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Short Rayleigh length free electron lasers
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Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the
electron beam in the undulator by making the resonator Rayleigh length about one third to one half of the
undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-
power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the
resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below
the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly
altered. We model this interaction using a coordinate system that expands with the rapidly diffracting
optical mode from the ends of the undulator to the mirrors. Simulations show that the interaction of the
strongly focused optical mode with a narrow electron beam inside the undulator distorts the optical wave
front so it is no longer in the fundamental Gaussian mode. The simulations are used to study how mode
distortion affects the single-pass gain in weak fields, and the steady-state extraction in strong fields.
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FIG. 1. (Color) Schematic comparison of the conventional and
short-Rayleigh length FEL designs.
I. INTRODUCTION

For several decades, it has been suggested that a free
electron laser (FEL) oscillator can optimize the electron-
optical coupling by minimizing the optical mode volume
around the smaller relativistic electron beam. The origin of
the idea was stated in Madey’s initial paper inventing the
FEL concept [1], and has lead to the common practice of
designing the FEL’s optical resonator so that its Rayleigh
length Z0 is about one third to one half of the undulator
length L. That assumption is studied in this paper and it is
found that there are several possible advantages to shorter
Rayleigh lengths, including increased gain.

The short-Rayleigh length FEL design is an alternative
that makes use of a nearly concentric resonator cavity, with
a strongly focused optical mode in the center of the cavity
and a large spot size at the mirrors, to reduce intensity on
the mirrors for a high-power, compact FEL [2]. Scientific,
industrial, and military applications of FEL oscillators can
benefit from a more compact design. When the application
also requires moderate to high power at infrared or shorter
optical wavelengths, the conventional FEL oscillator de-
sign leads to high intensity at the mirrors and possible
mirror damage.

In Madey’s original paper, the FEL gain was estimated
using a ‘‘filling factor’’ F in order to describe how the
smaller electron beam exchanged energy with the slightly
larger optical mode. The filling factor is defined as the ratio
of the electron beam area to the optical mode area. FEL
single-pass gain is defined by G � P=P0 � 1, where P is
the optical power at the end of the undulator and P0 is the
initial optical power at the beginning of the undulator. The
gain is assumed to be proportional to the filling factor. A
further refinement is to average the filling factor over the
undulator length L so that G / �z0 � 1=�12z0��

�1. The
normalized Rayleigh length is defined as z0 � Z0=L and
06=9(3)=030703(7) 03070
the actual Rayleigh length is Z0 � �W2
0=�, where � is the

optical wavelength and W0 is the mode waist radius. The
optimum weak-field gain is then found by minimizing the
mode volume along the undulator to obtain z0 � 12�1=2 �
0:3.

A couple of examples illustrate how the common prac-
tice, z0 � 0:3! 0:5, can limit an FEL’s performance. Let
the mirror separation of the resonator be S � 12 m with
10% output coupling. Typical mirrors can be damaged by
high optical intensity �10 kW=cm2 in the infrared and
�1 kW=cm2 in the UV. Assuming the electron beam and
optical mode each have a radius of about 1 mm in the
undulator, the commonly used design criteria would lead to
a limitation in output power of 150 W in the infrared and
only 3 W in the UV. The UV FEL is a particular problem
since the longer Rayleigh length Z0 associated with the
shorter UV wavelength � increases mirror intensity further
by decreasing the mirror spot size. Both FELs would
benefit from a shorter Rayleigh length resonator in order
to reduce the intensity on the mirrors and keep the system
compact. The conventional estimate for gain would lead to
G / z0 for small Rayleigh length z0 � 1. However, the
research presented here predicts that there is little or no
loss in gain for small z0 � 1. The design option is illus-
trated in Fig. 1 below.
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A. FEL interaction

