn
off injection and allows for the formation of a bunch with
small energy spread, while further behind the laser pulse,
transverse wave breaking may increase the amount of
charge injected, resulting in a substantially higher energy
spread in this subregion of the beam (� 100%) and a
higher degree of phase mixing [33,37].

Figure 15(a) shows the axial electron beam phase space
z� pz for a two-dimensional (2D) slab simulation of a
short intense laser pulse propagating through a plasma
channel with the following laser-plasma parameters: nor-
malized vector potential a � eA=mec

2 � 2:15, carrier fre-
quency �0 � 0:8 �m, laser duration � � L=c � 58 fs,
spot size at waist r0 � 7:3 �m, background plasma den-
sity n0 � 1:8� 1019 cm�3, 10 particles-per-cell, a grid
size �z � 90=2700 � 0:03 �m axially, �x � 80=300 �
0:26 �m transversally, and a parabolic channel of radius
rc � 40 �m. The frame shown corresponds to a laser
propagation distance of �1360 �m. If the distance ex-
ceeds the dephasing length, which in the 1D limit can be
defined as Ld ’ ��p=�0�

2�p, the beam will strongly evolve
to a point where phase mixing smooths the entire bunch. It
is crucial to terminate the plasma at a distance on the order
of the dephasing length after electron injection into the
wakefield to observe experimentally the production of an
electron bunch with a small energy spread.

Vacuum transport of the beam shown in Fig. 15 has been
performed using the 3D-PPI method. The PIC simulation is
currently a 2D slab, and in order to get a 3D electron
distribution, the output of the code has been assumed
cylindrically symmetric. The line-charge density �m asso-
ciated with a 2D slab macroparticle is defined as

 �m � n0=��x�zNp�; (61)

where Np is the number of macroparticles per cell. The
density is assumed identical between 2D and 3D geometry
giving a number of 3D macroparticles Nm;i at a radius ri
away from the longitudinal axis
ibution (a) after a laser propagation distance of�1:36 mm inside
0 after a propagation of 4:8 mm in vacuum. The laser-plasma
�m, duration � � L=c � 58 fs, spot size at waist r0 � 7:3 �m,
rc � 40 �m.
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 Nm;i � 2�bri�mc; (62)

where ri � jyij, yi is the transverse coordinate of a 2D slab
macroparticle and only half of the slab is considered, i.e.,
only macroparticles lying in the y > 0 plane. The 3D
electron distribution is populated as follows:

 x�i � ri cosi; y�i � ri sini; z�i � zi; (63)

where fx�i ; y
�
i ; z
�
i g stand for the Cartesian coordinate of a 3D

macroparticle, i is a random number between 0 and 2�,
and zi is the transverse coordinate of a 2D slab macro-
particle. The same transformation has been repeated for the
momentum domain pi. The total charge Q in the 3D beam
is calculated following

 Q � �2�e
XN2D

i

ri�m; (64)

where N2D is the number of 2D slab macroparticles in the
y > 0 plane. For the case of Fig. 15, Np � 10, �x �
0:26 �m, and �z � 0:03 �m, giving e�m ’ 2:5 nC=m.
The total charge may vary depending on the selected
energy cutoff from the PIC simulation. Taking electrons
above �500 keV within a radius R � 6 �m gives a total
charge Q� 1:4 nC, whereas energies greater than
�100 keV give Q� 3:2 nC. The small energy spread
beam (red color) contains a charge Q� 25 pC. Note that
fully 3D PIC simulations shows an enhancement of the
amount of charge trapped for a similar resolution in the
FIG. 16. (Color) (a) Logarithmic plot of the initial beam energy distr
charge ofQ � 2:8 nC (red) andQ � 8:5 nC (blue) for the parameters
preformed channel, assuming a total beam charge of Q � 5:1 nC
highlighting the changes in beam temperature induced by space-charg
(a)] and in (d) for the single laser pulse experiment [corresponding
example were a � 2:2, �0 � 0:8 �m, � � L=c � 55 fs, r0 � 7:4 �
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simulation parameters [38]. Charge in the trapped beam is
then found to be closer to experimental observations [33].
In the following, the 3D electron distribution derived from
the 2D slab PIC simulation is used as a model for a typical
beam produced by laser-plasma interaction. The charge is
varied in the space-charge simulation to study its effect on
the beam dynamics.

Figure 16(a) shows the initial beam distribution (blue
dashed line), final beam distribution (blue solid line) after a
propagation distance of 4.8 mm for a total beam charge of
Q � 2:8 and Q � 8:5 nC (red dashed and solid line),
respectively. The latter case clearly exhibits important
changes in beam temperature [Fig. 16(c)], which strongly
suggests that space-charge effects must be included.
Figures 16(b) and 16(d) show a similar behavior. Note
that the overall ‘‘two-temperature’’ profile is unchanged,
which is in good agreement with experimental observa-
tions [22–32]. The latter example assumed a preformed
homogeneous plasma and a higher density n0 �
4� 1019 cm�3, which provides a greater ratio of charge
trapped for a lower energy gain, consequently increasing
the effect of space charge. The resolution used in the PIC
simulation is �x � 0:26 �m, �z � 0:05 �m, and Np �
10 providing e�m � 8:3 nC=m. Selecting electrons above
500 keV gives Q� 3:8 nC and Q� 5:1 nC for E>
100 keV. The example of Fig. 16(b) is chosen for a charge
Q � 5:2 nC.

A detailed study of the RMS quantities of the small
energy spread electron bunch of Fig. 15 (red color) shows
ibution (dashed line) and final (solid line) assuming a total beam
of Fig. 15. (b) Same except for a higher density plasma without a

(blue) and Q � 6 nC (red). A zoom of the low energy region,
e interaction, is shown in (c) for the channeled case [i.e., same as
to the log plot (b)]. The laser-plasma parameters for the latter

m, n0 � 4� 1019 cm�3.
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FIG. 17. (Color) Radiated energy on a phosphor screen 70 cm away from the gas jet, (a) lineout using the electron beam produced by
the fully explicit PIC simulation of a channel guided laser pulse [Fig. 15] and (b) radiation from a 10� 10 cm phosphor screen imaged
on a CCD camera, which is taken from experimental measurements with similar laser-plasma parameters. The red color highlights the
largest energy deposition from the electron beam onto the phosphor and blue the smallest, respectively.
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significant energy gain during vacuum propagation while
beam quality is maintained, i.e., space-charge interaction
with the remaining low energy residual charge of the whole
beam induce an energy boost. The total charge in the beam
is 3:2 nC. At the plasma exit [Fig. 15(a)], the beam has an
energy spread � � 9:2%, an average energy T ’
204:5 MeV, a divergence 
x0 ’ 16:3 mrad, and a bunch
length 
z ’ 1:42 �m. After ct � 4:8 mm, the energy
spread and divergence is found to be a few percent lower,
the bunch length is
z ’ 2:4 �m, and the average energy is
T ’ 209:4 MeV leading to an energy gain of 2:4% (a total
beam charge of 10 nC would induce �10% energy gain)
and consequently a 2:2% decrease in trace-space emittance

