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Analytic model of bunched beams for harmonic generation
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One scheme for harmonic generation employs free electron lasers (FELs) with two undulators: the first
uses a seed laser to modulate the energy of the electron beam; following a dispersive element which acts to
bunch the beam, the second undulator radiates at a higher harmonic. These processes are currently
evaluated using extensive calculations or simulation codes which can be slow to evaluate and difficult to
set up. We describe a simple algorithm to predict the output of a harmonic generation beam line in the
low-gain FEL regime, based on trial functions for the output radiation. Full three-dimensional effects are
included. This method has been implemented as a Mathematica® package, named CAMPANILE, which
runs rapidly and can be generalized to include effects such as asymmetric beams and misalignments. This
method is compared with simulation results using the FEL code GENESIS, both for single stages of
harmonic generation and for the LUX project, a design concept for an ultrafast x-ray facility, where
multiple stages upshift the input laser frequency by factors of up to 200.
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I. INTRODUCTION

Many proposed x-ray free electron lasers (FELs) are
designed to produce radiation starting from the shot noise
of an electron beam. This is the self-amplified spontaneous
emission (SASE) mechanism. There is much interest in
developing a practical method for using seeded electron
beams to produce x-ray radiation, rather than relying on
SASE, because seeded FELs offer more control over the
timing and pulse structure. The seed can be a laser field
which is then amplified by the FEL instability, or it can be
an initial current variation (bunching) of the electron beam.
The second method has the advantages that high output
power can be produced in the low-gain regime, and that the
output wavelength can be at a harmonic of the initial
perturbation [1,2]. Through this harmonic generation tech-
nique, interactions of an electron beam with a visible or
UV laser can be used to generate photons at much higher
energies. The possible use of multiple stages of such
harmonic generation is an area of active study, for ex-
ample, in the LUX [3] conceptual design for ultrafast
x-ray production.

Here, we present an analytic method for predicting and
optimizing the FEL output from an idealized, prebunched
electron beam in the low-gain regime, with emphasis on
applications towards harmonic generation. The formalism
presented in this paper uses a trial-function approach to
yield simple analytic prescriptions for determining ap-
proximate solutions to the output laser field. The resulting
expressions only apply to FELs in the low-gain regime, but
include three-dimensional dynamics. The low-gain regime
is especially appropriate when the initial bunching is
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strong, so high output power can be achieved without
relying on nonlinear gain in the FEL. These calculations
have been implemented using scripts in Mathematica® [4],
as a package named CAMPANILE. The methodology intro-
duced in this paper, which is detailed below under several
simplifying assumptions, can be extended to more general
beam geometries and mechanisms for seeding.

Previous analytic examinations of seeded electron
beams in an FEL which are not restricted to the low-gain
regime typically assume the laser field structure to be the
high-gain ‘‘guided mode’’ or otherwise known in advance
[5,6]. By neglecting nonlinear gain in the FEL, the calcu-
lation for seeded FELs becomes very similar to that of
incoherent spontaneous emission from undulators, as the
coherence of the output radiation is inherited solely from
the coherence of the initial seed. This problem is more
straightforward than high-gain FEL calculations and has
been thoroughly examined [7–9], including investigations
of prebunched electron beams [10]. However, these studies
are not tailored to the investigation of harmonic generation,
and typically rely on simplified particle dynamics or as-
sume that the output mode is known in advance. While the
trial-function method does not yield the exact solution,
even in the low-gain limit, it has several advantages. It is
a robust and rapid method; by restricting focus to the trial
function for the output mode throughout the FEL process,
the calculations are easier and there are no delicate can-
cellations as in solutions which sum up the radiation fields
from individual particles. It yields direct predictions of the
dominant mode properties in terms which can be chosen
freely; the calculations presented here yield the total
power, phase, Rayleigh length, and waist location as output
parameters. Finally, it is particularly useful for optimizing
the FEL and beam parameters for entire beam lines, pos-
sibly including many undulator stages, as the nature of the
2-1 © 2006 The American Physical Society
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microbunching is an intrinsic part of the calculation. The
computation time for this method of analysis is kept low by
iterating over calculations where, for each iteration, only a
single laser mode is considered; this is in contrast with
many numerical computations where three-dimensional
effects are modeled by calculating the laser field on a
grid [11].

Under certain circumstances, the analytic method de-
scribed in this paper reduces to fairly simple algebraic
expressions for the power produced by a single stage of
harmonic generation, with a straightforward physical in-
terpretation. Several such expressions for different limits
are given in Sec. IV. Calculations of specific FEL designs
are compared to results using the GENESIS [12] simulation
code in Sec. V.

II. ANALYTIC MODEL

We consider an electron beam that already has a seeded
perturbation in the beam current and thus generates a
radiation field as it passes through an undulator. A sche-
matic is shown in Fig. 1. The electric field which exits from
the undulator is taken to be a simple Gaussian mode, but is
otherwise kept arbitrary:

Ex � ReE0ei�0G�x; y; s� exp�iks� i!t�; (1)

where

G�x; y; s� �
ZR

ZR � i�s� s0�
exp

�
�

1

2

k�x2 � y2�

ZR � i�s� s0�

�

(2)

characterizes the structure of the mode. The laser wave-
length is � � 2�=k, the frequency ! � ck, and ZR is the
Rayleigh length. The longitudinal coordinate s represents
the position along the undulator, and at s � s0 the laser is
at its waist with spot size �ZR=2k�1=2 (in terms of laser
power). It is possible to generalize Eq. (2) to include
elliptical geometry or higher-order transverse modes. The
quantities ZR and s0 are set by the parameters of the FEL
and do not vary with s. This field is intended to characterize
only the output from the undulator, and so, in general, the
mode structure must be chosen to correspond to a vacuum
field solution. The temporal variation of the radiation
FIG. 1. (Color) A schematic of the FEL configuration chosen
here, where a beam, which has a longitudinal distribution that is
modulated at one wavelength, then passes through an undulator
where it radiates into a harmonic wavelength.
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envelope is assumed to be slow compared to other time
scales, such as the total time shift between the laser and the
electron beam through the undulator. Thus, neither phase
noise nor the longitudinal shape of the envelope of the laser
field are considered, and the radiation properties are taken
to depend only on the local electron beam properties.

