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Spin-polarized free electron beam interaction with radiation
and superradiant spin-flip radiative emission
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The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-
spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed
in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation
from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and
combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating
with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent)
emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes
can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes
are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic
targets in condensed matter physics.
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I. INTRODUCTION

All electron beam radiation sources, in a spectral range
stretching from the microwave to x-rays, are based on
interaction of the free-electron charge with the electric
field of an electromagnetic (EM) wave. These include
spontaneous emission schemes as Cerenkov radiation
and synchrotron radiation, as well as stimulated emission
schemes as microwave tubes and free-electron laser
(FEL) [1,2].

Electrons (as well as positrons and other particles) are
also endowed with magnetic moment due to their spin, and
can emit radiation or exchange energy with an EM wave by
interaction with its magnetic field. This interaction is weak
relative to the electric interaction, and magnetic radiative
emission has never been observed from free particle
beams. However, there is no fundamental restriction for
its observation. In fact, in a solid, where the density of
bound electrons is high, several spin-transition radiation
devices have been demonstrated: the first masers were
based on stimulated emission of bound electrons at spin
resonance condition in a magnetic field [3]; and electron
spin resonance (ESR), electron paramagnetic resonance
(EPR), and nuclear magnetic resonance (NMR) are well
known effects of interaction between an EM radiation
wave and the magnetic moments of bound electrons or
atomic nuclei in condensed matter. To the best knowledge
of the author, resonant ESR spin-flip emission has never
been observed in free electrons. However, the occurrence
of spontaneous spin-flip radiative emission by free elec-
trons is evidenced indirectly in synchrotron storage rings.
It is manifested when electrons (or positrons) are subjected
to traverse magnetic forces in the ring. At steady state the
cumulative effect of the emissions polarizes (transversely)
the spin state of the circulating charged particles beam
[4,5]. The excess (nonresonant) spin-flip synchrotron spon-
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taneous emission was also directly measured in an intricate
experiment in a storage ring [6] and in an experiment of
hard x-ray generation by an energetic electron beam inci-
dent at shallow angle on a single crystal [7].

The goal of the present paper is to find the characteristics
and the conditions for observation of ESR free-electron
spin-flip emission of radiation (FESFER) and in particular
its enhancement by the process of superradiance (SR) [8–
12]. We also solve the equations of interaction (stimulated
emission/absorption) between a radiation wave and a
polarized-beam: free-electron spin modulation by electro-
magnetic radiation (FESMER). This process is useful for
preparing the electron beam magnetic polarization state for
maximal FESFER emission. It is also of independent in-
terest in other experimental schemes, when there is need to
control the polarization state of a polarized electron beam.
This is required in experiments of scattering of a polarized
electron beam off spin-polarized targets. In such experi-
ments information is derived from the polarization-state
dependent scattering cross section. In such experiments
the radiative interaction may serve both for noninvasive
diagnostics and for control of the e-beam polarization
state.

Recent progress in development of spin-polarized pho-
tocathode e-gun injectors [13] for RF-LINAC accelerators
led to important measurements and discoveries in nuclear
physics (e.g., [14,15]). The electron beams, produced in
such photocathode e-guns, are usually made of picosecond
bunches, corresponding to the pulse duration of the pump
lasers, which generate them, by virtue of the photoelectric
effect, out of an illuminated semiconductor cathode. The
electrons emitted from the crystalline semiconductor have
distinct quantum spin states (� 1=2) relative to the axial
(emission) direction, and a net polarization level �P" �
P#�=�P" � P#� as high as 80% may be achieved [13]. The
axial polarization of the spins can be rotated and trans-
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formed to transverse polarization by a combination of
static magnetic and electric field deflectors. It can also be
done in a FESMER section, as proposed in this paper, by
employing an external electromagnetic wave at ESR con-
dition. This can then be carried out without diverting the
axial propagation transport line of the beam.

It is shown here that the superradiant radiation pulses
that are emitted by such transversely polarized e-beam
bunches, upon traversal through an axial magnetic field,
can be observable, and possibly can be used to indicate
the polarization level of the electron beam. It is also
suggested that FESMER controlled spin-polarized low
energy e-beams can be useful for extending already exist-
ing technologies for diagnostics of magnetic polarization
and spin-states in solids [16–18] and may contribute to the
development of the new evolving technological field of
‘‘Spintronics’’ [19]. With these observations, one may
expect, that in addition to its fundamental interest, the
complete analysis of FESFER and FESMER processes,
to be presented here, will have significance in the advance-
ment of important applications of spin-polarized beams.

Exposing in advance the limitations of the classical
model used here, we recognize that the spin is a
quantum-mechanical entity and when inserted in a mag-
netic field, it constitutes in its rest frame a system of
distinct two-quantum states. Nevertheless, in the next two
sections we use a classical approach to analyze the
FESMER process, which involves nonlinear interaction
(stimulated emission/absorption) of the spins with an in-
tense radiation field. This is well justified (and particularly
so when the e-beam is polarized), as is commonly done in
ESR, NMR, and conventional two-level laser systems
[3,20]. In the subsequent sections we analyze the sponta-
neous and superradiant emission processes also on the
basis of a classical model. This is again justifiable for the
superradiant case as was demonstrated in the treatise of
Dicke (who starts from quantum electrodynamics analysis
and obtains the classical results in the limit of a large
number of coherently emitting dipoles) [8]. However, the
classical analysis is not valid, for the calculation of sponta-
neous emission, where the emission of a photon by a single
electron involves reversal of its spin state and where quan-
tization of the radiation field needs to be included. Thus the
calculation of spontaneous emission in these sections is
valuable primarily as a step for calculating the phenome-
non of interest of enhanced superradiant emission [21]. For
a rigorous calculation of the spontaneous emission, a
quantum analysis as in [4,5,22] is needed. A brief discus-
sion, following the formulation of Dicke, on the transition
from the quantum to classical limit in the case of super-
radiance, is given in Appendix A. Plausibility arguments in
Appendices A and B make it possible to confirm the
derived classical FESFER expressions and obtain the nec-
essary quantum mechanical modifications to the sponta-
neous emission expressions.
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II. ESR RADIATION CONDITIONS OF AN
ELECTRON BEAM

