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Self-consistent study of space-charge-driven coupling resonances
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In this paper we present a comprehensive analysis of the self-consistent, collective behavior associated
with the space-charge-driven (Montague) coupling resonance near 2Qx � 2Qy � 0, including the effect of
linear coupling. Based on analytical work and particle-in-cell simulation in the 2D coasting beam limit,
we derive scaling laws for stop-band widths and growth rates, which may be applied to circular machines
as well as to linear accelerators. For slow crossing of the stop bands, we find a strong directional
dependence. In the case of crossing from below—assuming that the rising tune pertains to the direction, in
which the initial emittance is the larger one—the emittance exchange is a smooth and fully reversible
process. For crossing from above, we encounter a discontinuous behavior, which disappears largely, if an
external linear coupling is applied.
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I. INTRODUCTION

Emittance coupling due to space charge is known to be
most effective near the fourth order resonance condition
2Qx � 2Qy � 0. It was first analyzed in connection with
circular accelerators in the frame of a single-particle ap-
proximation by Montague [1], with the conclusion that the
resonance should be avoided by sufficient splitting of the
tunes. In a number of operating or newly planned high-
current synchrotrons, like the SIS-100 for the FAIR-project
at GSI [2], tunes are not split by an integer. Hence, a
detailed knowledge of the actual stop band is necessary
to define an optimum working point with regard to high-
current performance. For this reason, a detailed study of
the Montague resonance was carried out at the CERN
Proton Synchrotron in the years 2002 and 2003 [3]. It has
opened the possibility of a comparison of theory with
experimental data for bunched beams in a subject, where
both space charge and nonlinear dynamics are closely
interconnected. Such a benchmarking [4] is a complex
undertaking, which eventually requires including 3D ef-
fects (synchrotron motion) and the fully nonlinear lattice of
the accelerator.

The space-charge-induced emittance coupling is not
only important for synchrotrons, but also for high-current
linear accelerators as shown in Ref. [5]. There, the ex-
change can happen between the transverse and longitudinal
degrees of freedom known as ‘‘equipartitioning.’’

For an in-depth theoretical understanding, it is important
to realize that the Montague resonance is not just a single-
particle resonance phenomenon. The effect of space
charge, instead, is evolving in time, which requires a
self-consistent modeling. In order to explore the under-
lying collective phenomena several self-consistent
particle-in-cell simulation studies have been carried out
address: I.Hofmann@gsi.de
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primarily in 2D, but also with some 3D aspects on a short
time scale [6,7].

The present study is yet confined to the purely 2D coast-
ing beam problem with the aim of offering a comprehen-
sive treatment of the various linear and nonlinear features
of this space-charge coupling resonance, including the
important interaction with linear coupling. We present
theoretical as well as practical aspects, including scaling
laws and time scales. We proceed as follows: In Sec. II we
give an overview of typical examples of emittance cou-
pling in both constant and alternating gradient focusing,
which is in part (constant focusing) reviewing earlier re-
sults . In Sec. III analytical scaling expressions for stop-
band widths and growth rates are compared with simula-
tion results. Section IV is dedicated to the dynamical
behavior for slow stop-band crossing and the question of
reversibility. In Sec. V we discuss the modifications arising
from the combined effect of the Montague resonance and
additional linear coupling by adding skew quadrupoles to
the lattice. Note that throughout the paper results are dis-
cussed in terms of the rms emittances (even if rms is not
explicitly said); also, beams with different distribution
functions are always understood as rms equivalent.

II. BASIC FEATURES

A. Parameters

In the following we define a ‘‘standard case’’ for a
specific set of parameters, which has been typical for the
experiments at the CERN proton synchrotron (PS) (ignor-
ing synchrotron motion). Here it is worth noting that in the
coasting beam case the physics can be described com-
pletely by three dimensionless quantities, the emittance
ratio, the space-charge tune shift, and the relative position
of the working point within the space-charge-induced stop
band. For our standard example we have thus assumed a
fixed vertical working point Q0;y � 6:21 and an emittance
ratio of �x=�y � 3, while the absolute values of initial
2-1 © 2006 The American Physical Society
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FIG. 2. (Color) Time evolution of rms emittances for Q0;x �
6:207 and Q0;x � 6:21.
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normalized rms emittances are chosen as �x �
2:5� mm-mrad and �y � 7:5� mm-mrad. These units
will be also used in all figures below. The current is set
to yield a maximum vertical tune shift of �Qy � 0:105 in
the center of a Gaussian distribution. This leads to a
maximum horizontal tune shift of �Qx � 0:061 for the
given emittance ratio. Results are obtained with the
MICROMAP-code [8] employing 50.000 particles and a
128� 128 grid with conducting boundary conditions on a
square box of width 6 times the horizontal rms size of the
beam.

