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We determine the low frequency transverse impedance of axially symmetric tapered structures. Higher-
order perturbation theory is used to improve previous estimates due to Yokoya and Stupakov. For linear
tapers, accurate numerical results are obtained using the ABCI electromagnetic simulation code. Based
upon insight gained from the perturbation calculations, we introduce a simple parametrization that
provides an excellent fit to all of our ABCI data—including cases with gradual and steep tapers as well
as large and small change in cross section.
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I. INTRODUCTION

We consider the transverse impedance of axially sym-
metric tapered structures. Our chief interest is in situations
where the change in radius is large and the corresponding
transverse impedance needs to be minimized by having a
tapered transition. This is commonly encountered in accel-
erator structures, such as transitions to radio-frequency
cavities, small gap undulator chambers, beam collimators,
etc. The geometric impedance at zero frequency is purely
inductive [1]. When the transition is gradual, the low
frequency transverse impedance [2,3] remains approxi-
mately at its zero-frequency value over a broad frequency
range. In many cases of practical interest, this region of
constant impedance may extend far enough in frequency to
determine the kick factor and hence describe many trans-
verse single bunch collective effects. Since space in an
accelerator structure is precious, it is important to know
how much tapering is required to avoid harmful
impedance-related effects.

We have taken a two-pronged approach to solving this
problem: analytical and numerical. Our analytic work is
based upon a perturbation expansion for the transverse
impedance at zero frequency which we derive by extending
the method introduced by Stupakov [3]. The lowest order
term, which was first derived by Yokoya [2], is accurate for
very gradual and smooth tapers. Including higher-order
terms allows us to treat steeper tapers and nonsmooth
boundaries. Our numerical work has been carried out using
the ABCI code [4]. Based upon the insight we gained from
the analytic calculations, we have succeeded in finding a
very simple parametrization that provides an excellent fit to
all our numerical data. The goal of our work has been to
obtain useful results for axially symmetric accelerator
structures as well as to build up a theoretical foundation
for future analyses of structures without axial symmetry,
e.g., those with elliptical and flat cross sections [5].

Let us start by reviewing Yokoya’s [2] result for the low
frequency transverse impedance of an axially symmetric
tapered transition,
06=9(5)=054401(8) 05440
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dz
r0�z�2

r�z�2
; (1.1)

where k is the wave number of the perturbing field, Z0 is
the free space impedance, r�z� is the radius of the tapered
chamber, and the prime denotes derivative with respect to
the axial coordinate z. Criteria for the validity of Eq. (1.1)
have been discussed by Yokoya [2] and Stupakov [3].
Based upon their discussion and our present work, we
believe a useful criterion can be stated as follows: If the
variation of the radius takes place over a characteristic
distance L, then Eq. (1.1) holds under the conditions rav �
L and kr2

av � L, where rav is the average radius. In this
paper, we derive an asymptotic expansion for the imped-
ance at zero frequency in powers of rav=L.

The numerical calculations we have carried out using
ABCI are sufficient to determine the low frequency trans-
verse impedance for a linear taper of the form

r�z� �

8<
:
rmin � rav�1� "� �z � �L�

rav�1�
" z
L � ��L< z < L�

rmax � rav�1� "� �L � z�

9=
;: (1.2)

Since the first derivative r0�z� is discontinuous at z � 	L,
the analytic treatment of this case requires special consid-
eration. Carefully applying perturbation theory to this sin-
gular case, we have shown that for rav=L not too large

Z?�0� � �
iZ0"2

2�L
2

1� "2

�
1� 0:18

rav
L

�
: (1.3)

Expressing this result in terms of the angle � characterizing
the linear taper, defined by

tan� �
"rav
L

; (1.4)

one finds

Z?�0� � �
iZ0"

2�rav

2 tan�

1� "2

�
1� 0:18

tan�
"

�
: (1.5)

When we compared Eq. (1.5) with the results of ABCI

calculations, we noticed that the agreement could be ex-
1-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.9.054401


B. PODOBEDOV AND S. KRINSKY Phys. Rev. ST Accel. Beams 9, 054401 (2006)
tended to larger angle by replacing tan� by the angle �
itself. That is, we found better agreement using

Z?�0� � �
iZ0"

2�rav

2�

1� "2

�
1� 0:18

�
"

