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Numerical computation of high-order transfer maps for rf cavities
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Modern map-based accelerator beam-dynamics codes model magnetic elements so as to include
nonlinear effects and realistic fringe fields, but they persist in modeling rf cavities as either energy kicks
or linear maps. This work presents a method for including the nonlinear effects of rf cavities in a map-
based code.
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I. INTRODUCTION

Techniques now exist for constructing accurate transfer
maps for very general magnetic elements, including
fringes and overlapping fields [1–3]. For radio-frequency
(rf) cavities, however, current modeling practices usually
compute transfer maps as either energy kicks that vary with
cavity phase, e.g. [4], or linear maps [5]. Both approaches
omit significant physics: Using just an energy kick ignores
the transverse particle dynamics important in, for example,
high-gradient rf linear accelerators [6,7], rf cavities that
contain axial asymmetries [8,9], or rf cavities designed for
purposes other than acceleration [10–13]. Using a linear
map in a z-based code implies the absence of second-order
energy variation—important when accelerating near peak
voltage. The work described here aims to place the treat-
ment of rf cavities on the same footing as the present
treatment of magnetic elements in modern nonlinear
beam-dynamics codes.

Rosenzweig and Serafini [6] presented a generalized
matrix approach—generalized in the sense that phase
information is included in the matrix entries—for ultra-
relativistic particles in an axisymmetric and periodic rf
cavity. Van Zeijts [14] brought to bear the power of
Hamilton’s machinery [15]. The advantages of this ap-
proach include the fact that computing transfer maps to
high order can be automated; other fields—from nearby
magnets or other cavity modes—can easily be superposed;
and the inclusion of axial asymmetries is straightforward.

To compute transfer maps for rf cavities, one must know
the vector potential; in particular, one must have a trans-
verse expansion of the vector potential at many longitudi-
nal locations. One may construct the coefficients of such an
expansion from the on-axis field and its derivatives. For a
realistic cavity, however, the on-axis field is known only
from experimental measurement or electromagnetic simu-
lation, and numerically computed derivatives become in-
creasingly suspect as the order increases. This paper
describes a method for computing robustly and to high
order the coefficients in the transverse expansion of the
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vector potential for a given rf cavity. Moreover, the tech-
nique uses Fourier transforms (as opposed to Fourier se-
ries), so it makes no implicit assumption about the
periodicity of the rf structure and therefore correctly mod-
els the fringe fields.

Section II outlines very briefly the computation of trans-
fer maps. Section III describes a general expansion for the
fields of an rf cavity and how to obtain expansions from
surface field data. Section IV presents a model for a
realistic rf cavity, including fringe fields, for which fields
may be computed by a straightforward quadrature. It then
uses the model to test the method of this paper. Section V
shows results based on data from an electromagnetic simu-
lation. This paper concludes with a summary. A sequel to
this paper will present the results of computing transfer
maps and using them to describe particle motion in rf
cavities.
II. COMPUTATION OF TRANSFER MAPS

For only a handful of dynamical systems can one com-
pute a transfer map in closed form. In all other cases one
must resort to approximations. For Hamiltonian systems
there exists a well-developed calculus, using methods of
Lie algebra, for computing transfer maps to high order
[15,16]. It rests on the fact that maps for such systems
must be symplectic. Here we give a very brief overview.

First, define for any function f of dynamical variables,
coordinates q and momenta p, an associated Lie operator
:f: by the rule that it acts on any other such function by
taking a Poisson bracket:

:f:g � �f; g� �
Xn
i�1

�
@f
@qi

@g
@pi
�
@f
@pi

@g
@qi

�
:

Then powers of this Lie operator, naturally enough, we
define by iteration:

:f:0g � g; :f:1g � �f; g�; :f:2g � �f; �f; g��;

:f:3g � �f; �f; �f; g��� � � � :

Finally, the corresponding Lie transformation is the opera-
tor
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e:f: �
X1
k�0

1

k!
:f:k � 1� :f:�

1

k!
:f:2 � � � � :

These operators have the very special property that for any
dynamical function f, the Lie transformation e:f: consti-
tutes a symplectic map. Moreover, the degree of the map
generator f is associated with the degree of nonlinearity in
the map: A homogeneous polynomial of degree two, com-
monly denoted f2, gives rise to a linear map; while a
homogenous polynomial of degree n � 3, an fn, gives
rise to a map that in Taylor series form possesses nonlinear
terms of degree n� 1 and higher. The Dragt-Finn factori-
zation theorem [17] shows that, for Hamiltonian systems, a
transfer map M possessing a convergent Taylor series
expansion may also be written as a (usually infinite) prod-
uct of Lie transformations, where each succeeding genera-
tor is of successively higher degree: e:f2:e:f3:e:f4: � � � .
Much effort has gone into the building of computer codes
that can construct, concatenate, analyze, and apply transfer
maps in this form [4].

