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Emittance measurement and modeling for the Fermilab Booster
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Turn-by-turn beam profile data measured at the Fermilab Booster are studied. Lattice models with
experimental accelerator ramping parameters are used to obtain the lattice functions for data analysis. We
studied the horizontal and vertical emittance growth behavior in different stages of a booster ramping
cycle and its relation to the beam intensity. The transverse and longitudinal components in the horizontal
beam width are separated by a fitting model which makes use of the different scaling rules of the beam
momentum. We analyze the post-transition horizontal beam size oscillation based on a model where the
longitudinal phase-space mismatch has resulted from rf voltage mismatch during the transition-energy
crossing. We carried out systematic multiparticle simulation to show that the source of the vertical
emittance growth is a combination of the random errors in skew-quadrupole and dipole fields, and the
systematic Montague resonance. The effect of random quadrupole field is small for the Fermilab Booster
because the betatron envelope tunes are reasonably far away from the half-integer stop band.
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FIG. 1. (Color) Total charge (CHG0, in 1012) for data sets with
3, 5, 7, etc., injection turns. Note that the notch of beam loss at
about revolution-600 is created intentionally by kicking 3
bunches out to facilitate a gap for the extraction kicker.
Transition-energy loss is visible at the transition energy at about
9550 revolution.
I. INTRODUCTION

Emittance evolution for space-charge–dominated
beams is one of many important topics in high-intensity
beam accelerators and storage rings (see Refs. [1–5]).
Even a small percentage of beam loss in a high-intensity
accelerator can cause radiation and operation problems. It
is imperatively important to minimize beam loss and
understand the emittance evolution.

There are many sources that can cause emittance
growth. In linacs, the emittance growth can arise from
synchrobetatron coupling, halo formation induced by col-
lective envelope modes or structure resonances, etc. In
circular accelerators, two of the most important candidates
for the emittance growth are the half-integer stop band that
can perturb the beam envelope function [1,2] and the
Montague resonance [5]. There are many numerical-
simulation codes that can be used to study the mechanism
of emittance growth. However, systematic emittance evo-
lution experiments are few in circular accelerators.
Cousineau and collaborators have carried out systematic
emittance measurement of high-intensity beams at the
Proton Storage Ring (PSR) in Los Alamos National
Laboratory and made systematic benchmarking of a
space-charge simulation code [6]. Her conclusion indi-
cated that the half-integer stop band played an important
role in the emittance growth at the PSR.

There were no systematic emittance measurement for
rapid cycling accelerators. The Fermilab Booster is a pro-
totype of high power accelerator. It is a rapid cycling
accelerator at 15 Hz. Currently, the booster regularly de-
livers about 4� 1012 protons per pulse, with 10-turn in-
jection from a 400 MeV linac. The overall efficiency is
about (83–85)%. At higher number of injection turns, the
06=9(1)=014202(22) 01420
booster encounters substantial beam loss as shown in Fig. 1
mainly at the beginning of the acceleration cycle.

The injection efficiency and the efficiency of transition-
energy crossing derived from the measured total charge is
shown in Fig. 2. Note that the efficiency of adiabatic
capture is about 92% for injection turn less than 10, and
decreases rapidly as the injection turn increases. Since the
injection efficiency is nearly independent of the injection
turn, the beam loss is most likely in the longitudinal phase
space. Similarly, beam loss during the transition-energy
crossing becomes more apparent when the injection turn is
larger than 10. In the near future, the booster is required to
2-1 © 2006 The American Physical Society
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FIG. 2. The injection efficiency is defined as the ratio of the
total charge at revolution 5000 divided by the total charge at
injection excluding the 3 bunches intentionally kicked out. Note
that the injection is nearly independent of the injection turn when
the injection turn is less than 10. The efficiency for transition-
energy crossing is defined as the ratio of the total charge at
revolution 10 010 and that at revolution 9010.
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deliver even higher proton flux for neutrino physics
experiments.

This paper is intended to study the emittance evolution
of the Fermilab Booster. The ionization profile monitor
(IPM) is used to measure the horizontal and vertical beam
size revolution by revolution. The measured rms beam
profiles and widths are used to deduce the emittances of
the beam. Using the deduced emittances, we will construct
a model to fit these data and examine key ingredients
which induce the emittance growth.