Note that for applying the results of this paper to linear
accelerator applications, where the coupling may occur
between the transverse and longitudinal degrees of free-
dom, it is necessary to identify x with ? and y with k , if
�? > �k; or x with k and y with? , if �k > �?. Simulation
examples supporting this analogy are given in Ref. [7].

B. Time evolution

The time behavior for different working points of the
standard case under the assumption of a constant focusing
and Gaussian input distribution is shown in Fig. 1. The rms
emittance exchange (in units of � mm-mrad in this and all
following figures) increases, if Q0;x is chosen closer to
Q0;y. The rapid initial exchange is followed by emittance
oscillations, which are slowly damped.

For tunesQ0;x very close toQ0;y, the two emittances may
shoot over their arithmetic mean. In Fig. 2 this occurs for
Q0;x � 6:207 at turn 83. The following emittance oscilla-
tions persist nearly undamped for thousands of turns. No
damping at all is found for Q0;x � Q0;y � 6:21, where a
periodic emittance exchange is found—similar to that in a
lattice with linear coupling from skew quadrupoles. For an
uncoupled lattice as considered here this phenomenon is
the ‘‘self-skewing’’ discussed in Refs. [7,9]: A space-
charge linear coupling force is induced by an—arbitrarily
FIG. 1. (Color) Time evolution of rms emittances for Q0;x �
6:19; 6:20.
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small—initial beam rotation, which gets self-amplified in
a resonance band (see also Sec. III A). The amplification is
caused by exponential instability driven by space charge
and the initial emittance imbalance.

A remarkable feature is the invariance of the sum of rms
emittances, which is found constant within �10�3 for all
cases studied here. With linear space charge and linear
coupling, exact invariants are known to exist as was shown
in Refs. [10,11]. It is not obvious why the nonlinear
resonant processes present here keep the sum of emittances
so highly invariant—an issue that requires further study.

C. Simulation of stop bands

In Fig. 3 we show the final rms emittances by varying
Q0;x in small steps. The plotted values, where each marker
is a simulation with different Q0;x, are defined here and in
all subsequent figures as averages of the rms emittance
values between turn 1000 and 2000. This gives a good
measure of the saturation stage, except for the case Q0;x �
6:21, where there is no saturation.
FIG. 3. (Color) Final rms emittances for variable Q0;x and con-
stant focusing.
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FIG. 4. (Color) Zoomed region comparing final emittances for
constant (full markers) and periodic focusing (void markers).

FIG. 5. (Color) Final rms emittances for KV-distribution and
constant focusing.
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In order to justify the use of constant focusing for the
present study, we have compared it with (linear) periodic
focusing as shown in Fig. 4, where the linearized alternat-
ing gradient lattice of the CERN PS was used. The differ-
ence is negligible almost everywhere in the stop band,
which can be understood by the fact that what matters is
not the instantaneous phase advance, but that averaged
over many lattice periods. In a small region just below
Q0;x � Q0;y � 6:21, where the behavior is highly sensitive
to tunes, we find that the overshoot is more pronounced for
the periodic focusing case.
FIG. 6. (Color) Growth rates N�1
� for collective modes of KV-

distribution.
III. SCALING LAWS

A. KV-beam reference case

The specific differences between a waterbag and a
Kapchinskij-Vladimirskij (KV)-distribution have already
been discussed in Ref. [7]. A main point is that for non-KV
distributions the fourth order space-charge potential driv-
ing the coupling is already present in the initial distribu-
tion, hence the emittance exchange starts immediately as
seen in Figs. 1 and 2. For the KV-distribution, instead, the
initial density is practically uniform, except for statistical
fluctuations due to random initial seeds, which induce
infinitesimally small space-charge multipoles. In
Ref. [12] such small initial perturbations have been studied
analytically using the linearized Vlasov’s equation. As a
result it was found that the noise-induced multipole oscil-
lations may grow exponentially provided that emittances
are unequal (‘‘anisotropy’’ as ‘‘free energy’’ source) and
that the tunes are sufficiently close to a resonance condition
nQx �mQy � 0, where jnj � jmj � 4. The unstable
eigenmodes are driving the emittance exchange. Hence,
for initial KV-beams the ‘‘Montague resonance’’ also ex-
ists, but with the modification that nonlinearity and reso-
nant coupling start entirely from initial noise with
exponential self-amplification by instability. In fact, the
stop-band widths and the quantitative amount of emittance
05420
exchange are very similar as is shown in Fig. 5 for constant
focusing.