One may write Hamilton’s equations in the form

_z � �z;H� � �:H:z:

IfH does not depend on time, the integration is immediate:

z	t
 �M	t
zi � e�t:H:zi:

One may then use standard techniques [15], if desired, to
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Dragt-Finn factorize e�t:H:. If H does depend on time, or
the timelike variable, then one obtains an ‘‘equation of
motion’’ for the map,

d
dt

M	t
 � �M	t
:H:; (1)

which we solve with the initial condition M	0
 equals the
identity. This equation amounts to a set of coupled ordinary
differential equations to be solved for the Lie generators fn
[18]. The computer codes MARYLIE [4] and MARYLIE/

IMPACT [19] each contain a set of routines—the GENMAP

routines—which solve the equation (1) for a given
Hamiltonian to produce a transfer map in Dragt-Finn form.

III. HAMILTONIAN FOR A RELATIVISTIC
CHARGED PARTICLE IN AN RF CAVITY

One may write the Hamiltonian for a relativistic charged
particle in electromagnetic fields, described by scalar and
vector potentials  and A, respectively, in the standard
form

H �
�������������������������������������������
m2c4 � 	p� eA
2c2

q
� e :

To use the longitudinal coordinate z, rather than the time t,
as the independent variable, one notes that the ‘‘momen-
tum’’ conjugate to t is pt � �H and then solves for pz to
determine the new Hamiltonian [15]:
H � �
���������������������������������������������������������������������������������������������������������������
	pt � q 


2=c2 � 	mc
2 � 	px � qAx

2 � 	py � qAy


2
q

� qAz:
For the purposes of constructing a transfer map, we shall
require an expansion, to arbitrary order in the transverse
variables, of this Hamiltonian, and hence of the potentials
 and A.

The electric and magnetic fields derive from the poten-
tials  and A according to

E � �r � @tA; B � r�A:

One may, of course, use an arbitrary gauge function � to
transform these potentials to

 0 �  � @t�; A0 � A�r�

without altering the fields E and B [20]. In particular, one
may choose a gauge such that the scalar potential  van-
ishes. In this gauge the electric and magnetic fields derive
solely from the vector potential:

E � �@tA; B � r�A: (2)

Moreover, assuming a simple-harmonic time dependence
for the fields, one converts the electric field E to the vector
potential A by a simple division plus a 90� phase shift. We
therefore seek an arbitrary-order expansion for the electric
field E in terms of the transverse variables. To this end, we
first develop a completely general Bessel function expan-
sion for the spatial component of a given cavity mode. We
then show how one may use surface field data—from, say,
three-dimensional electromagnetic simulations—to deter-
mine accurately the coefficients in the Bessel function
series. After expanding the Bessel functions in the trans-
verse variables, we will obtain the desired power series
expansion of E, hence also of A.

A. General representation of fields in an rf cavity

Assuming the vacuum form of Maxwell’s equations
applies to our rf cavity, we know the electric field satisfies
the homogeneous wave equation

r2E�
1

c2

@2E
@t2
� 0: (3)

Further assuming that E (hence also B) comprises a series
of standing-wave modes described by distinct angular
frequencies !l, we write

E 	r; t
 �
X
l

E	l
	r
e�i	!lt��l
; (4)

from which it follows that each spatial mode obeys the
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vector Helmholtz equation

r2E	l
	r
 � k2
lE
	l
	r
 � 0; (5)

with kl � !l=c. In addition, according to our assumptions,
each spatial mode obeys the divergence equation:
05200
r � E	l
	r
 � 0: (6)

These last two equations are the ones we seek to solve.
The components of the vector Helmholtz equation in

cylindrical coordinates have the form [21]
@2E�
@�2 �

1

�

@E�
@�
�

1

�2

@2E�
@�2 �

@2E�
@z2 �

�
k2
l �

1

�2

�
E� �

2

�2

@E�
@�
� 0; (7a)

@2E�
@�2 �

1

�

@E�
@�
�

1

�2

@2E�
@�2 �

@2E�
@z2 �

�
k2
l �

1

�2

�
E� �

2

�2

@E�
@�
� 0; (7b)

@2Ez
@�2 �

1

�
@Ez
@�
�

1

�2

@2Ez
@�2 �

@2Ez
@z2 � k

2
l Ez � 0: (7c)
[Here, and for the time being, we suppress the superscript
	l
 indexing the particular spatial mode.] Equation (7c) is
just the standard scalar Helmholtz equation for Ez, and its
solution is readily obtained in the usual manner, by sepa-
ration of variables. Since we assume the fields to be regular
along the axis, it is

Ez	r
 �
X1
m�0

Z 1
�1

dk�������
2�
p eikzRm	k; �
�~em	k
 cos	m�


� ~fm	k
 sin	m�
�: (8)