�x �
�����������������������������������
hx2ihx02i � hxx0i2

p
. Note that, despite the high aver-

age energy of the bunch, space charge still has a significant
effect. This can be explained in part by the very short
dimensions of the whole beam at the vacuum-plasma
boundary, on the order of the laser size, giving an average
beam number density �nb ’ 3� 1018 cm�3. In addition,
Fig. 15(b) shows the total beam divergence after 4:8 mm
of vacuum propagation, which indicates that the red beam
remains ultracompact. This is also similar to experiments,
FIG. 18. (Color) z� pz phase-space projection of a 3D electron dist
a homogeneous preionized plasma and (b) z versus beam divergenc
parameters were a laser strength a � 2:2, carrier frequency �0 � 0
7:4 �m, and nominal density n0 � 4� 1019 cm�3.
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which measure the radiated light emitted by the electron
beam passing through a phosphor screen. Figure 17 com-
pares the simulated radiated energy from the electron beam
produced by the PIC simulation in the channel guided case
[Fig. 15] with respect to experimental data from similar
laser-plasma parameters. Both cases exhibit a bright emis-
sion spot with a full width half maximum (FWHM) of the
order of 3 mm.

Similar effects are observed for the unchanneled case
n0 � 4� 1019 cm�3 [Fig. 18(a)] but with a significantly
higher energy gain. The high energy electron bunch (red
color) contains a charge Q ’ 55 pC (assuming a total
charge of 5:2 nC). After a 4:8 mm vacuum propagation
distance, the energy spread reduces from � ’ 12:6% to
11%, the average energy increases from T ’ 55:7 MeV to
65 MeV (energy gain of 16:7%) leading to a 12:5% de-
crease in trace-space emittance together with a divergence
that is lowered by �9:7%. Besides a more intense space-
charge interaction than in the channeled case, the electron
bunch propagates well in vacuum as shown in Fig. 18(b).
Note that in both cases some beam compaction and focus-
ing is observed. The latter can be understood as a pinching
ribution (a) after a laser propagation distance of �530 �m inside
e x0 after a propagation of 5:3 mm in vacuum. The laser-plasma
:8 �m, pulse duration � � L=c � 55 fs, spot size at waist r0 �
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effect from the -component of the magnetic field gener-
ated by the high longitudinal current of the beam as a
whole.

VII. COMPARISON BETWEEN PPI AND PIC
METHODS

In this section, we modify the PPI algorithm in order to
perform a direct comparison with respect to an electrostatic
PIC code in terms of total CPU time and accuracy of the
methods. In Sec. VI B 2 we pointed out that beams pro-
duced by laser-plasma accelerators in the self-modulated
regime will experience significant evolution under space-
charge interaction. Within the paraxial approximation,
electron beam evolution can be studied using an electro-
static PIC code or a modified PPI code. An electrostatic
PIC code calculates the electric field by a finite-difference
scheme from a smoothed density on a grid. This approach
requires enough statistics through high numbers of parti-
cles per cell (typically greater than 5) and a grid size small
enough to resolve internal substructures within the beam
(typically �xi � 0:1–1 �m). The electrostatic PIC algo-
rithm used in our simulations has an adaptive grid size, i.e.,
the grid number is fixed but the grid size is adjusted as the
beam evolves. This adaptive technique reduces computing
time for the same accuracy goals compared to conventional
PIC methods that have a fixed decomposition domain. On
the other hand, an advantage of using the PPI technique is
that it does not rely on a grid.

In the following, a parameter scan was performed show-
ing parameters needed to solve the beam configuration of
Fig. 11 using both an electrostatic PIC code and PPI. For
this scan, PPI was modified such that a single beam rest
frame was assumed. The fields solver in the PPI code is
reduced to
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0
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FIG. 19. (Color) Comparison between the reduced 3D-PPI model an
with an exponential energy profile. Input parameters: Charge Q � 5
a3 � 10 �m, and divergence x0max � 2 mrad. In (black) PPI with N �
macroparticle distance n�1=3

0 � 422 nm, (green) electrostatic PIC w
electrostatic PIC with N � 20:48� 106 macroparticles and grids 2
particles and grids 1283. Evolution of (a) transverse RMS momentum
a function of propagation distance s is shown.

064402
 E?i � ��
X
j�i

E0?;j!i; (65)

 E zi �
X
j�i

E0z;j!i; (66)

 cBi � ��zez �Ei; (67)

where E0j!i is given by Eq. (49), ��z � �uz=�1	 �u2
z�

1=2 is
the average electron normalized velocity, �� � �1	 �u2

z�
1=2

the average relativistic factor, �uz the average normalized
momentum, and ez a unit vector. Note that no binning was
used for the electrostatic PIC simulation.

Figure 19 shows the comparison between the electro-
static PIC and PPI for the parameters of Fig. 11, i.e., for a
bunch charge of Q � 5 nC, an exponential profile for the
longitudinal momentum with a temperature kT � 4 MeV,
an initial bunch radius of a � 6 �m, initial length a3 �
10 �m, and an initial divergence x00 � 2 mrad.
Figures 19(a) and 19(b) plot the transverse and longitudinal
RMS momentum spread �ux;�z�, respectively, as a function
of propagation distance. Figures 19 shows the PPI model
(black line) with N � 20 032 macroparticles, r0 �

100 nm, and n�1=3
0 � 422 nm, the electrostatic PIC with

(i) N � 10:24� 106 macroparticles and grids 1282 � 512
(green line), (ii) N � 20:48� 106 macroparticles and
grids 2563 (red line), and (iii) N � 2:56� 106 macropar-
ticles and grids 1283 (blue line). One can see that 128
adaptive grid points transversally are enough for the elec-
trostatic PIC code to reach convergence whereas a longi-
tudinal grid number greater that 256 is necessary. The
example shown in green shows very good agreement
with PPI. For this particular example, it is found that � �
10 ms=processor=particle is the average PPI’s execution
time per time step and � � 2 ms=processor=particle for the
0.2 0.4 0.6 0.8
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d the electrostatic PIC for the case of a large energy spread beam
nC, temperature kBT � 4 MeV, radius a � 6 �m, half-length
20032 macroparticles, cutoff radius r0 � 100 nm and averaged

ith N � 10:24� 106 macroparticles and grids 1282 � 512, (red)
563, and (blue) electrostatic PIC with N � 2:56� 106 macro-
spread �ux and (b) longitudinal RMS momentum spread �uz as
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electrostatic PIC code. The small number of particles
needed for the PPI run made the simulation significantly
faster.