Within a planar undulator, the change in energy of a
particle is given by

d�
ds
� �

e

mc2

Exvux
�vz

; (3)

where the transverse velocity of electrons due to the un-
dulator field is

vux ’

���
2
p
c

�
au sin�kus�: (4)

Here, the undulator period is �u � 2�=ku, the normalized
field strength is au � eB0=mcku, and B0 is the rms value of
the on-axis undulator field. The field on axis is taken to be
By �

���
2
p
B0 cos�kus�. The forward motion of a single elec-

tron can be described as

t � t�s � 0� �
s
�vz
�

a2
u

4cku�
2 sin�2kus�; (5)

where �vz is the forward velocity averaged over an undu-
lator period, and the last term arises from particle motion in
the planar undulator.

The simplification made here for the linear regime is that
the total energy lost by the electron beam at the end of the
undulator can be calculated properly even if only the
radiation mode of Eq. (2), corresponding to the actual
output radiation, is considered. Interactions with all or-
thogonal modes will result in a net cancellation by the
end of the undulator. It still remains to determine the
proper coefficients to fully characterize the output mode;
the method for accomplishing this will be shown in
Sec. III. The corresponding equation for the evolution of
energy is then

d�
ds
’ �RekaLG�x; y; s�ei�ks�!t�

���
2
p
au
�

sin�kus�; (6)

where the normalized (complex-valued) laser field ampli-
tude is

aL �
eE0

mc2k
ei�0 : (7)

Averaging over an undulator period yields [13]

d�
ds
� �Im

���
2
p
k

2�
auaLG�x; y; s�JJ���ei�; (8)

where JJ��� � J0��� � J1���, � � ka2
u=4ku�

2, and � �
ks�!t� kus is the phase of the electron relative to a
plane wave at the beat wavelength. The ponderomotive
phase is usually defined as the sum of � and the phase of
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the electric field, but in this paper we find it convenient to
keep the components separate, because we are neglecting
trapping due to self-fields. To leading order in 1=�2, �
evolves according to

d�
ds
� ku � k�1� c= �vz� ’ ku �

k
2
�1=�2 � �v2

?=c
2�; (9)

where �v2
? is the square of the transverse velocity averaged

over an undulator period. Assuming the betatron period is
much longer than the undulator period, the contributions to
�v2
? from these two types of motion add in quadrature.

While the displacements caused by the undulator field, of
order au=�ku, are negligible, the angles can be important
for modifying the phase slippage, since they will be com-
pared to 1=�2. The betatron motion has several effects,
because both the laser fields and the undulator fields vary
with transverse position, and because of the change in path
length. The angles due to betatron motion are typically
smaller than those due to the undulator, because the beta-
tron wavelength is much longer than the undulator period,
but can also affect phase slippage. Thus, the electron beam
emittance induces a spread in d�=ds which can adversely
affect the performance of the FEL.

The undulator field increases with strength off axis,
which generates focusing of the electron beam. Here, we
consider a planar wiggler with curved pole faces, so as to
generate equal focusing in both planes, as described by
Scharlemann [14]. The matched beta function for the un-
dulator is then given by �u �

���
2
p
�=auku. The correspond-

ing transverse actions for particle motion in the undulator,
Jx and Jy, are given by

Jx �
�
2

�
x2

�u
� �u

�
dx
ds

�
2
�
; Jy �

�
2

�
y2

�u
� �u

�
dy
ds

�
2
�
:

(10)

In the presence of external focusing, Jx and Jy will have a
different functional form. In Ref. [14], � is shown to evolve
according to

d�
ds
’ ku

�
�
�k
kr
� 2

�� �r
�r

�
2au�au
1� a2

u

�
���
2
p au

1� a2
u
ku�Jx � Jy�

�
; (11)

where we define k � kr � �k, kr is the resonant wave
vector, and �r is the resonant energy. The resonant wave
vector and energy are related by

kr �
2�2

r

1� a2
u
ku: (12)

The detuning can be expressed, equivalently, in terms of �k
or as a shift, �au, in undulator strength. Using the reso-
nance condition, the argument of the Bessel functions in
Eq. (8) is � � �1=2�a2

u=�1� a2
u�. More general undulators

and focusing, or a mismatched beam, can also be consid-
06070
ered but are excluded in this paper in order to simplify the
presentation.