We organize this paper as follows. Section II presents
beam profile measurement and method of emittance de-
duction. We build a realistic lattice model to analyze
measured IPM data and deduce the horizontal and vertical
emittances and the rms off-momentum width [7–9].
Section III discusses the algorithm and results of multi-
particle tracking simulation. The space-charge force of our
model is based on the potential derived from a Gaussian
beam distribution, where the horizontal and vertical rms
beam radii are updated in each revolution. We employ this
particle tracking model to evaluate the effects of random
errors in dipole, quadrupole, skew-quadrupole fields on the
beam emittances. Section IV presents conclusions and
discussions.
II. THE EMITTANCE MEASUREMENTS

IPM data for booster (under event 17 of the Fermilab
Accelerator Control system) were taken with various in-
tensity levels on 3 February 2005. The injection-turn num-
01420
bers were varied from 2 to 18. The gate of the ionization
profile monitor was about 1 �s, or the measured profile
was the average of about 52 bunches. The experimental
condition for all data sets was the same as the normal
operational condition. The corrector package (e.g., trim
quadrupole) settings were recorded to build a realistic
lattice model for lattice function calculation.

The profile data at each revolution is fitted with a
Gaussian plus polynomial model [10],

p�y� � a� by� A exp
�
�
�y� y0�

2

2�2
y

�
; (1)

where y is the transverse coordinate of a microstrip and p is
the reading of the strip. The separation of adjacent micro-
strips is 1.5 mm for the booster IPM. The parameters �y
and y0 are half-rms width and central position of the beam,
respectively. The calibration routine with linear parametri-
zation is used to compensate the systematic error of beam
width due to the space charge of the beam [10]. The
calibration makes significant corrections for high intensity
and small beam width cases. Thus the calibration is much
more important for the horizontal beam profile, because
�x � 6:5 m� �z � 20:5 m and the dispersion Dx �
1:8 m at the IPM location. Figure 3 shows typical cali-
brated beam profile for the 6-turn injection at revolutions
500, 4000, 8000, 12 000, and 16 000, respectively.

The rms beam width �y is related to the ‘‘emittance’’ by

�y;rms �
�2
y

�y
; (2)

where �y;rms is rms emittance. The 95% emittance �0:95 is
�0:95 � 6�rms. These relations can be directly applied to
vertical data (y! z). For horizontal data, the off-
momentum width of the beam also contributes to the
beam width. Assuming that the horizontal transverse
phase-space distribution is uncorrelated to the longitudinal
phase-space distribution, we obtain

hx2i � hx2
�i �D

2h�2i; or �2
x � �x�x;rms �D2�2

�;

(3)

where h	 	 	i denotes ensemble average, � � �p=p is the
fractional momentum spread, D is the value of the disper-
sion function at the IPM, and x� is the betatron part of the
horizontal orbit, �x;rms is the rms horizontal emittance, and
�� is the rms fractional off-momentum width. The trans-
verse emittances decrease as the beam momentum is
ramped up due to adiabatic damping. The normalized
emittance defined as �n � ��� is supposed to be con-
served if nonconservative mechanisms are absent.

The charge signals were taken along with IPM data.
Figure 1 shows the total charge for some data sets in the
acceleration cycle. Note that loss occurs at the injection,
and a small loss also occurs at high injection turn after
2-2



FIG. 3. The measured vertical and horizontal beam profiles for 6-turn injection measured at revolutions 500, 4000, 8000, 12 000, and
16 000 are displayed from top to bottom, respectively.

EMITTANCE MEASUREMENT AND MODELING FOR THE . . . Phys. Rev. ST Accel. Beams 9, 014202 (2006)
transition crossing. Beam loss becomes very severe at
injection turns larger than 12.

The transverse space-charge effect is characterized by
the generalized space-charge perveance, defined as

Ksc � 2Nr0=��
2�3�;

where N is number of protons per unit length and r0 �
1:5347� 10�18 m is the classical radius of proton. Taking
a Gaussian beam distribution with N � NB=�

�������
2�
p

�s�,
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FIG. 4. The space-charge perveance parameter for an entire
booster ramping cycle for the beam intensity of 10-turn injection
(total charge of 4.1E12). The bunch length is derived from the
total rf voltage (RFSUM) of the booster cycle while the 95%
longitudinal emittance is assumed to be 0.08 eV-s.
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where NB is the number of particles in a bunch and �s is
the longitudinal rms bunch length, we plot the space-
charge perveance for a booster cycle for the beam intensity
with 10-turn injection in Fig. 4.