This suggests that the analytical Vlasov theory results
for KV-beams may be considered as a basis for deriving
scaling laws for stop-band widths of more general
distributions.

Before doing so, we compare the findings of Fig. 5 with
the analytical Vlasov theory. For modes up to fourth order,
where ‘‘order’’ describes the power of the terms in x; y in
the perturbed space-charge potential, the growth rates of
different modes can be calculated as function of tunes by
using the dispersion polynomials of Ref. [12]. There, the
exponential growth rates are expressed in units of betatron
tunes as =!=Q0;y. Results are shown in Fig. 6 for constant
focusing and using the parameters of Sec. II A. For conve-
nience—to facilitate application to rings as well as lin-
acs—we express the calculated rates as inverse of the
number of (zero space charge) betatron periods, N�, re-
quired to obtain one e-folding of amplitude growth by
using the relationship
2-3
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N�1
� � 2R�

=!
Q0;y

; (1)
where 2R� is the ring circumference, or, more generally,
the distance over which the tune is defined. In each order
‘‘even’’ and ‘‘odd’’ modes must be distinguished, relating
to the x-y symmetry: in second order the even modes are
envelope oscillations (with terms x2 and y2 in the space-
charge potential), whereas the odd modes are linear cou-
pling modes (with terms xy), and similar in higher orders.
Furthermore, the unstable modes can be classified in two
categories distinguished by different size markers: small
markers relate to oscillatory KV-instabilities (Re! � 0),
larger markers to nonoscillatory instabilities (Re! � 0). In
Ref. [7] it is postulated and confirmed by a set of simula-
tions that the oscillatory instabilities are an artifact of the
KV-distribution, which is absent for monotonically de-
creasing distribution functions. The nonoscillatory insta-
bilities, however, are of concern for all distributions,
whether KV or non-KV. Hence, the oscillatory solutions
in Fig. 6 should be ignored whenever monotonically de-
creasing distribution functions—like waterbag or
Gaussians—are considered, which is the case here. For
completeness we point out that ‘‘nonoscillatory’’ is related
here to the observation that the initial collective perturba-
tion is purely growing, and collective oscillation—at the
scale of the relatively fast betatron frequencies—is absent.
The applicability of N� as measure for the time needed for
emittance exchange, which is part of the nonlinear rather
than the linear evolution, is deferred to Sec. III C.

The full stop-band width suggested from the region of
nonvanishing growth rates in Fig. 6 is in excellent agree-
ment with the simulation stop-band width of Fig. 5. It is
also noted that in Fig. 6 all growth rates vanish at the point
Q0;x � 6:188, where—for our parameters—the condition
Qx � Qy holds. This agrees with the absence of emittance
exchange at the same point in Fig. 5. It is a peculiarity of
the KV-case that for tunes smaller than this value the
emittance exchange is in the ‘‘wrong’’ direction, i.e., the
final emittances are even more apart than the initial ones.
This ‘‘antiequipartition’’ is only found for the KV-
distribution; it appears to be connected with the left branch
of the oscillatory fourth order even mode in Fig. 6, which is
a so-called ‘‘negative energy oscillation’’ [12]. We also
notice in Fig. 6 that for values of Q0;x beyond the point
Qx � Qy a second order odd (nonoscillatory) mode insta-
bility exists, which extends exactly up to the point, where
Q0;x � Q0;y. Note that in this ‘‘self-skewing band’’ the
condition Qx > Qy and simultaneously Q0;x < Q0;y ap-
plies, which expresses that the direction of stronger applied
focusing is reversed by space charge. The self-skewing
instability was already discussed in the simulations of
Sec. II B, where it was, however, observed only at the point
Q0;x � Q0;y.
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Based on this reasoning we define an ‘‘effective stop
band’’ from the analytical theory by considering only the
region, where the nonoscillatory modes have nonvanishing
growth rates. Our simulations, carried out for a diversity of
emittance ratios and intensities, fully confirm that the so-
defined stop band describes the tune range, where Gaussian
as well as waterbag beams show emittance coupling. We
can, therefore, make use of the analytical theory to derive
scaling laws for stop-band widths applicable to general
beam distributions, which will be presented in the follow-
ing section (and similar for the growth times in Sec. III C).

