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Resistive hose growth of intense ion beams propagating in air
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The growth of the resistive hose instability for intense proton beams is examined using three-
dimensional particle-in-cell simulations. The simulation results are compared with a time-dependent
model of resistive hose growth that uses a spread-mass formulation and a time-dependent conductivity
model. Radius tailoring of the beam head is shown to suppress high-frequency instability growth. In
addition, the effects of a reduced-density plasma channel on the growth of the resistive hose instability is
calculated.
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I. INTRODUCTION

Intense charged particle beams propagating in a back-
ground gas are known to be susceptible to the resistive hose
instability. This instability has been extensively studied
over the past 30 years [1–13], and transport of the beam
in reduced-density channels has been studied as an aid to
extending transport distances [14–20].

For a beam propagating in a neutral or weakly ionized
gas with electric fields below�75 kV=cm-atm, the plasma
channel conductivity is set up by beam-impact ionization
of the gas. The equilibrium conductivity increases with
distance back into the body of the beam until recombina-
tion and/or plasma cooling (radiation, conduction, etc.)
balances beam-impact ionization and/or heating. The
beam pulse length is limited by the head-to-tail growth of
the resistive hose instability. The maximum asymptotic
growth rate of this instability is [1] max�Im�!�� � !imax ’
0:7. The trajectory of the fastest growing wave packet is
Z=T ’ 6:33 [1] or

� ’ kmB�Bz=6:33: (1)

Dimensionless time and axial distances are defined as T �
�=�B and Z � kmBz, where � is the characteristic beam
time, �B � ��0a

2
0=2c2 is the dipole decay time, �0 is the

plasma channel conductivity, kmB �
��������������������������������������
2e�Ib=�mBcv
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q
is the beam betatron wave number, a0 is the beam radius, Ib
is the beam current and c is the speed of light.

The equilibrium plasma conductivity generated by the
interaction of the ion beam and return currents in the gas
can be related to the beam current through [21]
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This relation is based on the balance between impact
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ionization and dissociative recombination assuming a
1-eV plasma electron temperature. Using Eq. (2) to elimi-
nate �0 in the dipole decay time gives

�B ’ 0:696� 10�9

��������������
Ib�kA�

10

s
a0: (3)

The betatron wave number can then be rewritten as kmB ’
8:62� 10�3

�����
Ib
p

=a0. Substituting these expressions for �B
and kmB into Eq. (1) gives

��ns� ’ 30Ib�kA�z�km�; (4)

and the peak growth factor occurs at z�km� ’
��ns�=30Ib�kA�. Thus, for a 10-kA beam at a distance
0.1 km, the largest offset occurs at � � 30 ns and for a
40-kA beam, � � 120 ns.

Three-dimensional particle-in-cell simulations are car-
ried out to examine the growth and saturation of the
resistive hose instability for intense proton beams. The
simulations are compared with a semianalytic model of
the time-dependent hose growth in a background gas. A
scalar conductivity model [21] is used which is valid for
high gas pressures where significant net currents are ex-
pected (due to recombination). We expect the analytic
model presented in Sec. II to be independent of the pro-
cesses that lead to net current generation, making this work
applicable to a variety of other beam transport problems.
These applications include transport of intense light-ion
beams for inertial confinement fusion [22,23], a proposed
scheme for long-distance propagation ( * 100 m) of
heavy-ion beams from an accelerator to a reactor chamber
as well as transport inside of the reactor chamber for
heavy-ion inertial fusion energy [24]. The modeling tech-
niques presented here have been applied to the study of
high-current heavy-ion beam propagation over 5-m dis-
tances in laser initiated discharge channels [25].