The classical magnetic moment of a particle with spin S,
which is subjected to magnetic field B0 (in its relativistic
rest frame), is governed by

d�0

dt
� �0 �!0s; (1)

! 0s �
ge
2m

B0; (2)

j�0j �
@ge
2m

S � �BgS � �s; (3)

�E0 � 2�sB0 �
@ge
m

SB0 � @!0s: (4)

Here �E0 is the maximum spin-flip energy, g �
2:002 319 3 is the Lande g factor [23,24], and �B �
@e=2m is the Bohr magneton. For an electron or a positron
S � 1=2 and �s � 9:2848� 10�24 J=T. SI units system is
being used throughout. It is pointed out that rigorously
Eq. (1) is defined only for the spin operator S (and is valid
even for g � 0). In our classical model we apply it to the
magnetic moment �0, using the connection (3). This is
appropriate for particles like electrons for which g � 2.
It should be born in mind that the spin S and the magnetic
moment �0 are defined only in the electronic rest frame.
For this reason we keep the prime sign all along.

For an e-beam propagating on an axis (z) parallel to a
uniform magnetic field B � B0êz with velocity � �
�êzand energy �mc2, the electron spin resonance (ESR)
frequency in the particle rest frame is (note: Bz � B0z)

!0s0 �
ge
2m

B0: (5)

Assuming negligible quantum recoil effect, the electron
spin, precessing at frequency!0s0, can emit or interact with
an electromagnetic (EM) wave of the same frequency !0s0
(in its relativistic frame). Consider an EM wave (a wave-
guide mode or a free space plane wave) emitted or inter-
acting with the spin at its ESR frequency !0s0:

E0�r0; t0� � Ref~E�r0�eik
0
zoz�i!0sotg;

B0�r0; t0� � Ref~B�r0?�e
ik0zoz0�i!0sot0 g:

(6)

The frequency of this wave will be seen in the laboratory
frame as

!r��� �
!0so=�

1� � cos�
; (7)

where cos� � kz=k (k � !r=c). For � � 0 (forward
emission of a TEM wave), the radiation is Doppler-up-
shifted to

!r0 � !r�0� � �1� ���!
0
s0: (8)
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With commonly available magnetic fields— 0.5 T (for
normal magnets) or 10 T (with superconducting mag-
nets)—the rest-frame ESR frequencies are in the micro-
wave up to terahertz regime: f0s0 � 50 GHz–1 THz. With
moderate acceleration to E � 100 MeV, the forward
FESFER emission in the laboratory frame [Eq. (8)] can
be, for these magnetic fields, in the IR-up to visible regime
(�r0 � 15–0:75 �m).

The maximum FESFER radiative power that can be
extracted from a fully polarized upper level excited elec-
tron beam of average current I is

P � @!r0�0�I=e; (9)

which for the latter example ��r0 � 0:75�� corresponds to
1:65 W=A. Note, however, that this much radiative power
is available only if all electrons are induced to radiate in the
forward direction, and all of them make full transition to
the lower spin level. When considering the average pulse
power emission from a single e-beam bunch, the average
current I is calculated as the bunch charge, divided by the
radiation pulse duration [the bunch pulse duration plus the
‘‘slippage time’’ of the radiation, which for forward emis-
sion of a free space radiation wave is given by �1�
��L=�c].

Equation (9) also gives the radiation power that would
be absorbed from a radiation wave by a spin-polarized
e-beam making full transition from the low energy (spin
down) state to the higher energy (spin up) state (a
FESMER process).

Figure 1 displays a free-electron spin-flip radiative emis-
sion scheme that incorporates the two processes of ESR
interaction between a polarized e-beam and a radiative
wave:

(i) A FESMER process of spin-polarization-state rota-
tion takes place in the spin modulation section. This pro-
cess can be described as stimulated absorption of the
modulating radiation wave, which changes the polarization
FIG. 1. A scheme for electron spin-state rotation (FESMER)
and radiation (FESFER).
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state of the electron beam from longitudinal to transverse
polarization or to any other polarization state.

(ii) A process of FESFER takes place in the radiating
section. This process is most intense when it is super-
radiant, namely, when the electron beam is transversely
polarized (has maximal magnetic dipole moment in the
transverse dimension) and is either axially bunched at the
radiative emission frequency fr � !r=2�, or has a pulse
duration tp short relative to this frequency frtp 	 1. In
these cases all the electron spins precess and emit in phase,
forming a giant magnetic dipole moment. The bunched
electron beam emits then an intense superradiant radiation
wave [9,10].

The experimentally verified fact that out of the magnetic
sections, and even in the acceleration stage, the electrons
keep their spin state, makes it possible to perform the two
processes at two different frequencies, and produce in
effect (for forward emission) a wave frequency transformer
of frequency up-shift ratio [see Eq. (7)]:

!r

!m
�
�m�1� �m cos�m�

�r�1� �r cos�r�

Br
Bm

; (10)

where m and r correspond to the modulation and radiation
sections, respectively. For example, if the modulation is
done at Em � 100 keV, �m � �=2, and the radiation at
Er � 100 MeV, �r � 0, and Br � Bm, the frequency up-
shift factor is �286.
III. STIMULATED RADIATIVE INTERACTION,
SPIN-STATE MODULATION

To explore the interaction between a radiation wave and
the electrons spin it is convenient to use the Bargmann,
Michel, Telegdi (BMT) equation [24], which describes the
dynamics of the electron rest-frame spin S in terms of lab-
frame coordinates and fields:

dS
dt
�

e
m�

S�
�
�1� �a�B�

a�2

�� 1
��� 
 B�

�

�
a�

1

�� 1

�
�
c
�� E

�
;

where a � �g� 1�=2 � 0:001 159 65. We apply this, in
our classical model, to the magnetic moment �0, and set
a � 0 (g � 2). Assuming the electron propagates along a
uniform axial magnetic field section B � B0êz, and inter-
acts with a copropagating intense (classical) electromag-
netic wave

fE�r; t�;B�r; t�g � Re�f~E�r?�; ~B�r?�ge�i!mt�ikzmz� (11)

the BMT equation can be written as

d�0

dt
� �0 � �!s0 ��r�t��; (12)

where
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! s0 � !s0êz; !s0 � !r�� � �=2� � !0s0=�; (13)

� r�t� �
e
m�

�
1�

��
�� 1

cos�m

�
B?�r; t� (14)

[here we assumed for simplicity, a specific case where the
radiation wave (11) is a TEM or TM wave and having no
axial magnetic field component].