Here the ~em	k
 and ~fm	k
 denote arbitrary functions of k
which describe the particular mode in the particular rf
cavity. The radial function Rm is either a regular or a
modified Bessel function, depending on the relative values
of kl and the separation constant k. Define

sl	k
 � sgn	k2 � k2
l 
; �2

l � jk
2 � k2

l j; (9)

so that k2 � k2
l � sl	k
�

2
l . Then

Rm	k; �
 �
�
Jm	�l�
; sl	k
< 0;
Im	�l�
; otherwise:

(10)

For future reference, we note that Rm	k; �
 has the
derivative

d
d�

Rm	k; �
 � �lRm�1	k; �
 �
m
�
Rm	k; �
; (11a)

obeys the recursion relation

sl	k
Rm�1	k; �
 � �
2m
�l�

Rm	k; �
 � Rm�1	k; �
; (11b)
and satisfies the differential equation

�2 d2

d�2 Rm	k; �
 � �
d
d�

Rm	k; �


� �sl	k
�2
l �

2 �m2�Rm	k; �
 � 0: (11c)

In addition, Rm has the series expansion

Rm	k; �
 �
X1
j�0

sl	k

j 	�l�=2
m�2j

j!	m� j
!
: (11d)

Because we are working in cylindrical coordinates, the
remaining two components of the vector Helmholtz equa-
tion, (7a) and (7b), constitute a pair of coupled partial
differential equations for E� and E�. We shall write E�
and E� in the general forms

E�	r
 �
X1
m�0

Z 1
�1

dk�������
2�
p eikz�F�cm	k; �
 cos	m�


� F�sm	k; �
 sin	m�
�; (12a)

E�	r
 �
X1
m�0

Z 1
�1

dk�������
2�
p eikz�F�cm	k; �
 cos	m�


� F�sm	k; �
 sin	m�
�; (12b)

where F�cm, F�sm, F�cm, and F�sm denote radial functions
to be determined. Inserting (12) into (7a) and (7b) yields
the following two pairs of coupled differential equations:
�2
d2F�cm
d�2 � �

dF�cm
d�

� �	k2 � k2
l 
�

2 �m2 � 1
�F�cm � 2mF�sm; (13a)

�2
d2F�sm
d�2 � �

dF�sm
d�

� �	k2 � k2
l 
�

2 �m2 � 1
�F�sm � 2mF�cm; (13b)

and
1-3



DAN T. ABELL Phys. Rev. ST Accel. Beams 9, 052001 (2006)
�2
d2F�sm
d�2 � �

dF�sm
d�

� �	k2 � k2
l 
�

2 �m2 � 1
�F�sm � �2mF�cm; (13c)

�2
d2F�cm
d�2 � �

dF�cm
d�

� �	k2 � k2
l 
�

2 �m2 � 1
�F�cm � �2mF�sm: (13d)
Consider first the case m � 0, for which we need only
F�c0 and F�c0. Here, noting (9) and (11c), we immediately
identify both radial functions as proportional to R1	k; �
. In
addition, the m � 0 component of the divergence equation
(6) tells us that

d
d�

F�c0 �
1

�
F�c0 � ik~e0	k
R0	k; �
 � 0:

It follows from (11a) that

F�c0 � �
ik
�l

~e0	k
R1	k; �
: (14a)

Since the equation for F�c0 has the same form as that for
F�c0, we write F�c0, by analogy, in the form

F�c0 �
ik
�l

~f0	k
R1	k; �
: (14b)

Then an azimuthally symmetric mode has the general
representation
05200
E� �
Z 1
�1

dk�������
2�
p eikz

�
�
ik
�l

�
~e0	k
R1	k; �
; (15a)

E� �
Z 1
�1

dk�������
2�
p eikz

�
ik
�l

�
~f0	k
R1	k; �
; (15b)

Ez �
Z 1
�1

dk�������
2�
p eikz~e0	k
R0	k; �
: (15c)

For accelerating modes, of course, ~f0 � 0 and E�
vanishes.

For the remainder of this section, we assume m � 1. To
decouple the equations (13), we insert (8) and (12) into the
divergence equation (6), obtaining the constraints

dF�cm
d�

�
1

�
F�cm �

m
�
F�sm � ik~em	k
Rm	k
 � 0; (16a)

dF�sm
d�

�
1

�
F�sm �

m
�
F�cm � ik~fm	k
Rm	k
 � 0: (16b)

Using these in (13a) and (13c), we obtain separate non-
homogeneous differential equations for the radial functions
F�cm and F�sm that define E�:
�2
d2F�cm
d�2 � 3�

dF�cm
d�

� �	k2 � k2
l 
�

2 �m2 � 1�F�cm � �2ik�~emRm; (17a)