A detailed semianalytic model for hose growth is pre-
sented in Sec. II along with some sample results. The
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particle-in-cell (PIC) simulation model used in this work is
described in Sec. III. Three-dimensional PIC simulations
of resistive hose growth are compared with the semiana-
lytic model in Sec. IV. A summary of this work is given in
Sec. V.
II. ANALYTIC MODEL OF THE RESISTIVE HOSE
INSTABILITY

In this section we discuss analytic modeling of the
resistive hose instability for intense ion beams. The goal
is to develop a relatively simple and fast-running tool
capable of correctly identifying trends in hose growth
behavior with variation in beam parameters (energy, ra-
dius, and radius tailoring). The well-known spread-mass
model is used and extended to include a variable channel
conductivity profile and radius tailoring (detuning) from
the head of the beam back to the body. The effects of
plasma return current and channel perturbations were
deemed beyond the scope of the present effort and were
not included. In Sec. II A below, the basic spread-mass
model equations are reviewed. In Sec. II B, the standard
dispersion analysis is reviewed and then generalized to the
case of an arbitrary (other than Bennett) conductivity
profile. Finally, in Sec. II C, we present results from nu-
merical integration of the model equations generalized to
account for the time evolution of the channel conductivity
and for radius tailoring. Comparison of the model with
results from the PIC simulations is presented in Sec. IV.

A. Model equations

We begin with the equations of Lee (Ref. [1]) for the
spread-mass model of the resistive hose instability of a
self-pinched relativistic beam:
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Equation (5) [see Eq. (95) of Ref. [1] ] is the equation of
motion of the centroid of beam disk � (0 
 � 
 1). J0 and
A0 are the equilibrium beam current and magnetic vector
potential, respectively, and

J0�r� �
Ib
�a2

�
1	

r2

a2

�
�2
; (7)

A0�r� � �
Ib
c

log
�
1	

r2

a2

�
; (8)

for a beam with a Bennett profile, radius a, and beam
current Ib. The beam particle charge is e, massM, and vz ’
04440
�c in the paraxial-ray approximation. Equation (6) [see
Eq. (100) of Ref. [1] ] is the perturbed magnetic field (A1)
equation with the channel conductivity ��r; �� written in
general as an arbitrary function of radius and beam position
(time) � measured back from the head of the beam. We
denote the mean of a quantity by the angle brackets; i.e.,

hY�i �
Z 1

0
d�g���Y�; (9)

where g��� � 6��1� �� is the weighting function for a
Bennett beam in the spread-mass model. We define the
betatron wave number k� and the magnetic decay time
according to

k2
� �

2e�Ib
�Mcv2

za
2
0

(10)

and

�B �
��0a2

0

2c2 ; (11)

respectively. In Eqs. (10) and (11), a0 refers to the radius of
the beam in the beam body (we will later consider the case
of 3-to-1 radius tailoring from the beam head back to a
constant value a0.) We write the channel conductivity as
follows:

��r; �� � �0�����r; ��; (12)

where �0��� is the on-axis conductivity and ��r; �� de-
scribes the evolution of the conductivity profile. In
Eq. (11), �0 � �0��! 1� is the on-axis conductivity in
the body of the beam. Defining the following normalized
variables,

Z � k�z; T � �=�B; u � r=a0;

and performing the indicated substitutions and integrations
(making use of integration by parts) in Eq. (5), our model
equations for the beam disk centroid and perturbed mag-
netic field take the form
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Z 1
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6u2�4�T�

�u2 	 �2�T��3
A1�u�du
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;

(13)

@
@u

�
1

u
@
@u
�uA1�

�
� 8��u; T�

@A1

@T
�
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�u2 	 �2�T��3
hY�i;

(14)

where A1 � cA1=Ib is the normalized vector potential and
��T� � a�T�=a0 is the (in general time-varying) normal-
ized beam radius.

B. Dispersion analysis

We consider perturbations of the form

ei�!�	kz� � ei��T	KZ�; (15)
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where � � !�B and K � k=k� are the normalized fre-
quency and Doppler-shifted wave number, respectively.