�
: (1.6)

An excellent fit (see Fig. 4 below) to all of our ABCI

results was obtained by assuming the impedance of a single
taper to be expressed in the form

Z?�0� � �
iZ0"

2�rav

2�

1� "2

1� �a� b"� �"
1� �0:18� a� c"� �"

; (1.7)

where the parameters a; b; c were determined by least
squares optimization, yielding

a � 2:94
 10�3; b � �3:13
 10�3;

c � 1:75
 10�1:
(1.8)

Our paper is organized as follows: In Sec. II, we con-
sider the derivation of the perturbation expansion for the
transverse impedance at zero frequency and derive the
result given in Eq. (1.3) for the case of a linear taper. In
Sec. III, we discuss our ABCI calculations, and compare
numerical results with the approximations given in
Eqs. (1.1), (1.5), (1.6), and (1.7). Our conclusions are
summarized in Sec. IV. In Appendix A, we show that for
small " � �rmax � rmin�=�rmax � rmin�, the results of our
perturbation expansion agree with what is found using the
boundary perturbation method [6,7]. In Appendix B, we
consider in more depth some important details of the ABCI

calculations. In particular, we explain how we carried out
calculations for several grid sizes and obtained our final
results by employing a linear extrapolation to vanishing
grid spacing.
II. PERTURBATION EXPANSION

A. Method

Stupakov [3] has developed a perturbation theory to
determine the transverse impedance at zero frequency of
a circular tube with a smoothly varying radius. His ap-
proach is based on the solution of electrostatic and mag-
netostatic problems. Specifically, he determines the
transverse impedance from the expression

ImZ?�0� �
Z0

4�

Z 1
�1

dz
�
@�

@x
�
@ 
@y

�
x�y�0

; (2.1)

where � ( ) is the electric (magnetic) potential due to a
line electric (magnetic) dipole located on the z-axis.
Electric (magnetic) dipole moment is oriented in x (� y)
direction and it has unit moment per unit of length.
Potentials are found by perturbation theory, where for the
zeroth order, Stupakov takes solutions for an untapered
pipe. Carrying out this calculation to first order, he ob-
tained the result (1.1) first found by Yokoya [2] by a
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different method. Here, we extend Stupakov’s calculation
to higher order.

In cylindrical coordinates the electric scalar potential is
expanded in the form

��r; �; z� � 2 cos�
X1
n�0

fn�r; z�; (2.2)

where

f0�r; z� �
1

r
�

r

�r�z��2
; (2.3)

and the other fn are determined by solving the recursion
relations

@2fn
@r2

�
1

r
@fn
@r
�
fn
r2 � �

@2fn�1

@z2 ; (2.4)

subject to the boundary conditions

fn�r�z�; z� � 0 and fn�0; z� � 0: (2.5)

Similarly, the magnetic scalar potential is expanded in the
form

 �r; �; z� � 2 sin�
X1
n�0

gn�r; z�; (2.6)

where
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and the other gn are determined by solving the recursion
relations
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subject to the boundary conditions

�
@gn�r; z�
@r

� r0�z�
@gn�1�r; z�

@z

�
r�r�z�

� 0 and

gn�0; z� � 0:
(2.9)

Using MATHEMATICA [8], we have found the first eight
terms in the expansion

ImZ?�0� �
Z0

2�

X1
N�1

Z�N�: (2.10)

Assuming that the boundary derivatives vanish at z � 	1
and simplifying the results using partial integration, the
first three terms are given by
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TABLE I. Values of the first eight coefficients BN .

N 1 2 3 4 5 6 7 8

BN 1 1
6

17
384

49
3840

4141
1 105 920

17 081
15 482 880

1 289 549
3 963 617 280

20 540 423
214 035 333 120
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rr003
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(2.11)

Before partial integration each term in Z�N� contains de-
rivatives of r�z� up to order 2N. This means that the Nth
order term Z�N� exists only if the boundary r�z� is smooth
enough to have integrable (products of) derivatives up to
the 2Nth order. The first term �N � 1� is Yokoya’s ap-
proximation. For a piecewise linear tapered structure, the
higher-order �N > 1� terms require care in their evaluation,
because the products of the derivatives are not defined at
the corner points. In what follows, we shall treat a linearly
tapered structure by considering it to be the limit of a
sequence of tapers with smoothed corners. It is interesting
to note that all the higher-order terms are proportional to at
least one derivative of the radius of the pipe of order two or
more. Therefore, for a linearly tapered structure, the cor-
rections to the Yokoya impedance arise due to the change
in slope required to match to the entrance and exit
chambers.

