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The Twiss parameters provide a convenient description of beam optics in uncoupled linear beam lines.
For coupled beam lines, a variety of approaches are possible for describing the linear optics; here, we
propose an approach and notation that naturally generalizes the familiar Twiss parameters to the coupled
case in 3 degrees of freedom. Our approach is based on an eigensystem analysis of the matrix of second-
order beam moments, or alternatively (in the case of a storage ring) on an eigensystem analysis of the
linear single-turn map. The lattice functions that emerge from this approach have an interpretation that is
conceptually very simple: in particular, the lattice functions directly relate the beam distribution in phase-
space to the invariant emittances. To emphasize the physical significance of the coupled lattice functions,
we develop the theory from first principles, using only the assumption of linear symplectic transport. We
also give some examples of the application of this approach, demonstrating its advantages of conceptual
and notational simplicity.
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I. INTRODUCTION

Linear optics in uncoupled beam lines are convention-
ally described by means of the Twiss parameters. The
Twiss parameters or lattice functions relate the beam dis-
tribution in phase space at any point in a beam line to
conserved quantities—the emittances—that are properties
of a bunch traveling along the beam line. For example, the
horizontal mean square beam size hx2i is related to the
horizontal emittance by hx2i � �x�x, where �x is the
horizontal Twiss beta function that varies along the beam
line, and �x is the horizontal emittance (a conserved prop-
erty of the beam). Coupling in a beam line can transfer
motion from 1 degree of freedom into another; this can
arise, for example, from the presence of skew quadrupoles,
or from RF cavities at locations of nonzero dispersion.

Two approaches for describing the transverse optics in
coupled beam lines are well known. In one approach,
introduced by Edwards and Teng [1] and developed by
others [2–4], coupled betatron motion is analyzed by
defining a ‘‘decoupling transformation’’ that puts the 4�
4 transfer matrix into block-diagonal form. The lattice
functions are obtained from the block-diagonal compo-
nents of the transformed transfer matrix by a procedure
similar to that used for uncoupled motion. Additional
functions to describe the coupling are obtained from the
decoupling transformation. A disadvantage of this tech-
nique is that the lattice functions are not directly related to
the beam sizes. Also, the procedure does not easily gen-
eralize to more than 2 degrees of freedom.

In the second approach, a transformation is found from
the eigenvectors of the transfer matrix, that puts the trans-
fer matrix into ‘‘normal form,’’ i.e., the transfer matrix is
transformed into a pure rotation. The lattice functions are
address: awolski@lbl.gov
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defined in terms of elements of the normalizing transfor-
mation. This is the basis of the approach used by Ripken
[5,6] and by Lebedev and Bogacz [7]. These authors mini-
mize the number of lattice functions used to describe the
optics, and as a result the interpretation of the various
lattice functions is not as simple as it might be. Also, the
theory is developed only for motion in 2 degrees of free-
dom. However, in an accelerator, the coupling between
transverse and longitudinal motion (described by the dis-
persion) is often not negligible, and it is desirable to have a
description of the optics that applies as naturally and easily
to 3 degrees of freedom as to 2.

In this paper, we develop a description of coupled linear
optics that addresses issues inherent in previous ap-
proaches. In particular, we aim to develop a description
of the optics that maintains the conceptual simplicity of the
uncoupled case (by providing lattice functions that directly
relate the beam emittances to the beam distribution in
phase space), and is capable of describing motion in any
number of degrees of freedom with equal ease. We start
from the eigenvector analysis, but differ from previous
work in that we do not aim to reduce the number of lattice
functions to the absolute minimum. We feel that it is more
useful to have functions that have clear physical signifi-
cance, than to know that all the functions in the theory are
truly independent of one another. Since there is a natural
systematic notation in our approach that emphasizes the
physical significance of the lattice functions, it is easy to
keep track of the various functions and to manipulate
expressions in which they appear. Our approach is general
in that we make no assumptions about the beam line
(beyond requiring linearity and symplecticity) or about
the form of the beam distribution (our analysis applies to
Gaussian and non-Gaussian beam distributions).