VIII. GENERALIZATION OF THE PPI MODEL

The PPI method presented in Sec. V neglected radiation
effects and used an approximated form of retardation. The
force acting on macroparticle i from macroparticle j was
calculated in the laboratory frame using the Lorentz-
transformed fields from the rest frame of macroparticle j,
but assumed the event was ‘‘instantaneous’’ in both frames.
This assumption implies that within the PPI method space-
charge interaction must remain moderate, yet the PPI
method is more general than either the envelope or shell
models [see Sec. VA for further details]. One condition
that should be satisfied in order to apply the PPI method is
the requirement that the potential energy per electron in the
beam frame be smaller than the electron rest mass energy.
This condition can be written as �U0=mc2 � 1, where �U0 is
the total potential energy normalized to the number of
electrons, which is given approximately by

 

�U 0 � U0=Ne; (68)

where Ne is the total number of electrons and U0 is
identical to Eq. (52) for beams with initially small energy
spreads, i.e.,

 U0 ’
Z
V
d3x0

�0E02

2
: (69)

Beams produced by laser-plasma interactions, particu-
larly in the self-modulated regime, have a relatively high
charge density giving �U0=mc2 � 1, which implies an upper
limit of applicability for the PPI model. As was discussed
in Sec. VI B 3, SM-LWFA electron sources have a typical
exponential energy density profile, that is the beam is
mainly composed of low energy electrons together with a
small subset of high energy electrons located at the front of
the bunch. The high energy beam dynamics should mod-
erately be influenced by retardation effects because it
mainly interacts with the low energy electrons, assuming
the latter do not become relativistic during the time of
interaction. This assumption is valid as long as the ballistic
spreading is significant between the two populations. The
opposite is not true but the charge density of the high
energy beam is relatively small and has very little effect
on the low energy electrons. Last, the relative error intro-
duced by the PPI method for the blowup of the low energy
electrons may be crudely estimated using the ideal beam
distributions of Sec. VA. The error was found to be on the
percent level, which is significantly lower than the overall
change of the beam temperature [Fig. 16(c) and 16(d)]
discussed in Sec. VI B 3.

For the case �U0=mc2 * 1 retardation and radiation ef-
fects may play a role in the overall beam dynamics. A
generalization of the PPI model may be computed from the
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Lienard-Wiechert fields that are an exact solution of
Maxwell’s equations (i.e., including both retardation and
radiation), that is [39–41]

 E i�r; t� �
Qm

4��0

��
n� �i

�2
i �1� n 
 �i�3R2

�
RET

	

�
n� f�n� �i� � _�ig

c�1� n 
 �i�3R

�
RET

�
; (70)

and

 B i�r; t� � c�1�n� Ei�RET; (71)

where Qm is the macroparticle charge, Rn � r� ri and
the subscript ‘‘RET’’ indicates that the quantities in the
brackets are to be evaluated at the retarded time tRET �
t� jr� ri�tRET�j=c. Here, the first and second terms on
the right of Eq. (70) represent the self-fields and radiation
fields, respectively. For a system of macroparticles inter-
acting via their mutual electromagnetic fields, the equa-
tions of motion are

 

dpi
dt
� Qm

X
j�i

�Ej�ri; t� 	 vi �Bj�ri; t��; (72)

where Ej and Bj are the electromagnetic fields due to the
motion of macroparticle j (the condition j � i excludes the
self-force). The numerical approach is in principle that
used to solve retarded scalar-field problems [42]: The
kinematic information is stored in arrays and retrieved by
interpolation when needed later for the retarded quantities.

One important issue with using macroparticles for prob-
lems where radiation is present ( �U0=mc2 * 1) is the fact
that macroparticles yield artificially high levels of radia-
tion. Note that this is not the case concerning the accelera-
tion (i.e., motion) of a macroparticle. Equation (72)
indicates that the change in the normalized momentum
dui=dt / Qm=mm, where ui � pi=mmc is the normalized
momentum and mm is the mass of the macroparticle.
Hence, provided that the ratio Qm=mm is the same for the
macroparticle as it is for a single electron (as is the case),
then the motion of the macroparticle is the same as that for
a single electron, provided that the fields acting on the
particles are the same. This is no longer true concerning
radiation. This can be illustrated by considering the Larmor
formula for the power radiated PR by a macroparticle that
is accelerating along a straight line,

 PR �
Q2
m

6��0m
2
mc

3

�
dpi
dt

�
2
: (73)

Using Eq. (72), the power radiated by a single macro-
particle scales as PR / Q

4
m=m

2
m. Hence, assuming

Qm=mm � e=me, then the power radiated by a single
macroparticle is too large by the factor �Qm=e�2 � N2

R,
where NR is the number of electrons that each macro-
particle represents. However, as pointed out by Jackson
[43], the radiated power is typically very small compared
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to the change in kinetic energy of the particle. Specifically,
the ratio of radiated power to the time rate of change of
kinetic energy for a single electron is given by

 

PR
dWK=dt

�
2re

3�mec
2

dWK

dx
; (74)

where WK � mec2��1	 p2=m2
ec2�1=2 � 1� is the kinetic

energy of the electron. Hence, for a relativistic electron,
the effect of radiation will be small as long as the effective
field gradient dWK=dx is small compared to 3mec

2=2re,
i.e., jdWK=dxj � 3� 1014 MeV=m, which is trivially sat-
isfied for a single electron. For a macroparticle, the radia-
tion is N2

R times larger, i.e., the right side of Eq. (74) is
multiplied by the factor N2

R. Since NR is very large (typi-
cally, Nr � 106), the condition on the effective field gra-
dient required for the effects of radiation to be small is
approximately jdWK=dxj � 300 MeV=m. This can easily
be violated. For example, the radial electric field inside the
homogeneous spherical charge distribution is given by
Er � eNer=�4��0R

3�, where Ne is the total number of
electrons in the bunch and R the bunch radius. For an
electron at r � R, the field gradient can be written as
eEr � �mec2�Nere=R2, which gives eEr � 14 GeV=m
for Ne � 109 and R � 10 �m. If the radiated fields are
to be retained in the PPI method, then the number of
macroparticles needs to be increased such that the above
condition is satisfied. Alternatively, if the radiated fields do
not play a significant role in the physical problem being
considered, then the contribution of the radiated fields in
Eq. (70) can be neglected, and only the self-fields (with
retardation) retained.
IX. CONCLUSION

Plasma-based accelerators offer the possibility of pro-
viding compact, high-gradient electron accelerators and
are also capable of producing ultrashort electron bunches
in which the longitudinal size is much smaller than the
transverse size. Space-charge effects are not of concern
while the bunch is in the plasma wave, since the longitu-
TABLE I. Some properties of four methods (co
modified electrostatic particle-in-cell, and point-
bunch evolution.

Envelope

Energy spread Narrow
Momentum bins One M
Paraxial Yes
Symmetry Ellipsoidal El
Macroparticles No
Impact parameter No
aThe PPI model is also limited by the effects of
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dinal and transverse fields of the wake are typically much
greater than the space-charge fields of the bunch. Space
charge may be important, however, when an electron
bunch propagates in vacuum with no external fields, as
can be the case with a modest energy laser-plasma injector,
in which the emerging electron bunch has very compact
dimensions, high charge density, relatively low energy (up
to few tens of MeVs), and possibly a large energy spread.
Conventional space-charge approaches, restricted to small
energy spread beams, are not applicable in this case.