�2
dF�sm
d�2 � 3�

dF�sm
d�

� �	k2 � k2
l 
�

2 �m2 � 1�F�sm � �2ik�~fmRm: (17b)
A straightforward computation shows that

�
ik
�l

~em	k
Rm�1	k; �
 and �
ik
�l

~fm	k
Rm�1	k; �


constitute, respectively, particular solutions to (17a) and
(17b), and that

Rm	k; �

�l�

constitutes a solution to the homogeneous versions of (17)
which is regular at the origin. We therefore obtain for
F�cm	k; �
 and F�sm	k; �
 the general solutions
F�cm	k; �
 � �
ik
�l

�
~em	k
Rm�1	k; �
 � ~�m	k


Rm	k; �

�l�

�
;

(18a)

F�sm	k; �
 � �
ik
�l

�
~fm	k
Rm�1	k; �
 � ~�m	k


Rm	k; �

�l�

�
;

(18b)

where ~�m	k
 and ~�m	k
 denote arbitrary functions to be
determined for each particular cavity mode. To determine
the remaining two radial functions, F�cm and F�sm, we use
(16) and (18) to obtain
F�sm	k; �
 � �
ik
�l

�
~em	k
Rm�1	k; �
 � ~�m	k


�
Rm	k; �

�l�

�
1

m
Rm�1	k; �


��
; (19a)

F�cm	k; �
 �
ik
�l

�
~fm	k
Rm�1	k; �
 � ~�m	k


�
Rm	k; �

�l�

�
1

m
Rm�1	k; �


��
: (19b)
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Putting together (8), (12), (15), (18), and (19), we obtain the following completely general representation for the spatial
component of the electric field for a particular standing-wave mode in an rf cavity:

E�	r
 �
Z 1
�1

dk�������
2�
p eikz

�
�
ik
�l

��
~e0	k
R1	k; �
 �

X1
m�1

��
~em	k
Rm�1	k; �
 � ~�m	k


Rm	k; �

�l�

�
cos	m�


�

�
~fm	k
Rm�1	k; �
 � ~�m	k


Rm	k; �

�l�

�
sin	m�


��
; (20a)

E�	r
 �
Z 1
�1

dk�������
2�
p eikz

�
ik
�l

��
~f0	k
R1	k; �
 �

X1
m�1

��
~fm	k
Rm�1	k; �
 � ~�m	k


�
Rm	k; �

�l�

�
1

m
Rm�1	k; �


��
cos	m�


�

�
~em	k
Rm�1	k; �
 � ~�m	k


�
Rm	k; �

�l�

�
1

m
Rm�1	k; �


��
sin	m�


��
; (20b)

Ez	r
 �
Z 1
�1

dk�������
2�
p eikz

�
~e0	k
R0	k; �
 �

X1
m�1

�~em	k
Rm	k; �
 cos	m�
 � ~fm	k
Rm	k; �
 sin	m�
�
�
: (20c)
Note that the functions ~em, ~fm, ~�m, and ~�m completely
determine the electric field and are independent of radius.
(Moreover, because E is simply related to the vector
potential A, they also determine the associated magnetic
field.) We turn now to the task of determining those
functions.

B. Determination of ~em, ~fm, ~�m, and ~�m
Since the functions ~em, ~fm, ~�m, and ~�m do not vary with

radius, one may determine them using any convenient
radius. Given E on the surface of a cylinder of radius R
about the z-axis, an azimuthal Fourier decomposition of
the z component yields

Ez	R;�; z
 � Ezc0	R; z
 �
X1
m�1

�Ezcm	R; z
 cos	m�


� Ezsm	R; z
 sin	m�
�: (21)

For E� and E� we write exactly similar expressions—
except that in the case of E� we shall write
E�cm cos�E�sm sin. Comparing (21) with (20c), equating
coefficients of cos	m�
, and inverting the Fourier integral
yields

~e m	k
 �
1

Rm	k; R


Z 1
�1

dz�������
2�
p e�ikzEzcm	R; z


�
~Ezcm	R; k

Rm	k; R


(22)

for m 2 f0; 1; 2; . . .g. Similarly, the coefficients of sin	m�

yield
05200
~f m	k
 �
1

Rm	k; R


Z 1
�1

dz�������
2�
p e�ikzEzsm	R; z


�
~Ezsm	R; k

Rm	k; R


(23a)

for m 2 f1; 2; . . .g. To determine ~f0	k
, we require the
‘‘constant’’ term in the azimuthal Fourier decomposition
of E�:

~f 0	k
 �
�l
ik

1

R1	k; R


Z 1
�1

dz�������
2�
p e�ikzE�c0	R; z


� �i
�l
k

~E�c0	R; k


R1	k; R

: (23b)

It remains for us to determine ~�m	k
 and ~�m	k
 for m 2
f1; 2; . . .g. This one may do using either E� or E� together
with the already determined ~em	k
 and ~fm	k
. For example,
from the cos	m�
 component of E� we determine