B. Stop-band width scaling

In spite of the high complexity of the algebraic expres-
sions for dispersion relations of the coupling modes, in
particular, in fourth order, we have found from numerical
solutions of the dispersion polynomials that surprisingly
simple scaling laws exist for the stop-band widths. For
calculating the width of the region, where the nonoscillat-
ing KV-modes have finite growth rates (the effective stop
band), we proceed as follows. Here we find it convenient—
with reference to both ring and linac applications—to
express the stop-band width in terms of the ratio of
space-charge depressed tunes as variable. As a useful scale
for the required full stop-band width we take the width of
the above introduced ‘‘self-skewing band,’’ which is easily
expressed in this variable as

� � �Qx=Qy	Q0;x�Q0;y
� 1: (2)

This is easily rewritten by introducing the relative tune

shifts g�Qy � �Qy=Q0;y for normalization:

~� �
�

g�Qy

�

���
�
p
� 1r

���
�
p

1�g�Qy�r

: (3)

Here we have used �r � �x=�y and the relationship

�Qy=�Qx �
�����
�r
p

: (4)

Figure 6 suggests that the above introduced effective stop
band has a width, which is about 1.5 times that given by
Eq. (2). In order to check whether such a factor also applies
to other choices of parameters, we introduce it as gw in the
expression for the ‘‘effective stop-band’’ width, e.g.

~� eff � gw

���
�
p
� 1r

���
�
p

1�g�Qy�r

: (5)

For the results shown in Fig. 7 we have first determined ~�eff

by solving the dispersion relations as in Fig. 6. Using
Eq. (5) we have then calculated gw, which is plotted for
a wide range of emittance ratios as well as relative tune

shifts. The latter are indicated by the value of g�Qy. Note

that the smaller values of g�Qy relate to circular machines,
and the larger values to linear accelerator applications.
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FIG. 8. (Color) Simulation result for normalized ‘‘emittance
exchange rates’’ as a function of Q0;x and �r � 3

FIG. 7. (Color) Numerical results for gw as a function of emit-
tance ratio, and for different values of (relative) space-charge
tune shift.
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This confirms that gw � 3=2 can be used as a universal
value describing the effective extent of the stop band to the
left of the point, where Q0;x � Q0;y. We assume that the
jitter of gw in Fig. 7 is related primarily to rounding errors
in determining solutions of the high order polynomials in
the dispersion relations, especially for �r ! 1.

For small tune shifts, as in circular machines, it is
convenient to replace the width in the tune ratio by the
equivalent width, �, on the scale Q0;x. Using the relation-
ship

~� �
�

�Qy
; (6)

we may rewrite Eq. (5) in the form

�eff �
3
2


�����
�r
p
� 1��Qx: (7)

We note that �Qx is introduced here as space-charge tune
shift of an equivalent KV-beam, which is half the maxi-
mum tune shift of a Gaussian beam. Also, �r > 1 is under-
stood here; if �r < 1 Eq. (7) still holds if x is consistently
replaced by y.

To illustrate the applicability of these analytical results
to the particle-in-cell simulations, we observe that Eq. (7)
predicts for the case of Fig. 3 the left edge of the stop band
at 6.177. This agrees with the extent of the region of
‘‘significant’’ exchange, if we disregard the points, where
� 5% of the maximum possible exchange occurs. The
agreement is found equally good for other parameters.

C. Growth rate scaling

By using the dispersion polynomials of Ref. [12], we
have calculated numerically the maximum theoretical
mode growth rates N�1

� (shown in Fig. 6 for one example)
for the same set of parameters as in Fig. 7. We have found
that these rates follow the same trend in their dependence
on �Qx and �r as the stop-band widths and therefore
postulate a similar scaling expression
05420
N�1
� � 2�gr


�����
�r
p
� 1�

�Qx

Q0;x
: (8)

For the proportionality factor gr, we find that the value 1=2
provides a good fit, which is accurate to within less than
5% deviations for the whole range of parameters consid-
ered. Note that, as introduced in Sec. III A, N� is under-
stood here as number of betatron periods needed to
complete one e-folding of the underlying eigenmode am-
plitude. We find that a case distinction between large and
small �Qx, as in Eqs. (5) and (7), for the stop-band width,
is unnecessary here.

As mentioned in Sec. III A, a direct comparison of these
eigenmode growth rates with an actual ‘‘emittance ex-
change rate’’ for non-KV-beams is conceptually not
straightforward. The mode growth rates result from small
perturbation Vlasov theory, hence there is exponential
growth, whereas the emittance exchange of Gaussian
beams occurs largely in a nonlinear stage—due to the
already very nonuniform initial density profile—which
leads to a more linear time dependence. In order to evaluate
the latter from simulations we define a simulation based
emittance exchange rate, Nex, in the following way: we
determine the number of betatron periods, �Nmin, where
the first minimum of �x occurs with a corresponding re-
duction by ��min, calculate the corresponding slope, and
normalize it on half of the initial emittance difference,
hence

N�1
ex �

2��min

�Nmin
�x � �y�
: (9)

In Fig. 8 these rates are shown as function of Q0;x for the
case of Fig. 3.