We begin in Sec. II by making some general definitions.
In Sec. III, we consider linear beam optics in storage rings,
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using the concept of a matched distribution to define a set
of coupled lattice functions that directly relate the matched
distribution to a set of conserved quantities—the beam
emittances. We then consider in Sec. IV the propagation
of the lattice functions along a transport line (nonperiodic
beam line), and also obtain the phase advance along such a
beam line. Finally, in Sec. V we give some practical
examples that illustrate how our approach and notation
provide a convenient way for describing coupled linear
optics in storage rings and transport lines.
II. GENERAL DEFINITIONS

The beam distribution is described by a symmetric
matrix � of second-order moments. The components of
� are given by

�ij � hxixji (1)

where the brackets h�i denote an average over all particles
in the beam. The coordinates xi are components of the
phase-space vector of a particle

x �

x
px
y
py
z
�

0
BBBBBBBB@

1
CCCCCCCCA
: (2)

We shall implicitly assume that the beam has vanishing
first-order moments, i.e.,

hxii � 0: (3)

If necessary, it is straightforward to perform a transforma-
tion to variables in which this condition is satisfied.

The variables �x; px�, �y; py� and �z; �� form three sets of
canonical conjugate pairs. In this case, the linear transfer
matrix between any two points in a beam line will be
symplectic. Note that z is the distance that a particle is
ahead of the reference particle; � is the relative energy
deviation

� �
E� E0

E0
; (4)

where E0 is the reference energy.
For convenience we define some 2� 2 matrices

0 2 �
0 0
0 0

� �
; (5)

I 2 �
1 0
0 1

� �
; (6)

�I 2 �
0 1
1 0

� �
; (7)
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S 2 �
0 1
�1 0

� �
; (8)

�S 2 �
�1 0
0 1

� �
: (9)

A matrix M is symplectic if it satisfies the condition

M TSM � S; (10)

where S is the antisymmetric matrix

S �
S2

S2

S2

0
@

1
A: (11)
III. STORAGE RINGS

In this section, we consider the case of beam optics in a
storage ring. This allows us to define the concept of a
matched distribution, which will be used to specify the
values of the lattice functions at each point in the ring. We
begin by showing an equivalence between the eigenvectors
of the single-turn linear map M, and the eigenvectors of the
matrix �S constructed from the beam distribution matrix.
We then show that the beam emittances are the eigenvalues
(within a factor �i) of �S. This leads (via a definition of
the action as a conserved quantity of the motion of a
particle under linear symplectic transport) to a natural
definition of the lattice functions as quantities that relate
the matched beam distribution in phase space at any point
in a storage ring to the beam emittances. We end this
section by showing that in the special case of zero cou-
pling, the lattice functions we derive in this way corre-
spond to the familiar Twiss parameters.

A. Eigenvectors of the single-turn matrix and the beam
distribution matrix

Since the linear single-turn map M is symplectic, it has
six eigenvalues that can be arranged in reciprocal pairs

��k�k � 1; (12)

where k � I, II, III. The eigenvectors e�k of M are defined
by

Me�k � ��ke�k; (13)

and are normalized so that

eT
�kSek0 � i�kk0 ; (14a)

e�k � e�k: (14b)

If the storage ring lattice is linearly stable, then the eigen-
values of the single-turn map will lie on the unit circle

j�kj � 1 (15)
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and the three tunes �k are given by

��k � exp��2�i�k�: (16)

We now construct the matrix E from the set of eigen-
vectors e�k. Explicitly

E � � e�I eI e�II eII e�III eIII �: (17)

With the normalization (14), E obeys the relation

E TSE � iS: (18)

We note that

E�1ME � � (19)

where � is a diagonal matrix constructed from the eigen-
values of M.

At any point in a storage ring, a beam distribution � that
is properly matched to the lattice is invariant under a
transformation given by the single-turn matrix M at that
point

x !Mx; �!M�MT � �: (20)

From the symplectic condition (10) for the single-turn
matrix M, and the invariance of the matched distribution
under a transformation given by M (20), it follows that

��S��1M��S� �M: (21)

This relationship is satisfied by any matrix M that can be
written as

M � ~E ~� ~E�1; (22)

where ~� is a diagonal matrix and ~E is a matrix constructed
from the eigenvectors of �S

��S�~E � ~ED (23)

with D the diagonal matrix constructed from the eigenval-
ues of �S. But the diagonalization of M is uniquely given
by the eigensystem of M. Hence, we must have

~E � E; (24a)
~� � �: (24b)

In other words, the eigenvectors of M are the same as the
eigenvectors of �S.