~�m	k
 �
�lR

Rm	k; R


�
i
�l
k

~E�cm	R; k
 � ~em	k
Rm�1	k; R

�
:

(24)

From the sin	m�
 component we determine

~�m	k
 �
�lR

Rm	k; R


�
i
�l
k

~E�sm	R; k
 � ~fm	k
Rm�1	k; R

�
:

(25a)

An alternative expression for ~�m	k
 derives from the
cos	m�
 component of E�:
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~�m	k
 �
�
Rm	k; R

�lR

�
Rm�1	k; R


m

�
�1

�

�
�
i�l
k

~E�cm	R; k
 � ~fm	k
Rm�1	k; R

�
: (25b)

To obtain the corresponding alternate expression for
~�m	k
, replace in (25b) ~E�cm and ~fm by ~E�sm and ~em.
Although ~� and ~� do not appear in them � 0 fields (15), it
is convenient—and consistent with the above expressions
[22]—to define

~� 0	k
 � ~�0	k
 � 0: (26)

C. Expansion of E in the transverse variables

To expand the electric field E in the transverse variables,
we first expand in terms of the radial variable by inserting
(11d) into (20). After some algebra, we obtain the follow-
ing expansions, valid for all m � 0:

E�cm	�; z
 �
X1
j�0

	�=2
m�1�2j

j!	m� j
!
C�cmj	z
; (27a)

E�cm	�; z
 �
X1
j�0

	�=2
m�1�2j

j!	m� j
!
C�cmj	z
; (27b)

Ezcm	�; z
 �
X1
j�0

	�=2
m�2j

j!	m� j
!
Czcmj	z
; (27c)
05200
where
C�cmj	z
 �
Z 1
�1

dk�������
2�
p eikz

�
�ik
�l

�
sl	k


j�m�1�2j
l

�

�
jsl	k
~em	k
 �

1

2
~�m	k


�
; (28a)

C�cmj	z
 �
Z 1
�1

dk�������
2�
p eikz

�
ik
�l

�
sl	k
j�

m�1�2j
l

�

�
jsl	k
~fm	k
 �

m� 2j
2m

~�m	k

�
; (28b)

Czcmj	z
 �
Z 1
�1

dk�������
2�
p eikzsl	k
j�

m�2j
l ~em	k
: (28c)
[Note that C�c00	z
 and C�c00	z
 both vanish, so that in the
case m � 0, the j � 0 term makes no contribution to the
expressions for E�c0 and E�c0.] The corresponding expan-
sions for E�sm, E�sm, and Ezsm and C�smj,C�smj, and Czsmj
(m � 1) are obtained by interchanging ~em and ~�m with ~fm
and ~�m, respectively.

For the important special case of an azimuthally sym-
metric accelerating field—m � 0, ~f0 � 0—it is well
known that the electric field is determined entirely by its
on-axis behavior. We can confirm this from the above
expansions: In this case, according to (26), ~�m and ~�m
make no contribution. Then (20c), (27), and (28), with (9),
yield
E�	�; z
 �
X1
j�1

	�=2
2j�1

	j!
2
C�c0j	z


�
X1
j�1

	�=2
2j�1

	j� 1
!j!

Z 1
�1

dk�������
2�
p eikz	�ik
	k2 � k2

l 

j�1~e0	k
; (29a)

Ez	�; z
 �
X1
j�0

	�=2
2j

	j!
2
Czc0j	z
 �

X1
j�0

	�=2
2j

	j!
2
Z 1
�1

dk�������
2�
p eikz	k2 � k2

l 

j~e0	k
: (29b)
In particular, for the longitudinal field on axis, � � 0 and
only the j � 0 term contributes:
Ez	0; z
 �
Z 1
�1

dk�������
2�
p eikz~e0	k
; (30)
in agreement with (20c). It follows that one may rewrite
(29) in the form
E�	�; z
 �
X1
j�1

	�=2
2j�1

	j� 1
!j!

�
�
d
dz

��
�
d2

dz2 � k
2
l

�
j�1
Ez	0; z
;

(31a)

Ez	�; z
 �
X1
j�0

	�=2
2j

	j!
2

�
�
d2

dz2 � k
2
l

�
j
Ez	0; z
; (31b)

demonstrating that, for the case m � 0, the on-axis field
does indeed determine the entire electric field. In addition,
a comparison of the above expressions with (29) leads us to
call the functions Cmj	z
 generalized gradients.
1-6
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According to the results in (31), one may obtain the
coefficients in the transverse expansion of a given electric
field by computing various derivatives of the on-axis com-
ponent Ez	0; z
. While straightforward, this technique suf-
fers from the fact that repeated numerical differentiation is
an unstable operation, exquisitely sensitive to the presence
of even small amounts of noise. On the other hand, (29)
shows that one may compute the very same coefficients by
performing various integrals of the cavity’s characteristic
function ~e0	k
, essentially, see (22), the Fourier transform
of the longitudinal field. This latter approach, as a conse-
quence, yields a much more robust technique, capable of
obtaining the expansion coefficients, or generalized gra-
dients, to very high order. (See Sec. IV for an explicit
example.)