The FEL interaction is altered in the short-Rayleigh
length FEL because the optical field amplitude and phase
change significantly along the undulator [3]. The dimen-
sionless field amplitude a��� and phase ���� at the mode
center r � 0 are shown in Fig. 2 and are given by

a��� � a0	1� ��� �w�2=z2
0

�1=2; (1)
���� � � arctan	��� �w�=z0
; (2)

where � � ct=L is the dimensionless time of interaction
along the undulator length L, c is the speed of light, a0

is the field amplitude at the mode focus, and �w is the
location of the mode focus along the undulator. The di-
mensionless optical field amplitude is defined by a �
4�NeKLE=�2mc2, where N is the number of undulator
periods, K � eB�0=2�mc2 is the undulator parameter, E
is the rms optical electric field amplitude, B is the rms
undulator magnetic field amplitude, �0 is the undulator
period, and e and m are the electron charge and mass, all
in cgs units. Notice from Eqs. (1) and (2) that when z0 is
small, the field amplitude and phase change rapidly along
the undulator, as illustrated in Fig. 2. While the rapidly
changing field would appear to be detrimental to the
bunching process, it improves coupling by focusing laser
light to a small waist to intensify the field strength.
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FIG. 2. (Color) Dimensionless optical field amplitude a��� and
phase ���� versus dimensionless time � � ct=L, for a short-
Rayleigh length FEL, z0 � 0:1. Note the rapid change in ampli-
tude and phase near the optical waist at the center of the
undulator, � � �w � 0:5.
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II. SIMULATION METHOD

Our wave front propagation program has been described
elsewhere [4]. At each time step, it uses the relativistic
Lorentz force equations to determine the electron motion
in the presence of the undulator and optical fields, and the
paraxial wave equation to evolve the optical wave front in
�x; y; t� self-consistently. The simulation can follow mul-
tiple transverse optical modes as they interact with the
electron beam and bounce back and forth in the optical
cavity, including mirror transmission and edge losses. We
typically start the simulation in weak optical fields and
allow it to evolve over many passes through the cavity until
the FEL reaches steady state. Graphical output shows the
evolution of the electrons and the optical wave fronts, and
the weak-field gain and steady-state power extraction are
reported.

Our simulations use dimensionless parameters [5].
Longitudinal distances are normalized to the undulator
length L, and transverse distances are normalized to
�L�=��1=2. Times are normalized to L=c, the time for a
photon to travel a single pass through the undulator.

Recent improvements to our programs include a faster
Fourier transform algorithm [6] and an expanding-
coordinate system to follow the rapidly diffracting optical
mode with a reasonable grid size [7,8]. We will now
describe this new coordinate system in detail, then discuss
how we have validated the technique and incorporated it
into our FEL simulations.

A. Expanding-coordinate system: Motivation

In a compact short-Rayleigh length FEL, the area of the
optical beam can be thousands of times greater at the
mirrors than at the beam waist. A fixed numerical grid of
sufficient resolution to represent both the narrow mode
radius at the waist and the broad mode radius at the mirrors
would be prohibitively large.

For example, assume a Rayleigh length of z0 � Z0=L �
0:1 and a cavity length of s � S=L � 30, both normalized
to the undulator length, L. Then the mode radius will
expand by a factor of 	1� �s=2�2=z2

0

1=2 � 150. If we

assume 100 grid points in each dimension are needed to
accurately represent the mode at the waist, then 15 000 grid
points are needed at the mirrors. A two-dimensional com-
plex, double-precision array of that size requires about
4 GB of RAM, beyond the limits of many computers.
Furthermore, the simulation runtime increases as the
square of the number of grid points. For the typical pa-
rameters given above, we estimate it would require about
4 h for each pass through the optical cavity, running a
three-dimensional simulation in �x; y; t� on a 2 GHz IBM
G5 processor. For some sets of parameters, several hundred
passes are needed to reach steady-state operation, implying
that the program would take many weeks to run.
Furthermore, if we wish to include a fourth dimension in
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the simulation (z) to study longitudinal modes and pulse
effects, we would need at least 100 slices in the z direction.
In addition, steady state in 4D requires thousands of passes.
The memory requirements would then grow to 100’s of GB
and the simulation runtime would increase to many years.

One solution to this numerical problem is to abandon a
fixed Cartesian grid, and instead use a coordinate system
that expands with the diffracting optical mode. This ap-
proach is explained below for the FEL.