The maximum of this rate is 0.004 67 at the tune Q0;x �
6:20, which corresponds to 214 betatron periods, or 34
turns for full emittance equalization (equipartition). As
far as the dependence on the space-charge tune shift we
have found from simulation runs at different intensities that
2-5
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N�1
ex / �Qx=Q0;x holds. Also, Nex depends only on the

emittance ratio, �r, and not on the absolute value of emit-
tances. The dependence on �r in Gaussian beam simula-
tions is actually found weaker than predicted by Eq. (8). In
the range 1:5 � �r � 3 a good fit to the simulation results
is given by the simple expression, where �Qx is referring
to the equivalent KV-beam tune depression:

N�1
ex �

�Qx

Q0;x
: (10)

In a high-current linac with 50% tune depression by space
charge, for example, hence �Qx=Q0;x � 0:5, this suggests
that the fastest exchange requires two (undepressed) beta-
tron periods only.
FIG. 10. (Color) Final emittances after crossing Q0;x � 6:15!
6:27 at variable rates.
IV. DYNAMICAL CROSSING OF RESONANCES

In the previous sections we have explored emittance
coupling for fixed working points and found that
Gaussian beams settle down to a new equilibrium, where
the final emittances have come closer to each other (except
for the periodic exchange for Q0;x � Q0;y). This ‘‘static’’
case is substantially different from the case, where emit-
tance equalization is achieved by slowly moving the tune
across the resonance—the ‘‘dynamical’’ case.

A. Reversible and irreversible emittance exchange

For dynamical crossing we use the standard case of
Fig. 3 and move the working point Q0;x starting from the
side of lower tunes over the range 6:15 � Q0;x � 6:27
enclosing the stop band. For this crossing ‘‘from below’’
we apply a linear tune ramp in time. In Fig. 9 we show the
evolution of emittances as function of the instantaneous
tune for two cases, where the crossing of the same tune
range is performed in 100, respectively, 1000 turns.

It is noted that for the 100 turns case the final emittances
are practically equal; for the 1000 turns case the final
FIG. 9. (Color) Evolution of emittances by crossing the stop
band dynamically from below over 100 and 1000 turns.
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emittances are basically exchanged with the initial
emittances.

A more complete picture of the final result after crossing
the band at variable ramp times is shown in Fig. 10.

Note that the 100 turns case, where the final emittances
result as equal, is a dynamically achieved equipartition. In
this case the essential part of the stop band in Fig. 3, which
has a tune width of 0.04, is crossed in 33 turns or 205
betatron periods. This time agrees with the fastest rise time
of the static case, which therefore sets the time scale
needed for a crossing to just equalize final emittances.
Note that for faster crossing the exchange is only partial,
and for slower crossing we get the reversal of final emit-
tances. We may call the resonance crossing ‘‘adiabatic,’’ if
the final emittance exchange is close to a full reversal, i.e.,
the final �x is close to the initial �y and vice versa. We have
found that this requires a crossing time, which is about an
order of magnitude longer than that for dynamical equi-
partition. Hence, the number of betatron periods needed to
satisfy the adiabaticity condition can be approximately
written as

Nad 
 Nex; (11)

if Nex is the fastest growth of the static case as given by
Eq. (10).

Another aspect of the slow, adiabatic crossing is a kind
of ‘‘snow-plow’’ effect discussed also in Ref. [9] in the
context of pure linear coupling. The idea is that when Q0;x

reaches the stop-band edge, it always remains at the edge
of it. In other words, the emittances self-consistently move
closer to each other in such a way that the edge of the
shrinking stop band coincides with Q0;x, until the point
Q0;x � Q0;y is reached. There, the emittances are equal,
hence the stop-band width is zero following Eq. (7).
This snow-plow effect is thus a direct consequence of the
emittance-dependent detuning curve described by Eq. (7).
In fact, we can retrieve to good accuracy the emittance
2-6



FIG. 12. (Color) Final emittances after double crossing with
Q0;x � 6:15! 6:27! 6:15 at a variable number of turns (re-
lated to one direction).
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coupling shown in Fig. 9 by simply resolving Eq. (7) for
�r, noting that �Qx also implicitly depends
on �r.