In the absence of radiation field ��r � 0� the solution of
Eq. (12) is

�0?�t� � Re� ~�0�ê�e�i!s0�t�t0��i’s0�;

�0z�t� �
�������������������������
�2
s � �

02�t�
q

�
������������������������������
�2
s � j ~�0�j

2=2
q

� const;
(15)

where ê�  �êx � iêy�=
���
2
p

and �s � �Bg=2 [Eq. (3)], t0
is the electron entrance time into the magnetic field region
and ’s0 —its initial precession phase.

We now solve Eq. (12) for an electron, precessing at
frequency !s0 in an axial magnetic field B0, while the
radiation field (11) is also applied. Assume that the modu-
lation frequency!m is synchronous with the gyromagnetic
frequency !s0 � !0s0=� at the electron position ze�t� �
v�t� t0�, namely [see (11)]: !m � kz�!m�v � !s0, or
!m � !s0=�1� � cos�m� [in consistency with (7)]. In
the ‘‘rotating vector approximation’’ only the right-hand
polarized component of the field (11) synchronizes with
the precessing field and is kept in (12) and (14):

� r�t� � Reb ~�re
�i�!m�kzmv��t�t0�c; (16)

~� r �
e
�m

�
1�

��
�� 1

cos�m

�
~B��xe; ye�ê�e�i!mt0 ;

(17)

where ~B��xe; ye� � ~B�xe; ye� 
 ê� is the right-hand polar-
ized field component of (11) at the electron propagation
axis �xe; ye�.

The vector �r�t� would seem stationary in a coordinates
frame rotating at frequency !s0 � !m � kzmv around the
z axis [20], applying a perpendicular torque moment on the
spin, tending to change the polarization state from lower
axial spin state �0z to higher, or vice versa. The solution of
(12) when starting from a pure state �0z�t0� � ��s is then

�0z�t� � ��s cos�rabi�t� t0�;

j�0?�t�j � �s sin�rabi�t� t0�;
(18)

where

�rabi � j
~�rj=

���
2
p

�
e���

2
p
�m

�
1�

��
�� 1

cos�m

�
jê� 
 ~B�xe; ye�j: (19)

This spin-flip modulation process is an expression of the
Rabi-oscillation between the lower and upper quantum
spin levels.
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The parameter of significance for the spin-state modu-
lator is the �=2-length—L�=2 (analogous to the �=2-pulse
duration in NMR, EPR):

L�=2 �
�=2

�rabi=v
�

����
2
p

�
1

��
�

cos�m

�� 1

�
�1 mc

ejê� 
 ~Bj
:

(20)

At this length an axially polarized beam will turn into a
transversely polarized beam, optimally prepared for high-
est rate of FESFER emission at the radiation section
(Fig. 1).

Another parameter of merit is L� � 2L�=2. At this
length an axially polarized beam will be transformed to
an axially polarized beam of the opposite sense, and a
transversely polarized beam will be transformed back to
a transversely polarized beam (this last process can be used
to compensate for inhomogeneous broadening effects as in
photon-echo effects [20]). If used in a radiation section, a
power corresponding to a �-length section would corre-
spond to the maximum emission power (9) that can be
extracted by stimulated emission from an axially polarized
beam.

For the example of Em � 100 keV B0 � 0:5 T, one
obtains fs0 � f0s0=� � 35 GHz. For a modulating radia-
tion wave of effective cross-section area Aem � 10 mm2

and mode zigzag angle cos�m � 0:1 (near cutoff opera-
tion), one requires instantaneous power of P � 1 kW to
obtain L�=2 � 1 m.
IV. SPONTANEOUS AND SUPERRADIANT ESR
FESFER

To analyze the classical radiative emission from particu-
late charges and magnetic moments, we use a modal
expansion of the Maxwell equations in the frequency
domain:

�E�r; !� �
X
q

�Cq�z�~Eq�r�; �H�r; !� �
X
q

�Cq�z� ~Hq�r�;

(21)

where �f�!� � F ff�t�g 
R
1
�1 e

i!tf�t�dt, and
f~Eq�r�; ~Hq�r�g � f~Eq�r?�;

~H q�r?�geikzqz is a set of eigen-
modes of the structure (waveguide or free space) in which
radiation emission takes place.

Extending the formulation of [10] to include magnetic
currents, the excitation equations of the mode amplitudes is

d �Cq
dz
� �

1

4P q

Z Z
��J�r; !� 
 ~E�q�r�

� �Jm�r; !� 
 ~H�q�r��d2r?; (22)

where Pq is the normalization power of
mode q. Substituting J�r; t� �

PN
j�1�evj�t���r� rj�t��,

Jm�r; t� �
PN
j�1 _�0j�t���r� rj�t��, one obtains
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FIG. 2. The FESFER radiation pattern. The shaded section
represents the phase-space region of coherent emission.
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�Cq�L;!� � �Cq�0; !� � �
1

4P q

X
j

�� �W
e
qj �� �W

m
qj�;

(23)

� �W
e
qj � �e

Z 1
�1

vj�t� 
 ~E�q�rj�t��dt; (24)

� �W
m
qj �

Z 1
�1

_�0j�t� 
 ~H�q�rj�t��dt: (25)