B. Paraxial wave equation

As usual, the equation to be solved for the complex
electric field a is the paraxial wave equation [9] expressed
in the dimensionless coordinates described previously,

axx � ayy � 4ia� � 0; (3)

where a subscript in x; y, or � indicates a partial derivative
with respect to that variable. Equation (3) has been studied
extensively and is solved reliably by Fourier transform
methods [7,8], except for the numerical difficulty of the
expanding beam due to diffraction.

C. Transforming the coordinates

Consider the exact fundamental-mode solution to
Eq. (3):

a�x; y; �� � a0��z0=A�1=2 exp���r2=A�ei�; (4)

where r2 � x2 � y2, and the dimensionless beam area is

A � �z0�1� �
2=z2

0�: (5)

Here a0 is the amplitude at the optical waist (� � 0) on
axis (r � 0), the waist radius is w0 � z1=2

0 , and the optical
phase is given by

��r; �� � � arctan��=z0� � �r
2�=�Az0�: (6)

Thus for the case where �� z0, A � ��2=z0 and � �
��=2� r2=�, so that

a�r; �� � a0�z0=�� exp��r2z0=�2� exp�ir2=�� (7)

to within a constant phase factor. It is clear from Eq. (5)
that for large � the radius of the beam expands linearly with
�, which suggests that we define the new ‘‘expanding’’
independent variables [8]

x0 �
�����

z0
p

x=�; (8)

y0 �
�����

z0
p

y=�; (9)

and a new dependent variable v�x0; y0; �0� such that

a�x; y; �� � �1=��v�x0; y0; �0� exp�ir2=��; (10)

where �0 is the time in the primed (expanding) coordinates,
as determined below. The choice of �0 is made in such a
way below [Eq. (17)] that the evolution of v�x0; y0; �0� is
determined by the familiar paraxial wave equation in
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�x0; y0; �0�. The phase factor exp�ir2=�� characterizing an
expanding ‘‘paraxial spherical wave’’ [9], as well as the
spherical amplitude expansion factor 1=�, are explicitly
factored out from a in Eq. (10). The remaining function v
has to account only for the diffraction effects not contained
in the solution for the Gaussian fundamental mode. In
addition, the inverse dependence of x0 and y0 on � means
that the dimensions of the primed numerical grid decrease
with increasing �, i.e., in precisely the region where the
physical beam (represented on the unprimed grid x and y)
becomes large by diffraction.

We will now show that v�x0; y0; �0� itself does indeed
satisfy exactly the same paraxial wave equation as does
a�x; y; ��, Eq. (3). First, evaluate ax � @a�x; y; ��=@x �
�vx0x

0
x=�� 2ixv=�2� exp�ir2=��, by the chain rule applied

to Eq. (10). But x0x � @x0=@x �
�����

z0
p

=� by Eq. (8). Thus,
ax � �vx0

�����

z0
p

=�2 � 2ixv=�2� exp�ir2=��. One more de-
rivative with respect to x yields

axx �
eir

2=�

�3 �z0vx0x0 � 4i
�����

z0
p

xvx0 � 2iv�� 4vx2�: (11)

In the same fashion, we find that

ayy �
eir

2=�

�3 �z0vy0y0 � 4i
�����

z0
p

yvy0 � 2iv�� 4vy2�: (12)

Now differentiating Eq. (10) with respect to � using the
chain rule again,

a� �
eir

2=�

�3 �vx0x
0
��2 � vy0y0��2 � v�0�0��2 � v�� ir2v�:

(13)

Using x0� � @x0=@� � �
�����

z0
p

x=�2 and y0� � @y0=@� �
�

�����

z0
p

y=�2, Eq. (13) becomes

a� �
eir

2=�

�3 	�
�����

z0
p
�xvx0 � yvy0 � � v�0�

0
��

2 � v�� ir2v
:

(14)

Substituting Eqs. (11), (12), and (14) into Eq. (3) yields

vx0x0 � vy0y0 � 4i��2�0�=z0�v�0 � 0: (15)

We are still free to relate � and �0. A convenient choice is
found by imposing the condition �2�0�=z0 � 1, so that the
wave equation in the primed coordinates takes the form of
the paraxial wave equation,

vx0x0 � vy0y0 � 4iv�0 � 0: (16)