For emittance calculation in the entire cycle, we build
the lattice model at 1 ms interval in the cycle according to
the actual beam energy and the accelerator lattice setting.
The lattice functions such as beta-functions �x, �z, dis-
persion function D and transition gamma �t anywhere in
the cycle are calculated with interpolation. Figure 5 shows
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FIG. 5. (Color) Lattice functions �x, �z, Dx at the IPM location
and the transition �t normalized by the values at the first 1 ms,
where �x0 � 6:5 m, �z0 � 20:5 m, Dx0 � 1:8 m and �t0 �
5:48. The change of these lattice functions arises from the effect
of the dc dogleg magnets (extraction chicane) and the trim
quadrupoles.
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the change of these lattice functions in the cycle at the IPM
location.

The revolution-by-revolution beam-width signal from
the IPM is usually noisy. Since we are interested only in
the average behavior, it is useful to filter out the high-
frequency noises. We apply a 40-points low-pass digital
filter with tune threshold 0.1 to remove such noises.
Figure 6 shows the effects of the filter for the vertical
mean-square beam size for 10-turn injection.

A. The vertical emittance

Since the transverse emittances are adiabatically
damped as the beam momentum increases, it is more
convenient to study the normalized emittance. Figure 7
shows the normalized vertical rms emittance for two data
sets with 4-turn or 12-turn injection, respectively. We note
the emittance starts with the same level (2� mm mrad) but
follows different growth pattern for different intensities.

The normalized emittance grows rapidly in the first 4000
revolutions because of the space-charge effect and the
growth rate is nonlinear and highly dependent on beam
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FIG. 7. (Color) The vertical rms emittance (dashed) and the
normalized rms emittance (solid) in the entire cycle for 4-turn
and 12-turn injection.

01420
intensities. For the later part of the cycle (4001–17000
revolutions), except close to extraction, the growth is
slow and linear. The cause of the later emittance growth
is not likely the space-charge effect because the relativistic
gamma is large enough in this region. Possible growth
mechanisms are residual gas scattering, intrabeam scatter-
ing, or other mechanisms. We will treat the two growth
periods separately with the first period (region A) from 70
revolution after injection to 4000 revolution and the second
period (region B) from 4001 revolution to
17 000 revolution.

1. Linear growth region

The emittance growth in region B can be roughly con-
sidered as linear. However some data sets may lose beam
during the transition-energy crossing and some have post-
transition oscillation. We fit the pretransition and post-
transition regions to linear curves separately. The fitting
curves are shown in Fig. 8.

The growth rate of emittance defined by

�z �
��nz
�N

; (4)

where N is the revolution number, is calculated with the
slopes of the linear curves. The growth rates are shown in
Fig. 9. The vertical normalized emittance grows about
1� mm mrad in 104 revolutions for normal working cycles
of the booster. The growth rate seems to be proportional to
the injection turns.

The growth rate due to residual gas scattering is esti-
mated to be ��n=��n�t� � 0:008 s�1 at the vacuum pres-
sure of 100 nTorr, which is about 1:2� 10�4 in 15 ms (or
10 000 revolutions). Thus the emittance growth can not be
caused by the residual gas small-angle scattering. The
growth rate due to the intrabeam scattering is estimated
to be less than ��n=�n�t 
 0:001 s�1 [11]. It is also
difficult to see the growth rate of the emittance as large
as 1� mm mrad in 104 revolutions.

2. Space-charge–dominated region

Space-charge effects play an important role in the first
4000 revolutions. Figure 10 shows the normalized vertical
rms emittance in region A for all data sets. Note that with
12-turn injection or less, the emittance growth is relatively
mild. The growth behavior for these data sets follows a
similar pattern, which could be modeled. However, for
intensity higher than 13-turn injection, the emittances
grew and beam loss occurred in the first few hundreds of
revolutions as shown in Fig. 1.

Since the 1960s, emittance dilution due to space charge
has been a subject of intensive studies, the exact emittance
growth mechanism is not clear, and may even be different
in each accelerator. A popular belief is that the emittance
dilution has resulted from the half-integer stop band of the
betatron envelope function [1,2]. The stop band width
2-4
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FIG. 8. (Color) Left: The normalized vertical rms emittance from 4001 revolution to 9200 revolution for all data sets with 2-turn
injection to 18-turn injection. Right: The normalized vertical rms emittance from 11001 revolution to 16200 revolution for all data sets
with 2-turn injection to 18-turn injection. Note 16-turn data set lost a big fraction of beam at transition and thus has smaller emittance
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depends on the distribution of quadrupole field in an ac-
celerator, while the betatron envelope-tune spread is pro-
portional to the space-charge perveance Ksc, which
depends on the bunching factor and the beam momentum.