In this paper, we explored several analytical and numeri-
cal methods for the simulation of beams typical of those
produced by laser-plasma injectors. Some properties of
these methods are summarized in Table I. These methods
include: (i) The coupled envelope equations, which assume
that the beam shape remains ellipsoidal with a small di-
vergence (paraxial approximation) and small energy
spread (typically on the order of a few %). This model
can be applied to most sources produced by optical injec-
tion such as colliding pulse (CPI). (ii) A novel technique
that uses ellipsoidal symmetric beam distribution functions
and allows the treatment of large energy spreads. It as-
sumes the paraxial approximation and allows an extension
of the envelope model to beams with large energy spreads.
This method has the advantage of being computationally
fast compared to standard techniques such as particle-in-
cell (PIC). (iii) A modified electrostatic PIC method, al-
lowing for the binning in momentum of the beams with
large energy spread. (iv) A 3D point-to-point interaction
(PPI) method, which neglects the radiated fields and treats
retardation in an approximate manner. The PPI and PIC
codes have been compared and applied to the simulations
of high density, compact electron beams where the paraxial
approximation is violated. This is relevant to the electron
sources produced by the self-modulated laser wakefield
accelerator (SM-LWFA). The number density for these
beams is typically ne � 1019 cm�3, which results in sig-
nificant space-charge blowup while propagating in vac-
uum. The distribution in phase-space evolves rapidly for
those dense beams and its final shape is strongly affected
by the initial correlations.
upled envelope equations, ellipsoidal shells,
to-point interaction) used to model electron

Shell PIC PPI

Broad Broad Broad
ultiple Multiple None
Yes Yes No

lipsoidal Arbitrary Arbitrary
Yes Yes Yes
No No Yesa

radiation and retardation (see text).
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Studying in detail the SM-LWFA regime, it was found
that position-momentum correlations have an important
effect on the evolution of the electron distribution for large
energy spread beams. Electromagnetic PIC simulations of
the SM-LWFA typically yield highly correlated beams
with strong substructure. Such beams are typically com-
posed of a train of beamlets (bunched at the plasma pe-
riod), with the highest energies in the first beamlet and
lower energies in the trailing beamlet. This is typical
provided the beam is extracted after a propagation distance
within the plasma on the order of the dephasing length
[33]. It was found that space charge plays a major role and
can induce electron self-acceleration with a global change
of beam energy spectrum while keeping an overall ‘‘two-
temperature’’ profile at the location of the detector. This is
consistent with experimental observations [22–32].
Furthermore, it has been shown that while propagating in
vacuum the higher energy electrons within the beam can
gain significant energy (up to 16% for the examples
considered).
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APPENDIX A: ELECTROSTATIC FIELD OF A
HETEROGENEOUS ELLIPSOID

In this Appendix, a summary on potential theory applied
to a charge distribution with ellipsoidal symmetry is pro-
vided. An excellent derivation is given in the book
Ellipsoidal Figures of Equilibrium from Chandrasekhar
[12], which will not be detailed here. For simplicity, we
will assume that the charge distribution is at rest and that
the ellipsoid is located at the center of the frame of refer-
ence, i.e., �xi � 0. For a solid homogeneous ellipsoid with
density distribution 	�r2�, the potential [12] is

 ��x; y; z� �
a1a2a3

4�0

Z 1
0

du
��u�

Z 1

r2�u�
dr2	�r2�; (A1)

where

 r2 �
X
i

x2
i

a2
i

; (A2)
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 r2�u� �
X
i

x2
i

a2
i 	 u

; (A3)

and

 ��u� �
�����������������������������������������������������
�a2

1 	 u��a
2
2 	 u��a

2
3 	 u�

q
: (A4)

The general form for the electric field is

 Ei � �
@�
@xi
� �

Z 1
0

@f�x; y; z; u�
@xi

du; (A5)

with

 f�x; y; z; u� �
1

4�0

a1a2a3

��u�

Z 1

r2�u�
dr2	�r2�; (A6)

and

 

@f�x; y; z; u�
@xi

� �
1

4�0

a1a2a3

��u�
	�r2�u��

@r2�u�
@xi

; (A7)

i.e.,

 Ei �
a1a2a3

2�0
xi
Z 1

0

du

�a2
i 	 u���u�

	�r2�u��: (A8)

For the special case where the density profile has the form

 	�r2� �

�
	0; for r2  1;
0; otherwise;

(A9)

we get inside the ellipsoid,

 Ei �
	0

2�0
a1a2a3xiAi�0;1�; (A10)

and for a point outside the ellipsoid, Eq. (A3) gives
r2��� � 1 where � > 0 and the integral may be rewritten as

 Ei �
	0

2�0
a1a2a3xiAi��;1�; (A11)

where

 Ai��;1� �
Z 1
�

du

�a2
i 	 u���u�

: (A12)

For a round beam a1 � a2 � a, we have

 Ai��;1� �
Z 1
�

du

�a2
i 	 u��a

2 	 u�
���������������
a2

3 	 u
q ; (A13)

where
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 2��x; y; z� � x2 	 y2 	 z2 � a2 � a2
3 	

�������������������������������������������������������������������������������������������������������������������������
�x2 	 y2 	 z2 � a2 � a2

3�
2 	 4�a2

3�x
2 	 y2� 	 a2�z2 � a2

3��
q

: (A14)
These results are used in Sec. III for the derivation of the
envelope equations and, in the next Appendix, for the
calculation of the fields of an homogeneous ellipsoidal
shell.
APPENDIX B: ELECTROSTATIC FIELD OF A
HOMOGENEOUS ELLIPSOIDAL SHELL

The density profile of an homogeneous ellipsoidal shell
can be defined as

 	�r2� �

�
	0; for m2

0  r2  m2
1;

0; otherwise:
(B1)

Using a transform of variables r! u, as in the previous
Appendix, the limits of integration for a shell become u �
�u0; u1�, where u0 is the positive root of the equation
r2�u0� � m2

0 and u1 the positive root of r2�u1� � m2
1.

Three regions can then be defined depending of the point
of observation.
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Region A: In the interior of a shell (inside both ellip-
soids), the field is zero,

 Ei � 0: (B2)

Region B: Inside of a shell (between the ellipsoid
boundaries),

 Ei �
	0

2�0
xiAi�0; u0�: (B3)

Region C: Exterior of a shell (outside both ellipsoid),

 Ei �
	0

2�0
xiAi�u1; u0�: (B4)

For the special case of a round beam (a1 � a2 � a), we
have

 Ai�u1; u0� �
Z u0

u1

du

�a2
i 	 u��a

2 	 u�
���������������
a2

3 	 u
q ; (B5)

where ui � �i=m2
i and
 2�i � x2 	 y2 	 z2 �m2
i �a

2 	 a2
3� 	

����������������������������������������������������������������������������������������������������������������������������������������������
�x2 	 y2 	 z2 �m2

i �a
2 	 a2

3��
2 	 4m2

i �a
2
3�x

2 	 y2� 	 a2�z2 �m2
i a

2
3��

q
: (B6)
The space-charge coefficients are

 A � A1 � A2 � g0�u0� � g0�u1�; A3 � h0�u0� � h0�u1�;

(B7)

with

 g0�u� �
1

a2 � a2
3

8><
>:

���������������
a2

3 	 u
q
a2 	 u

	
tan�1�

���������������
a2

3 	 u
q

=
�����������������
a2 � a2

3

q
������������������

a2 � a2
3

q
9>=
>;; (B8)

and

 h0�u� �
2

a2
3 � a

2

8><
>:

1���������������
a2

3 	 u
q

	
tan�1�

���������������
a2

3 	 u
q

=
�����������������
a2 � a2

3

q
������������������

a2 � a2
3

q
9>=
>;: (B9)

These equations give a full description of the electrostatic
fields acting on an ellipsoidal shell. Section II generalized
these results to moving shells and presented the outline of a
new approach that was applied to beams with large energy
spreads through binning of the electron distribution in
momentum space, providing a computationally fast and
efficient method to calculate space-charge effects for
beams in the paraxial limit, that is, when transverse blowup
is moderate (j�?j � �z).
APPENDIX C: HAMILTONIAN FORMULATION OF
THE RMS ENVELOPE EQUATIONS

This Appendix presents a general derivation of the RMS
envelope equations using a Hamiltonian approach. This
derivation does not depend on a detailed knowledge of
the electron distribution function. Appendix D will further
specialize to ellipsoidal symmetric bunches and
Appendix E to the special case of finite cylinder of charge.