This condition is �0� � @�0=@� � z0=�
2, which can be

integrated with respect to � to obtain

�0 � z0�1=�1 � 1=��; (17)

where the constant of integration is written z0=�1 so that
�0 � 0 when � � �1. The well-understood fast-Fourier-
transform method may then be applied to Eq. (16), without
3-3



FIG. 4. (Color) Contours of constant virtual field amplitude jvj
as a function of expanding coordinates �r0; �0� for free-space
diffraction of a spherical wave front. The dashed lines indicate
the constant size of the integration steps in the primed coordinate
system. Also notice that a spherical wave maintains a nearly
constant radius in this coordinate system.
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the numerical difficulty of following a rapidly expanding
wave front.

The solution for the optical field a when � < �1 is
calculated in the conventional coordinates x; y, and �,
then connected [using Eq. (10)] to the expanding-
coordinate solution for �  �1.

Note that a function a�x; y; �� which expands approxi-
mately linearly with � in the unprimed coordinate system
(for example, the fundamental mode, Eq. (4), in the limit
�� zo) is transformed through Eq. (10) to a function
v�x0; y0; �0� with nearly constant width in the expanding-
coordinate system. In the simulation of an actual FEL, the
interaction with the electron beam will create a mixture of
modes rather than just the fundamental mode, but the
transformation can handle higher-order modes as well
with no modification.

The schematic representations in Figs. 3 and 4 show jaj
expanding as a function of � and jvj as a function of �0

respectively, to illustrate the effect of the coordinate trans-
formation. In an actual numerical simulation, we calculate
jaj in the region � � 0 to � � �1 in �x; y; ��, then switch to
the primed system �x0; y0; �0� to calculate jvj for � > �1,
corresponding to �0 > 0. Then we apply the transformation
Eq. (10) to recover a��� for � > �1. The dashed lines in the
diagrams remind us of the relative size of the integration
steps in the primed and unprimed systems.

In terms of the numerical integration using the expand-
ing coordinates, constant time steps ��0 correspond to time
steps in the unprimed coordinates which increase quadrati-
cally with �, so that �� � �2��0=z0, as required by
Eq. (17). These increasing time steps are beneficial in
propagating out to mirrors far away from the end of the
undulator.

D. Validation

We first used the expanding-coordinate method to study
free-space diffraction of a fundamental mode, and vali-
dated the results by comparison to Gaussian beam theory
FIG. 3. (Color) Contours of constant optical field amplitude jaj
as a function of Cartesian coordinates �r; �� for free-space
diffraction of a nearly spherical wave front, for �1 � z0. The
dashed lines indicate the increasing size of the integration steps
in the unprimed coordinate system.
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[10]. Then we used expanding coordinates to model the
evolution of optical wave fronts in a cold cavity, with
mirrors of various curvature, including the effects of mis-
aligned mirrors. The results were compared to ray-tracing
algorithms, showing good agreement over many orders of
magnitude [11]. We have now incorporated this expanding-
coordinate method into our FEL simulations. Inside the
undulator, we use a normal Cartesian coordinate system.
From the ends of the undulator to the mirrors, we use the
expanding-coordinate system described above.

III. SIMULATION RESULTS: WEAK OPTICAL
FIELDS

First we use our simulations to study FEL behavior in
weak optical fields, jaj<�. In particular, we look at the
single-pass gain as the Rayleigh length is varied. As an
example, consider an FEL having an undulator with N �
22 periods, total length L � 52 cm, rms undulator parame-
ter K � 1, and period �0 � 2:36 cm. An FEL with a short-
Rayleigh length requires a short undulator length so that
the expanding mode does not scrape the undulator mag-
nets. In this case the undulator gap g � 1 cm and there is
no significant scraping of the focused electron beam or
optical mode. At the end of the undulator the optical mode
radius is Wu � ��L=4�z0�

1=2 � 0:2z�1=2
0 mm. In order to

keepWu < 0:1g � 1 mm to avoid even the slightest scrap-
ing, we keep z0 > 0:05. The electron micropulse has peak
current Î � 400 A and energy Eb � 80 MeV, correspond-
ing to a Lorentz factor � � Eb=mc

2 � 157. The electron
beam is focused to a narrow waist radius rb � 0:06 mm.
The FEL resonance condition defines the optical wave-
length as � � �0�1� K

2�=2�2 � 1 �m in a resonator
with mirror separation S � 18 m and 25% output coupling.