B. Eigenvalues of �S

Another useful result is that the eigenvalues of �S are
just the beam emittances. To prove this, we first note that
the eigenvalues of �S are invariant under a symplectic
transformation of the phase-space coordinates

x ! Ux; �S! U�UTS � U�SU�1: (25)

Here, U is any symplectic matrix, and the final equality
follows from the fact that U is symplectic. Note that �S
and U�SU�1 have the same eigenvalues (this is true for
02400
any matrices U and �S). Now let U be the symplectic
matrix that puts the single-turn matrix M into normal form

UMU�1 � R (26)

where R is a rotation matrix. We shall give an explicit
construction of U in Sec. III D. In principle, we can asso-
ciate U with some beam line that decouples the beam. The
beam line does not have to form a physical part of the
storage ring; it only needs to exist in principle. Since the
single-turn matrix at the end of the beam line associated
with U is simply a rotation, the matched beam distribution
matrix �U � U�UT at this point is diagonal

�U �

hx2i

hp2
xi

hy2i

hp2
yi

hz2i

h�2i

0
BBBBBBBB@

1
CCCCCCCCA
: (27)

By solving the characteristic equation

det��US� �I� � 0 (28)

we find that the eigenvalues of �US are �i�x, �i�y and
�i�z, where

�x �
�����������������
hx2ihp2

xi
q

(29a)

�y �
�����������������
hy2ihp2

yi
q

; (29b)

�z �
�����������������
hz2ih�2i

q
(29c)

are the rms beam emittances. But since the eigenvalues of
�S are preserved under any symplectic transformation of
the phase-space coordinates, the eigenvalues of �S must
also be �i�k where k � I, II, or III (each value of k
corresponding to a different degree of freedom). The diag-
onalization of �S is

E�1��S�E � D �
i �S2�I

i �S2�II

i �S2�III

0
@

1
A: (30)

To summarize, the single-turn matrix M and the matrix
�S have the same eigenvectors E, but different eigenval-
ues

M � E�E�1; (31)

�S � EDE�1: (32)

The eigenvalues � of M are related to the tunes of the
lattice, and the eigenvalues D of �S are related to the beam
emittances.

C. Actions and emittances

We can construct quadratic functions of the phase-space
coordinates of a single particle
1-3
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J � 1
2x

TAx (33)

where A is a symmetric matrix. If A satisfies

M TAM � A (34)

then the quantity J is invariant under the single-turn map

x !Mx; J ! J: (35)

With the additional constraint

detA � 1 (36)

J is an action of the particle. In 3 degrees of freedom, there
are three possible symmetric matrices A that satisfy
Eqs. (34) and (36), and hence three actions. Generally,
two of the actions are associated with transverse motion
(the betatron actions) and one with longitudinal motion
(the synchrotron action).

Now consider again the transformation U that trans-
forms the single-turn matrix M into a rotation R. We
define

A U � �U�1�TAU�1; (37)

which, from Eqs. (26) and (34) must satisfy

R TAUR � AU: (38)

In general, Eq. (38) has three solutions:

A k
U � Tk (39)

where

TI �

I2

02

02

0
BB@

1
CCA; (40a)

TII �

02

I2

02

0
BB@

1
CCA; (40b)

TIII �

02

02

I2

0
BB@

1
CCA: (40c)

It follows that, after the transformation U

hJIi �
1
2hx

2i 	 1
2hp

2
xi; (41a)

hJIIi �
1
2hy

2i 	 1
2hp

2
yi; (41b)

hJIIIi �
1

2
hz2i 	

1

2
h�2i: (41c)

We also note that under the transformation U, the matched
distribution becomes

�U �

I2�I

I2�II

I2�III

0
@

1
A: (42)

So from Eqs. (41) and (42) we have
�k � hJki: (43)
02400
Since the actions Jk of the individual particles and the
emittances �k of the beam are invariant under any trans-
formation U, Eq. (43) must be true at any point in the beam
line.

D. Lattice functions

Recall the matrix E that is constructed from the eigen-
vectors of either the single-turn matrix M, or �S where �
is the matrix of second-order moments of the beam distri-
bution. It is convenient to define a set of lattice functions
that describe the matrix E in a physically meaningful way:
these lattice functions will describe the linear optics of the
lattice.