1. Single particle equation of motion

This section closely follows the work of Ryne et al. [17].
Starting from the usual definition linking the Lagrangian to
the Hamiltonian,

 L � p _q�H; (C1)

and using the definition of the action,

 S �
Z
�p _q�H�dt; (C2)

one can derive an expression for the Lagrangian in a
coordinate system where z is the independent variable, i.e.,
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 dS � �p _q�H�dt; (C3)

 � �pxx0 	 pyy0 	 pz �Ht0�dz; (C4)

with pi � �mvi 	 qAi. Defining pt � �H, we get
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 S �
Z
�pxx

0 	 pyy
0 	 ptt

0 	 pz�dz; (C5)

 �
Z
L̂dz; (C6)

where L̂ � pxx
0 	 pyy

0 	 ptt
0 � K and K � �pz. From

the expression of the Hamiltonian in terms of the indepen-
dent variable t,
 H�x; px; y; py; z; pz; t� �
�����������������������������������������������������������������������������������������������������������������
m2c4 	 c2��px � qAx�2 	 �py � qAy�2 	 �pz � qAz�2�

q
	 q� � �pt; (C7)

 B �x; y; z; t� � r�A�x; y; z; t�; (C8)

 E �x; y; z; t� � �r��x; y; z; t� �
@A�x; y; z; t�

@t
: (C9)

It is readily found a similar expression where z is now the independent variable, i.e.,

 K�x; px; y; py; t; pt; z� � �pz; (C10)

 � �
��������������������������������������������������������������������������������������������������������������
�pt 	 q��2=c2 �m2c2 � �px � qAx�

2 � �py � qAy�
2

q
� qAz:

For the case of space charge, i.e., no external applied fields, Aself
x � Aself

y � 0 and Aself
z � v0�self=c2,

 K � �
����������������������������������������������������������������������������
�pt 	 q�self�2=c2 �m2c2 � p2

x � p2
y

q
� qAself

z ; (C11)
and using variational principles,

 pt � �
@K
@t
; (C12)

 t �
@K
@pt

; (C13)

 
 
 


we can deduce the equations of motion in z frame [17].

2. Reference orbit

In a general manner the reference orbit is identical to the
trajectory of a reference particle that evolves in the fields of
the beam transport system (quadrupole magnets, rf accel-
erating cavities, . . .) from some initial conditions carefully
chosen in order to simplify the form of the overall equa-
tions that describe the evolution of any particles in the
system. Let �t0; pt0� denote the trajectory of the reference
particle (along with x � px � y � py � 0 to simplify).
Using the above Hamiltonian, it follows that the equations
of motion for the reference particle are given by

 t00 �
�pt0������������������������

p2
t0 �m

2c4
q �

1

v0
; (C14)
 p0t0 � �
@K
@t0

; (C15)

where primes stand for d=dz and K is the general
Hamiltonian [Eq. (C11)] containing the external fields as
well as the self-fields. � has been neglected in (C15)
because for a beam evolving in vacuum under space-charge
blowup alone the reference particle can simply be chosen
as to be located at the center of the bunch (the center of
force) such that p0t0 � 0, i.e., pt0 � �H � ��0mc2 and
t0�z� � z=v0, where v0 is the average beam velocity. This
assumption is valid as long as the beam energy spread � �
�E=E0 remains small.

3. Equations in the frame comoving with the reference
orbit

Next define variables that are deviations from the refer-
ence orbit,

 X � x; Px � px; Y � y; Py � py;

T � t� t0�z�; Pt � pt � pt0�z�:
(C16)

The Hamiltonian governing this variables is obtained from
the generating function

 F2�q; P� � xPx 	 yPy 	 �t� t0�z���Pt 	 pt0�z��; (C17)
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according to

 Q �
@F2

@P
; (C18)

 p �
@F2

@q
; (C19)
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and

 Knew � K 	
@F2

@z
; (C20)

the new Hamiltonian is given by
 K�X;Px; Y; Py; T; Pt; z� � �
���������������������������������������������������������������������������������������������
��Pt 	 pt0� 	 q�self�2=c2 �m2c2 � P2

x � P2
y

q
� qAself

z 	 T
dpt0
dz
� �Pt 	 pt0�

dt0
dz
;

(C21)

where

 A self � Aself�X; Y; z; T 	 t0�; (C22)

 �self � �self�X; Y; z; T 	 t0�: (C23)

Next we will substitute the potentials into the Hamiltonian and drop terms of order 3 and higher in �X;Px; Py; Y; T; Pt�.
Also, since �self is of order 2 and higher, we will keep �self but drop ��self�2 and higher powers. It follows that the
Hamiltonian is given by

 K � �p0

�������������������������������������������������������������������������������
1�

2�Pt 	 q�self�

p0v0
	

P2
t

p2
0c

2 �
P2
x

p2
0

�
P2
y

p2
0

vuut �
v0

c2 q�self �
Pt
v0
	 �0mc

2=v0; (C24)
where p0 � �0mv0 has been used along with Aself
z �

v0�self=c2. To second order in �X;Px; Y; Py; T; Pt�,
Eq. (C24) becomes

 K ’
m2P2

t

2p3
0

	
P2
x 	 P2

y

2p0
�
q�self

�2
0v0

� p0�1� �
�2
0 �: (C25)

Note that ��2
0 � 1	 p�2

0 m2c2. The last term in the
Hamiltonian is not a function of the canonical variables
and consequently does not contribute to the dynamics of
the electrons. Therefore, it will not be considered in the
calculation. The new expression for the Hamiltonian is

 K�X;Px; Y; Py; T; Pt; z� �
m2P2

t

2p3
0

	
P2
x 	 P

2
y

2p0
�
q�self

�2
0v0

:

(C26)

It follows from Hamilton’s equations that the equations of
motion are given by

 X0 �
Px
p0
; (C27)

 P0x � �
q

�2
0v0

@
@X

�self ; (C28)

 Y0 �
Py
p0
; (C29)

 P0y � �
q

�2
0v0

@
@Y

�self ; (C30)
 T0 �
m2Pt
p3

0

; (C31)

 P0t � �
q

�2
0v0

@
@T

�self : (C32)

These can be combined in pairs to yield the following three
equations:

 X00 	
q

�2
0p0v0

@
@X

�self � 0;

Y00 	
q

�2
0p0v0

@
@Y

�self � 0;

T00 	
q

�4
0p0v

3
0

@
@T

�self � 0:

(C33)

Recall that p0�z� was assumed to be constant, i.e., p00 � 0.