In addition, even if one performs the integrations of (28)
rather crudely, the fact that integration is a linear operation
means the computed fields can still satisfy Maxwell’s
equations through the order of the computation. In particu-
lar, this will be the case whenever taking the longitudinal
derivative commutes with the operation of converting from
integral to quadrature formula.

To obtain expansions in terms of the transverse variables
x and y, one makes the replacements

�2 ! 	x2 � y2
; �m cos	m�
 ! Re�	x� iy
m�;

�m sin	m�
 ! Im�	x� iy
m�:

To complete the process, one then also converts the trans-
verse fields to Cartesian components according to the rules

Ex � E� cos�� E� sin�;

Ey � E� sin�� E� cos�:
D. Expansion of A in the transverse variables

To construct the Hamiltonian, we require not the electric
field E, but the vector potential A. According to (2) and
(4), this is just (for a given mode)
g

2a

FIG. 1. Simple five-cell rf cavity with bore
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A � �i
1

!l
E: (32)

As an explicit example, we write down the spatial compo-
nent of the vector potential, in Cartesian coordinates, for
the azimuthally symmetric accelerating cavity:

Ax	x; y; z
 � �i
1

!l

X1
j�1

x	x2 � y2
j�1

22j�1	j!
2
C�c0j	z
; (33a)

Ay	x; y; z
 � �i
1

!l

X1
j�1

y	x2 � y2
j�1

22j�1	j!
2
C�c0j	z
; (33b)

Az	x; y; z
 � �i
1

!l

X1
j�0

	x2 � y2
j

22j	j!
2
Czc0j	z
: (33c)

The �i out front serves simply to convert a cos	!lt� �l

modulation of the electric field [cf. (4)] to a � sin	!lt�
�l
 modulation of the vector potential.

IV. EXAMPLE RF CAVITY

To see how well the approach outlined above may work
in practice, we examine how errors (or noise) in surface
field data affect the computation of interior fields. First we
develop a simple, though nontrivial, model rf cavity for
which one may compute the fields analytically. Then we
generate appropriate discrete surface field ‘‘data’’ and use
it to investigate the sensitivity of the interior field compu-
tations. According to (31), the on-axis derivatives of the
longitudinal field compose the generalized gradients, the
coefficients in the transverse expansion (29) of the electric
field. We therefore examine first the computation of those
derivatives, and then the actual fields.

A. Analytic cavity

Consider an azimuthally symmetric �-mode cavity with
five equally spaced identical cells and the property that at
the bore radius a the longitudinal field Ez has fixed mag-
nitude Eg in the gaps (alternating in sign from gap to gap)
and 0 elsewhere (see Fig. 1). In this case one may compute
L

zc

radius a, gap length g, and cell length L.
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the characteristic function ~e0	k
 analytically: Using (22), and assuming the central cavity has bore field �Eg, one obtains

~e 0	k
 �
1

R0	k; a


Z
gaps

dz�������
2�
p e�ikz	�Eg
 �

gEg�������
2�
p

R0	k; a


sin	kg=2


kg=2
�1� 2 cos	kL
 � 2 cos	2kL
�e�ikzc ; (34)

where g, L, and zc denote, respectively, the gap size, cell length, and longitudinal position of the cavity midpoint. (For a
number of cells different from five, only the form factor, in square brackets, differs—though it remains a function of kL.)
Then, according to (30) and (34), the on-axis derivatives are

dn

dzn
Ez	0; z
 � Eg

g
�

Z 1
0
dk

1

R0	k; a

sin	kg=2


kg=2
�1� 2 cos	kL
 � 2 cos	2kL
�kn

(
	�1
n=2 cos�k	z� zc
�; n even;

	�1
	n�1
=2 sin�k	z� zc
�; n odd:

(35)
[For derivatives off axis at radius �, one must include an
additional factor of R0	k; �
 in the integrand above.]

Figure 2 shows the result of using (35) to compute the
on-axis longitudinal field Ez	0; z
 as a function of z for the
-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0
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1.0
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z (m)

FIG. 2. On-axis longitudinal field for a simple five-cell cavity,
as given by (35) with n � 0, L � 0:2125 m, g � L=2, a �
0:085 m, and Eg � 1 V=m.
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FIG. 3. First six derivatives (left-to-right, then top-to-bottom) of the
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case L � 0:2125 m, g � L=2, and a � 0:4L � 0:085 m,
which has a corresponding cavity frequency c=2L �
705 MHz. (These parameter values are very close to those
of the five-cell cavities being designed for the electron
LINAC required by the electron-cooling system currently
under investigation for the RHIC luminosity upgrade.)
Similarly, Fig. 3 shows the first six derivatives of the field
in Fig. 2, required for computing particle motion correct
through fifth order in the transverse variables. For these
two figures, the integrals were computed using the built-in
numerical integration routines of MATHEMATICA [23].