To derive the desired lattice functions, we first construct
a real matrix N from E

N � EQ; (44)

where

Q �

Q2

Q2

Q2

0
BB@

1
CCA; (45a)

Q2 �
1���
2
p

1 i

1 �i

 !
: (45b)

With the normalization (14) of the eigenvectors, N is
symplectic. Using N, we can transform the single-turn
matrix M into block-diagonal form

N�1MN � R��I; �II; �III�

�

R2��I�

R2��II�

R2��III�

0
BB@

1
CCA; (46)

where �k � 2��k, and R2�	� is the 2� 2 rotation matrix

R 2�	� �
cos	 sin	
� sin	 cos	

� �
: (47)

Note that Eq. (44) gives us an explicit construction for the
matrix U that we previously used to transform the single-
turn map into a pure rotation

U � N�1: (48)

We now construct a vector J from the phase-space vector of
a single particle

J � N�1x: (49)

Under a transformation given by the single-turn matrix, we
have

J � N�1x! N�1Mx � N�1MNN�1x � RJ: (50)

If J is written in the form
1-4
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J �

�������
2JI

p
cos
I

�
�������
2JI

p
sin
I��������

2JII

p
cos
II

�
��������
2JII

p
sin
II���������

2JIII

p
cos
III

�
���������
2JIII

p
sin
III

0
BBBBBBBB@

1
CCCCCCCCA
; (51)

then Eq. (50) shows that the actions Jk are invariant under
the single-turn matrix, and the angles 
k transform as

x !Mx; 
k ! 
k 	�k: (52)

To make the connection with the invariant action intro-
duced in Eq. (33), we note that

1
2 xTAkx � 1

2J
TNTAkNJ � 1

2J
TTkJ � Jk; (53)

where we have used Eqs. (37), (39), and (48). From the
definition of the emittance (43) and assuming that the
angles of different particles in the beam are uncorrelated,
we can write

hJJTi �
X

k�I;II;III

Tk�k: (54)

It then follows that the beam distribution can be written

� � hxxTi � NhJJTiNT �
X
k

NTkNT�k: (55)

If we define three matrices

B k � NTkNT � E �TkET; (56)

where

�TI �

�I2

02

02

0
BB@

1
CCA; (57a)

�TII �

02

�I2

02

0
BB@

1
CCA; (57b)

�TIII �

02

02

�I2

0
BB@

1
CCA (57c)

then we can write

� �
X
k

Bk�k: (58)

Note that Eq. (56) may also be written

�I
ij � ni1nj1 	 ni2nj2; (59a)

�II
ij � ni3nj3 	 ni4nj4; (59b)

�III
ij � ni5nj5 	 ni6nj6; (59c)

where the quantities nij are the components of the matrix
N. We identify the elements �kij of Bk as the lattice
functions that relate the beam emittances to the beam
distribution. In Sec. III E we show that in the uncoupled
case, the nonzero elements of Bk correspond to the usual
02400
Twiss parameters. We note that an equation corresponding
to Eq. (58) was obtained by Chao [8] in an analysis of the
equilibrium beam distribution in an electron storage ring.

The lattice functions defined in Eq. (56) can be used to
parameterize the single-turn matrix. First, we use Eq. (31)
to write

E�1ME � � �
X
k

�Tk cos�k 	 i �TkS sin�k�: (60)

Using Eqs. (18) and (56) we find

�BkS�2 � �E� �TkS�2E�1 � �ETkE�1: (61)

It then follows that we can write the single-turn matrix M
in the form

M �
X

k�I;II;III

�BkS sin�k � �BkS�2 cos�k�: (62)
E. Special case: uncoupled lattices

In the special case that the single-turn matrix is block
diagonal, the motion is uncoupled in the sense that the
coordinate in any plane is determined by just one of the
three actions. If we identify k � I with the horizontal
plane, and k � II with the vertical plane, then there are
simple relationships between the lattice functions defined
in Eq. (56) and the familiar Twiss parameters. In the
horizontal plane

�x � �I
11 (63a)

�x � ��I
12; (63b)

�x � �I
22; (63c)

and in the vertical plane

�y � �II
33; (64a)

�y � ��
II
34 (64b)

�y � �II
44: (64c)

In a storage ring, the single-turn matrix is usually not
completely block diagonal, but the transverse planes are
coupled to the longitudinal plane through the dispersion.
For example, the horizontal coordinate of a particle is
given by

x �
�������������
2�xJx

p
cos
x 	 x�; (65)

where x is the horizontal dispersion. It follows that

hx�i � xh�
2i: (66)

In terms of the lattice functions defined in Eq. (56) we can
write

hx�i � �III
16�III; (67)

h�2i � �III
66�III: (68)

It immediately follows that the horizontal dispersion is
1-5
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given by

x �
�III

16

�III
66

: (69)

Similarly, the dispersion in the vertical plane is given by

y �
�III

36

�III
66

: (70)
IV. TRANSPORT LINES

In a storage ring, the matched distribution is defined by
the condition that the beam distribution matrix be invariant
under the transformation given by the single-turn matrix.
In a transport line (i.e., any nonperiodic beam line), there is
no corresponding requirement, and we must start instead
from some assumed distribution. Given the second-order
moments � of the distribution at some point in the beam
line, we can find the corresponding lattice functions by
constructing the eigenvectors e�k of �S, and proceeding as
in Sec. III D. Alternatively, we can assume values for the
lattice functions at some point, and construct the distribu-
tion using Eq. (58). The question then is how we propagate
the lattice functions (or, equivalently, the beam distribution
matrix) along the beam line.