We have found that, despite partial integration, expres-
sions for Z�N� rapidly lengthen for higher N. However,
apart from numerical coefficients, the basic structure of
the expressions for Z�N� is rather simple. Specifically, when
they are ordered in increasing powers of r�z�, the first term
in the integrand for Z�N� has the form

F�N� � ���NANr�2r02N; (2.12)

and the last has the form

G�N� � ���NBN�rN�2r�N��2; (2.13)

where AN and BN are positive numerical coefficients, and
G�1�  F�1�. Intermediate terms include various permuta-
tions of powers of r�z� and its derivatives of order 1 � m �
N as allowed by dimensionality.

Let us consider a smooth perturbation of the wall radius,

r�z� � rav�1� "b�z=L��; (2.14)

where b0�	1� � 0 and b�	1� � 	1. Although it is not
necessary, we shall assume that �1 � b�z� � 1. In this
case,

rav � �rmax � rmin�=2 and

" � �rmax � rmin�=�rmax � rmin�:
(2.15)

From inspection of the first three terms given in
Eq. (2.11), as well as the next five terms that we do not
present in detail, it follows that the perturbation expansion
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has the form

ImZ?�0� �
Z0"

2

2�L

X1
N�1

���NCN�"��rav=L�2�N�1�; (2.16)

where the coefficients CN�"� are determined by inserting
the radius (2.14) into Eqs. (2.11), for N � 3, and similar
equations not explicitly shown for larger N. The coeffi-
cients CN�"� are positive for the cases we have considered.

B. Smooth structure and small "

Let us consider a smooth taper described by Eq. (2.14),
with "� 1. In this case, expressions for Z�N� greatly
simplify because the ‘‘last terms’’ given by Eq. (2.13)
dominate. To O�"2� these terms simplify further because
we can replace r�z� by its ‘‘average value’’ rav. For con-
venience let us measure the pipe radius in units of ravand
axial distance z in units of L—the characteristic distance
over which significant tapering occurs. The boundary is
now given by

r�z� � "b�z� � 1; (2.17)

where b�z� is such that b�1� � �b��1� � 1, and varies
mainly in the jzj< 1 interval.

Formally summing the dominant terms over all pertur-
bation theory orders, we get

ImZ?�0� �
"2Z0

2�L

X1
N�1

�
rav
L

�
2�N�1�


 ���NBN
Z 1
�1

dzb�N��z�2: (2.18)

The values of the first eight coefficients BN are given in
Table I. The sum in Eq. (2.18) is divergent at large N, but it
provides a useful asymptotic representation of the imped-
ance. In Appendix A, we show that Eq. (2.18) agrees with
the result of the boundary perturbation method [6,7] to
O�"2�.

For N > 1, the following representation is found to
provide better than 2% relative accuracy:

BN � c1�
N
1 � c2�

N
2 ; (2.19)

where c1 � 1:67, �1 � 0:295, c2 � 5:25, �2 � 0:0671.
Hence, for large N, BN � c1�N1 , so the product
�rav=L�

2�N�1�BN goes to zero exponentially (if rav=L is
not large). On the other hand, b�N� contains a factorial, and
therefore scale as N2N at large N, causing the sum in
Eq. (2.18) to be divergent.
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FIG. 1. (Color) b�z� (solid) and 2ab00�z� (dash) for a � 0:3, 0.1,
and 0.03.
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In order to illustrate the behavior of the asymptotic
series (2.18), let us consider the smooth boundary given
by the error function, b�z� � Erf�z=

���
2
p
�. Computing the

derivatives we derive the series

ImZ?�0� �
"2Z0

2�L

X1
N�1

���NBN
�2N � 3�!!����
�
p

2N�2

�
rav
L

�
2�N�1�

:

(2.20)