Finally, there is the expression for the intensity of the
laser field, assuming the power given up by the electron
beam goes into a single mode. For the mode defined by
Eq. (2), the power is

PL �
1

2
c�0E2

0�
ZR
k
�

1

8
kZR

mc3

re
jaLj2; (13)

where re � e2=�4��0mc
2�. By conservation of energy, the

change in power is given by

dPL
ds
� �

I
e
mc2

�
d�
ds

�
; (14)

where I is the electron beam current and the brackets
indicate an average over the particle distribution:
hd�=dsi �

R
d �Xf� �X��d�=ds�. The term �X is used as a

shorthand to represent the full set of 6D phase space
variables, and the distribution function f� �X� is normalized
so that

R
d �Xf� �X� � 1. The current, I, is smoothed out to

average over perturbations on the time scale of the laser
frequency, and is taken here to be a constant. Noting that
PL scales as jaLj2, we have

djaLj
ds

�
I
IA

2
���
2
p
au

�ZR
JJ��� Imhei�0G�x; y; s�ei�i; (15)

where IA � ec=re � 4��0mc
3=e ’ 17 kA. The result in

Eq. (15) is simply the electric field generated by the net
bunching of the electron beam; we wish to generalize
this to include the possibility of having no seed pulse,
but having, instead, a prebunched beam. Using the
identity ei�0 � aL=jaLj, and the relation djaLj=ds �
Re��aL=jaLj�da�L=ds	, Eq. (15) can be expanded to

Re
aL
jaLj

da�L
ds
� Re� i

aL
jaLj

I
IA

2
���
2
p
au

�ZR
JJ���hG�x; y; s�ei�i:

(16)

This suggests that the two terms within the real part are
equivalent as well; taking the complex conjugate of the
resulting equation yields

daL
ds
� i

I
IA

2
���
2
p
au

�ZR
JJ���hG��x; y; s�e�i�i: (17)

The above average is a generalization of the usual bunch-
ing parameter, b � hexp��i��i. The generalized bunching
parameter will be defined as

B�s� � hG��x; y; s�e�i�i: (18)

The temporal variation of B�s� at fixed s is neglected,
assuming that it is small at the scale of the relative shifts
in time caused by phase slippage. Note that Eq. (17) differs
from the exact field evolution because all of the power is
assumed to go into the reference mode. The resulting errors
2-3
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are expected to be small for the optimal choice of ZR
and s0.

To evaluate the output radiation, it is necessary to cal-
culate the generalized bunching parameter, B�s�. In the
low-gain FEL regime, the radiation field produced by the
beam overall is assumed to have a small effect on single-
particle orbits, and free-streaming particle dynamics can be
used. Thus, the initial particle distribution is sufficient to
perform this calculation.

As an explicit example, we consider the case of har-
monic generation, as in the LUX conceptual design. This
configuration uses a seed laser to generate an energy
modulation in one undulator, which is then converted
into microbunching by means of a dispersive section,
typically a chicane. The chromatic dispersion is character-
ized by the parameter R56, defined by c�t � R56���
�0�=�0. The second undulator is tuned to a higher har-
monic of the laser seed. Because the bunching in the beam
includes Fourier components at harmonics of the initial
laser seed, the beam radiates at a level well above that due
to shot noise (which will be neglected). Here, we examine a
specific case where the modulator applies an energy modu-
lation which depends solely on the phase � of the electrons.
The distribution function is chosen to be a product of
longitudinal and transverse terms. The transverse compo-
nent of the distribution function f� �X� is a function of the
transverse action and is proportional to exp��Jx=�x �
Jy=�y�, where �x is the normalized emittance in the
x-plane, and similarly for �y. The energy component of
distribution after modulation takes the form

H���� �0 � 	xJx � 	yJy � �M sin�M�=��	: (19)

We will consider both Gaussian and uniform energy pro-
files for the function H, where �� is equal to the rms
energy spread and maximum deviation, respectively. The
energy modulation varies sinusoidally with �M, which will
have a length scale determined by the source of the modu-
lation. Generally, the length scale for the seed will be
chosen to be a subharmonic of the desired output radiation
wavelength, so that � � n�M for some harmonic number,
n. Thus, if the laser seed modifies the electron beam energy
in an upstream modulator, we will want to evaluate the
quantity exp��i�� � exp��in�M�, which is the bunching
at the nth harmonic of the seed modulation. The energy
distribution includes the possibility for 	x, 	y � 0, where
	x and 	y represent a correlation between energy and
transverse amplitude. This includes the case of ‘‘condi-
tioned beams’’ [15,16], which has been proposed as a
means of improving performance in SASE FELs.

After the modulator, the beam passes through a disper-
sive section with an R56 that induces a phase shift �� �
kR56��� �0�=�0, where k is the wave vector for the output
radiation. Within the radiating undulator, the phase can be
written as
06070
� ’ n�M � kus
�
�
�k
kr
� 2

�0 � �r
�r

�

� �kR56 � 2kus�
�

1

�r
��� �0 � 	xJx � 	yJy

� �M sin�M� �
�M
�r

sin�M � qx�s�Jx � qy�s�Jy

�
;

(20)

where �M is the phase of the initial energy modulation,

qx�s� � 2kus
� ���

2
p

2
ku

au
1� a2

u
�
	x
�r

�
�
	x
�r
kR56; (21)

and similarly for qy�s�. Because the chicane yields a phase
offset that is independent of transverse action, there will
always be phase slippage between particles at different
transverse amplitudes, even for ‘‘fully conditioned‘‘ beams
where 	x � 	y � 	0; here, 	0 � �

���
2
p
=2�ku�rau=�1�

a2
u� � kr=�2ku�u�. Any correlation between energy and

transverse amplitude results in a phase shift that is corre-
lated with transverse amplitude as well. This effect reduces
the bunching produced by the chicane. For unconditioned
beams, the terms qx�s� and qy�s� grow linearly with
distance along the FEL. Note that, if one is considering
tuning the strength of the undulator field to optimize
performance, the detuning term �k=kr can be replaced
with 2au�au=�1� a

2
u�.