1. Bennett conductivity profile

Lee has shown that for a constant beam radius, ��T� �
1, and Bennett conductivity profile

��u; T� � �u2 	 1��2:

A1 may be written in the form

A1 � �D�Z; T�
dA0

du
; (16)

and Eqs. (13) and (14) collapse to the simplified form

@Y�
@Z2

� ���Y� �D�; (17)

@D
@T
� hY�i �D: (18)

Using the form in Eq. (15) for the perturbed quantities (Y�
and D) in Eqs. (17) and (18) yields the dispersion equation
first derived by Lee [1]:

i� �
Z 1

0
6��1� ��

K2

�� K2 d�: (19)

For a given beam slice T, instability growth is bounded
according to

hY�i 
 C0e
�0T � C0e

�; (20)

where C0 is a constant and �0 is the maximum of the
imaginary part of � for all real K in Eq. (19). Lee finds
04440
�0 � 0:6902 for Kr � 0:5218. This peak growth occurs at
a position downstream given approximately by

Z
T
� �

�
@�i

@K

�
�i��0

� 6:337: (21)

As an example, consider a 10-kA, 300-MeV, 2-cm radius
proton beam propagating in air. Simulations using the
channel conductivity model (Refs. [21,26]) and the above
beam parameters predict

4��0

c
� 100 cm�1:

Using Eq. (11) we get �B � 8:33� 10�10 s. For the beam
slice at � � 50 ns, T � 36, and Eq. (19) gives a growth
factor � � 24:8, or approximately 25 e-foldings.

2. Arbitrary conductivity profile

For conductivity profiles other than the Bennett, the
simplification of Eq. (16) no longer pertains. We again
set ��T� � 1 and consider an arbitrary (but constant in
T) radial conductivity profile��u�. Under these conditions,
Eqs. (13) and (14) may be combined to give
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where F�u� � uA1�u�. We discretize Eq. (22) setting u �
n�u, n � 1; 2; 3; . . . to obtain
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where F�n� � F�n�u� and wt�m� denotes weighting factors for approximate numerical integration (a Simpson’s rule was
used in the numerical calculations which follow).

Defining the vector F with components Fn � F�n�, we obtain the infinite linear system

AF � 0; (24)

with the components of matrix A given by

Anm �
1

�n�u���u�2
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FIG. 1. For a Bennett conductivity profile, comparison of
(A) upper bound for growth factor from dispersion analysis
and (B) observed growth factor from numerical integration of
model equations.

FIG. 2. For a Bennett conductivity profile, position of peak
growth (or wave packet convection rate) from (A) dispersion
analysis and (B) numerical integration of model equations.
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Truncation of the system at some large n�u (typically 20
or 30) gives a finite matrix A and the dispersion equation
becomes

detA � 0: (26)

As a benchmark, Eq. (26) was solved using a Bennett
conductivity profile to obtain �0 � 0:693 and distance to
peak growth Z=T � 6:34, in close agreement with Lee’s
results from Eq. (19).

We note that the conductivity model previously men-
tioned predicts a profile more like a Lorentzian (square root
of the Bennett) in the body of the beam. (We will return to
this discussion in the next section.) We consider this pro-
file:

��u� � �u2 	 1��1

and solve the dispersion equation to obtain �0 � 0:247
and Z=T � 2:67. For this profile, Eq. (19) gives a peak
growth factor � � 8:89 for our beam slice at � � 50 ns—
approximately 9 e-foldings, a much more tolerable value
than the 25 obtained with the Bennett assumption.

C. Numerical integration of model equations

In this section we report on results obtained by direct
numerical integration of Eqs. (13) and (14) for several
cases of interest. We test first the upper bounds on growth
obtained from the dispersion analysis in the previous sec-
tion for the constant Bennett and Lorentzian channel con-
ductivity profiles. (In these calculations, each beam slice
was divided into a large number of ‘‘spread-mass’’ disks,
typically 40, and a maximum radius of 50 beam radii was
used. The response to a constant offset perturbation at z �
0 was observed.) Results are shown in Fig. 1 for the
Bennett conductivity profile. The observed growth factors
[ ln(peak growth)] are plotted as a function of beam posi-
tion and are consistent with the upper bounds calculated
from Eq. (20). For � � 50 ns, the observed peak growth
factor was approximately 22.3 (as compared to an upper
bound of nearly 25). The dispersion analysis also predicts a
distance to peak growth (or, equivalently, the convection
rate of the peak of the wave packet) of Z=T � 6:34. The
results shown in Fig. 2 from the numerical calculation of
the model equations are again consistent with the disper-
sion analysis.