Setting �Cq�0; !� � 0 (presently excluding analysis of
stimulated emission), we can obtain the expression for
the total spectral radiative energy emission per mode:

dWq

d!
�

1

8�P q

��������X
n

j�1

�� �W
e
qj � � �W

m
qj�

��������2

�
1

8�P q

���������X
j

� �W
e
qj

��������2
�2Re

�X
j

� �W
e
qj

X
j

� �W
m
qj

�

�

��������X
j

� �W
m
qj

��������2
�
: (26)

Concentrating now on the pure magnetic FESFER term
[third in (26)], using (11) and (15) in (25) while setting
zj�t� � v�t� t0j� for electron j, one obtains an explicit
expression for the average FESFER radiation spectral en-
ergy per mode q:

dWm
q

d!
�

1

8�P q
j� �W

m
qej

2

���������X
N

j�1

ei!s0t0j�i’s0j sin�j

��������2
�
?s
;

(27)

where !s0t0j is the entrance phase of electron j, arriving to
the interaction region z � 0 at time t0j, ’s0j is the initial
magnetic-moment precession phase at z � 0, and �j is the
inclination angle of the magnetic-moment �0j relative to
the z axis ( cos�j � �0z=�s). This naive classical picture
of the individual electron spins, which represents them
essentially by the classical expectation value of their mag-
netic moment (3) is not the rigorous way for calculating
spontaneous emission (which requires a quantum analysis
[4,5]). Also the presentation of the magnetic current in (22)
in terms of the electron rest frame parameters, requires a
more accurate consideration of the relativistic transforma-
tions and Thomas precession effect, which will be reported
elsewhere [22]. Nevertheless, this simplistic classical
analysis is a useful step in the calculation of the classical
superradiant emission, and should result in for this case
quantitative estimates which would not deviate signifi-
cantly from correct values.

The factor h
 
 
i?sdepends on the resultant transverse
magnetic moment of all the particles in a bunch. It would
seem that this factor is larger, the bigger the transverse
components of the individual magnetic moments, and is
maximal when they are all polarized transversely
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( sin�j � 1). This is a wrong conclusion when the spin
gyration phases ’s0j or the injection phases !s0t0j are
uncorrelated. In these cases the ‘‘classical’’ spontaneous
emission (spin shot-noise) expression (27) should be re-
placed by a quantum expression which has different scal-
ing with � [22] (see Appendix B). However, when the
beam is polarized (the gyration phases ’0j are correlated
and so are the �j), the large net dipole moment can be
treated classically and one can proceed with Eq. (27) (see
discussion in Appendix A). In this case a significant en-
hancement will be obtained if also the entrance times t0j
are correlated. If in addition to being polarized the beam
will be also axially (temporally) bunched at the radiative
emission frequency fr � !m=2�, or if its pulse duration tp
is short relative to the optical period: frtp 	 1, it will
radiate as a giant magnetic dipole. In this case the entire
bunch would emit coherently an intense superradiant ra-
diation pulse [9,10], similar also to atomic superradiant
pulse emission [8,24].

Assuming all particles have the same trajectories (stay-
ing on the z axis 0< z < L), their common magnetic work
function (25) squared is

j� �W
m
q j

2 �
1

2

�
!0s0L
�v

�0�sj
~H q��xe; ye�j

�
2

sinc2��sL=2�;

(28)

�sL 
�
!�!0s0=�

v
� kz�!�

�
L � 2�

!�!r���

�!���
; (29)

where ~H q� is the transverse right-hand circular polariza-
tion component of mode ~Hq, and !r��� is given by (7).
The finite interaction length homogeneous broadening
linewidth of (28) at a fixed direction is

�!���
!r���

�
��c
f0s0L

: (30)

The radiation pattern of (28) as function of � is shown
in Fig. 2. It is valid for emission in free space or in a
3-5



A. GOVER Phys. Rev. ST Accel. Beams 9, 060703 (2006)
waveguide. In a waveguide the ‘‘zigzag’’ angles of the
radiation modes are discretized: cos�q � kzq�!�=k �

�k2 � k2
c0q�

1=2=k where kc0q is the cutoff wave number of
mode q. The linewidth expression (30) is valid only when
waveguide dispersion is negligible (away from zero slip-
page), otherwise the linewidth is wider [11]. In free space
one can either use a set of discrete modes like the Hermit-
Gauss set [20] or extend the modal expansion (21) to
integration over continuous radiation modes (plane waves)
[25]: f~Eq�r?�;

~H q�r?�g / exp�ik? 
 r?�. This would lead
to an expression for the optical radiant intensity
dW=d!d� [instead of (27)], which is also proportional
to the same radiation pattern (28) displayed in Fig. 2.

The polar coordinates radiation pattern of Fig. 2 indi-
cates that most of the radiation is emitted in the forward
direction. For a relativistic beam most of the total emission
in a wide frequency bandwidth is into a cone of �� � 2=�
opening angle. The monochromatic spatially coherent
radiation is emitted into a smaller cone of ��coh �

2
���������������
c=fr0L

p
� 2

�������������
�r0=L

p
opening angle (see shaded section

in Fig. 2). The number of coherent photons emission in the
forward direction (emission at frequency j!�!r0j<
�!=2) can be calculated then by multiplying the radiant
intensity dW=d!d� by �! 
 ����coh�

2=4@, or since the
radiative emission per mode is already spatially coherent, it
can be simply calculated by multiplying (27) by �!=@!r0.
Setting �s � 0 for the fundamental (free space or guided)
mode q � 0, one obtains from (27), (28), and (30):

�Nph�coh �
1

@!r0

dW0

d!
�! �

�
2@

������
�0

"0

s
�2
sf0s0L

Aemc
3�
h
 
 
i?s

�
2�
@

������
�0

"0

s
�2
sf
03
s0

c5

L
�
h
 
 
i?s: (31)

Here we used the definition Aem  P q=
1
2 ���������������

�0="0

p
j ~H q��xe; ye�j2, and for emission in free space

substituted the diffraction limited area of the fundamental
Gaussian mode [10] Aem � �r0L=4. We also substituted
� � 1 (ultrarelativistic limit).