Here it may be asked, where the memory of the initially
unequal emittances is stored, when the rms emittances are
equalized atQ0;x � 6:21, but return to the inverted ratio for
Q0;x > 6:21. Obviously, the phase space distribution at
Q0;x � 6:21 cannot be that of an equipartitioned
Gaussian, for which theory predicts full absence of any
resonant exchange. By inspecting various projections into
coupled phase planes we find that a strong correlation with
fourfold symmetry exists in the x-y0 plane (similarly in the
y-x0 plane), which reflects the nature of the underlying
octupolar space-charge coupling and the initial emittance
imbalance. This is shown in Fig. 11, where the comparison
with the 100 turn crossing gives evidence for the absence
of this clear correlation due to the faster crossing.

In fact, our study suggests that for this slow crossing the
phase space distribution is continuously matched to the
underlying nonlinear Hamiltonian at all tune values, if it
was initially matched for a tune far from the resonance.
The nonlinear Hamiltonian here is the superposition of the
linear lattice part and the self-consistent nonlinear space-
charge potential. For completeness we note that this four-
fold correlation is entirely absent, if the initial emittances
are chosen equal.

The above described ‘‘adiabatic crossing’’ is also a
reversible process, in spite of the nonlinear nature of the
underlying motion. To verify this quantitatively we have
used the output of the simulations of Fig. 10 for crossing
from below, and crossed the resonance a second time from
above, by following the mirrored tune rampQ0;x � 6:27!
6:15 with the same number of turns as in the upwards
crossing. Results shown in Fig. 12 confirm the reversibility
of the first crossing process, if the crossing is sufficiently
slow. Very fast crossing causes only small emittance
changes both ways. Crossing with the above defined rate
of dynamical equipartition shows the highest degree of
‘‘irreversibility’’—emittance equipartition is reached in
the crossing from below and maintained in the subsequent
crossing from above. Some caution is necessary here as far
as the notion of irreversibility and equipartition is con-
FIG. 11. Projection onto coupled phase planes at Q0;x � 6:21
for 100 (left frame) and 1000 (right frame) turn crossing.
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cerned. Here, equipartition does not imply that a thermo-
dynamic equilibrium state or real Gaussian distribution has
been reached. Likewise, we are not claiming that individ-
ual particle orbits are necessarily chaotic and orbit time-
reversibility—if velocities were reversed in addition to the
tune change—is violated. Our simulations only support
that macroscopic phase space correlations are destroyed,
which would allow retrieving the initial rms emittance
imbalance—a property of second order moments.

B. Crossing the resonance ‘‘from above’’

The nonlinear nature of the underlying collective space-
charge effect is strongly evidenced, if the stop band is
crossed from above by using the original emittances in x
and y. This is shown in Fig. 13 for otherwise the same
parameters as in Fig. 9. Note that crossing from above, but
with reversed initial emittances, would give the curves of
Fig. 9 just mirrored.
FIG. 13. (Color) Crossing from above at two different rates (100
and 1000 turns).
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FIG. 15. (Color) Crossing from above (zoomed tune region) at
50.000 turns.
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The slower crossing does not lead to a full exchange.
This behavior reflects the very sharp gradient near Q0;x �
6:21 as seen in Fig. 4. The 1000 turns case corresponds to a
change in tune of 0.005 within about 40 turns, hence this
crossing passes through the ‘‘overshoot’’ region between
6.205 and 6.21 in a time, which is comparable with the
fastest growth in this region according to Fig. 8. A 10 times
slower crossing (10.000 turns for the same tune span as in
Fig. 13) shows in Fig. 14 —at first glance surprisingly—
increasing oscillations, which are washed out further away
from the resonance. This behavior can also be understood
in the light of Fig. 4: in about 80 turns a tune change of
0.001 occurs, which is approximately the width of the
narrow region belowQ0;x � 6:21, where pure self-skewing
is found in the static tune case. Hence, we may assume that
the full emittance exchange oscillation seen in the simula-
tion has been picked up from the instability of the self-
skewing mode. Contrary to the crossing from below, we
see no indication that the solution follows that of a matched
nonlinear Hamiltonian.

For a still slower crossing, within 50.000 turns as shown
in Fig. 15, we find that similar emittance oscillations exist.
The first crossover of emittances is reached even closer to
Q0;x � 6:21—the system penetrates less into the unstable
parameter region. Although growth rates of the unstable
self-skewing mode are getting the smaller the closerQ0;x is
to 6.21, the achieved growth is compensated by the effect
of a much longer time available for the growth. Also, the
final emittance exchange is coming closer to 100%. We
may assume that for arbitrarily slow crossing the first
crossover point moves asymptotically towards Q0;x �
6:21, and the emittance exchange reaches the 100% level.