Results for the Lorentzian channel conductivity profile
as shown in Figs. 3 and 4 and are again consistent with the
dispersion analysis predictions. We see that for the
Lorentzian channel, the peak growth factors and wave
packet convection rates are considerably reduced from
the Bennett case.

We turn now to a somewhat more realistic model of the
beam and channel conductivity similar to that used in the
simulations reported on in Sec. IV. We consider 3-to-1
radius tailoring from the head of the beam back to the
body with a characteristic time of 4 ns, i.e.,
04440
���� �
a���
a0
� 1	 2e��=�0 ��0 � 4 ns�: (27)

The time evolution of the channel conductivity profile is
determined by the differential equation

dne
d�
� C1nb � C2n

2
e; (28)

where ne is the channel electron density, nb is the beam
density, and the channel conductivity is
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FIG. 3. Same as Fig. 1 for Lorentzian channel conductivity
profile.
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��r; �� �
ne�r; ��e2

me	m
: (29)

In Eq. (28), C1 depends on the beam energy and the
propagation medium (1-atm air for our case) and deter-
mines the rate of primary ionization, while C2 determines
the temperature dependent rate of dissociative recombina-
tion. In Eq. (29), 	m is the electron-neutral momentum
transfer frequency which is both pressure and temperature
dependent.

Using parameter values appropriate for a 300-MeV, 2-
kA, 2-cm radius proton beam, Eq. (28) was solved numeri-
cally using Eq. (27) to specify the beam radius (and, hence,
beam density) as a function of �. At the head of the beam,
FIG. 4. Same as Fig. 2 for Lorentzian channel conductivity
profile.

04440
the channel electron density was set to some nominally low
value (a few times 107 per cm3), and the channel was
initialized to a Bennett profile. We see from Eq. (28) that
for large � (beam body) ne�r; �� evolves to a Lorentzian
profile (square root of the Bennett). For the beam parame-
ters above, we obtained an on-axis conductivity in the body
of the beam of

4��0

c
’ 83:7 cm�1 (30)

a value consistent with those observed in more detailed
numerical simulations. In summary, our solution evolves
from a low conductivity Bennett profile at the head of the
beam to a Lorentzian profile in the body [on-axis value
given by Eq. (30)] with a characteristic evolution time of
4 ns.

Making use of the above solution for ��r; ��, and using
Eq. (27) to model the 3-to-1 radius tailoring, Eqs. (13) and
(14) were solved numerically to determine instability
growth for this time-dependent model of beam radius and
channel conductivity. Here an oscillatory perturbation with
a 2-ns period was applied at z � 0, mimicking that used in
particle simulations. (Only a weak dependence on the
period of the perturbation was observed over the range 1
to 10 ns.) Results are shown in Fig. 5 for the growth factor
as a function of beam position � for a constant 2-cm beam
radius and for 3-to-1 radius tailoring. Curve B of Fig. 5
represents larger growth factors than the constant radius,
Lorentzian profile results of Fig. 3. This is due to the low
conductivity at the beam head and the finite build-up time
in � according to Eqs. (27) and (28). The relatively low
growth factors of curve A (roughly 6 e-foldings for the
beam slice at � � 50 ns) illustrate the dramatic reduction
in instability growth achieved using radius tailoring at the
FIG. 5. Instability growth for a 300-MeV, 2-kA, 2-cm radius
proton beam using the time-dependent channel conductivity
model of Eqs. (27) and (28).
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FIG. 6. Same as Fig. 5 for a 300 MeV, 2 kA, 1 cm radius proton
beam.
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beam head. For a 1-cm radius beam (see Fig. 6), and again
for our beam slice at � � 50 ns, slightly more than 9
e-foldings occur with 3-to-1 radius tailoring.