To calculate the total photon emission in the forward
direction it is necessary to integrate dWm

q =d!=@! over all
frequencies and sum up over all modes q, which in free
space turns into integration over emission angles d2q �
2��!=c�2 sin�d�. In the ultrarelativistic limit most of the
forward emission is into a cone of opening angle �� �
2=� [with wide bandwidth emission, Eq. (7), in the range
between !r0=2 to !r0]. Therefore an alternative way to
obtain a crude estimate of the total forward emission is to
multiply the expression for the number of coherent photons
(31) by a factor 1

4 ����2=���2
coh� � Lf0s0=4�:

�Nph�for �
2�
@

������
�0

"0

s
�2
sf
03
s0L

c5�
h
 
 
i?s: (32)
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This expression matches well the expression for forward
photon emission, derived in Eq. (B5) as half the total
number of photons emitted by a magnetic dipole in its
rest frame during a finite emission time equal to the transit
time L0=v � L0=c, when traversing through a Lorenz-
Fitzgerald contracted magnet of length L0 � L=�.
Evidently the simpler calculation of the total number of
emitted photons in the electrons rest frame is valid for the
moving dipole case, because this parameter is a Lorenz
invariant.

If the particles enter the magnet at random initial times
t0j or random precession phases ’s0j, the mixed terms in
h
 
 
i?s cancel out and consequently, within a classical
model, the statistical form factor to be substituted in (32)
is h
 
 
i?s �

2
3N (B7). However, as indicated earlier, a

classical analysis is not valid for the calculation of sponta-
neous emission. Taking the spontaneous emission limit in
the quantum calculation of superradiance following Dicke
[8] (see Appendix A), provides the enhanced value of the
quantum spontaneous emission photon number. Further
consideration of the different dependence on the initial
spin polarization angle �i, namely h1� cos�ii instead
of hsin2�ii, produces a modified expression (B6) to be
used for the statistical form factor in (31) and (32) for a
random electron beam:

h
 
 
i
quant
s � 2N: (33)

We now consider the case of superradiance [10]. In this
case the electron beam is tightly bunched: !h�t0j �
t0�2i1=2 	 2�, and all particles have the same initial pre-
cession phase h�’0j � ’0�

2i1=2 	 2�. Therefore their
FESFER emissions add up in phase (superradiant emission
[10]), and consequently h
 
 
i?s � N2. In practice the elec-
tron beam is partially polarized: N" electrons are emitted
from the photocathode at ‘‘spin up’’ pure quantum state, N#
at ‘‘spin down,’’ andNr—at random spin orientation. After
the �=2 magnet section, the corresponding first two groups
of pure state electrons wind up as two transverse-spin giant
magnetic dipoles j�"j � N"�s, j�#j � N#�s of opposite
orientation: ’s0" � ’s0# � �, and then

h
 
 
i?s � N2�P" � P#�2; (34)

where P" � N"=N, P# � N#=N, and Pr � Nr=N.
Equations (31) and (32) are, respectively, the expres-

sions for coherent and total superradiant FESFER. The
classical superradiant expressions are legitimate: as dis-
cussed in the appendices, whenN�P" � P#� � 1, the emis-
sion of a photon hardly changes the orientation of the giant
magnetic dipole [8] that continues to precess as a classical
top. It is therefore correct to state, up to a small numerical
factor, that when conditions for superradiant emission are
satisfied, the FESFER emission will be enhanced by a
factor � N�P" � P#�2.
3-6
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V. OBSERVATION OF SUPERRADIANT FESFER
AND CRE

Magnetic dipole emission is much weaker than electric
emission. For this reason the spontaneous FESFER power
is miniscule. Taking an example of B0 � 10 T, L � 1 m,
� � 10 (�r0 � 8:6 �m), high electron bunch charge of
q � 1 nC (N � 6:25� 109) and bunch repetition rate of
1 GHz we obtain for the coherent and total spontaneous
photon emissions respectively (31)–(33): �Nph�

sp
coh � 3:6�

10�8 ph=bunch, d=dt�Nph�
sp
coh � 36 ph=s, �Nph�

sp
for �

2:2� 10�5 ph=bunch, d=dt�Nph�
sp
for � 2:2� 104 ph=s.

The FESFER emission will be enhanced by a big factor
X 3N=2, if the electrons would emit superradiantly.
However, this requires that the electron bunch duration
will be short relative to the radiation period fr0tb < 1.
With the present technological state of the art, the available
bunch duration is tb � 0:1–1 pS, depending on the
acceleration energy; therefore we consider a low
FESFER frequency example of fr0 � 1 THz (�r0 �
300 �m), which can be attained with B0 � 0:5 T, � � 6.
Setting now in (31) and (32) h
 
 
i?s � N2, one obtains
for the same beam parameters as in the previous
example: �Nph�

SR
coh � 0:19 ph=bunch, d=dt�Nph�

SR
coh �

1:9� 107 ph=s, �Nph�
SR
for � 0:56 ph=bunch, d=dt�Nph�

SR
for �

5:6� 108 ph=s.
Some enhancement of the coherent spontaneous and

superradiant emission can be obtained if the emission takes
place in a waveguide of minimal cross-section area Aem
and not in free space. This reduces the diffraction effect
at long wavelengths and also enables wide coherent-
emission linewidth ��!�coh near ‘‘zero-slippage’’ condi-
tions [11]. Further substantial enhancement of FESFER
emission will be expected if techniques for periodic THz
frequency bunching of the electron beam will be further
developed [26].