Figure 5 shows simulation results for this FEL, varying
the dimensionless Rayleigh length over the range z0 �
3-4



FIG. 5. (Color) Simulation results for FEL weak-field gain as a
function of normalized Rayleigh length z0 (solid blue line). The
results are compared to a simple theory (dashed red line), which
assumes the optical field is in the fundamental mode. The large
disagreement between the simple theory and simulations for
small z0 is due to mode distortion.
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0:05! 1. Also shown on this graph is the theoretical gain,
which assumes the optical field is in the fundamental
mode, and the gain is proportional to the filling factor.
The most dramatic result is that in the simulations, the
gain does not decrease like G / z0 for small z0; in fact, the
gain continues to increase as z0 is reduced below 0.3. This
is due to optical mode distortion that is allowed to occur
self-consistently in the simulations, but not in the simple
theory, which assumes the laser operates only in the fun-
damental mode. The single-pass gain is fairly large for this
example (G � 50! 100%), but the trend shown here has
been confirmed for much smaller gain as well. In fact, only
very low gain FELs (G & 2%) show decreasing gain at
small Rayleigh lengths.

The observed mode distortion is not large, but sufficient
to significantly increase the gain when the Rayleigh length
is small. In these cases, the electron beam has been focused
to a waist size of rb � 0:06 mm so that it remains inside the
focused optical mode waist. The normalized emittance
required for this case is �n � 3 mm-mrad, but larger emit-
tances we have explored show that there is no significant
decrease in gain at small Rayleigh length when mode
distortion is allowed.
FIG. 6. (Color) Simulation results for extraction 
 versus nor-
malized Rayleigh length z0 (solid blue line). The optimum value
is z0 � 0:3, in agreement with the simple theory, but good
extraction is maintained for smaller values of z0. Also plotted
is the intensity on the mirrors (dashed green line); the intensity
decreases dramatically as the Rayleigh length is reduced.
IV. SIMULATION RESULTS: STRONG OPTICAL
FIELDS

Now we use our simulations to study the FEL behavior
when it reaches steady-state saturation in strong optical
fields, jaj � �. In particular, we look at the single-pass
extraction, defined as the output optical power divided by
the input electron beam power, as various FEL parameters
are modified. We simulate the same FEL described in the
03070
previous section. The dimensionless current density is
given by

j �
8N�e�KL�2�e

�3mc2 ; (18)

where �e is the electron particle density, proportional to the
peak beam current Î. For the current set of parameters, j �
99. The dimensionless electron beam radius is 	 �
rb=�L�=��1=2 � 0:15 and the dimensionless Rayleigh
length is z0 � Z0=L � 0:12. The dimensionless cavity
length is s � S=L � 35.

First we ran a series of simulations varying the Rayleigh
length from z0 � 0:05! 1, normalized to the undulator
length L. The results for extraction versus Rayleigh length
are shown in Fig. 6. Extraction 
 is defined as the fraction
of electron beam power converted to optical power on a
single pass through the undulator. Also shown on that
graph is the intensity on the mirrors versus Rayleigh
length. The results confirm that a short-Rayleigh length
FEL can maintain good extraction while reducing optical
intensity on the mirrors.

Figure 7 shows the steady-state extraction from many
simulations as the current density j is varied while emit-
tance is held constant. A theoretical curve, discussed be-
low, is also shown for reference. The Rayleigh length is
kept fixed at z0 � 0:12. Since the weak-field gain is pro-
portional to j, there is a minimum threshold value of j �
20 below which there is no extraction, because the cavity
losses exceed the gain. For larger values of j, the power
will grow over each pass until the laser reaches saturation
in strong optical fields. Basic FEL theory [5] predicts that
for high gain, j� 1, the extraction should grow as
3-5



FIG. 9. (Color) Simulation results for extraction 
 versus nor-
malized electron beam radius 	, showing an optimal beam
radius at 	 � 0:1.