The numerical calculations above (carried out for a 300-
MeV beam) and comparison with the dispersion analysis
demonstrate the consistency of the numerical model and
suggest expected reductions in hose growth with more
realistic conductivity profiles and with radius tailoring.
Direct comparison with results of PIC simulations of pro-
ton beams at both 300 MeV and 1 GeV are presented in
Secs. IVA and IV B below.
04440
III. SIMULATION MODEL

A 3D PIC code is used with a hybrid model for tracking
the evolution of the background gas conductivity and
plasma currents. The simulations include models for
charged particle energy loss and scattering in the ambient
medium. The impact of these effects on proton beam
propagation are addressed, along with beam head erosion,
in Ref. [27].

The implicit three-dimensional simulations presented
here are carried out in a moving frame of reference in
�r; z� coordinates with Fourier mode decomposition in
the 
 direction. Maxwell’s equations in a frame moving
at vg in the z direction are (in dimensionless cgs units)
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where ~J and ~Jp are the kinetic and fluid particle current
densities. Regions can be specified with arbitrary electric
permittivity (�) and magnetic permeability (�). The mov-
ing mesh is accounted for by the vg@=@z field convection
terms.

For numerical stability, Eqs. (31) and (32) are integrated
in time over time step �t with Eq. (31) multiplied by an
integrating factor exp��t�, where � is the local scalar
conductivity. Variation in the third dimension is accounted
for by Fourier analysis; @=@
 becomes�m for cosines and
m for sines. The equation set in finite difference form is
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vg = 0
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vg =  vb

a)

b)

c)

vg = 0

FIG. 7. Schematic illustrating the initialization of the simula-
tions. (a) The beam with axial speed vb is injected into the
stationary simulation box (vg � 0). (b) The box remains sta-
tionary until the head beam is 50 cm from the end of the
simulation region. (c) At this time the simulation box moves
forward at the beam speed (vg � vb).
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The index n represents the full time step and

S �
��t

exp���t� � 1
: (39)

Also, p, n, and 	 are the pressure, density, and velocity of
either the electron (subscript e) or the ion (subscript i)
species and Z is the ion charge state. The Ohm’s law for
plasma electron current includes electromagnetic, pressure
gradient, and frictional forces. These equations are prop-
erly time centered with n	 1=2 step determined by the
average of the n and n	 1 values. Special care is taken for
the vg@=@z term during the time integration. Because
information cannot travel at speeds greater than c, the
treatment for field F at axial index j isZ

vg
@F
@z
dt � vg

�t
�z
��1� vg��Fj � Fj�1�

� �1	 vg��Fj	1 � Fj��: (40)

Terms with conductivities (or S) account for mode cou-
plings and convolutions.

Within the orthogonal coordinate system, Eqs. (33)–
(38) are solved iteratively using a dynamic form of the
alternating direct implicit method [28]. Implicit solution in
all coordinate directions can often result stable solution for
time steps in excess of Courant condition. Particles are
advanced implicitly in a manner similar to Ref. [29]. This
technique can greatly reduce electron cyclotron and plasma
frequency constraints as well as Debye length instability
that is a well-known source of numerical heating.

The simulation geometry is 300 or 600-cm long and the
beam is continuously injected into the simulation volume
until the beam head is within 50 cm of the downstream
boundary. At this time, the computation mesh is moved
forward at the beam speed. This is illustrated in Fig. 7. The
main problem with PIC simulations of resistive hose is
maintaining good statistics. Typical simulations use� 106

particles. However, significant noise remains, even with
this large particle number. Thus, in the simulations, typical
hose disturbances grow to a peak value, damp, and then
some subsequent growth from noise is observed later.