4. RMS envelope equations

Evolution equations for the RMS moments of the beam
can be obtained using standard techniques. Consider, for
example, the calculation of hX2i. First, let

 
x �
���������
hX2i

q
; (C34)

giving

 
0x �
hXX0i

x

�
1

p0

hXPxi

x

; (C35)

and
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00x �
hXP0xi
p0
x

	
�2
x

p2
0


3
x
; (C36)

where the normalized emittance was introduced as

 �x �
���������������������������������������
hX2ihP2

xi � hXPxi2
q

: (C37)

The RMS envelope in the x direction is then

 
00x 	
q

p0v0�2
0

1


x

�
X
@
@X

�self

	
�

�2
x

p2
0


3
x
� 0: (C38)

Similarly, the equations for the other second moments are
given by

 
00y 	
q

p0v0�
2
0

1


y

�
Y
@
@Y

�self

	
�

�2
y

p2
0


3
y
� 0; (C39)

 
00t 	
q

p0v
3
0�

4
0

1


t

�
T
@
@T

�self

	
�

�2
t

p2
0�

4
0v

4
0


3
t
� 0; (C40)

and

 �y �
��������������������������������������
hY2ihP2

yi � hYPyi2
q

; (C41)

 �t �
��������������������������������������
hT2ihP2

t i � hTPti
2

q
: (C42)

Furthermore, defining Z as the distance between the parti-
cle and the reference particle

 Z�z� � v0T�z�; (C43)

where T � t� t0 is the time difference between the two
particles at position z, then multiplying Eq. (C40) by v0

gives an expression for the longitudinal envelope equation
in term of the Z coordinate,

 
00z 	
q

p0v0�4
0

1


z

�
Z
@
@Z

�self

	
�

�2
z

�4
0


3
z
� 0; (C44)

along with

 �z �
������������������������������������
hZ2ih�2i � hZ�i2

q
; (C45)

where � � Pt=�p0v0�. Note that it is easy to show that, if
�self is a quadratic function of X, Y, and Z (or equivalently,
if we simply neglect higher order terms), then the normal-
ized RMS emittances are constants.

APPENDIX D: COUPLED ENVELOPE EQUATIONS
IN ELLIPSOIDAL GEOMETRY

For the space-charge force calculation, the approxima-
tion Z � v0T ’ z� z0�t� is strictly valid only if the beam
energy spread is small. Recall that the space-charge forces
can only be calculated in a frame where t is the indepen-
dent variable. Next we will consider the calculation of the
terms hX@�self=@Xi, hY@�self=@Yi, and hZ@�self=@Zi in
the envelope equations. Assume that the charge density of
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a single bunch is given by

 	�X; Y; Z� �
Q

4�a1a2a3
h
�
X2

a2
1

	
Y2

a2
2

	
Z2

a2
3

�
: (D1)

The charge per bunch is equal to Q. By making the sub-
stitutions

 X � a1r sin cos�; (D2)

 Y � a2r sin sin�; (D3)

 Z � a3r cos; (D4)

it follows that

 Q �
ZZZ

V
	d3X

�
Q
4�

Z 1
0
r2h�r2�dr

Z �

0
sind

Z 2�

0
d�; (D5)

i.e., h�r2� is normalized according to

 

Z 1
0
r2h�r2�dr � 1: (D6)

It is also straightforward to show that the second order
moments are related to a1, a2, and a3 as shown below:

 hX2i �
a2

1

3

Z 1
0
r4h�r2�dr; (D7)

 hY2i �
a2

2

3

Z 1
0
r4h�r2�dr; (D8)

 hZ2i �
a2

3

3

Z 1
0
r4h�r2�dr: (D9)

As an example let us assume a constant ellipsoid. The
boundary is defined by the ellipsoidal coordinate

 r2
max �

X2

a2
1

	
Y2

a2
2

	
Z2

a3
1

� 1; (D10)

we get

 h�r2� � 3; (D11)

and

 hX2i � a2
1=5; (D12)

 hY2i � a2
2=5; (D13)

 hZ2i � a2
3=5: (D14)

The scalar potential in the laboratory frame [Eq. (A1)] is
given by
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 �self�X; Y; Z� �
�0Q

16��0

Z 1
0

ds
��s�

Z 1

m2�s�
h�m2�dm2;

(D15)

where

 ��s� �
��������������������������������������������������������
�a2

1 	 s��a
2
2 	 s���

2
0a

2
3 	 s�

q
; (D16)

and

 m2�s� �
X2

a2
1 	 s

	
Y2

a2
2 	 s

	
�2

0Z
2

�2
0a

2
3 	 s

: (D17)

The calculation of E [Eq. (A8)] is straightforward:

 Ex � �
@
@X

�self �
�0Q
8��0

X
Z 1

0

h�m2�s��ds

�a2
1 	 s���s�

;

Ey � �
@
@Y

�self �
�0Q
8��0

Y
Z 1

0

h�m2�s��ds

�a2
2 	 s���s�

;

(D18)

and

 Ez � �
@
@z

�self �
@
@t
Aself
z � �

1

�2
0

@
@Z

�self

�
�0Q
8��0

Z
Z 1

0

h�m2�s��ds

��2
0a

2
3 	 s���s�

: (D19)
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The term hX@�self=@Xi is therefore

 

�
X
@
@X

�self

	
� �

�0Q
8��0

�
ZZZ

V

	�m2�0��

Q
d3X

Z 1
0

X2h�m2�s��ds

�a2
1 	 s���s�

;

(D20)

which suggests the change of variables

 X �
��������������
a2

1 	 s
q

r sin cos�; (D21)

 Y �
��������������
a2

2 	 s
q

r sin sin�; (D22)

 �0Z �
�������������������
�2

0a
2
3 	 s

q
r cos; (D23)

and deducing from the Jacobian determinant the relation-
ship between d3X and drdd�, that is

 �0d3X � ��s�r2dr sindd�; (D24)

we have
 �
X
@
@X

�self

	
�

�Q

32�2�0a1a2a3

Z 1
0
r2h�r2�dr

Z �

0
d

Z 2�

0
d�

�
Z 1

0
r2sin3cos2�h

�
r2 	 sr2

�
sin2cos2�

a2
1

	
sin2sin2�

a2
2

	
cos2

�2
0a

2
3

��
ds: (D25)

After performing the change of variables

 �2�s� � r2 	 sr2

�
sin2cos2�

a2
1

	
sin2sin2�

a2
2

	
cos2

�2
0a

2
3

�
; (D26)

one gets

 

�
X
@
@X

�self

	
�

�Q

16�2�0a1a2a3

�
Z 1

0
r2h�r2�dr

Z 1
r
�h��2�d�

Z �

0
d

Z 2�

0

sin3cos2�d�

sin2cos2�=a2
1 	 sin2sin2�=a2

2 	 cos2=��2
0a

2
3�
; (D27)

and further making use of the integral identity [12]