In this section, we will use a phenomenological ap-
proach to extract properties of emittance growth by assum-
ing that the instantaneous emittance growth rate is
proportional to Ksc:

d�
dt
� b1 � b2Ksc; (5)

where t is the revolution number. The normalized emit-
tance can then be expressed as

�z � a0 � b1t� b2

Z t

0
Kscdt

0; (6)

where a0 denotes initial normalized emittance, b1 denotes
linear growth rate and b2 denotes space-charge–induced
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FIG. 9. (Color) The vertical emittance growth rate before (blue)
and after (red) transition for all data sets.
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growth rate. We fit the measured �nz to this model from 2-
turn up to 11-turn injections. Beyond 11-turn injection,
beam loss at injection becomes substantial. A typical fitting
curve is shown in Fig. 11.

The fitting parameters are shown in Fig. 12. Note that the
initial emittance varies from 1:6� mm mrad to
2:0� mm mrad for all data set. The fitted linear growth
rate agrees well with that obtained in the linear growth
region, shown in Fig. 9. The space-charge–dependent
growth rate b2 is nearly constant for all data sets because
the intensity has been absorbed by the perveance parameter
Ksc.

An alternative model, based on Eq. (6.16) of Ref. [12],
leads to

��nz �
2 � ~a0

�
1� ~b1t� ~b2

Z t

0
Kscdt

0

�
(7)
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FIG. 10. (Color) The normalized vertical rms emittance from
70 revolution to 4000 revolution for all data sets with 2-turn
injection to 18-turn injection. Note the red curve is for 12-turn
injection which marks the border of two kinds of emittance
growth behavior.
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FIG. 11. (Color) A typical fitting curve of the model using
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can also be used to fit the data well. This model describes
emittance growth due to an initial nonequilibrium distri-
bution of the beam. Since both ~b1 and ~b2 parameters are
small, the resulting fits are equivalent to the model of
Eq. (6).

B. Horizontal emittance

The horizontal beam width reflects both the horizontal
emittance and the longitudinal off-momentum distribution
as seen in Eq. (3). Figure 13 shows �2

x for 4-turn and 12-
turn injection for the entire ramping cycle. The off-
momentum width becomes more important around transi-
tion where the bunch length is shortened. The beam width
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FIG. 12. Top left: Parameter a0, initial vertical normalized emitt
Parameter b2, space-charge–dependent growth rate. Bottom right: t
points.
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starts oscillating after transition because of the longitudinal
phase-space mismatch.

Since the horizontal beam width is a quadrature of
contributions from the betatron motion and the rms off-
momentum oscillation, we cannot directly calculate the
normalized horizontal emittance unless we can isolate
and remove the contributions of the off-momentum con-
tribution. In the following, we will discuss a method by
taking the advantage of different scaling property as a
function of the beam momentum. We will show that the
momentum scaling property can effectively separate the
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transverse horizontal betatron emittance and the off-
momentum width.

1. Below transition energy

One way to obtain the transverse betatron component in
�2
x is to subtract the ‘‘known’’ off-momentum width com-

ponent, i.e., �2
x;� � �2

x �D
2�2

�. We can do so by assum-
ing the beam fills up the rf bucket during the adiabatic
capture at injection. The bunch shape then follows the
evolution of rf bucket as a matched beam, which can be
determined by the known rf voltage V and rf synchronous
phase 
s. Figure 14 shows the rf voltage (RFSUM), re-
corded with console program during the experiment, and
the rf synchronous phase, calculated by the energy gain per
revolution according to the magnetic field ramp. The top
plot of Fig. 15 shows the rf bucket area. The corresponding
rms off-momentum width and bunch length (assuming that
the 95% bunch phase-space area of 0.08 eV-s) is shown in
the bottom plot of Fig. 15. The longitudinal component in
�2
x can then be calculated with D2�2

�.
Another way is to make use of the difference of the

scaling rules of the transverse and longitudinal components
[2]. Both terms of Eq. (3) change in the cycle as the
momentum is ramped up. However, they change in differ-
ent scaling rules:

�2
x � �x�rms �D2�2

� � aA�t� � bB�t� (8)

with

a � �nrms
�x0

�0�0
; A�t� �

�x
�x0

�0�0

��
; (9)

b � D2�2
�0; B�t� �

�0

����������������������������������������
�0j�0j=V0j cos
s0j

p
�

��������������������������������
�j�j=Vj cos
sj

p ; (10)

where we have used the scaling rule of �� �
V1=4j�j�1=4��3=4 [2]. The scaling functions A�t� and B�t�
are shown in Fig. 16.
01420
The normalized horizontal emittance can be considered
as growing linearly if it has the same behavior as the
vertical emittance, so we further assume a � a0 � a1t.
The invariant longitudinal phase-space area is preserved
during acceleration, i.e., b � b0. This assumption is re-
flected in the fact that the bucket area is nearly constant
during the first 8000 revolutions in the booster acceleration
cycle. If there is any longitudinal phase-space dilution,
these particles will be squeezed out of the bucket. We
thus try to fit the horizontal width with
2-7
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�2
x � �a0 � a1t�A�t� � b0B�t�: (11)

To avoid the nonlinear emittance blowup in the first several
milliseconds of the cycle and the nonadiabatic region near
transition, we fit �2

x from 3001 revolution to 9200 revolu-
tion to the model of Eq. (11) to obtain constant parameters
a0, a1, and b0 for each data set. We then convert these
parameters to horizontal emittance or rms momentum
width according to Eqs. (9) and (10). An example of fitting
curves is shown in Fig. 17.

This model does not fit the data of high-intensity data
very well because the calibrated result of the linear pa-
rametrization scheme may deviate from the actual beam
size for high-intensity beams (see Fig. 2 in Ref. [10]). The
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FIG. 18. Top left: the fitted normalized horizontal emittance at
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normalized residual 	2 for all cases.
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horizontal beam size �x (see Fig. 13) drops from 3.5 mm
(at 3001 revolution) to 2.5 mm at around 7000 revolution.
For a beam with �x � 3 mm at a total charge of 4� 1012

particles (10-turn injection), the calibration error is as large
as 5%. As the beam size shrinks due to adiabatic damping,
the calibration error of IPM data gets even worse. The
scaling property is particularly sensitive to errors in the
IPM data calibration. Thus we fit data sets with 10-turn
injection or less. The resulting normalized emittance, its
growth rate and the rms momentum width are shown in
Fig. 18. The standard deviations of the noises in �2

x, along
with the covariance matrix of the fitting, are used to
estimate the error bars of these parameters.

The results give reasonable values of emittances and rms
momentum widths at 3001 revolution. The horizontal nor-
malized emittances are found to be about 2 � mm mrad. It
seems that the explosive emittance blowup observed in the
vertical plane (see Sec. II A), due to the space-charge
effects, is absent in the horizontal data. This horizontal
emittance at 3001-revolution number is about the same as
that of the initial vertical emittance (see the top-left plot of
Fig. 12). The emittance growth rate, defined as

�x �
��nx
�N

; (12)

is about 0:8� mm mrad per 104 revolutions. The horizontal
growth rate is about the same as the vertical growth rate
shown in Fig. 9. The rms momentum width is about 1:0�
10�3, which is smaller than the value 1:4� 10�3 as pre-
dicted in Fig. 15. The momentum width for these data sets
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are nearly equal, indicating the rf buckets are nearly filled
with particles at injection.

We have measured the momentum spread using the
resistive wall monitor signal with a high resolution scope
for 4-turn and 11-turn injection. The recorded peaks on the
beam current signal are fitted to elliptic model [13] to
derive the bunch lengths. The bunch lengths become the
momentum spread according to the phase-space ellipses.
The results are shown in Fig. 19. The rms momentum
spread at 3001 revolution, deduced from the wall monitor
data, is 1:25� 10�3.

From the above analysis, we find that the scaling law can
successfully be used to separate the horizontal betatron and
off-momentum components in the horizontal beam width.
The essential error arises from the fact the IPM is located at
a small �x location, and thus it is intrinsically more prone
to errors. The resulting horizontal emittance and rms off-
momentum width deduced from the IPM data agree well
with other independent measurements.

2. Across the transition energy

The rms momentum width starts to grow rapidly as the
beam gets near transition, where the phase slip factor �
becomes small. The bunch shape cannot follow the rf
bucket when it is very close to transition and the longitu-
dinal motion is nonadiabatic. The adiabatic time and non-
linear time for booster are estimated to be [2]
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FIG. 19. (Color) The measured rms bunch length �
 (top) and
rms momentum width �� (bottom) for 4-turn and 11-turn
injection are compared to those calculated with phase-space
area 0:08 eV-s. The measurements were taken on 29 April
2005 under event 14.
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�ad �

�
��2mc2�4

T

_�!2
0heVj cos
sj

�
1=3
� 0:187 ms;

�nl � �3
T

�1

2 _�
�̂ � �T

3
2�

2
0 � �

2
T�1

2 _�
�̂ � 0:100 ms;

where we use _� � 437 s�1, �2
T�1 � 1:0, and �̂ �

���
6
p
��.