The generalized bunching parameter can be calculated
by considering integrals over each phase space coordinate
individually. Performing the energy integral first, and shift-
ing by ��0 � 	xJx � 	yJy � �M sin�M�, we have

Z
d�H��=���e

�i�kR56�2kus��=�r

� F���kR56 � 2kus���=�r	; (22)

where the function F� depends on the form of the energy
distribution:

F��x� �
�

exp��x2=2�; Gaussian
�sinx�=x; uniform:

(23)

The average over the ponderomotive phase is taken over
�M, because this is the scale length for the initial energy
modulation:

1

2�

Z
d�Me�in�M�i�kR56�2kus���M=�r� sin�M

� Jn��kR56 � 2kus��M=�r	: (24)

The average over transverse coordinates includes a com-
bination of phases remaining from exp��i�� and the mode
structure defined by G��x; y; s�. The term ZR=�ZR � i�s�
s0�	 in G� is the same for all particles, so the following
integral over the x, px variables remains to be calculated:
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1

2��x

Z 2�

0
d�x

Z 1
0

dJx exp
�
�
Jx
�x
� iqx�s�Jx �

kr
�0



1

ZR � i�s� s0�
�uJxcos2�x

�
; (25)

and similarly in y, py space. Here, action coordinates have
been used so that x � �2�uJx=�0�

1=2 cos�x. Electrons are
subject to betatron motion, where �x for a specific particle
varies with s. However, because Eq. (25) is an average over
all phases, and we assumed that the initial energy modu-
lation had no transverse dependence, the value of the
integral is independent of the betatron motion. It is sim-
plest to evaluate this by performing the integral over Jx
first; then, one is left with the average of an expression
having the form 1=�a� bcos2
�. The integral of this term
is slightly complicated, but the average value simplifies to

1

2�

Z 2�

0

d


a� bcos2

�

1�������������������
a�a� b�

p : (26)

The integral in Eq. (25) then takes the form F���x; qx�s�; s	,
where

F���; q; s� � �1� iq���1=2

�
1� iq�

�
kr�u�=�0

ZR � i�s� s0�

�
�1=2

: (27)

The final result for the generalized bunching at the higher
harmonic is

B�s� � exp
�

ikus
�
�k
kr
� 2

�0��r
�r

��
Jn

�
�kR56� 2kus�

�M
�r

�


F�

�
�kR56� 2kus�

��

�r

�
ZR

ZR� i�s� s0�


F���x;qx�s�; s	F���y;qy�s�; s	: (28)

The laser field at the end of the undulator is determined by

aL � i
I
IA

2
���
2
p
au

�ZR
JJ���

Z L

0
B�s�ds; (29)

and the laser power is given by Eq. (13).
The basic undulator equations given above can be ap-

plied to other configurations, for example, to predict the
energy modulation given to a beam by an external laser.
They can also be applied to the high-gain regime, but here
we will only check the scaling for the gain length. The
second derivative of Eq. (17) can be reduced to an equation
for the FEL instability, where aL grows exponentially,
using Eq. (8) and considering only the energy-dependent
term of Eq. (11), where d�=ds � 2ku��� �r�=�r.
Assuming that the radius of the radiation field is compa-
rable to the radius of the electron beam, we take ZR ’
k�x�u=�, and set hjG2ji ’ 2=3, which yields the following
expression for the gain length (expressed in terms of the
power radiated):
06070
L�3
g ’

256

3
k3
u�

3
FEL: (30)

Here, the ‘‘FEL parameter’’ is defined by

�3
FEL �

�
4

renea
2
u

k2
u�

3 JJ2���; (31)

and ne � �I=2�ec���=�x�u� is the peak electron density.
This is in fairly good agreement with the well-known one-
dimensional approximation [17],

L�3
g ’ 24

���
3
p
k3
u�

3
FEL: (32)
III. TRIAL FUNCTIONS

The above results are still not fully defined, because ZR
and s0 are free parameters. In general, given a specific
choice of ZR and s0, any radiation field can be described
using a sum of normal modes, but here we are attempting to
fit the radiation field to a single, Gaussian mode. In the
low-gain regime, each normal mode evolves independently
and can be calculated individually. Because the exact result
will include the power contained within all these modes,
the above analytic result, when only a single mode is
considered, is expected to always fall below the correct
value. This suggests varying the free parameters to max-
imize the output power, yielding a greatest lower bound to
the total power. The resulting values for ZR and s0 should
serve as the best fit of the output radiation to a pure
Gaussian mode.

This method is essentially a trial-function approach, and
any trial function which is a valid vacuum laser field can be
used. The closer the trial function is to being able to
represent the exact result, the more accurate this estimate
for the power will be. Furthermore, the prediction for the
laser power is expected to be second-order accurate com-
pared to the optimized trial function; in other words, even a
poor approximation to the laser field can result in a good
estimate for the output power. For any given set of trial
functions, the analytic model predicts a lower bound on the
total output power.

The resulting integrals are simple enough to implement
as a Mathematica® script, which allows for rapid optimi-
zation. Because the trial-function procedure is to maximize
the output power by varying ZR and s0, any additional
design parameters—for example, the undulator field,
R56, or energy modulation—can be optimized, simulta-
neously, to obtain the largest possible output power. The
computational time required to optimize these design pa-
rameters is greatly reduced in this way relative to full scale
FEL simulation codes. While this method can be particu-
larly useful as an optimization tool and also serves as an aid
to understanding FEL physics, care should still be taken to
check the validity of predictions.