In the limit when rav=L is small,

ImZ?�0� �
"2Z0

2�
�Z�1� � Z�2��; (2.21)

where Z�1� and Z�2� are the first and the second terms in the
sum in Eq. (2.20),

Z�1� � �
2����
�
p

L
; and Z�2� �

1

6
����
�
p

r2
av

L3 : (2.22)
C. Linear taper with sharp corners

Our goal now is to find the impedance of the most basic
piecewise linear taper,

r�z� �

8><
>:
rmin � rav�1� "� �z � �L�

rav�1�
"z
L � ��L< z < L�

rmax � rav�1� "� �L � z�

9>=
>; (2.23)

As mentioned above, we cannot directly apply Eqs. (2.11)
for N > 1 because at the corner points the second deriva-
tive of the boundary is a �-function, and products of the
derivatives of the delta function are not integrable. To treat
this problem, we make use of the representation,

��z� � lim
a!0

1�������
2�
p

a
exp

�
�
z2

2a2

�
;

to generate a sequence of smooth boundaries that converge
to the linearly tapered structure as a! 0. We define

b�z� �
a�������
2�
p

�
� exp

�
�
�z� 1�2

2a2

�
� exp

�
�
�z� 1�2

2a2

��

�
z� 1

2
Erf

�
z� 1���

2
p
a

�
�
z� 1

2
Erf

�
z� 1���

2
p
a

�
: (2.24)

In the limit a! 0, this function approaches a linear taper
with a unit slope in the region jzj< 1, and jb�z�j � 1, for
jzj � 1. For small values of a it provides a good approxi-
mation to a linear taper. Parameter a determines the char-
acteristic size of the corner region, more specifically it
equals the rms spread of the second derivative b00�z� near
the corners. See Fig. 1.

In case of a shallow taper, "� 1, we can proceed as
above, to derive the asymptotic series for the impedance
(a� 1)
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ImZ?�0� �
"2Z0

2�L

�
�2�

2a����
�
p �

1����
�
p

a3L2

r2
av



X1
N�2

���NBN
�2N � 5�!!

2N�2

�
rav
aL

�
2N
�
: (2.25)

Not surprisingly, this formula is similar to Eq. (2.20) de-
rived for a smooth structure, except inside the sum L gets
replaced by the characteristic corner size aL. In order to
explore the behavior in the limit a! 0, we shall carry out
a Borel summation. First, we replace the factorial in
Eq. (2.24) by the integral representation

�2N � 5�!! �
2N�2����
�
p �

�
N �

3

2

�
�

2N�2����
�
p

Z 1
�1

dttN��5=2�e�t:

(2.26)

Then we interchange the summation and integration, and
use the approximation for BN given in Eq. (2.19). The
resulting geometric series can be summed and we obtain

ImZ?�0� �
"2Z0

2�L

�
�2�

2a����
�
p �

X2

j�1

cj�
3=2
j
rav
L


 exp
�
a2L2

�jr
2
av

��
1� Erf

�
aL

rav
�����
�j

p
���

: (2.27)

In the limit of sharp corners ( a! 0), this simplifies to

ImZ?�0� �
"2Z0

2�L

�
�2� �c1�

3=2
1 � c2�

3=2
2 �

rav
L

�

�
"2Z0

2�L

�
�2� 0:36

rav
L

�
: (2.28)

The first term is that of Yokoya and the second is negligible
for small rav=L. In Appendix A, we provide an alternate
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FIG. 2. Geometry used for ABCI calculations. Structure is
axially symmetric and mirror symmetric in the z direction.
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derivation of Eq. (2.28) using the boundary perturbation
method [6,7].

Finally, we note that, for the cornered structure, we can
drop the requirement for small " and basically keep the
same derivation. Indeed, comparing various terms in
Eqs. (2.11), we have found that the last term (� a3�2N)
dominates for any " in the limit of small a. Keeping only
this term and replacing r�z� by its values 	�1� "� at the
corners, we have found that the sum of higher-order terms
acquires an extra factor of �1� "2��1. The same factor
appears in the Yokoya coefficient Z�1�, so we have derived
the following result:

ImZ?�0� �
"2Z0

�L�1� "2�

�
�1� 0:18

rav
L

�
; (2.29)

as reported in Eq. (1.3) of the Introduction. Equation (2.29)
is accurate up to O�"�2 when " is small, however it only
partially accounts for the terms of O�"�4 and higher. The
latter could be found to any order, by including additional
terms in the expressions for the coefficients Z�N� and
employing an analysis similar to the above, which would
result in additional terms in parenthesis in Eq. (2.29) of the
form �" ravL �

2, �" ravL �
4, etc.
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FIG. 3. (Color) Zero-frequency transverse impedance from
ABCI (symbols), Yokoya formula Eq. (3.1) (dot-dashed),
Eq. (3.2) (dashed), Eq. (3.3) (solid).
III. ABCI RESULTS AND COMPARISON TO
ANALYTICAL CALCULATIONS

The discussions presented in Sec. II as well as our
previous numerical work [9] have shown that the imped-
ance is conveniently parametrized in terms of rav=L and ".
To study the dependence of the impedance on these pa-
rameters, we have performed extensive calculations for the
linear tapered structure shown in Fig. 2. For all of our
calculations, we fixed rmin � 1 cm and g � 20 cm (after
it was checked that increasing g does not alter the results,
see Appendix B). The taper lengths 2L and rmax were
varied over a broad range. The reasons for using this
geometry, as well as the details of the ABCI calculations,
are discussed in Appendix B.

ABCI results for " � 1=3 and 17=19 (corresponding to
rmax equal to 2 and 18 cm) are presented in Fig. 3, together
with the estimates from the Yokoya expression (dot-dashed
curves),

ImZ?�0� � ��2�
Z0"

2�rav

2 tan�

1� "2 ; (3.1)

doubled due to dual tapered structure. Also shown in Fig. 3
(dashed curves) are the estimates from Eq. (2.29), which
we now write in the form

ImZ?�0� � ��2�
Z0"

2�rav

2 tan�

1� "2

�
1� 0:18

tan�
"

�
: (3.2)

First of all, we see that the Yokoya expression (3.1) is
indeed accurate when rav=L � "�1 tan� is small. Con-
versely, while accurate for very gradual and deep struc-
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tures, Yokoya’s expression tends to significantly overesti-
mate the impedance when the tapering is not as gradual
and/or structures are shallow. In Fig. 3, we also see that
Eq. (3.2) extends the agreement with ABCI calculations into
the region of steeper tapering.

To proceed, we next replace tan� by � in Eq. (3.2) to
obtain

ImZ?�0� � ��2�
Z0"

2�rav

2�

1� "2

�
1� 0:18

�
"

�
: (3.3)

We see from Fig. 3 (solid curves) that Eq. (3.3) exhibits
better agreement with the ABCI results for cases of signifi-
cant change in the cross section (rmax � 2rmin or " � 1=3).
In fact it agrees with ABCI results with accuracy better than
10% for tapering angles up to �=4, and the agreement
extends even further in � for deeper structures.

Agreement can be further improved by considering the
expression

ImZ?�0� � ��2�
Z0"

2�rav

2�

1� "2

1

1� 0:18 �
"

; (3.4)

which agrees with Eq. (3.3) for 0:18�="� 1. Our final
result was obtained by assuming the impedance to be ex-
pressed in the form
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FIG. 4. (Color) The dimensionless scaled impedance as calcu-
lated from ABCI (symbols) and the curves corresponding to
approximation given in Eqs. (3.5) and (3.6) (solid).
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Z?�0� � ��2�
iZ0"

2�rav

2�

1� "2

1� �a� b"� �"
1� �0:18� a� c"� �"

;

(3.5)

and determining the parameters by carrying out a least
squares fit to the ABCI data. In this manner, we found

a � 2:94
 10�3; b � �3:13
 10�3;

c � 1:75
 10�1:
(3.6)

In Fig. 4, we plot the ABCI results for the scaled imped-
ance�ImZ?�0���1� "

2�rav=�2Z0"� versus the angle � in
radians divided by �=2. The characters as specified in the
figure legend are the results of the ABCI calculations and
the solid curves show the approximation given by
Eqs. (3.5) and (3.6). Note that this excellent fit over all
angles 0 � � � �=2 and most of the range 0< "< 1 is
obtained using only three free parameters.
IV. CONCLUDING REMARKS

We have considered the transverse impedance of a ta-
pered structure in axially symmetric geometry. The main
results of our paper can be summarized as follows:

(i) We extended the perturbation theory method of [3] to
higher orders.

(ii) This extension allowed us to identify the small
parameter rav=L. It is only when this parameter is small
that the Yokoya expression Eq. (1.1) is valid.