The maximum rms momentum width at transition is ob-
tained by using the nonadiabatic formula

��j���T
�

�T

31=6��ad��23�

�
2A

3mc2 _�

�
1=2

� 0:502
�T

��ad

�
A

mc2 _�

�
1=2
: (13)

Here A is the rms phase-space area of the beam in eV-s.
We obtain �ad � 0:187 ms, and �nl � 0:100 ms, and the
total growth due to nonlinear longitudinal motion is G �
expf23 ��nl=�ad�

3=2g � 1:30 [2]. Thus the phase-space
growth due to the nonlinear motion is small. Figure 19
shows clearly that the measured rms bunch length and off-
momentum spread agree very well with those derived with
a constant phase-space area for the 4-turn injection case.

3. Microwave instability

The beam near transition energy can also suffer micro-
wave instability. The emittance growth factor can be esti-
mated as G � exp�S�, where [14,15]

S �
n!0N2

Be
4jZk=nj2�3

T

16���0A
2 _�

F; (14)

where A � ��E�t is the rms phase-space area in (eV-s),
F � 0:207 is the form factor, NB is the number of particles
in a bunch, and n � R=b � 1500 is the mode number.
Assuming a broadband impedance of jZkj=n � 20 �,
6A � 0:08 eV-s, ��0 � 0:00232 is the rms momentum
spread at the longitudinal center of the bunch, and NB �
6� 1010, we find G � 2:2, which is small because the
microwave instability growth is the growth factor on the
very small Schottky noise.

4. Bunch mismatch oscillations in the synchrotron phase
space

The post-transition beam width oscillations may arise
from the mismatch across transition due to longitudinal
space-charge potential as pointed out by Sorensen [16]. In
a linearized approximation, the longitudinal Hamiltonian
around the transition-energy region is

H�
; �� �
h�!0

2
�2 �

!0e

4��2E

�
V cos
s �

hecg0Z0NB

2�2R�3



�
� �
�
s�

2; (15)

where h is the harmonic number, g0 � 1� 2 lnba is the
geometric factor, Z0 is the impedance of vacuum, NB is
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the number of particles per bunch, and R is the mean radius
of the synchrotron. Note that the space-charge force has a
defocusing effect below transition energy ( cos
s � 0) and
a focusing effect above the transition energy ( cos
s 
 0).
It causes sudden change of the shape of matched ellipse
and thus the mismatch between the beam bunch and the
ellipse. Figure 20 shows the rf voltage (RFSUM) and the
voltage induced by the space-charge impedance for 12-turn
injection. The voltage mismatch due to the space-charge
potential can cause post-transition bunch length
oscillation.

After passing the nonadiabatic transition-energy region,
the particles in the beam bunch start to follow the ellipses
of the Hamiltonian torus again. Because the space-charge
force above the transition energy is focusing, the bunch
ellipse is mismatched to the bucket ellipses. Hence the
bunch starts to tumble in the bucket at the rate of synchro-
tron tune, which causes the rms momentum width of the
beam to oscillate at twice the synchrotron tune. Let �1, �2

be the maximum and minimum rms momentum width,
which are connected by the matched ellipses [2]

�2 �
s
h�

~A

�1
; (16)

where ~A � ��1
1 is the rms phase-space area. The ex-
trema of horizontal beam width are related by

�2
x;max � �

2
x;min � D2��2

1 � �
2
2�: (17)

We can identify �̂ in Eq. (13) as �1. The phase-space
area A (in eV-s) in Eq. (13) is related with the phase-space
area ~A of Eq. (16) by

~A �
!0

�2E
A: (18)

Combining Eqs. (13), (16), and (17), we can solve for �1,
�2 and the phase-space area A from the oscillation mag-
FIG. 20. The effective space-charge voltage Vspchg (solid) and
the Vrf in the acceleration cycle.
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nitude of �2
x. This is equivalent to the measurement of the

quadrupole mode transfer function [17].
The horizontal beam width oscillation can be seen in

Fig. 13. We fit oscillation pattern of �2
x with

�2
x�t��a�bt�ct2�Aexp���t�cos2��f1t�f2t2��	�;

(19)

where t is the revolution number. We apply this fitting
model to data from revolution 10 501 to revolution
13 500 (transition is at revolution 9500, but we avoid the
nonadiabatic motion of the first 1000 revolutions after the
transition). Examples of fitting curves are shown in Fig. 21.