The indentations seen in the peaks of the first derivative
(top-left plot in Fig. 3) derive from the very slight flattening
of the electric field between one gap and the next. This
flattening, though not visible in Fig. 2 (see instead Fig. 4
below), makes its presence felt increasingly with each
successive derivative.

B. Using surface field data

To simulate the process of computing fields from nu-
merical data, we first generated data using (34) in (20c),
with m � 0, to compute field values for discrete points at
0.0 0.5 1.0
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7

on-axis longitudinal field shown in Fig. 2, computed using (35).
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FIG. 5. (Color) Comparison of on-axis longitudinal field values
computed analytically (blue) and from data with 10% relative
noise (red). The latter curve is just barely visible above the
leftmost peak.
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FIG. 4. Discrete longitudinal field values Ez	�; z
, as a func-
tion of z, at radius � � 0:075 m � 0:88a.
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analytically (blue) and from data with 10% relative noise (red).
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radius 0:075 m (about 88% of the bore) with longitudinal
spacing L=60 ( � 3:5 mm). To obtain accurate values for
fields at this radius, one must set the upper integration limit
to a kmax of nearly 1400. The field values are shown in
Fig. 4.

We then used this data—with varying amounts of added
error—to compute the characteristic function ~e0	k
, (22)
with m � 0, and then the on-axis field values and longitu-
dinal derivatives, based on (30):

dn

dzn
Ez	0; z
 �

Z 1
�1

dk�������
2�
p eikz	ik
n~e0	k
: (36)

Knowing the asymptotic behavior of ~e0	k
—from (34),
/ k�1=2e�ka—one may for any desired accuracy identify
a maximum k at which to truncate this (and other) inte-
grals. For the code MARYLIE/IMPACT we shall need Czcoj for

j 2 f0; 1; 2; 3g. This implies that we need E	6
z 	0; z
, hence
~e0	k
 for k as high as 800. The numeric integrals in (22) and
(36) were computed using Filon integration [24].

Figures 5–7 compare the results obtained with 10%
noise—meaning surface field values (the data) were multi-
plied by uniformly distributed random numbers in the
range �0:9; 1:1�—with the analytic results obtained earlier.
In particular, Fig. 7 shows as functions of z, and for n 2
f0; . . . ; 6g, the relative errors

"	n
z 	z
 �
jÊ	n
z 	0; z
 � E

	n

z 	0; z
j

max
z
jE	n
z 	0; z
j

(37)

between the values, Ê	n
z 	0; z
, obtained from noisy data and
the analytic values, E	n
z 	0; z
, obtained earlier of the nth
longitudinal derivative of the on-axis field. We see that,
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, then top-to-bottom) of the on-axis longitudinal field computed
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FIG. 9. (Color) Semilog plot of the relative difference
j�E�j=maxzjE�j, as a function of z, between the analytic
computation of the radial electric field, (20a) with m � 0 and
(34), and an approximate computation, the first three terms of
(29a). Results are shown for various fractions of the bore radius
a: � � 0:1a (red), 0:2a (orange), 0:3a (green), 0:4a (light blue),
0:5a (blue), and 0:6a (violet).
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z derive from surface field values with 10%
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TABLE I. Maximum amplitudes of the generalized gradients
for the analytic (Sec. IV) and SUPERFISH (Sec. V) cavities.

maxzjCzc0j	z
j
j Analytic SUPERFISH

0 0:96 V=m 1:1 V=m
1 2:1� 102 V=m3 4:8� 102 V=m3

2 7:1� 104 V=m5 2:5� 105 V=m5

3 1:5� 108 V=m7 3:0� 108 V=m7

4 6:9� 1011 V=m9 1:0� 1012 V=m9
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even with a relative noise level of 10%, the on-axis field
values remain good to 1%; and not until the fourth or fifth
derivative does the relative error approach 10%. In general,
the relative error in the on-axis field is about a factor of 10
smaller than that of the surface field data; and only for the
fourth or fifth derivative does the relative error approach
that of the surface field data. This behavior results largely
from the computation of ~e0	k
 in (22): in particular, the
integration over z and the presence of R0	k; R
 in the
denominator both serve to damp errors.