(iii) Summing higher orders of the perturbation theory
we obtained the analytical expression Eq. (1.5) for the
impedance of a linear taper with corners included, extend-
ing much further in tapering angle than Eq. (1.1).
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(iv) We performed extensive calculations with ABCI for
linearly tapered structures, confirming the analytical re-
sults above.

(v) Combining our analytical and numerical results, we
have developed an empirical parametrization Eqs. (1.7)
and (1.8) that well approximates all of our ABCI results,
spanning the relevant parameter regimes for most
applications.

(vi) Future applications of this work include extension to
structures of elliptical and flat cross sections [5], as well as
impedance minimization by means of nonlinear tapering.
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APPENDIX A: RESULTS OF BOUNDARY
PERTURBATION METHOD

Let us consider a smooth perturbation of the wall radius,

r�z� � rav�1� "S�z��; (A1)

where

S�z� �
Z 1
�1

dqA�q�e�iqz: (A2)

A perturbation expansion in powers of " has been devel-
oped [6] and to leading order [2]

ImZ?�0� � �2Z0"
2
Z 1
�1

dqq2jA�q�j2
�
I1
0�qrav�

qravI1�qrav�

�
I1�qrav�

�qrav�
3I1
0�qrav�

�
: (A3)

Using MATHEMATICA, it is easy to show that

�2
�
I1
0�x�

xI1�x�
�

I1�x�

x3I1
0�x�

�
�

X1
N�1

���NBNx
2�N�1�; (A4)

where the coefficients BN are those introduced in
Eq. (2.13), see Table I. Now let us assume

S�z� � b�z=L�: (A5)

Inserting Eq. (A4) into Eq. (A3), and using the identity
Z 1
�1

dzS�N��z�2 � 2�
Z 1
�1

dqq2NjA�q�j2; (A6)

we obtain the asymptotic series

ImZ?�0� �
"2Z0

2�L

X1
N�1

�
rav
L

�
2�N�1�


 ���NBN
Z 1
�1

dzb�N��z�2; (A7)

in agreement with Eq. (2.18) derived using the extension of
Stupakov’s perturbation theory.
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It has been shown [7] that Eq. (A3) can be rewritten in
the form

ImZ?�0� �
�Z0"

2

�r2
av

X1
n�1

�
F�kn

0�

��2
n � 1�kn0

�
F�kn�
kn

�
; (A8)

where

kn �
�n

rav
; kn

0 �
�n
rav

;

J1��n� � 0; J1
0��n� � 0;

(A9)

and

F�p� � 2
Z 1
�1

dz1

Z z1

�1
dz2S0�z1�S0�z2�e�p�z1�z2�: (A10)

For a linear taper, we take

S0�z� �
�

1=L �L< z < L
0 otherwise:

�
: (A11)

In this case, we find

ImZ?�0� � �
2Z0"

2

�L
rav
L

X1
n�1

�2�n
L
rav
� 1� e�2�nL=rav

��2
n � 1��3

n

�
2�n

L
rav
� 1� e�2�nL=rav

�3
n

�
: (A12)

When L=rav � 1, this expression simplifies and we obtain

ImZ?�0� � �
2Z0"2

�L

�
C0 � C1

rav
L

�
; (A13)

with

C0 � 2
X1
n�1

�
1

��2
n � 1��2

n
�

1

�2
n

�
�

1

2
; (A14)

C1 �
X1
n�1

�
1

��2
n � 1��3

n
�

1

�3
n

�
� 0:900: (A15)

In this manner we confirm the result derived earlier in
Eq. (2.28):

ImZ?�0� � �
Z0"

2

�L

�
1� 0:18

rav
L

�
: (A16)
1While both integration limits are variable, usually there is no
need to adjust the lower one. As for smax we usually set it so that
the oscillations in the long range wake are down to a fraction of a
percent of its maximum value. We used a trapezoidal method for
the integral in Eq. (B2). One obtains the same value for Z?�0�
using built-in Fourier transform in ABCI provided data window-
ing option is disabled.
APPENDIX B: DETAILS OF ABCI CALCULATIONS