For simplicity, the FEL configuration in this paper is
restricted to one where the prebunching is accomplished by
2-5
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a uniform energy modulation followed by a linear chicane.
The trial-function method can be extended to any arbitrary
input electron beam so long as the generalized bunching
parameter B�s� can be calculated and the FEL is operating
in the low-gain regime. In the configurations being consid-
ered, a pure Gaussian mode is expected to be a good
approximation to the FEL output except in the emittance-
dominated regime, �=�0 � �=�4��.
IV. ANALYTIC SOLUTIONS

In certain parameter ranges, the above methodology
allows for simple analytic approximations to the radiation
power and mode structure produced by an undulator.
When the energy modulation is much larger than the
energy spread ��, but not so large that the variations in
phase slippage along the length of the undulator can com-
pete with that caused by the chicane, the optimal value of
R56 will be close to the value which maximizes
Jn�kR56�M=�0�. The argument which maximizes this
Bessel function will be referred to as j0n;1, which is the first
nontrivial zero of J0n.

For a cylindrically symmetric beam, the resulting ex-
pression for the output power is

PL � P0
ZR
2L

								1

L

Z L

0

exp�i�kkus�
ZR=L� i�s� s0�=L

F2
���;q�s�; s	ds

								
2
;

(33)

where �k � �k=kr � 2��0 � �r�=�r is the relative detun-
ing, and

P0 � 4NuZ0I
2�JJ2���J2

n�j
0
n;1�F

2
��j
0
n;1��=�M�: (34)

Here, Z0 � 1=��0c� ’ 377 � is the vacuum impedance,
which enters through mc3=�reI2

A� � Z0=4�. The number
Nu � kuL=2� is the number of undulator periods in the
undulator.

To continue this analytic approximation to an optimized
harmonic generation section, we consider three cases.
First, we neglect q�s� altogether, which implies that the
effect of emittance is limited to the spot size of the electron
beam. Second, we consider an ideally conditioned beam,
so that q�s� is a constant. Finally, we consider more general
cases, including the most typical example of an uncondi-
tioned beam, where q�s� � 0 at s � 0 and increases line-
arly with s.

Neglecting q�s�,

F2
���; 0; s� �

ZR=L� i�s� s0�=L
ZR=L� i�s� s0�=L� k��u=��0L�

: (35)

The expression for the power becomes

PL � P0
ZR
2L

								1

L

Z L

0

exp�i�kkus�ds
ZR=L� i�s� s0�=L� k��u=��0L�

								
2
:

(36)
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It is still necessary to find ZR and s0 by optimizing the
predicted power. The power is symmetric under s0 ! L�
s0, and the optimum occurs at the central value of s0 �
L=2.

The integral becomes simple to calculate if �k � 0, in
which case the power is

PL � P0
2ZR
L

arctan2

�
1

2

�
ZR
L
� 0:5

�u
L

�=�0

�=4�

�
�1
�
: (37)

The emittance-related term has been rewritten in terms of
the ratio between the geometric emittance, �=�0, and the
minimum effective emittance of the laser field, �=4�.
When the emittance term is small (a line charge beam),
the maximum power occurs for ZR ’ 0:36Lwith a value of
0:65P0. The power only scales linearly with Nu, in this
case, because the distance along the undulator over which
electrons can induce stimulated emission is limited by
diffraction.

If the detuning is allowed to vary, on the other hand, this
allows for further optimization of the FEL. Using Eq. (36),
the expected bandwidth of the FEL, in terms of the relative
detuning, �k, is 2�=�kuL� � 1=Nu. In general, the value of
the detuning parameter which maximizes the output power
is negative, and must satisfy the following condition:

sin�k=2

�k=2
�

���
2
p �

ZR
L
� 0:5

�u
L

�=�0

�=4�

��
PL
P0

L
ZR

�
1=2
: (38)

In the limit of very small �, the power goes to 1:07P0 and
ZR ’ 0:18L. At large values of ��u=L��4��=�0��, the
power is roughly P0L=8ZR, and ZR ’ k��u=�0. Note
that ���u=�0�

1=2 is the spot size of the electron beam
and, in this limit, the Rayleigh length is determined by
the fact that this is also the spot size of the outgoing
radiation. As a fit between these two limits, a good ap-
proximation for the Rayleigh length is ZR ’ 0:18L�
k��u=�0. The power can be approximated as

PL ’ P0

�
1

1:07
� 4

�u
L

�=�0

�=4�

�
�1
: (39)

Thus, by optimizing the detuning parameter, rather than
using the exact resonance condition, the output power can
be significantly increased, by over 60% in the limit of small
emittance. Also, in the small emittance limit, the Rayleigh
length of the output radiation is reduced by a factor of 2.
When the emittance term is large, on the other hand, the
optimal detuning is close to nominal resonance, in com-
parison with the bandwidth of the FEL.

The expression for q�s� in Eq. (21) can be rewritten in
terms of the conditioning parameter for a ‘‘fully condi-
tioned’’ beam, 	0 � k=�2ku�u�, as

q�s� � 2kus
	0 � 	
�0

�
	
�0
kR56: (40)

When the conditioning parameter 	 � 	0, q�s� � q	 �
�	0kR56=�0 is a constant. In this case, the expression
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for the output power is almost identical to the case
where q�s� is neglected, but with �! �=�1� q2

	�
2�.

Additionally, however, the power is reduced by a factor
of �1� q2

	�2�, and the beam waist is shifted from L=2 to
L=2� �k��u=�0�q	�=�1� q2

	�2�. Because q	 < 0, this
implies that the beam waist is shifted towards the end of
the undulator. The Rayleigh length is unchanged. Thus, the
effect of the constant, nonzero q�s�, is to strongly reduce
the output power, although this is partly compensated for
by reducing the effective spot size of the electron beam.