A. Propagating the lattice functions

Propagating the beam distribution is simple. We write
the transfer matrix from position s1 to position s2 in a beam
line as M21:

x 2 �M21x1: (71)

From Eq. (1), it follows that � transforms as

�2 �M21�1MT
21: (72)

Clearly, it is possible to derive the lattice functions at s2 by
finding the eigenvectors of �2. However, since the lattice
functions are independent of the beam emittances, we can
construct an artificial distribution at s1 from the known
lattice functions at that point

�k�s1� � Bk�s1�: (73)

The matrix �k describes the distribution of a beam that has
�k � 1 for some chosen value of k, and zero emittances in
the other 2 degrees of freedom. It then follows that the
lattice functions are propagated along the beam line simply
by calculating the matrix product:

B k�s2� �M21Bk�s1�MT
21: (74)

B. Phase advance

It is often useful to know the phase advance between
different points of the beam line. We first observe that there
is a degeneracy in the matrix N that puts the matrix �S into
02400
block-diagonal form. The degeneracy in N corresponds to
the fact that the absolute phase at any point is not deter-
mined: given two points in the beam line, only the phase
advance between them is significant, since the phase ad-
vance gives the change in the angle, a dynamical variable,
of any particle traveling from one point to the next. To fix a
reference point, we must impose some conditions on N to
remove the degeneracy. There are many ways to do this;
one possible set of conditions, corresponding to the con-
ventions used for uncoupled motion, may be written

n12 � n34 � n56 � 0: (75)

In general, it is possible to find a rotation matrix R that can
be used to transform N such that these conditions are
satisfied; a matrix transformed in this way retains the
defining property of block-diagonalizing �S. We denote
the ‘‘standardized’’ version of N by �N.

From the standardized matrix �N1 that puts �1S into
block-diagonal form, we can construct

N 2 �M21
�N1: (76)

It is straightforward to show that N2 puts �2S into block-
diagonal form; however, in general, it will not be stand-
ardized, i.e., the conditions (75) will not be satisfied. To
perform the standardization, we simply apply a rotation

�N 2 � N2R�1 �M21
�N1R�1; (77)

where

R � R��
I;�
II;�
III� � �N�1
2 M21

�N1: (78)

The rotation angles �
k are the required phase advances.
V. APPLICATIONS

The principal value of the lattice functions defined by
Eq. (56) is that they provide a conceptually simple way to
describe the linear optics in a coupled system. We also find
that useful formulas can be expressed in an elegant and
concise way using these functions. In this section, we give
examples of both these benefits.

A. Phase advance and lattice functions

In an uncoupled lattice, the horizontal phase advance is
related to the horizontal beta function by

d
x

ds
�

1

�x
(79)

(and similarly for the vertical plane). We can find an
analogous expression in the case of coupled optics. For
simplicity, we consider the phase advance in the plane k �
I; the analysis is easily generalized to the other planes.

First, we find from Eqs. (75)–(77) that the phase ad-
vance resulting from the transformation M21 is given by
1-6
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tan�
I �
n�2�12

n�2�11

; (80)

where n�2�ij are the elements of N2. �
I is just the rotation
angle needed to satisfy the standard phase choice (75). In
an accelerator beam line, the form of M21 is constrained by
Maxwell’s and Hamilton’s equations. By considering the
linear transfer matrices for drift spaces, dipoles, normal
and skew quadrupoles and solenoids, we find that particle
transport over a short distance �s in any of these linear
elements has the result (to first-order in �s):

n�2�12

n�2�11

�
�n22 	

1
2 ks �n32

�n11
�s (81)

where ks is the solenoid field strength normalized to the
beam rigidity, and �nij are the elements of �N1. Combining
Eqs. (80) and (81), and taking the limit �s! 0, we find

d
I

ds
�

�n22 	
1
2 ks �n32

�n11
: (82)

Using Eq. (56), we can write Eq. (82) in terms of the lattice
functions. The result is

d
I

ds
�

1

�I
11

�I
1122 	

1
2 ks�

I
1123������������

�I
1122

q
0
B@

1
CA; (83)

where we have defined

�k
iji0j0 � �kij�

k
i0j0 � �

k
ij0�

k
i0j: (84)

Note that the solenoid strength enters explicitly in Eq. (83);
otherwise, the right-hand side is expressed purely in terms
of the lattice functions. In the uncoupled case, ks � 0 and
�I

1122 � 1, and we recover Eq. (79).