1. Preliminaries

For our ABCI calculations we have chosen a basic piece-
wise linear tapered structure shown in Fig. 2. As ABCI

requires equal cross sections of the input and output pipes
[4], we utilized a dual taper. Since we are studying the
impedance of a taper (rather than possible interference
between two tapers) we have chosen the length of the
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middle section g to be long enough to assure that its
lengthening does not affect the results. In other words,
this geometry is suitable for studying the regime of two
separate steps. Also, we have chosen long enough outer
pipes to not affect our results. Our initial calculations [9]
were performed for a concave structure, i.e., with an outer
pipe radius larger than that of the midsection. For the
present paper we ended up switching to a convex structure
(Fig. 2), which (due to some unimportant systematic ef-
fects of ABCI code) has generally allowed us to use a more
coarse mesh. However, we did confirm that in the limit of
vanishing mesh size the results for the zero-frequency
impedance for convex and concave configurations are es-
sentially the same, which is consistent with the physical
intuition.

2. Calculating zero-frequency impedance

Being a time domain code, ABCI does not find the
impedance directly but rather computes the values of the
wake potential (in units of V=pC=m) on a mesh extending
some distance smax behind a Gaussian bunch of rms length
�z. While the wake-potential and the zero-frequency trans-
verse impedance are simply related by

Z?�0� �
1

c

Z 1
�1

dzW�z
? �z�; (B1)

it took some effort to develop a reliable algorithm for
choosing the mesh size, rms bunch length �z, and integra-
tion limit smax such that the quantity we extract from the
ABCI using

Z?�0� �
1012

c

Z smax

�5�z
dzWABCI

? �z� (B2)

accurately represented the low frequency impedance of the
tapered structures under consideration.1

One of our consistency checks is illustrated in Fig. 5
where we plot ABCI wake potentials for a fairly gradual
tapered structure. The interaction of a bunch having �z in
cm-range with this structure is expected to be well within
the Yokoya regime. It is seen that apart from the shortest
bunch length, �z � 0:3 cm, the wake potentials pretty well
line up with the driving bunch and are predominantly of
Gaussian shape, i.e., they correspond to purely inductive
impedance. Furthermore, while the length of the drive
bunch varies by more than an order of magnitude, scaled
wake potentials overlay quite well on top of each other. In
fact, the areas under the curves in Fig. 5 are within a
1-7
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fraction of a percent of each other,2 indicating constant
impedance vs frequency.

Therefore our procedure is consistent at least in the
range of �z considered. For calculations in this paper, we
used rms bunch length of 1–10 cm and for many structures
the results were confirmed for several values of �z.

3. Mesh size

It is well known that calculations of gradually tapered
structures require very fine mesh. Some considerations on
the choice of mesh size specific to ABCI code are presented
in [4]; however they do not directly apply to the low
frequency regime we consider. Newer codes have been
written in part to specifically reduce the need for extremely
fine mesh [10,11]. We believe that we found a reliable
algorithm for using ABCI to determine the zero-frequency
impedance without resorting to extremely fine mesh, which
is described below.

For every ABCI run, we fixed the radial and longitudinal
mesh sizes to be equal to each other and made sure that the
principle dimensions of the structure (rmin, rmax, 2L) divide
evenly into this mesh size. Refining the mesh we observed
linear decrease of impedance as defined by Eq. (B2) that
continued down to the finest mesh we could afford. For one
particular geometry, this is illustrated in Fig. 6. The mag-
nitude of the slope did vary with geometry, specifically a
larger slope occurred for more gradual tapers, however the
linear decrease with mesh size was observed for every
structure calculated. On top of that, for several geometries
we have independently confirmed this behavior with a 3D
time domain code GDFIDL [12], which has shown very good
2This does include the �z � 0:3 cm curve, which however had
to be integrated to smax � 67�z where ringing becomes
negligible.
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agreement with ABCI. We believe that this linear decrease
is physically meaningful, and that its extrapolation to zero
mesh gives a good estimate of zero-frequency impedance.

In order to take full advantage of this observation, we
adopted the following approach. Depending on the overall
size and the taper angle of the structure, the initial mesh
size was chosen in the range of 200–500 �m. It was
subsequently refined by a factor of 2, until the ABCI results
given by Eq. (B2) for two consecutive mesh sizes agreed to
5% or better. Once this condition was satisfied, we linearly
interpolated the two latest results to zero mesh size, which
was then taken as the final result for each structure (Zfinal in
Fig. 6) and reported through the rest of the paper.
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