The injected proton beam has a Bennett current-density
profile of radius a0, truncated at 2a0. The beam current
rises linearly from zero to peak current in 4 ns. The injected
protons are monoenergetic, with a transverse temperature
��?� that provides a near optimal matching condition. The
04440
injected beam is perturbed with a sinusoidal offset varia-
tion with an amplitude A of 10�3 cm and a wavelength of
p. Values of p used in this report vary from 7.5 to 60 cm
(roughly 300–2400 MHz frequency).
IV. SIMULATION RESULTS

In this section, simulations are carried out and compared
with the model presented in Sec. II. First, a series of
simulations were carried out to examine the impact of
different detuning ratios on the stability of the beam.
These results are discussed in Sec. IVA. The resistive
hose instability growth rate as a function of beam radius
(at constant beam current) is discussed in Sec. IV B.
Repeated beam pulses are known to reduce the density
local to the beam. The stability of a single beam pulse in a
reduced-density channel is discussed in Sec. IV C.

In our initial simulations the calculated dipole decay
lengths were typically a factor 2– 4 larger than calculated
in Eq. (3) due to the evolution of non-Bennett conductivity
profiles. This results in less growth with a faster convection
of the wave packet. Thus, for a 30-ns-long beam, we need
to propagate the beam 20–40 m to observe saturation for
the entire pulse. So, typically the simulations presented
here are set up to propagate the beam 50 to 100 m.

A. Detuning ratio

The effect of ‘‘detuning’’ on the suppression of the
resistive hose instability is well established for relativistic
electron beams. Here, this technique is applied for a rela-
tivistic proton beam. Model calculations for four different
detuning ratios are shown in the upper portion of Fig. 8 and
the results of four simulations with the same detuning
ratios are shown in the lower part of Fig. 8. For these
calculations, the magnitude of the beam offset at a fixed
distance back from the beam head � (here � ’ 210 cm) is
shown for a 1-cm, 10-kA beam. The beam offsets from the
four theory calculations are identical at early times. At this
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distance back from the beam head, these calculated offsets
characteristically decay from the initial offset for tens of
nanoseconds before the resistive hose growth reaches this
position back from the beam head. In the simulations, the
initial offset is not immediately seen; the probe records the
passage of the beam head first. When 210 cm of beam
passes through this location (about 13 ns for these parame-
ters), the probe then records the offset motion of a nearly
constant slice of beam. Note that at this time, the beam
offsets are falling, similar to the theory.

For larger detuning ratios, the beam offset is reduced
dramatically, indicating a strong suppression of the resis-
tive hose instability in both the model and the simulations.

The dipole decay times from the simulations in the body
of the beams suggest that detuning ratios of 2:1 and 3:1
provide reasonable suppression of the resistive hose insta-
bility to short wavelength perturbations which grow in the
beam head. Detuning ratios of 3:1 are used in the simula-
tions presented in the remainder of this work.

B. Beam radius

Reducing the beam current-density can act to suppress
the resistive hose growth by increasing �B. A series of
04440
simulations with Eb � 1 GeV were run and compared
with the model. For all cases, Ib � 10 kA, and a 3:1
detuning ratio was used. Longer wavelengths tend to
show larger growth of the resistive hose instability, so the
simulation length L was doubled from 300 to 600 cm for
the simulations presented in the remainder of this section.

The theoretical predictions of the temporal evolution of
the offset of a beam slice are shown for 1, 2, and 4-cm
radius beams in Fig. 9. The late-time growth rate scales as
1=a0 as expected for the 2 and 4-cm beams, but the 1-cm
beam has a late-time offset saturation that is similar to the
2-cm result. Note that the oscillation periods are not con-
stant in time and are different for each beam radius.

In Figs. 10–12 the theoretical predictions shown in
Fig. 9 are compared individually with simulations at � �
210-cm slice location. The lower time axis for these plots is
the simulation time, which includes data prior to the probe
recording a constant beam slice, and the upper time axis is
the theory time, where zero corresponds to the time at
which the slice enters the model ‘‘box.’’ The upper axis
is shifted with respect to the lower in order to compare
these two results.