Now we consider more general conditioning parameters
and optimize the output power. This is achieved by adjust-
ing the conditioning parameter so that q�s� sweeps from
negative to positive values, which keeps the magnitude of
q�s� as small as possible throughout the undulator. The
optimum condition is, thus, q�L=2� ’ 0, implying that

	 � 	0
kuL

kuL� kR56
: (41)

This optimum can be much smaller than 	0 when 1
kR56=kuL � j0n;1�0=�2�Nu�M�. The parameter q�s� then
varies within the range ��	0=�0�kR56=�kuL� kR56�. For
this value, the result is, again, symmetric under the trans-
formation s0 ! L� s0, and the trial-function method
yields s0 � L=2. An approximate fit for the resulting out-
put power is

PL ’ P0

�
1

1:07
� 4

�u
L

�=�0

�=4�
�

3

10

kR56

kuL� kR56

L
�u

�=�0

�=4�




�
1�

5

9

kR56

kuL� kR56

�
�=�0

�=4�

�
2
�

�1
: (42)

A key parameter affecting FEL performance is the ratio of
the geometric electron beam emittance, �=�0, to the nomi-
nal laser emittance, �=4�. The two main corrections take
the form of this ratio multiplied by either �u=L, or by
L=�u. These terms are related to the electron beam spot
size and phase slippage rate, respectively. There is an
additional, higher-order correction, which is only signifi-
cant when the emittance ratio is of order unity or higher.
Note that this additional term arises from the product of
�2k�=�0���u=L� and �2k�=�0��L=�u�.

For an unconditioned beam, the final output power can
be very similar to the optimized conditioning parameter
given above. However, when the term q�s� has a significant
effect, the output power is determined mainly by the range
of values of q�s� for 0< s< L. An unconditioned beam,
with q�s� varying from 0 to 2kuL	0=�0, will perform
similarly to the optimized case above, with parameters
chosen so that q�s� varies between �2kuL	0=�0. The
output power for an unconditioned beam satisfies a similar
approximate fit, but the sensitivity to phase slippage is
effectively doubled:
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PL ’ P0

�
1

1:07
� 4

�u
L

�=�0

�=4�
� 0:64

L
�u

�=�0

�=4�




�
1�

�
�=�0

�=4�

�
2
�

�1
: (43)

However, in contrast to the case where the conditioning
parameter is made too large, for an unconditioned beam,
the beam waist is shifted towards the beginning of the
undulator. For large emittances, when �=�0 * �=4�, it is
even possible to have s0 < 0. Note that, even when kR56 �
kuL, appropriate beam conditioning can increase output
power by up to a factor of 4 if the undulator performance is
limited by emittance. The improvement is constrained by
the mismatch between chicanes and conditioned beams,
and also results from the fact that we are only considering
radiation in the low-gain regime.

In summary, the trial-function method leads to a sim-
plified numerical solution for certain examples, including
the usual case of an unconditioned beam. The electron
beam emittance is seen to affect the output power for an
optimized system in two ways, related to the electron beam
size and the relative phase slip of electrons having different
transverse amplitude. These two terms imply that the un-
dulator performs best when �u ’ 0:4L: for larger beta
functions, the spot size is too large; for very small beta
functions or for long undulator lengths, phase slippage
reduces the output power. Constraints with similar under-
lying physics have been obtained as numerical fits [18] to
analytic calculations of FEL radiation in the high-gain
regime [19]. One important difference is that, in the
high-gain regime, the most significant length scale is the
gain length, rather than the total length of the undulator.

V. SIMULATION RESULTS

For the simplified model of a seeded electron beam
described above, FEL simulations using the GENESIS

code have been compared with the analytic theory above.
GENESIS is a well tested, fully three-dimensional code
which includes effects such as energy loss of electrons
and focusing due to the undulators. Two cases are consid-
ered: the first stage of a cascade which converts 200 nm
wavelength to 50 nm, and the final stage, which converts
3.13 nm wavelength to 1.04 nm. All sections are assumed
to use planar undulators. The electron beam is assumed to
have equal emittances and equal focusing in both trans-
verse planes. The results are summarized in Table I.

The electron beam parameters are: �0 � 6067, �x �
�y � 2 �m, I � 500 A. The transverse mode structure of
the output radiation is characterized by the parameter M2,
which is the ratio of the emittance of the FEL output to the
minimum possible value, �=4�. This parameter can also
be described as the ratio of the idealized Rayleigh length
for the given waist diameter to the observed Rayleigh
length. In terms of power flux, the rms width of the laser
at the waist is ��M2ZR=4��1=2.
2-7



FIG. 2. (Color) Comparison of analytic theory with simulations
using GENESIS. Results are shown for harmonic generation at 50
and 1.04 nm, as the energy modulation �M is varied and R56

reoptimized.

TABLE I. Comparison between analytic model and simula-
tions using GENESIS for two case studies.