B. Tune shift from perturbative focusing error

It is often useful to know the tune shift that results in a
storage ring from a perturbative focusing error at some
point in the lattice. Let us consider a focusing error that
may be represented by the transfer matrix

K �

1 0 0 0 0 0
�11 1 �13 0 �15 0
0 0 1 0 0 0
�31 0 �33 1 �35 0
0 0 0 0 1 0
�51 0 �53 0 �55 1

0
BBBBBBBB@

1
CCCCCCCCA
: (85)

Note that the symplectic condition on K requires that

�31 � �13; (86a)

�51 � �15; (86b)

�53 � �35: (86c)

Let M be the single-turn transfer matrix in the absence of
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the focusing error, at the location of the error. In the
presence of the focusing error, the single-turn matrix may
be expressed as

M K � NRN�1K � NRN�1KNN�1; (87)

where N is the normalizing transformation for M, and R is
a block-diagonal rotation matrix. The rotation angles in R
are the lattice tunes multiplied by 2�. N determines the
lattice functions; to find the perturbative tune shift to first
order in the focusing error, we can neglect the variation in
the lattice functions from the focusing error, and assume
that N normalizes MK as well as M. Hence, we write

M K � NR ��R � N�1; (88)

where

�R � N�1KN (89)

is (close to) a rotation matrix, with rotation angles equal to
the tune shifts resulting from the focusing error.

Since N is symplectic, we have

S ��R � NTSKN: (90)

For small tune shifts, the tune shifts may be obtained from
the diagonal elements of S ��R

��I 

1
2��N

TSKN�11 	 �NTSKN�22�; (91a)

��II 

1
2��N

TSKN�33 	 �NTSKN�44�; (91b)

��III 

1
2��N

TSKN�55 	 �NTSKN�66�: (91c)

Using Eq. (56), we find that for symplectic focusing errors
of the form (85), the tune shifts can be expressed as

��k 
 �
1

4�

X
i;j�1;3;5

�kij�ij; (92)

where, as usual, k � I,II,III. Equation (92) has been found
(in a slightly different form) by Venturini [9] in the context
of space-charge tune shifts in a coupled lattice.

In the special case of an uncoupled lattice, Eq. (92)
reduces to the familiar form

��x � �
1

4�
�x�x; (93a)

��y � �
1

4�
�y�y; (93b)

for the horizontal and vertical planes, where �x � �11, and
�y � �33.

C. Flat-beam to round-beam transformer

The space-charge tune shifts in large lattices at low
energy can become large when the vertical emittance is
small, as is the case in some designs for linear collider
damping rings, for example [10]. Coupling bumps have
been proposed as a way to make the vertical beam size
large even when the vertical emittance is small, thus re-
1-7
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ducing the charge density and mitigating potentially harm-
ful space-charge effects. The basic concepts have been
described by Derbenev et al.; see, for example, [11].
Here, we briefly describe the required transformations,
and give the coupled lattice functions in an implementation
in one design for a 16 km lattice for the ILC damping rings
[12].

We treat only the transverse degrees of freedom.
Consider a point in the lattice where the (uncoupled)
Twiss beta functions are equal in the horizontal and vertical
planes, �x � �y � �, the Twiss alpha functions are zero
and there is no coupling. The 4� 4 beam distribution
matrix is given by

� �

��x 0 0 0
0 �x

� 0 0
0 0 ��y 0

0 0 0
�y
�

0
BBB@

1
CCCA: (94)

Now we take a symplectic transformation V

V � ~R
�
�
�
4

�
R���;�� ~R

�
�
4

�
; (95)

where ~R represents a rotation in coordinate space

~R�	� �

cos	 0 sin	 0
0 cos	 0 sin	

� sin	 0 cos	 0
0 � sin	 0 cos	

0
BBB@

1
CCCA (96)

and R� represents a linear transformation in phase space
(with different phase advances in the horizontal and verti-
cal planes)

R ���;�� �

cos� � sin� 0 0
� 1

� sin� cos� 0 0
0 0 � sin� �cos�
0 0 � 1

� cos� � sin�

0
BBB@

1
CCCA:

(97)