 I �
Z �

0
sind

Z 2�

0
d�

sin2cos2�

sin2cos2�=a2
1 	 sin2sin2�=a2

2 	 cos2=��2
0a

2
3�
� 2�a3

1a2�0a3A1�a1; a2; �0a3�; (D28)
where

 Ai�u1; u2; u3� �
Z 1

0

ds

�u2
i 	 s���s�

; (D29)

and,
 ��s� �
���������������������������������������������������
�u2

1 	 s��u
2
2 	 s��u

2
3 	 s�

q
; (D30)

we obtain a simplified expression for the average space-
charge term in the envelope equation, i.e.,
-25



G. FUBIANI et al. Phys. Rev. ST Accel. Beams 9, 064402 (2006)
 

�
X
@
@X

�self

	
�
��0Q
8��0

a2
1A1�a1; a2; �0a3�

�
Z 1

0
r2h�r2�dr

Z 1
r
�h��2�d�: (D31)

Now introduce the notation [16]

 �3 �
1

3
���
3
p

�Z 1
0
r2h�r2�dr

Z 1
r
�h��2�d�

�

�

�Z 1
0
r4h�r2�dr

�
1=2
; (D32)

and noting that
 

a2
1A1�
x; 
y; �0
z� �

1

3
���
3
p

�Z 1
0
r4h�r2�dr

�
1=2

3
2
x

�
Z 1

0

ds

�
2
x 	 s���s�

; (D33)

we get

 

�
X
@
@X

�self

	
�
�3�0Q�3

8��0

2
xA1�
x; 
y; �0
z�: (D34)

Sacherer et al. [16] also showed that the value of �3 is
insensitive to the functional form of h and is approximately
equal to 1=�5

���
5
p
�. Putting this all together, we obtain the

RMS envelope equation

 
00x �
3

2

Nre
�2

0�
2
0

�3
xA1�
x; 
y; �0
z� �
~�2
x


3
x
� 0; (D35)

where the number of electrons N and the classical electron
radius re � e2=�4��0mc

2� has been introduced. Note also
that the quantities Ai and �3 can be viewed as geometrical
factors related to space-charge effects. Similarly it follows
that

 

�
Y
@
@Y

�self

	
�
�3�0Q�3

8��0

2
yA2�
x; 
y; �0
z�; (D36)

 

�
Z
@
@Z

�self

	
�
�3�3

0Q�3

8��0

2
zA3�
x; 
y; �0
z�; (D37)

and

 
00y �
3

2

Nre
�2

0�
2
0

�3
yA2�
x; 
y; �0
z� �
~�2
y


3
y
� 0; (D38)

 
00z �
3

2

Nre
�2

0�
2
0

�3
zA3�
x; 
y; �0
z� �
~�2
z


3
z
� 0; (D39)

where ~�x � �x=p0, ~�y � �y=p0, and ~�z � �z=�2
0 are the

RMS trace-space emittances defined as

 

~� x �
���������������������������������������
hX2ihX02i � hXX0i2

q
; (D40)

 

~� y �
��������������������������������������
hY2ihY02i � hYY0i2

q
; (D41)
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~� z �
��������������������������������������
hZ2ihZ02i � hZZ0i2

q
: (D42)
APPENDIX E: FIELDS ACTING ON A FINITE
CYLINDER OF CHARGE IN THE LONG BEAM

LIMIT

A derivation of the electromagnetic fields acting on a
finite cylinder of charge, in the long beam limit approxi-
mation, is summarized in this Appendix. The long beam
limit corresponds to the case a=��a3� � 1, where a is the
transverse radius, � the beam relativistic factor, and a3 the
beam half-length, respectively. Appendix E 1 introduces
the general expression for the potential of a finite cylinder
in integral form. The latter result will be applied in
Appendices E 2 and E 3 to the calculation of the fields
and, in Appendix E 4 (also Sec. III B), to the derivation of
an envelope equation, for the specific case of a beam with a
longitudinal quadratic density profile and uniform radial
profile.

1. General results

The potential of a static charge distribution ~	�~r� in
cylindrical coordinates is
 

~V�~r; ~; ~z� � k
Z 1
�1

d~z0
Z 1

0
d~r0

�
Z 2�

0
d~0

~	�~r0�������������������������������������������
�~z� ~z0�2 	 j~r� ~r0j2

p ; (E1)

where

 k �
1

4��0
: (E2)

This is the potential in a system at rest with respect to the
charge distribution (rest frame potentials, fields, and coor-
dinates are designated with tildes). If the charge distribu-
tion is moving along the z axis with velocity �c, then to
transform to the laboratory we use

 z� z0 � �~z� ~z0�=�; (E3)

 	 � ~	�; (E4)

 r � ~r; (E5)

so that the potential in the rest frame, in terms of laboratory
coordinates, is
 

~V�r; ; z� �
k
�

Z 1
�1

dz0
Z 1

0
dr0

�
Z 2�

0
d0

	�r0��������������������������������������������������
�z� z0�2 	 jr� r0j2=�2

p : (E6)

Let us suppose that the charge density 	�r� is cylindrically
symmetric and separable in the product form
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 	�r� � 
�r���z�; (E7)

with the normalization

 

ZZZ
V
	�r�d3r � eN; (E8)

giving

 

Z 1
�1

��z�dz � eN; (E9)

and

 2�
Z 1

0

�r�rdr � 1; (E10)

where N is the number of electrons. Then, with u � r=�,
and letting z0 ! z0 � z, we have
 

~V�r; ; z� � k�
Z 1

0
u0
�u0��du0

Z 2�

0
d0

�
Z 1
�1

dz0
��z0 	 z�������������������������������

z02 	 ju� u0j2
p : (E11)
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We will consider only charge densities ��z� that vanish for
jzj> a3. In this case , we have

 

~V�r; ; z� � k�
Z 1

0
u0
�u0��du0

Z 2�

0
d0

�
Z a3�z

�a3�z
dz0

��z0 	 z�������������������������������
z02 	 ju� u0j2

p : (E12)
2. Quadratic density profile

For a parabolic charge density profile in the z direction,

 ��z� �
3eN
4a3

�
1�

z2

a2
3

�
; (E13)
using
 Z a3�z

�a3�z
dz0

��z0 	 z��������������������������������
z02 	 ju� u0j2

p �
3eN

8a3
3

�
��a3 	 3z�

���������������������������������������������
�a3 � z�

2 	 ju� u0j2
q

� �a3 � 3z�
���������������������������������������������
�a3 	 z�

2 	 ju� u0j2
q

	 �2a2
3 � 2z2 	 ju� u0j2� ln

�
a3 � z	

���������������������������������������������
�a3 � z�

2 	 ju� u0j2
p

�a3 � z	
���������������������������������������������
�a3 	 z�2 	 ju� u0j2

p
��
; (E14)
we now let � � u=a3, �0 � u0=a3, and we further make
the approximation j�j � r=��a3� � 1. Expanding in
powers of j�� �0j and keeping only the leading order
terms gives
 