The ao � 1 cm simulations results show early-time off-
sets between 75 and 150 ns that are in good agreement with
the theory. (Note that we use the lower time axis when
referring to the graphs.) At later times the model shows
saturation of the resistive hose growth, while in the simu-
lation the offset continues to grow. This is due to numerical
noise in the simulation model. This noise can be reduced
(or delayed) to some extent by using more PIC macro-
particles in the azimuthal direction. However, at present we
are constrained by computational speeds and physical
memory sizes.
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The comparison for a0 � 2 cm shown in Fig. 11 is in
good agreement for most of the calculation time. The
overall trends are similar except for a large offset in the
simulation around 100 ns. The simulation results show
somewhat more small amplitude noise than the 1-cm re-
sults, due in part to numerical resolution of these small
beam offsets.

Unlike the a0 � 1 cm results shown in Fig. 10, the
period of the beam offset oscillations are not in good
agreement. Again, this is due in part to the numerical
resolution, which is a source of noise in the simulations.
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FIG. 11. Same as Fig. 10 except for a0 � 2 cm.
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Finally, the a0 � 4 cm results shown in Fig. 12 strongly
reflect the numerical limitations of the simulation.
Although the late-time amplitudes of the offsets are in
reasonable agreement, the temporal evolution of the hose
instability is not accurately tracked in the simulation.
However, refinements in the simulations, especially near
the axis may result in more accurate tracking of the beam
offsets by reducing signal-to-noise ratios.

C. Reduced-density channels

A simulation was carried out with a reduced-density
channel. The radial density profile used in the simulation
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FIG. 13. Initial neutral gas density profile for reduced-density
channel simulation (solid line) and nominal gas density profile
(dashed line).
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is shown in Fig. 13. The beam parameters are Eb � 1 GeV,
a0 � 2 cm, and a 3-to-1 detuning ratio is used.

Simulations with and without the reduced-density chan-
nel showed only small differences in the magnitude of the
beam offset for � � 210 cm. For these 1 GeV beams, the
current does not bunch up as was observed in the 300-MeV
channel simulations. Also, the peak E=p values on axis in
the 1-GeV channel simulations are on the order of the
electron avalanche threshold of 75 kV=cm-atm. This sug-
gests that the minimum channel depth that can be tolerated
is about 0.1 atm.

V. SUMMARY

We have developed a relatively simple and fast-running
model capable of correctly identifying trends in hose
growth behavior with variation in beam parameters (en-
ergy, radius, and radius tailoring). The model predictions
have been compared with 3D PIC simulations and good
agreement has been found over a range of beam parame-
ters. These results indicate that these proton beams are
particularly susceptible to long wavelength perturbations
that grow in the beam body. For a 10-kA, 2-cm, 300-MeV
beam, the simulations results give an e-folding time of
roughly 200 cm or 10 ns. If 5 e-foldings can be tolerated,
one can expect to have beam radius growth for the non-
linear hose in 50 ns. This sets a limit on the usable beam
pulse length.

In a more extensive set of analytic and numerical calcu-
lations for relativistic electron beams, Lampe et al. [6]
showed that the two effects tend to cancel one another.
This may in part explain the success of our rudimentary
model in reproducing the trends observed in the detailed
PIC simulations presented in Sec. IV.

ACKNOWLEDGMENTS

The authors acknowledge helpful technical discussions
with Dr. R. Turman, Sandia National Laboratories.
Portions of the research presented here were carried out
while several of the authors (D. V. R., T. C. G., D. R. W.)
were with Mission Research Corporation in Albuquerque,
New Mexico. This work was supported by Sandia National
Laboratories. Sandia is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed-Martin Company, for
the United States Department of Energy, under Contract
No. DE-AC04-94AL85000.
[1] E. P. Lee, Phys. Fluids 21, 1327 (1978).
[2] K. G. Moses, R. W. Bauer, and S. D. Winter, Phys. Fluids

16, 436 (1973).
044403
[3] E. J. Lauer, R. J. Briggs, T. J. Fessenden, R. E. Hester, and
E. P. Lee, Phys. Fluids 21, 1344 (1978).