The oscillatory part of �2
x comes essentially from the

longitudinal distribution mismatch with the rf bucket.
Figure 22 shows the fitted tune parameters f1 and f2 as a
function of the injection turn. The fitted oscillation tune is
f1 � 2f2t � 0:0065 at 10 500 revolution (18.6 ms) for 4-
turn injection cycle, which is about twice of the synchro-
tron tune s � 0:0034 measured from turn-by-turn data at
18.4 ms with the same intensity [8].

The fitted oscillation amplitude A and the decoherent
coefficient � are shown in the bottom plots of Fig. 22. The
oscillation amplitude
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FIG. 21. (Color) Top: Fit �2
x to the model of Eq. (19) for 5-turn

injection. Bottom: Fit �2
x to the model of Eq. (19) for 10-turn

injection.
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2A � �2
x;max � �

2
x;min (20)

can be used to solve the longitudinal phase-space area.
Employing Eqs. (13), (16), and (17), we can self-
consistently solve the mismatched motion. The resulting
�1 and �2 are shown in Fig. 23. Knowing the maximum
(�1) and minimum (�2) of rms momentum width, the
average value �� can be calculated

�� osci �

�����������������
�2

1 � �
2
2

2

s
; (21)
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FIG. 23. The deduced mismatched rms momentum spread of
the beam �1 and �2.
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where subscript ‘‘osci’’ indicates �� is derived from the
oscillation component of �2

x.
The nonoscillatory part

�2
x;static � a� bt� ct2

is composed of transverse betatron-motion component and
the static off-momentum width component. It can be de-
composed into the transverse and longitudinal compo-
nents. Figure 24 shows the fitted parameters for the
nonoscillatory part, and the corresponding normalized 	2

normalized to the number of data points for the entire set.
Because the transition energy affects mainly the longi-

tudinal motion, it is reasonable to assume that the trans-
verse emittance will keep growing in the same manner as in
the pretransition region. The vertical emittance growth
across transition (Fig. 7) suggests the same picture. Thus
we have

�2
x;static �

�x
��

�nx0�1� �xt� �D
2 ��2; (22)

where �nx;rms is normalized rms emittance and �x is hori-
zontal emittance growth rate. The scaling rule is ���
j�j�1=4��3=4, neglecting the rf voltage V factor which is
constant in the concerned region. The scaling rule does not
include the phase-space dilution from the smearing of the
mismatch bunch. By subtracting the predicted transverse
component �x�x;rms from �2

x;static, the rms momentum
width can also be calculated by

�� static �

�����������������������������
�2
x � �x�x;rms

q
D

: (23)
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Using the growth rate obtained with the pretransition fitting
to predict �x;rms at revolution 10 501, we have calculated ��
for all data sets, which are compared to the results obtained
with Eq. (21) in Fig. 25. It is seen that the two methods
produce consistent results.

III. MODELING AND EMITTANCE DILUTION
MECHANISMS

In the last section, we have carried out phenomenologi-
cal fit for the IPM measurement data at the Fermilab
0 5 10 15 20
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turns injected

δ

x10−3
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FIG. 25. (Color) The average rms momentum width � ( �� in the
text) obtained with two methods: Eq. (23) (‘‘static’’) or Eq. (21)
(osci).
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Booster under various beam intensity levels. Our findings
can be summarized as follows:

(1) The normalized vertical emittance starts at about
2� mm mrad for all intensity levels, i.e., there is no injec-
tion phase-space painting. For intensity less than 10-turn
injection, the space charge is less important, and the injec-
tion efficiency is nearly independent of the intensity (see
Fig. 2). This implies that beam loss essentially arises in the
longitudinal phase space. Longitudinal phase-space paint-
ing with chopped beam may be needed to minimize the
beam loss and satisfy the requirement of fast ramping.
When the beam intensity is larger than 10-injection turns,
the normalized vertical emittance grows rapidly in the first
4000 revolutions. The space-charge force is believed to be
the source of the emittance growth.

(2) In the later time of the cycle at � > 2, the vertical
emittance grows linearly with a growth rate of about
1� mm mrad in 104 revolutions. Both the intrabeam scat-
tering and the beam-gas scattering growth rates are too
small to explain this linear emittance growth rate.