After the transformation V, for any value of the phase
advance �, the distribution matrix becomes

�V � V�VT �

1
2��	 0 0 1

2 ��
0 1

2� �	 � 1
2 �� 0

0 � 1
2 ��

1
2��	 0

1
2 �� 0 0 1

2� �	

0
BBBB@

1
CCCCA;

(98)

where �� � �x � �y. After the transformation, the hori-
zontal and vertical beam sizes are equal, and the beam has
no tilt. The required transformation can be achieved using a
set of three equally spaced skew quadrupoles, with pa-
rameters
02400
k1L �
2
���
2
p

�
; (99a)

� � �
1

2

�
1	

1���
2
p

�
; (99b)

d �
�

2
����������������
1	

���
2
pp ; (99c)

where k1L is the integrated strength (normalized by the
beam rigidity) of the central skew quadrupole, �k1L is the
normalized integrated strength of each of the outer two
skew quadrupoles, and d is the distance between the skew
quadrupoles. The same transformation can be used to
decouple the beam, as long as the phase advances of
the two transverse modes are equal between the
transformations.

Figure 1 shows an example of a flat-beam to round-beam
transformation at one end of a long straight section in a
design for a 16 km damping ring lattice for ILC. The
straight section is 6 km long, and has high beta functions,
to allow large separation between quadrupoles. The flat-
beam to round-beam transformation is implemented at the
entrance to the straight section, where a matching section is
used to set the beta functions to 140 m, and the alpha
functions to zero. The coupling transformations are imple-
mented using thin multipoles, with the exact strengths and
separations given by Eqs. (99). The resulting lattice func-
tions can be seen in Fig. 1: note that the skew quadrupoles
are located at 2148, 2193, and 2238 m. A second trans-
formation (not shown) is used to decouple the beam at the
exit of the long straight section. The lattice functions in
Fig. 1 are the matched functions in the complete damping
ring lattice, calculated in MERLIN [13] using the techniques
described in Sec. III.

The effect of the flat-beam to round-beam transforma-
tion on the beam distribution is easily understood from
Fig. 1, given the relationships between the beam distribu-
tion and the coupled lattice functions

hx2i � �I
11�I 	 �

II
11�II; (100a)

hy2i � �I
33�I 	 �II

33�II; (100b)

hxyi � �I
13�I 	 �II

13�II: (100c)

The middle plot in Fig. 1 shows that after the flat-beam to
round-beam transformation, even with vanishing �II the
vertical beam size is comparable to the horizontal beam
size, since �I makes a significant contribution to hy2i. The
bottom plot gives the correlation hxyi, which is zero before
the transformation, and remains small (though nonzero)
after the transformation.

D. Longitudinal focusing

RF cavities provide longitudinal focusing analogous to
the transverse focusing provided by quadrupoles. The lat-
tice function �III

55 provides a natural analog of the trans-
verse lattice functions �x and �y, and describes the effect
1-8
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FIG. 1. (Color) Coupled lattice functions in a flat-beam to round-beam transformer.
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of the longitudinal focusing on the bunch length, which
varies around the ring. In most storage rings, the focusing
is so weak that the variation in bunch length around the ring
is small enough that it may be neglected, but in some
regimes it may be significant. This occurs, for example,
in the 16 km ILC damping ring previously referred to
(Sec. V C), where the combination of large RF voltage
and high momentum compaction leads to a large synchro-
tron tune.

Figure 2 shows the longitudinal lattice functions in part
of the damping ring lattice. The section shown includes one
arc (consisting of a bend through 270 followed by a
reverse bend through �90), followed by an RF section.
The rest of the lattice consists of long straight sections, in
which there are no longitudinal dynamics, and a second
arc/RF section identical to the one shown. The lattice
functions were calculated in MERLIN [13].

The interpretation of the longitudinal lattice functions is
straightforward. In this case, the bunch length and energy
spread have negligible dependence on the transverse emit-
tances �I and �II, so the longitudinal distributions can be
4.5
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βIII 55
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m
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−0.5

0

0.5

βIII 56

0 200 400 600 800 100
0.18

0.2

0.22

0.24

dist

βIII 66
 (

m
−

1 )

FIG. 2. (Color) Longitudinal lattice functions in
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written

hz2i � �III
55�III; (101a)

hz�i � �III
56�III; (101b)

h�2i � �III
66�III: (101c)

The top plot in Fig. 2 shows that the rms bunch length
varies by about 7% through the lattice. The middle plot
shows the correlated energy spread.