We turn now to the actual computation of the field or
vector potential—both on and off the axis: Figs. 8 and 9
show, as functions of z, and for several different radii, the
error made in using the first three terms of (29) to compute
the longitudinal and radial electric fields, respectively. In
Fig. 8 two of the curves—those representing the errors on
axis and at one-tenth the bore radius—have a character
very different from the others: An examination of the
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FIG. 8. (Color) Semilog plot of the absolute difference, as a
function of z, between the analytic computation of the longitu-
dinal electric field, (20c) with m � 0 and (34) with all cavity
parameters as in Fig. 2, and an approximate computation, the
first three terms of (29b). Results are shown for various fractions
of the bore radius a: � � 0 (black), 0:1a (red), 0:2a (orange),
0:3a (green), 0:4a (light blue), 0:5a (dark blue), and 0:6a
(violet).
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truncation error shows that this dominates the curves for
radii � � 0:2a. (See Table I for the amplitudes of the
generalized gradients.) The curve for � � 0:1a exhibits
some truncation error in the central 30 cm of the cavity, but
it is otherwise dominated by the accuracy of the computed
(reconstructed) on-axis field, as shown by the curve for
� � 0 which necessarily has zero truncation error. For the
radial fields, see Fig. 9, all the curves shown are dominated
by truncation error.
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FIG. 10. (Color) Same as Fig. 8, except that here the surface
field data used for the approximate computation includes 0.1%
relative noise.
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If errors are present in the surface field data, then these
will propagate (somewhat damped) into the generalized
gradients. For the longitudinal field, the jth generalized
gradient goes—cf. (29b) and (31b)—as the 2jth derivative
of the on-axis field. To the extent that the first term in (29b)
dominates the computation, we expect the error to be
dominated by the error in the on-axis field. This claim is
illustrated in Fig. 10. The surface field data used to con-
struct that figure includes 0.1% relative noise; and a com-
parison with Fig. 8 shows that the errors at the smaller radii
have increased to roughly the 0.01% level (recall the factor
of 10 damping), while the errors at the larger radii—al-
ready larger than 0.01%—remain dominated by truncation
error and hence see no significant increase. Similar con-
siderations apply to the radial field, and the radial version
of Fig. 10 we show in Fig. 11.
V. SIMULATED RF CAVITY

In general, the data one would use to implement the
technique described in this paper would come from an
electromagnetic simulation of the rf cavity in question.
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FIG. 12. (Color) Semilog plot of the absolute difference, as a
function of z, between the SUPERFISH values of the longitudinal
electric field with a peak of about 1:4 V=m, and an approximate
computation, the first three terms of (29b). Results are shown for
radii � � 0 (black), 1 cm (red), 2 cm (orange), 3 cm (green),
4 cm (light blue), 5 cm (dark blue), and 6 cm (violet).
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Here we have used the results of a SUPERFISH simulation
of a five-cell rf cavity having cell length 21.3 cm, bore
radius about 9.5 cm, and frequency 703.75 MHz. One can
extract surface field data from that simulation, use it to
compute interior fields, and compare with the SUPERFISH

data at those interior points. The results, based on data at
radius 9 cm, are shown in Figs. 12 and 13, which have the
same format as Figs. 8 and 9.

Based on the same sorts of observations as in the last
paragraph of the previous section—only in reverse—
Figs. 12 and 13 suggest that the SUPERFISH data is accurate
to about four digits. In fact, the SUPERFISH simulation was
done with a longitudinal resolution of about 180 points/
wavelength, which implies a fractional error of about 1

24 �

	 2�
�=h


2 � 1:65
1802 � 0:5� 10�4.

The longitudinal derivatives of the on-axis field (see
Figs. 14 and 15) exhibit significant structure, albeit some-
what less than in the case of the analytic cavity of the
previous section. (A simulation of a very similar cavity did
produce results strikingly similar to those of Fig. 3.) For
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FIG. 14. On-axis longitudinal field for a SUPERFISH cavity,
computed using (22) and (30) with m � 0.
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FIG. 15. First six derivatives (left-to-right, then top-to-bottom) of the on-axis longitudinal field of the SUPERFISH cavity.
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radii up to about 4.5 cm, according to Table I, keeping
terms in (29) through j � 3 results in a truncation error
comparable to the accuracy of the SUPERFISH results. To
achieve this, however, we must know the sixth derivative of
Ez	0; z
—the dominant contribution to Czco3	z
—to at
least two digits, a demand that is difficult to meet using
numerical differentiation, but straightforward using (22)
and (36).
VI. SUMMARY

To construct transfer maps for rf cavities, one must know
the vector potential, which in the gauge employed here
differs from the electric field simply by a factor i!l. The
coefficients in the transverse expansion of the field/vector
potential are, see (27) or (29), the generalized gradients
(28). This paper describes a robust technique for comput-
ing those generalized gradients to the high order demanded
by modern map-based tracking codes. This technique is not
restricted to azimuthally symmetric cavities, or even to
accelerating cavities. Moreover, one may superpose other
fields by adding their vector potentials and thereby explore
the effects of higher-order modes or overlapping magnetic
fields.
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