Analytic GENESIS:
Case Results Theory M2 � 1 Fit M2

50 nm PL (MW) 130.3 134.2 134.2
ZR (m) 1.12 0.94 0.97
s0 (m) 1.20 1.19 1.21
M2 � 1 � 1 1.04

1.04 nm PL (MW) 35.1 39.0 39.0
ZR (m) 52.7 49.0 33.0
s0 (m) �10:4 �14:6 0.73
M2 � 1 � 1 1.72

G. PENN, M. REINSCH, AND J. S. WURTELE Phys. Rev. ST Accel. Beams 9, 060702 (2006)
For the first stage, producing radiation at 50 nm by going
to the fourth harmonic, the energy modulation is �M �
2:68, and the idealized chicane uses R56 � 92 �m. The
undulator has an 8 cm period and is 2.4 m long. The
electron beam is taken to be matched to the undulator,
with � � 16:28 m. The resonant undulator strength is
au � 6:709, but optimal performance occurs at au �
6:686. At this optimum, the theory predicts a total output
power of 130:3 MW, characterized by ZR � 1:12 m and
s0 � 1:20 m. Numerical simulations for the simplified
case yield an output power of 134:2 MW, characterized
by ZR � 0:94 m and s0 � 1:19 m, under the assumption
that M2 � 1. On the other hand, a more general fit to the
output radiation yieldsM2 � 1:04, ZR � 0:97 m, and s0 �
1:21 m. A detailed analysis reveals that 126:4 MW, or
94%, of the output radiation, lies within the predicted
Gaussian mode. The analytic theory underestimates the
total power by 3.9 MW, a relative error of 3%, which is
of similar order to the power which resides in higher-order
modes. As a rough check, we note that, whenM2 is close to
unity, an estimate for the fraction of power in higher-order
modes is �M2 � 1�=2, or 2%, in this case. For this example,
neglecting the effect of the FEL radiation field on the
electrons themselves does not alter the simulation results.

For the final stage, producing radiation at 1.04 nm, by
going to the third harmonic, the energy modulation is
�M � 1:10, and the idealized chicane uses R56 �
3:2 �m. In this stage, ��=�0�=��=4�� ’ 4. The undulator
has a 2.8 cm period and is 8.4 m long. The electron beam is
taken to be matched to the undulator, with � � 29:00 m.
The resonant undulator strength is au � 1:3186, but opti-
mal performance occurs at au � 1:3181. At this optimum,
the theory predicts a total output power of 35:1 MW,
characterized by ZR � 52:7 m and s0 � �10:4 m.
Numerical simulations for the simplified case yield an
output power of 39:0 MW, characterized by ZR �
49:0 m and s0 � �14:6 m, under the assumption that
M2 � 1. On the other hand, a more general fit to the output
radiation yields M2 � 1:72, ZR � 33:0 m, and s0 �
0:73 m. The analytic prediction is too low by 10%. By
taking into account the reduced transverse coherence of the
06070
laser output, the waist position is shown to be located
within the undulator, close to the upstream end. The pre-
diction that the virtual waist of the radiation would be far
away from the undulator itself is an artifact of the attempt
to characterize the radiation in terms of a single, Gaussian
mode. The Rayleigh lengths are also very different, reflect-
ing the importance of higher-order modes. A detailed
analysis reveals that 32:8 MW, or 93%, of the output
radiation lies within the predicted Gaussian mode. The
analytic theory underestimates the total power by
3.9 MW, a relative error of 10%, which is of similar order
to the power which resides in higher-order modes. Note
that by selecting the values of ZR and s0 in the ‘‘best fit’’ for
the laser output, the analytic prediction may partially
account for higher-order transverse modes. A generaliza-
tion to trial functions having two or more transverse modes
would be desirable to obtain a more complete description
of the output radiation. However, for typical parameters,
even when performance is strongly impacted by emittance,
the errors are comparable to other effects, such as statisti-
cal noise within the electron beam.

The dependence of the output radiation power on the
energy modulation, �M, is shown in Fig. 2, and also shows
good agreement between the analytic model and numerical
simulations. The value of R56 is reoptimized for each value
of �M. For short wavelengths, FEL performance is more
sensitive to the energy spread, as phase slippage along the
length of the undulator leads to debunching of the electron
beam. The optimal power of 60 MW can only be increased
by using a longer undulator, by lowering the harmonic
number, or by changing the electron beam parameters.
The analytic model is well suited to determining the opti-
mal energy modulation. This optimum is sensitive to both
2-8



FIG. 3. (Color) Comparison of analytic theory with simulations
using GENESIS. Results are shown for harmonic generation at 50
and 1.04 nm, as the energy spread �� is varied.

U

FIG. 5. (Color) Comparison of analytic theory with simulations
using GENESIS. Results are shown for harmonic generation at
50 nm, as the undulator field strength (au) is varied.
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undulator and beam parameters, especially the energy
spread and undulator length.

The dependence of the output radiation on the energy
spread is shown in Fig. 3. Other FEL parameters are kept
constant. The resulting variation in FEL power is consis-
tent with Eq. (34). In particular, for a uniform energy
distribution, the power falls off to nearly zero at
kR56��=�0 � �, because the energy spread appears in
the term F��x� � sin�x�=x.

The dependence of the output radiation on the beam
conditioning parameter is shown in Fig. 4. Other FEL
FIG. 4. (Color) Comparison of analytic theory with simulations
using GENESIS. Results are shown for harmonic generation at 50
and 1.04 nm, as the conditioning parameter 	 is varied. The
matched values indicated refer to the ideal conditioning parame-
ters for a different geometry, where the FEL output grows from
noise, with no chicane.
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parameters are kept constant. The resulting FEL power is
consistent with the analytic theory, with the optimum value
for the conditioning parameter given by Eq. (41).
Typically, the ideal conditioning parameter is much
smaller for this geometry than for the case of a long
amplifying undulator with no chicane, labeled here as the
‘‘matched’’ value of 	. In the 50 nm example, the optimum
is, essentially, an unconditioned beam. Even in the 1.04 nm
example, optimizing the conditioning parameter yields
only an 8% improvement in output power, as compared
with the unconditioned case.