The calculated flux of FESFER photons emission may
be detectable, especially with SR enhancement. However
the real obstacle for direct observation of FESFER is the
concurrent occurrence, at higher emission rate of
cyclotron-resonance-emission (CRE) [27] by electrons
that enter the axial magnetic field section with any trans-

verse velocity �?j. Direct calculation of � �W
e
qj [Eq. (24)]

for an electron entering the uniform axial magnetic field
section at time t0j, with initial gyration phase ’c0j is
� �W
e
qj � j�

�W
e
qjei�!c0t0j�’c0j�; (35)
where !co � !0c0=�
!0c0 �
e
m
B0; (36)
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j� �W
e
qj

2 �
1

2

�
eL
�
jEq�xe; ye�j

�
2

sinc2��cL=2�; q (37)

�c �
!�!0c0=�

vz
� kz: (38)

The magnetic and electric work functions (28) and (37)
are related by simple proportion. For � � 0, �s � 0, �c �
0:

� �
j� �W

m
q j

j� �W
e
qj
�

@!0c0

2�mc2 	 1: (39)

Including both terms in the first Eq. (26) one can write

dWq

d!
�

1

8�P q
j� �W

e
qj

2
max

���������X
j

ei!t0j��?jei’c0j�i�cL=2

� sinc��cL=2� � � sin�jei’s0j�i�sL=2

� sinc��sL=2��

��������2
�
; (40)

where j� �W
e
qjmax � �eL=

���
2
p
��j~E�q? 
 ê�j.

The CRE frequency [corresponding to �c�!r� � 0] is
given by (7) with !0c0 substituting !0s0. Unfortunately the
difference between the FESFER and CRE frequencies

�!
!r
�
!0s0 �!

0
c0

!0c0

�

�
g
2
� 1

�
� 1:16� 10�3 (41)

is very small, and for practical magnet lengths L, is smaller
than the emission frequency linewidth (30). Consequently
it is hard to separate the emission lines (28) and (37) by
frequency filtering.

If the CRE and FESFER wave phases are uncorrelated,
the mixed CRE/FESFER term resulting from squaring the
brackets in (40) vanishes, and it produces in addition to
(27) an expression for the CRE spectral power:

dWe
q

d!
�

1

8�P q
j� �W

e
qj

2

���������X
N

j�1

ei!c0t0j�i’c0j�?j

��������2
�
?c
:

(42)

The ratio of FESFER (27) to CRE (42) emissions can be
found using (39):

dWm
q =d!

dWe
q=d!

� �2 h
 
 
i?s
h
 
 
i?c

	 1: (43)

The first factor �2��  @!0c0=2�mc2� in (43) is very
small, but the ratio can be substantially enhanced if the
FESFER is superradiant (h�’s0j � ’s0�2i1=2, !rtb 	 2�)
and the CRE is spontaneous (namely, the entrance gyration
phases ’c0j are random). In this case h
 
 
i?s=h
 
 
i?c �
N=h�2

?i. Even with this large factor, the ratio (43) is quite
3-7
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small. For the parameters of the last example and an
optimistic assumption h�2

?i
1=2 � 10�4, this ratio is equal

to 2:2� 10�3. These conditions would be hard to achieve,
because they require accurate alignment of the e-beam
center with the magnetic axis or careful scanning of the
beam to minimize steering angle error. Otherwise ’c0j

cannot be considered random, and consequently also the
CRE will be superradiant and proportional to N2. If good
alignment of the beam can be attained, then increasing the
factor (43) beyond 1 is still difficult, but not fundamentally
impossible. It requires predominantly an advance in the
e-beam technology (higher charge per bunch, shorter
bunches and smaller emittance) which would permit higher
N and !0rc0 and smaller h�2

?i values in (43).
One can consider an alternative way for measuring

FESFER that circumvents the difficulty of the CRE back-
ground, and turns it into a helpful means. The mixed term
(magnetic-electric emission) which results from squaring
(40) [second term in the second equality of Eq. (26)], being
proportional to �, is much larger than the FESFER term,
which is proportional to �2 (43). If one operates in con-
ditions where both the FESFER and CRE emissions are
superradiant, namely, !rtb; h�’s0j � ’s0�

2i1=2; h�’c0j �

’c0�
2i1=2 	 2�, then from (40):

dWq

d!
�

1

8�P q
j� �W

e
qj

2
maxN

2f�2
?0 sinc2��cL=2�

� 2��?0�P" � P#� sinc��cL=2� sinc��sL=2�

� cos��g=2� 1�!0coL=�v� ’co � ’s0�

� �2sinc2��sL=2�g: (44)

The superradiant FESFER (third term) is now negligible
relative to the superradiant CRE (first term), but one may
be able to observe the combined FESFER/CRE (second
term) on top of the CRE background by reversing its sign
from pulse to pulse (e.g., by linear transverse scanning of
the beam which changes ’c0 by �) and averaging over
many bunches. The maximum relative change in power is
then 4�=�?0. For the parameters of the previous example
f0c0 � 88 GHz, � � 6, and �?0 � 1 mrad, this corre-
sponds to a relative change of 2:5� 10�7. The quantum
mechanical picture given in Appendix A portrays the effect
of correlation between the polarized spins and the phase
correlated cyclotron orbitals as analogous to a big atom
with controllable L-S coupling.

Probably a better way of taking advantage of the super-
radiant CRE emission is to coherently detect the beat wave
between its coherent intense field and the coherent
FESFER emission. Since the CRE is by nature synchro-
nous with the FESFER and coherently related to it (as long
as !tb < 2�), it can serve as a local oscillator in an
heterodyne detection scheme of the FESFER radiation
(in this case one may even desire to enhance the CRE
emission by slight beam angular deflection so that
06070
h
 
 
i?c � �2
?0N

2). To explore this possibility it is neces-
sary to transform (23) to the time domain. Following [28]
we obtain

E�r?; L; t� / Nj~Eq��r?�jRef��?0ei!rc0�t�t0�L=v��i’c0

� i��P" � P#�e
i!rs0�t�t0�L=v��i’s0�ê�g


 f�t� t0 � L=v�; (45)

where f�t� � rect�t=tsl� is the wave packet envelop func-
tion and tsl � 2�=��!� is the radiation slippage time,
which for a short bunch is equal to the radiation pulse
duration. When this field is detected by a square-law
detector, the measured signal will be proportional to

jE�r?; L; t�j2 / N2j~Eq��r?�j
2f�2

?0 � ��?0�P" � P#�

� sin��!�t� t0 � L=v� � ’c0 � ’s0�g

� f2�t� t0 � L=v�: (46)