FIG. 7. (Color) Extraction 
 versus dimensionless current den-
sity j, for a series of simulations (solid blue line), compared to
theory (dashed red line). The shape of the simulation curve
agrees well with the theory curve, but there is an offset, probably
due to mode distortion, which the theory does not include.
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 �
�j=2�1=3

8N
: (19)

Equation (19) is plotted as a dashed red line in Fig. 7. The
similar slope of the two curves confirms the j1=3 depen-
dence, but the theory curve is slightly below the simulation
curve. However, Eq. (19) is only an approximation, and
does not include the effects of mode distortion.

Figure 8 shows the steady-state optical wave front pro-
file at the output mirror for several values of j. For mod-
erate current, j � 40, the laser appears to be operating
close to the fundamental mode, and for high current, j �
200, the mode is clearly distorted.

Figure 9 shows the results of many simulations as the
electron beam radius 	 is varied. The beam angular spread
is also varied to keep the emittance constant. The simula-
tions predict that the optimal beam radius is at 	 � 0:1.
For small beam radii, the corresponding large angular
spread reduces overlap with the optical beam over the
length of the undulator, hence lowering extraction. For
large beam radii, many electrons are outside the strongly
FIG. 8. (Color) Optical field amplitude ja�x; y�j at the output
mirror for several values of current density j. Mode distortion is
more apparent as the current density is increased.
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focused optical beam at the waist, again reducing extrac-
tion. Figure 10 illustrates these two extreme cases.

Finally, we look at the effects of varying the number of
undulator periods N, keeping the undulator period �0

constant. The simulation results are plotted in Fig. 11.
Note that changing N affects many other dimensionless
parameters; for example, the electron current density j /
N3. Consequently, if there are too few periods, the gain will
be below threshold, and the simulation results indeed show
that there is no extraction forN < 12, corresponding to j <
FIG. 10. (Color) A cross section of the optical mode amplitude,
ja�y; ��j, over a single pass through the undulator, from � � 0!
1, for a narrow electron beam (	 � 0:03, top) and a broad
electron beam (	 � 0:3, bottom). The red dots represent sample
electrons. The white contour lines indicate 5% of the peak
optical amplitude. The yellow curves on the left and right
show the optical mode profile at the beginning and end of the
undulator, respectively.
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FIG. 12. (Color) Optical field amplitude ja�x; y�j at the output
mirror for various number of undulator periods N. Increasing the
number of periods, in addition to reducing the extraction, also
distorts the optical mode away from the fundamental.

FIG. 11. (Color) Simulation results for extraction 
 versus num-
ber of undulator periods N. For the given set of parameters, the
optimal number of periods is N � 18, much shorter than a
typical FEL undulator.
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20. Above that, the extraction increases rapidly, until N �
18. For larger values of N, even though j continues to
increase, the extraction drops off. The optical wave fronts
in Fig. 12 predict the development of mode distortion as N
increases.

We also varied the electron beam focus point from �� �
0! 1, normalized to the undulator length L. The simula-
tion results (not shown here) gave a fairly constant
extraction over the entire range, predicting that the short-
Rayleigh length FEL should be fairly insensitive to fluctu-
ations in the electron beam focal point. The optical mode
profiles also did not change much over this range.
03070
V. CONCLUSION

The results of this work show that it is feasible to build
an FEL with a short-Rayleigh length optical cavity, which
is a necessary component of a compact, high-power FEL
oscillator. We have developed simulations using an
expanding-coordinate system to follow the evolution of
the rapidly diffracting optical fields in a short-Rayleigh
length FEL. We have used these simulations to show that
for normalized Rayleigh length z0 < 0:3, the gain is in-
creased significantly above the prediction of the simple
theory. The simulations indicate good power extraction
with reduced mirror intensity as the Rayleigh length is
decreased. The simulations also show that the output
wave front is increasingly distorted from the fundamental
mode as the current density and/or number of undulator
periods is increased. The mode distortion tends to enhance
the FEL gain and extraction. We believe that this mode
distortion is responsible for the deviations from the simple
theory, which assumes only a single Gaussian mode.
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