This behavior is consistent with the observation that for
Q0;x > 6:21 an emittance ratio �x > �y is stable, whereas
for Q0;x < 6:21 the ratio �x < �y is stable. With the cross-
ing from above the solution just ‘‘flips’’ from the unstable
solution to a stable one (with inverted emittance ratio) by
FIG. 14. (Color) Crossing from above (zoomed tune region) at
10.000 turns.
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means of the self-skewing instability. More precisely, it
performs an oscillation about the new stable solution,
which is damped, while the tune moves further away
from the resonance. Hence, once the working point enters
the stop band from above it is ‘‘attracted’’ by it: the stop
band quickly flips to the other side of Q0;x � 6:21 due to
the self-consistent emittance exchange, and the resonant
interaction ceases. A similar behavior was obtained in a
study of pure linear coupling with space charge in Ref. [9].
There, in the example of unsplit tunes (with skew quadru-
poles absent), the self-skewing mode was the only possible
source of coupling due to the use of purely second order
moment equations describing the beam.

Note that this behavior reflects the fact that the position
of the right edge of the stop band (for the assumed ratio
�x > �y) is just given by Q0;x � Q0;y, independent of the
emittance ratio. For the left edge, instead, we have the
emittance-dependent detuning, which leads to the above
discussed snow-plow effect. It implies that this edge of the
stop band is actually ‘‘repulsive’’ rather than ‘‘attractive,’’
since the tune effectively always remains at the edge.

C. Scaling invariance with intensity

We find that all graphs of Sec. IV can be directly scaled
to any other value of �Qx, if the number of turns for stop
band crossing is properly adjusted. Multiplying �Qx by a
factor �, the graphs are invariant if the band over which the
tune is swept is also expanded by� and the number of turns
for crossing—now related to sweeping over the expanded
band—is divided by �, hence the tune rate (change of tune
per turn) is multiplied by �2. This is a direct consequence
of the linear scaling of both the stop-band width and the
growth rate, with �Qx. Defining _Q as tune change per turn,
we can introduce a normalized number of turns,

� �

�Qx�

2

_Q
; (12)
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assuming that the full stop band is crossed at a constant
rate. Hence, two crossings with different rates and inten-
sities lead to the same emittances, if they agree in �. Note
that in Figs. 10 and 12 the unit of 100 turns—when
equipartition is reached—corresponds to � � 3.
Equation (12) can be also resolved for _Q. For our linac
example with �Qx=Q0;x � 0:5 this implies that for just
equipartition a tune ramp is needed, which corresponds to a
relative change of focusing of 0.08.
FIG. 17. (Color) Final rms emittances for variable Q0;x with
space-charge and linear coupling.
V. LATTICE WITH LINEAR COUPLING

Adding linear coupling by skew components in the
lattice leads to further modifications. Obviously, the emit-
tance exchange is skew-dominated, if the stop-band width
due to pure linear coupling—with the resonance condition
Q0;x �Q0;y � 0—exceeds that of the Montague reso-
nance. Here we are interested in the opposite case of large
space-charge effects, which is the more likely one in high-
current accelerators. For the discussion of the space-charge
effects on linear coupling in a purely second order approxi-
mation—suppressing the fourth order Montague reso-
nance—we refer to Ref. [9].

A. Static stop bands

Similar as in Ref. [9], we define the strength of linear
coupling by the number of turns needed for the first com-
plete emittance exchange in the absence of space charge,
Ns, which we assume here to be 200. The skew is applied
here by a single kick per turn. For the sake of clarity we
show in Fig. 16 the familiar result for ‘‘final’’ rms emit-
tances, defined here again as averages as in Sec. II C. The
actual stop-band width (FWHM) is � 0:005 in our ex-
ample ( � 15% of that of the Montague resonance), hence
we are in the limit of weak skew relative to space charge.

Combining space charge with the so-defined skew, we
obtain a modification of Fig. 3 as shown in Fig. 17, which
indicates a clearly split picture: The very sharp gradient is
FIG. 16. (Color) Final rms emittances for variable Q0;x with only
linear coupling (no space charge).
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replaced above Q0;x � 6:21 by the skew-specific exchange
nearly identical to Fig. 16, whereas below Q0;x � 6:21 we
retrieve the response as in the absence of skew. Note that
the left edge of the stop band is hardly influenced by the
skew, which is due to the fact that the Montague resonance
dominates over the effect of skew, except for the region
above Q0;x � 6:21.