Since for practical parameters, �!tsl � 2��!=�! is
smaller than 2� [see (30) and (41)] it may be hard to have
CRE-FESFER beat oscillation over a number of periods in
a single pulse. Yet, similar waveforms are expected in each
pulse, if good beam stability can be maintained, and there-
fore the beat signal [second term in (46)] can be distin-
guished from the first term after processing and averaging
over many pulses. For example, consider adjusting the
initial cyclotron gyration and spin resonance precession
phases to be in phase: ’c0 � ’s0 or out of phase: ’c0 �
’s0-�. If �!tsl 	 2�, the first order Taylor expansion of
the second term in (42) is ���?0�P" � P#��!�t� t0 �
L=v�. Differentiation of the signal will null the contribu-
tion of the first term and leave the second term. Signal
averaging over many pulses, along with modulation of the
Cyclotron or Spin phase or amplitude, and corresponding
correlated processing, can reveal the FESFER/ CRE beat
signal out of random noise.
VI. CONCLUSION

A complete formulation, in the framework of a classical
model, was presented for evaluating the characteristics of
electron spin resonant radiative emission from a polarized
free electrons beam (FESFER) and for changing (modulat-
ing) its spin state (FESMER).

FESFER emission is weak, but its observation is not
fundamentally prohibited. It can be substantially enhanced
at superradiance emission conditions. Achievement of in-
creased charge per bunch of polarized particles will en-
hance the superradiant emission quadratically. Emerging
techniques for periodic e-beam bunching at THz frequen-
cies [29] may provide enhancement of the FESFER photon
emission rate. A promising method for detecting and mea-
suring FESFER is by heterodyne detection of its beat with
the concurrent CRE radiation, which slightly deviates in
frequency because of the gyromagnetic factor g. The
3-8
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FESFER measurement can be used for noninvasive diag-
nosis of the spin polarization state of polarized electron
beams.

The FESMER process makes it possible to change the
polarization state of a polarized e-beam by applying on it
an intense EM radiation wave at ESR conditions. This can
be used to change the axial spin polarization of electron
beam bunches emitted from the e-gun and turn it to
transverse-spin state, which is optimal for FESFER emis-
sion. It can also be useful for fast electronic modulation or
switching of the electron spin-state of a polarized e-beam
in order to attain sensitive control of spin-dependent elec-
tron scattering experiments. These are used at high beam
energies for fundamental nuclear structure studies (like
parity violation experiments, charge and magnetic polar-
ization distribution within the proton and the dynamics
governing its quark wave function distribution), and also
at low energy experiments, where polarized e-beam micro-
scopes (e.g. SPLEEM [18]) are used for solid state mag-
netic material studies. We also suggest that the new
formulation can be relevant in connection to the design
of the International Linear Collider [21], which requires
schemes for spin-polarizing electron/positron beams and
controlling and evaluating their spin state.

Finally, it is pointed out that the presented classical
analysis has definite limitations when considering incoher-
ent spontaneous emission from a single electron. A quan-
tum mechanical analysis of this problem, with more
accurate account of the spontaneous emission limit and
the relativistic Thomas precession effect, is called for [22].
This, however, is not expected to change dramatically the
main conclusions of this paper: the possibility to modulate
a polarized free electron beam with a radiation wave at
ESR conditions (FESMER); the significant enhancement
of the FESFER emission by a polarized beam at super-
radiant ESR conditions; the feasibility of a coherent detec-
tion scheme for observing the superradiant ESR FESFER
radiation in the background of the concurrent cyclotron
resonance emission from the beam.
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APPENDIX A: TRANSITION FROM QUANTUM TO
CLASSICAL LIMIT IN THE SUPERRADIANT

EMISSION REGIME

Transition from quantum description to the classical
limit is always expected when large quantum numbers
06070
are involved. The validity of the classical expression for
the superradiance case can be explained by the fact that the
orientation of the ‘‘giant dipole’’ hardly changes with the
emission of a photon, and thus it precesses as a classical
top. I will elaborate this argument using Dicke’s formula-
tion [8]. Even though he applied his quantum mechanical
analysis to an assembly of two-quantum-levels molecular
electric dipoles, it applies as well (as he points out) to
spins.

Following Dicke’s formulation, the eigenstates and
quantum numbers of an assembly of dipoles in a spatial
region smaller than a radiation wavelength (in which the
dipole approximation applies for the assembly), are de-
fined by

H �gmr � �H 0 � Rz�E��gmr � �Eg �m�E��gmr

(A1)

R2�gmr � r�r� 1��gmr; (A2)

where �E � @! is the two levels energy spacing and Eg is
the energy associated with the other degrees of freedom. In
our case (say we are in the electron rest frame) �E � @!0s0

Rk �
XN
j�1

Rjk �k � x; y; z� (A3)

(Rjk are the Pauli matrices)

R2 � R2
x � R2

y � R2
z : (A4)

The maximal value of m and r is

r � m � 1
2N: (A5)

Calculating the matrix element of the radiative interac-
tion Hamiltonian

hg; r;mjêxRx � êyRyjg; r;m� 1i

� 1
2�êx � iêy���r�m��r�m� 1��1=2; (A6)

Dicke arrives to the following expression for spontaneous/
superradiant emission:

I � I0�r�m��r�m� 1�; (A7)

where I0 is the spontaneous emission from a single dipole
(r � m � 1

2). When r � m � 1
2N [Eq. (A5)—all spins are

aligned, all in the axial direction], one gets I � NI0, the
same as would be limited byN independent spins (contrary
to the classical model results that predict zero emission in
this case).