[4] H. S. Uhm and M. Lampe, Phys. Fluids 23, 1574 (1980).
[5] H. S. Uhm and M. Lampe, Phys. Fluids 25, 1444 (1982).
[6] M. Lampe, W. Sharp, R. F. Hubbard, E. P. Lee, and R. J.

Briggs, Phys. Fluids 27, 2921 (1984).
[7] T. W. L. Sanford, J. A. Halbleib, W. H. McAtee, R. C.

Mock, J. W. Poukey, and D. R. Welch, J. Appl. Phys. 70,
1778 (1991).

[8] J. G. Siambis, Phys. Fluids B 4, 3390 (1992).
[9] T. W. L. Sanford, D. R. Welch, and R. C. Mock, Phys.

Fluids B 5, 4144 (1993).
[10] T. W. L. Sanford, D. R. Welch, and R. C. Mock, Phys.

Plasmas 1, 404 (1994).
[11] M. C. Myers, R. F. Fernsler, R. A. Meger, J. A. Antoniades,

D. P. Murphy, and R. F. Hubbard, J. Appl. Phys. 80, 4258
(1996).

[12] R. F. Fernsler, S. P. Slinker, M. Lampe, and R. F. Hubbard,
Phys. Plasmas 2, 4338 (1995).

[13] H. S. Uhm and R. C. Davidson, IEEE Trans. Plasma Sci.
33, 1395 (2005).

[14] D. R. Welch, F. M. Bieniosek, and B. B. Godfrey, Phys.
Rev. Lett. 65, 3128 (1990).

[15] D. P. Murphy, M. Raleigh, R. E. Pechacek, and J. R. Greig,
Phys. Fluids 30, 232 (1987).

[16] D. P. Murphy, R. E. Pechacek, D. P. Taggert, R. F. Fernsler,
R. F. Hubbard, S. P. Slinker, and R. A. Meger, Phys. Fluids
B 4, 3407 (1992).

[17] M. C. Myers, J. A. Antoniades, R. A. Meger, D. P. Murphy,
R. F. Fernsler, and R. F. Hubbard, J. Appl. Phys. 78, 3580
(1995).

[18] R. F. Fernsler, S. P. Slinker, and R. F. Hubbard, Phys.
Fluids B 3, 2696 (1991).

[19] J.-M. Dolique and M. Khodja, Laser Part. Beams 11, 685
(1993).

[20] E. K. Kolesnikov and A. S. Manuilov, Tech. Phys. 42, 648
(1997).

[21] D. R. Welch, C. L. Olson, and T. W. L. Sanford, Phys.
Plasmas 1, 764 (1994).

[22] P. F. Ottinger, D. V. Rose, and C. L. Olson, J. Appl. Phys.
75, 4402 (1994).

[23] D. R. Welch, M. E. Cuneo, C. L. Olson, and T. A.
Mehlhorn, Phys. Plasmas 3, 2113 (1996).

[24] K. Hahn and E. Lee, Fusion Eng. Des. 32–33, 417 (1996).
[25] D. R. Welch, T. C. Genoni, D. V. Rose, B. V. Oliver, R. E.

Clark, C. L. Olson, and S. S. Yu, Phys. Plasmas 10, 2442
(2003).

[26] F. W. Chambers and D. M. Cox, Lawrence Livermore
National Laboratory Report No. UCID-19213.

[27] D. V. Rose, T. C. Genoni, and D. R. Welch, Phys. Plasmas
9, 1053 (2002).

[28] D. W. Hewett, D. J. Larson, and S. Doss, J. Comput. Phys.
101, 11 (1992).

[29] D. W. Hewett and A. B. Langdon, J. Comput. Phys. 72,
121 (1987).
-10