B. Dynamical crossing

This behavior has an impact on dynamical crossing. We
first show results in the absence of space charge in Fig. 18.
It is expected that for effective emittance exchange the
actual linear coupling stop band should be crossed in more
than Ns turns. In our example, the linear coupling stop
band is 5% of the scanned tune window, hence effective
emittance exchange would require that this window is
crossed in more than 4000 turns. This is well confirmed
by Fig. 18, where the exchange is nearly complete with
5000 turns, while a 1000 turn crossing hardly reaches
equipartition (crossing in 100 turns makes �x drop by
FIG. 18. (Color) Evolution of emittances by dynamical crossing
over 1000 and 5000 turns, only linear coupling (no space
charge).
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FIG. 21. Projection onto x-y plane at Q0;x � 6:21; crossing
from below (left frame) and from above (right frame) over 1000
turns.

FIG. 19. (Color) Dynamical crossing from below over 100 and
1000 turns, linear coupling, and space charge.
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less than 10%). Note that the direction of crossing is
irrelevant without space charge.

Including space charge, we show in Fig. 19 that the
crossing from below is only very weakly modified by the
skew (compare with Fig. 9). This is fully consistent with
the snow-plow effect, if we note that the left edge of the
stop band is actually controlled by the effect of space
charge and not by the skew.

For crossing from above we find a different result. The
split response on the right edge of the stop band has the
effect that the exchange starts as a result of the skew effect
and space charge enhances it, in fact the combined effect of
skew and space charge exceeds by far the coupling effi-
ciency of either one. In Fig. 20 it is seen that even the fast
crossing in the 100 turns case leads to almost equipartition,
whereas without space the exchange (not shown here) was
found below 10%. The 10 times slower crossing (1000
turns) gives almost a full exchange of emittances due to
the space-charge enhancement of the pure skew effect. For
much slower crossing from above, the exchange is entirely
controlled by the skew effect, which then justifies applying
FIG. 20. (Color) Same as Fig. 19 with crossing from above (100
and 1000 turns).
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the zero-space-charge theoretical modelling of skew ex-
change as derived in Ref. [13].

The same scaling invariance of all graphs with �Qx is
found as in Sec. IV C, if the skew strength is also multiplied
by �.

The fundamental difference in the crossing from below
and above is also seen by analyzing the scatter plots at the
symmetry point Q0;x � 6:21 shown in Fig. 21 for the 1000
turns cases.

The crossing from below shows practically the same
result as without skew: no correlation in seen in x-y,
whereas in the x-y0 plane the same pronounced fourfold
correlation pattern is found as in Fig. 11, which confirms
that the exchange is entirely controlled by the Montague
fourth order space-charge effect. For the crossing from
above, instead, one finds a correlation in real space in
terms of a 45� rotation of the beam. Such a physical
rotation (on resonance) is the typical behavior for linear
coupling in the absence of space charge. This rotation also
explains the above described enhancement effect by space
charge: the space-charge self-skewing is an instability
process, which requires an initial start—here induced by
the external skew rotation—to become effective.

The case of split tunes with skew quadrupoles and space
charge is studied in Ref. [9]. It is controlled by the external
linear coupling—modified by space charge, while self-
skewing and Montague resonance effects are absent. The
crossing from below results in a similar smooth and space-
charge dominated emittance exchange as in the present
study. The crossing from above, however, shows a discon-
tinuous feature, independent of how slow the crossing is.
This is explained again by the observation of stop-band
attraction: the starting emittance coupling quickly pushes
the stop band over the working-point, and the exchange
ceases.
VI. CONCLUSION

The space-charge-driven ‘‘Montague’’ coupling reso-
nance reveals collective and nonlinear behavior, for which
emittance-dependent detuning caused by space charge
plays an important role. We have shown that a comparison
-10
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with the unstable mode spectra from the analytical theory
of KV-beams allows quantifying this detuning and the
associated stop bands and growth rates. Space charge and
the emittance-dependent detuning determine the lower
edge of the stop band (for �r > 1, otherwise reversed);
whereas the upper edge is given by the fixed condition
Q0;x � Q0;y. We find that this asymmetry also gives rise to
a strong directionality for dynamical resonance crossing,
with adiabatic and reversible behavior for slow crossing
from below, but discontinuous behavior for crossing from
above (repulsive, respectively, attractive edges). The dis-
continuous behavior can be removed by a sufficiently large
linear coupling, which makes the crossing from above
entirely skew dominated, whereas the crossing from below
remains space-charge dominated. In future work it should
be explored how this asymmetry behaves, if additional
time-dependent and possibly irreversible effects are in-
cluded, like intrabeam scattering or synchrotron motion.
One may also expect that the memory effects in the corre-
lated phase space, which lead to adiabatic and reversible
behavior, get washed out if the crossing occurs in a time
much longer than the intrabeam scattering or synchrotron
oscillation time scale. Preliminary simulations shown in
Ref. [14] give some evidence for such a memory
extinction.
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