E. Calculating coupled lattice functions from
phase-advance data

A useful technique for characterizing the optics in a
storage ring involves resonant excitation of low-amplitude
betatron oscillations of a bunch, followed by the measure-
ment of the trajectory of the bunch over a few hundred
turns. The turn-by-turn readings at each BPM form a sine
wave; the phase difference of the waves from any two
BPMs gives the phase advance (in the plane with tune
corresponding to the excitation frequency) between those
BPMs. It is useful to be able to reconstruct the lattice
0 1200 1400 1600 1800 2000
ance (m)

part of a 16 km ILC damping ring lattice.
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functions from the phase-advance data. Techniques for
this, which involve assumptions about the transfer matrices
between BPMs, are well established for the uncoupled case
[14–18]. Here, we consider how the phase-advance data
may be used to construct the coupled lattice functions
derived in Sec. III.

Let us first review the procedure used for an uncoupled
beam line. Consider a point s1 in the beam line: the phase
advance �
21 from s1 to some other point, s2, along the
beam line can be found from

cot�
21 �
m�21�

11

m�21�
12

�� �; (102)

where m�21�
ij are elements of M21 (the transfer matrix from

s1 to s2) and � and � are the lattice functions at s1.
Similarly, the phase advance �
31 from s1 to a third point
s3 is found from

cot�
31 �
m�31�

11

m�31�
12

�� �: (103)

Conversely, if we know the phase advances �
21 and
�
31 and the transfer matrices M21 and M31, then we
can solve Eqs. (102) and (103) for the lattice functions �
and �.

The technique generalizes easily to fully coupled mo-
tion, although because we need more lattice functions to
describe the optics completely, we will need more data. For
simplicity, let us consider only the transverse motion, and
suppose that we measure the phase advance in the hori-
zontal plane, i.e., by exciting a trajectory corresponding to
0
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FIG. 3. Calculation of lattice functions from sim
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the horizontal tune. In this case, the phase advance �
21

from s1 to any point s2 can be found from

cot�
21 �
n�2�11

n�2�12

�

P4
i�1 m

�21�
1i �ni1P4

i�2 m
�21�
1i �ni2

; (104)

where �nij are elements of the normalizing matrix �N1 at s1,

with �n12 � 0, and n�2�ij are elements of the normalizing
matrix N2 at s2; the phase advance �
21 is just the angle
needed to transform N2 to satisfy n12 � 0. Now we simply
write Eq. (104) in the form

cot�
21

�X4

i�2

m�21�
1i �ni2

�
�
X4

i�1

m�21�
1i �ni1 � 0: (105)

In general, given the phase advance and the transfer ma-
trices from s1 to six other points along the beam line, we
can use Eq. (105) to construct a set of six simultaneous
equations. The symplectic constraint on �N1 provides one
additional equation, and we may then solve the complete
system for the seven unknowns �nij, with i � 1; . . . ; 4 and
j � 1; 2 (and �n12 � 0). The lattice functions are found
from Eq. (59). In some cases, some or many of the transfer
matrix elements may be zero, and it may not be possible to
solve for all of the lattice functions. Usually, however, it
will be possible to solve for the ‘‘in-plane’’ functions, �I

11
etc.

An example of the calculation of the lattice functions
from phase-advance data in the PEP-II High-Energy Ring
is shown in Fig. 3. The interaction point is at 733.1 m, and
the coupling extends out approximately 150 m on either
side; only the lattice functions in the coupled section are
direct calculation
phase advance simulation

750 800 850 900
nce (m)

ulated phase-advance data in the PEP-II HER.
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shown. The top two plots show the square roots of the ‘‘in-
plane’’ lattice functions �I

11 and �II
33, while the bottom two

plots show the square roots of the ‘‘cross-plane’’ lattice
functions �I

33 and �II
11. The values calculated directly from

the model using the methods of Sec. III are shown as solid
lines; the values calculated from simulated phase-advance
data in the model using Eqs. (59) and (105) are shown as
circles. Note that the horizontal positions of the circles
correspond to the locations of the BPMs. To calculate the
lattice functions at each BPM from the phase-advance
data, we use the phase advance from that BPM to the
nearest three BPMs on either side. The values of some of
the cross-plane lattice functions near the ends of the
coupled section are not accurately determined, since the
equations constructed from Eq. (105) are not well-
conditioned in those cases. Where this situation occurs, it
may be possible to improve accuracy by using the phase-
advance data to a different set of six BPMs than the
nominal ones chosen.
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