� �a3 	 3z�
���������������������������������������������
�a3 � z�2 	 ju� u0j2

q

� �a3 � 3z�
���������������������������������������������
�a3 	 z�

2 	 ju� u0j2
q

’ �2a2
3 	 6z2;

(E15)

and

 

a3 � z	
���������������������������������������������
�a3 � z�2 	 ju� u0j2

p
�a3 � z	

���������������������������������������������
�a3 	 z�

2 	 ju� u0j2
p ’

4�a2
3 � z

2�

ju� u0j2
:

(E16)

Note that such an approximation is only valid for jzj< a3.
The fields at the edge of the cylinder are not properly
defined. We get

 

~V�r; ; z� ’
3keN�

4a3
3

Z 1
0
u0
�u0��du0

Z 2�

0
d0f�a2

3 	 3z2

	 �a2
3 � z

2��ln4�a2
3 � z

2� � lnju� u0j2�g;

(E17)

i.e.,
 

~V�r; ; z� ’
3k�eN�

2a3
3

Z 1
0
u0
�u0��du0��a2

3 	 3z2 	 �a2
3

� z2� ln4�a2
3 � z

2�� �
3keN�

4a3
3

�a2
3 � z

2�

�
Z 1

0
u0
�u0��du0

Z 2�

0
d0 lnju� u0j2:

(E18)

There is only one term that is difficult to integrate in this
expression:

 

Z 1
0
u0
�u0��du0

Z 2�

0
d0 lnju� u0j2; (E19)

in which

 ju� u0j2 � u2 	 u02 � 2uu0 cos�� 0�: (E20)

To do the 0 integration, we observe that due to cylindrical
symmetry the result must be independent of  and conse-
quently we can choose the location  � 0. Using the
identity (for b < 1)

 

Z 2�

0
ln�1� b cosx�dx � 2� ln

1	
��������������
1� b2
p

2
; (E21)

and writing
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 ju� u0j2 � �u2 	 u02�
�

1�
2uu0

u2 	 u02
cos0

�
; (E22)

we see that

 b �
2uu0

u2 	 u02
; (E23)

and

 

1	
��������������
1� b2
p

2
�
u2 	 u02 	 ju2 � u02j

2�u2 	 u02�
; (E24)

that is,
 Z 2�

0
d lnju� u0j2 �

Z 2�

0
d
�

ln�u2 	 u02�

	 ln
�
1�

2uu0

u2 	 u02
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��

� 2� ln
�
u2 	 u02 	 ju2 � u02j

2

�
:

(E25)

Thus if u0 < u,

 

Z 2�

0
d lnju� u0j2 � 2� lnu2; (E26)

while if u < u0,

 

Z 2�

0
d lnju� u0j2 � 2� lnu02; (E27)

and Eq. (E19) becomes
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0
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� 2�
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u
u0 lnu02
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�
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(E28)

providing a new expression for the potential
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u
u0 lnu02
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��
: (E29)

3. Uniform beam

a. Fields inside the beam

For a uniform beam of radius a, we have, for r < a,

 
�r� �
1

�a2 : (E30)

Then for u < a=�,
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 lnu2
Z u

0
u0
�u0��du0 � �2�a2��1u2 lnu2; (E31)

and
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; (E32)

giving
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The longitudinal electric field is
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@ ~V
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(E34)

i.e.,
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(E35)

The transverse electric field is

 

~Er � �
@ ~V
@~r
� �

1

�
@ ~V
@u

;

’
3keN

2�a2a3
3

r�a2
3 � z

2� ’
2k��z�r

�a2 : (E36)

Figure 20 plots the ratio E�z=Ez on axis, for a quadratic
density profile [Eq. (E13)]. E�z casts for the longitudinal
electric field obtained from direct integration of Eq. (E1).
One can see an excellent agreement with the approximate
expression Eq. (E35) up to the limit z ’ a3, with

 lim
z!a3

Ez�0; ; z� � �1: (E37)

The fields at the edge of the cylinder are not properly
defined because of the assumptions made in Eq. (E15)
and (E16) that allow for an analytical solution to be found.
Ez is strictly valid for jzj< a3, a=��a3� � 1 (long beam)
and r=��a3� � 1.
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FIG. 20. E�z�0; ; z�=Ez�0; ; z� using a parabolic density profile
[Eq. (E13)] and for a0 � 19 �m, a3 � 77 �m, and �0 � 13:7.
E�z corresponds to the longitudinal electric field obtained from
direct integration of Eq. (E1). Recall that z � 0 is the center of
the bunch.
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b. Fields outside the beam

For u > a=�

 

Z 1
u
u0 lnu02
�u0��du0 � 0; (E38)

and

 lnu2
Z u

0
u0
�u0��du0 � �2��2��1 lnu2; (E39)

giving
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The longitudinal electric field is
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The transverse electric field is

 

~E r � �
@ ~V
@~r
’

2k��z�
�r

: (E42)
4. RMS coupled envelope equations

Recall that the general expression for the coupled RMS
equations is
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where ~�x � �x=p0, ~�y � �y=p0, and ~�z � �z=�2
0 are the

RMS trace-space emittances defined as
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q
; (E46)
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q
: (E48)

The electric fields in the laboratory are not linear in x,y,
and z. In the ‘‘long beam’’ limit, that is, for a� �a3,
within the cylinder, the transverse electric field in the
laboratory frame, is
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The longitudinal field within the cylinder is
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(E50)

Note that, since the fields are nonlinear functions of coor-
dinates, the emittances will not be preserved. In the follow-
ing we will ignore emittance growth is the envelope
equation, that is the emittances are set equal to their initial
values. For the transverse degree of freedom we have

 hxExi � hyEyi �
3eNhx2i

8��0a2a3
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3
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: (E51)

Using 
2
z � hz

2i � a2
3=5 and 
2

x � hx
2i � hr2i=2 � a2=4,

where in general hAi is defined as

 hAi �
1

�a2eN

Z 2�

0
d

Z a

0
rdr

Z a3

�a3

A�r; z���z�dz; (E52)

we get

 hxExi �
3eN

40��0a3
: (E53)

For the longitudinal axis, we have

 hzEzi � �
3eNhz2i

8��0a3
3�

2

�
1	
hr2i

a2

�
	

3eN

4��0a3
3�

2

�

�
z2 ln

�2�
����������������
a2

3 � z
2

q
a

�	
; (E54)
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where

 

�
z2 ln

�2�
����������������
a2

3 � z
2

q
a

�	
�
a2

3

5

�
ln
�
�a3

a

�
	 2 ln2� 1�

1

30

�
;

(E55)

and

 hzEzi �
3eN

20��0a3�2 ln
�
��3a3

a

�
; (E56)

with �3 ’ 0:6723. Including hxExi, hyEyi, and hzEzi in the
envelope equations, yields

 
00x �
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2

Nre
�3
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2
0

�3


x
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3
x
� 0; (E57)
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00z �
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2

Nre
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2
0
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g2�
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~�2
z


3
z
� 0; (E59)

where the classical electron radius re � e2=�4��0mc2� has
been introduced together with

 g2�
x; �0
z� ’ 2 ln
�
��03
z

x

�
; (E60)

and the coefficients �03 ’ 0:6 and �3 � 1=�5
���
5
p
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