Figures 5 and 6 show the dependence of FEL output on
the strength of the undulator magnets, which determines
the detuning. The agreement between theory and simula-
U

FIG. 6. (Color) Comparison of analytic theory with simulations
using GENESIS. Results are shown for harmonic generation at
1.04 nm, as the undulator field strength (au) is varied.
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tions only falters for the 1.04 nm case, when the magnetic
fields are tuned below the resonant value, as shown in
Fig. 6. In this case, the simulations yield about 5 MW
more power than the analytic theory predicts. In the opti-
mally tuned case, this is a reasonable value for the power
that is emitted into higher-order transverse modes. Far
from resonance, the analytic theory predicts very little
power while, in the simulations using GENESIS, there is
still roughly 5 MW of power when the undulator field
strength is below resonance. This power is in the form of
higher-order transverse modes, with values of M2 � 10.
This radiation is generated by particles having large trans-
verse amplitude, which move forward more slowly and
thus can be in resonance. When the undulator field strength
is above resonance for the beam energy, these higher-order
modes do not appear because there are no particles moving
fast enough to be in resonance. For earlier stages which are
not emittance limited, the analytic calculations are in much
closer agreement with numerical simulations.

Another source of error is the nonlinearity of the inter-
action, where the FEL instability, or trapping, may lead to
an underestimate of the output power. The importance of
the FEL instability can be checked by performing simula-
tions with reduced electron beam current, thus assuring
that the total length of the system is much less than an FEL
gain length. In the low-gain regime, output power should
scale as the square of the current. For example, in the
1.04 nm case, simulations at low current would scale to a
total output power of 38.9 MW at 500 A, demonstrating
that the FEL gain is not a significant effect. However, for
larger values of the applied energy modulation, nonlinear
effects are very important for reducing phase slippage and
maintaining a large bunching parameter.

The low-gain approximation does not require that the
electron beam be unaffected by the FEL interaction.
Rather, there are three steps to the FEL instability: the
radiation field modulates the electron beam, which then
generates bunching as the energy modulation causes a
variation in phase slippage, which, in turn, enhances the
power channeled into the radiation field. Thus, even if the
energy modulation of the electron beam at the end of the
undulator is much larger than, for example, the original
FIG. 7. (Color) Longitudinal phase space of a prebunched elec-
tron beam after harmonic generation at 50 nm. The low-current
limit (left) is compared with the nominal case where the beam is
modulated by its own radiation (right).
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energy spread, these calculations can still be essentially
valid. The energy modulation only need be taken into
account when the phase slippage induced by the modula-
tion alters the bunching parameter from what it would be in
the free-streaming case; this can be a slow process, and the
relevant scale is the gain length. For example, in Fig. 7,
plots of the longitudinal phase space of the beam are shown
for the end of the 50 nm FEL example, both for the low-
current limit and for the nominal current of 500 A. The
energy modulation due to self-interactions drastically al-
ters the phase space distribution, but, because this modu-
lation yields only a small change in phase over the 2.4 m of
the undulator, the radiation produced is not altered sub-
stantially by this effect.

It should also be noted that the geometry considered here
for each stage of harmonic generation is an oversimplifi-
cation. A more typical geometry will alter the predicted
output radiation in complex ways. For example, the modu-
lation of the electron beam was assumed to be independent
of transverse coordinates, while, in practice, the energy
modulation will be less effective for particles that are
located off axis.
VI. CONCLUSIONS

In this paper, we have proposed and provided strong
support for a trial-function method which predicts the FEL
radiation output in the low-gain regime. This method has
been used to approximate the radiation output of a har-
monic generation FEL system as a coherent Gaussian
mode. Various assumptions have been made in order to
perform the specific calculations presented in this paper.
We approximate the laser seed and output as monochro-
matic beams. The electron beam has been taken to be
matched to the undulator without external focusing, where
the undulator is designed for equal focusing in both planes.
The transverse emittances have also been taken to be equal.
Shot noise in the current density has been neglected. The
undulator is assumed to operate in the low-gain regime,
specifically, the total length of the undulator must be
smaller than a gain length; the method considered here is
valid as long as this assumption is true, even if the energy
modulation generated through self-interactions is large
compared to the variation in energy at the beginning of
the undulator.

The power transferred to a given spatial mode is deter-
mined by Eq. (17), withG�x; y; s� being the structure of the
expected laser output mode. This leads to the definition of a
generalized bunching parameter. We find that, for expected
parameter ranges, so long as the FEL is not operating far
beyond the emittance limit, the output power can be de-
scribed reasonably well as a single Gaussian mode, after
optimizing the mode parameters for maximum output
power.

Analytic calculations show detailed quantitative agree-
ment with time-independent simulations using GENESIS.
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Errors are related to the presence of higher-order modes
and the corresponding reduction in transverse coherence.
The apparent location of the laser waist for emittance-
limited beams tends to lie outside of the beginning of the
undulator, and this is shown to be due to the typical beam
property that 	x � 	y � 0. Optimization of this energy-
amplitude correlation would set the beam waist at the
midpoint of the undulator; however, generating such cor-
relations would be challenging and the total output power
is only slightly improved for typical parameters. When
higher-order modes are taken into account, simulation
results place the laser waist just inside of the undulator.

We plan to extend this formalism to more general elec-
tron beam parameters including external focusing and
elliptical beams, and to a more realistic model for the
electron beam modulation process. This method can also
be extended to calculate higher-order modes of the output
radiation.
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