If r � n � N=2 (all dipoles are aligned) but m is arbi-
trary, then

I � I0
1

4
N2

�
1�

m
n

��
1�

m� 1

n

�
: (A8)

Unless n�m	 1 (which for n � N=2� 1 happens only
for nearly pure axial polarization), then
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I � I0
1

4
N2

�
1�

�
m
n

�
2
�
: (A9)

Define cos� � m=n, then

I � 1
4I0N2sin2�; (A10)

and the scaling with � is expected in a classical model
(27).

It is interesting to extend the quantum point of view also
for better understanding of the CRM/FESFER radiation
interference effect discussed in Sec. V [Eq. (40)].

The analysis above tempts to regard the electron bunch
like an atom with many electrons where the resultant spin
operator is

S �
X

Sj: (A11)

Contrary to an atom there is no central confining force of
the nucleus, and therefore no L-S coupling. We only have
Landau levels for each electron, nearly degenerate with
their spin levels. If the dimensions of the bunch and the
cyclotron radius are smaller than a wavelength (in its rest
frame) then the entire bunch can radiate as a single dipole
similarly to the shell electrons in an atom in the dipole
approximation. Contrary to the atom, the bunch from a
photocathode e-gun is not a steady state solution of a
problem, and there are no central force and significant
electron mutual interaction forces to arrange the electrons’
spins and orbitals configuration in particular patterns dur-
ing the bunch flight through the magnetic field section.
Furthermore, because of the low density of the electrons
we are not limited by the Fermi exclusion principle. The
configuration depends here only on the initial conditions,
namely the cathode material and the electron optics. Thus,
we have the freedom to create correlated spin and orbital
configurations at will (namely polarized electrons with
desirable spins orientation and a correlated configuration
of cyclotron orbitals in the axial magnetic section).
Stretching the analogy to an atom further, we can view
the combined superradiant CRM/FESFER emission, which
is discussed in Sec. V classically, as a version of Zeeman
effect transitions. Define the total angular momentum of
the bunch:

J � L� S (A12)

where

L �
XN
i�1

Li; S �
XN
i�1

Si: (A13)

Not only the spin states, but also the orbital states, are
quantized, and the unperturbed Hamiltonian should be

H � @!cLz � 2@!sSz: (A14)

The total angular momentum J (A12) should replace S
060703
(A12), and instead of r there will be in (A7) the total
angular quantum number j, where j�j� 1� is the eigen-
value of J2. When the matrix element of the radiative
interaction perturbation Hamiltonian is calculated, there
will be correspondence between the terms originating from
L and S in (A12) and the terms of Eq. (44) (�c � �s).
Scanning the electron beam angle across the magnetic axis
(reversing the phase: ’c0 ! ’c0 � �), as suggested sub-
sequent to Eq. (44), would be equivalent to preparing an
‘‘atom’’ with L and S at an enhanced or reduced total
momentum (J � L� S).

APPENDIX B: PHOTON EMISSION FROM AN
OSCILLATING MAGNETIC DIPOLE ANTENNA

It is instructive to compare the expression calculated for
the total number of photon emissions from a classical
magnetic dipole antenna to the expressions for the total
forward FESFER photon emission, calculated in this paper
for the superradiant and spontaneous emission cases.

The standard expression for the total power emission by
a dipole antenna,

m � m0bêx cos�!t� ’0� � êy sin�!t� ’0�c (B1)

is

P �
1

6�"0

m2
0!

4

c5
: (B2)

The number of photons emission in a finite radiation time T
can be then calculated straightforwardly as

�Nph�tot �
PT
@!
�

4�2

3

������
�0

"0

s
m2

0f
3

@c4 T: (B3)

Since the number of photons is a Lorenz invariant, we can
use this expression in the rest frame of the electron beam in
order to compare to the expressions calculated before for
the FESFER photons number. It is possible then to set! �
2�f0s0, m0 � N�0s, and T � L=�c, where T is the inter-
action time in the electron rest frame during the traversal
through a Lorenz contracted magnet of length L=�:

�Nph�tot �
4�2

3

������
�0

"0

s
�2
sf
03
s

@c5

L
�
N2: (B4)

Note, however, that this is the number of electrons emitted
in all directions. The Doppler upshifted photons emitted in
the forward direction within a cone of opening angle 2=�
(in the lab frame) are only half the total number (B4).

Equation (B4) can be employed directly for the case of
superradiant emission (N � 1), where the classical ex-
pressions are valid:

�Nph�for �
2�2

3

������
�0

"0

s
�2
sf
03
s

@c5

L
�
h
 
 
i?s: (B5)

Here jh
 
 
ij?s � N2, which is the case of maximum emis-
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sion (� � �=2, P" � P# � 1) of the general superradiance
form factor

h
 
 
i?s � N2�P" � P#�
2sin2�: (B6)

In a simplistic employment of (B4) to calculation of
spontaneous emission, one would set N � 1 and sum up
the contribution from different randomly polarized elec-
trons. Equation (B5) would then be used with a factor

h
 
 
i?s �

�XN
j�1

sin2�j

�
�

2

3
N: (B7)

This expression is not really valid, since in the sponta-
neous emission limit a quantum analysis results in some-
what different expressions and magnitude of the emission
rate. According to (A11), the quantum mechanical total
photon emission number per electron is four times the
number predicted by the classical expression (B4) (N �
1). Furthermore, this factor is calculated specifically for the
case that the spin is initially at the upper quantum state
(m � 1=2). The dependence of the spontaneous emission
rate on the initial inclination angle of the spin �, relative to
the magnetic axis, is not as in the classical expression (B7)
but scales like �1� cos�j� [22]. Consequently, for ran-
domly oriented spins or for a transversely polarized beam,
not satisfying the superradiance condition, the four factor
is reduced by half, and finally the quantum-mechanical
expression for forward FESFER photon emission by a
random electron beam is given by (B5) with

h
 
 
i?s � 2N (B8)

(an alternative explanation for the factor 1=2 is that random
or transversely polarized single electrons excite states m�
1=2 with equal probability half, and only the m � 1=2
states contribute to photon emission).
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