(3) The horizontal beam width is composed of both the
transverse and the longitudinal phase-space distribution of
the beam. Making use of the fact that the two components
have different momentum scaling rules, we can effectively
decompose �2

x into betatron and off-momentum beam
widths. Such fitting works well for data sets with less
than 10-turn injection when the IPM profile calibration
error due to space charge is mild [10]. The fitting results
yield consistent horizontal normalized emittance and the
rms momentum width. Note that the horizontal normalized
emittance does not exhibit an explosive growth in the first
-12



FIG. 26. (Color) Top: The fractional momentum deviation of the
beam with respect to the momentum associated with the dipole
magnetic field. The energy gain is 400 keV per revolution with
beam momentum p0 � 1:78 GeV=c in this example. The actual
energy gain in our simulation program per revolution is obtained
from the RFSUM data of the booster operation. Bottom: The
coherent betatron motion of the beam excited by the energy gain
in each cavity. A linear coupling with a focal length of about 200
m is included in attaining the coherent betatron motion in the
vertical plane. The units for �x; z� and �x0; z0� are mm and mrad,
respectively.
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4000 revolutions as observed in the vertical plane. On the
other hand, the linear growth rate of the normalized hori-
zontal emittance was also about 0:8� mm mrad in 104

revolutions.
(4) The horizontal beam width starts to oscillate with

twice the synchrotron frequency (quadrupole mode) after
transition. Such oscillation arises from the mismatch be-
tween beam bunch and longitudinal phase-space ellipse.
The mismatch was believed to be due to the longitudinal
space-charge force which is defocusing before transition
and focusing after transition. We extracted the oscillatory
and nonoscillatory parts of �2

x by fitting it to a model with
second-order polynomial plus damped oscillation with
linear phase shift rate. The oscillation amplitude of �2

x
can be used to derive the longitudinal phase-space area.
The nonoscillatory part is again separated into horizontal
emittance and static (average) rms off-momentum width
by assuming that the horizontal normalized emittance
grows linearly as in the region before transition. The
estimated average rms momentum widths derived from
the oscillatory and nonoscillatory parts are consistent.
The post-transition bunch length (and beam size) oscilla-
tion is a possible cause of beam loss at transition. The
bunch shape mismatch may be compensated by rf voltage
modulation at a frequency slightly larger than twice the
synchrotron frequency [18]. A voltage modulation depth of
about 3% of the total rf cavity voltage, i.e., about 24 kV, is
sufficient to damp the mismatched oscillation. We have
learned that Fermilab Booster has recently implemented
the quadrupole-mode damper and has since effectively
damped the quadrupole mode oscillation [19].

A. Modeling algorithm

To understand the phenomena involved in the emittance
growth, we construct a multiparticle simulation program to
simulate the evolution of beam emittances. As the beam
injected into a synchrotron, particles in the synchrotron
experience also space-charge force. We track particles
including the space-charge force to extract the essential
mechanisms of emittance growth for the Fermilab Booster.
We will describe our numerical-simulation algorithm in the
following subsections.

1. Energy gain in rf cavities

Since rf cavities at the Fermilab Booster are located in
dispersive locations, the beam is constantly and coherently
excited by the energy gain at about 400 keV per revolution.
Can this coherent beam excitation combined with beam
decoherence produce the observed emittance growth?

Fermilab Booster is a fast-ramping accelerator.
Semiadiabatic capture is applied in the H� injection
scheme. The rf voltage is ramped from a small number to
about 900 kV to provide fast cycling of 15 Hz. The rf
voltage Vrf and the synchronous phase 
s were recorded,
and employed for this tracking. Energy gain in each revo-
lution is Vrf sin
s, which is equally distributed in all
014202
cavities located in each particular long straight section
with rf cavities.

We assume that the dipole magnets are ramped linearly,
while the beam receives energy at cavities with energy u in
each cavity that is located in nonzero dispersive region.
The horizontal position of a particle is given by

x � x� �D
�E

�2E
; x0 � x0� �D

0 �E

�2E
; (24)

where �x�; x0�� are the betatron coordinates, and �D;D0� are
the dispersion function. Each particle gains the same
amount of energy in rf cavities. As the energy of a particle
is gained in a cavity, the changes of the betatron coordi-
nates are

�x� � �D
u

�2E
; �x0� � �D

0 u

�2E
; (25)

where u is the energy gain at the cavity. The centroid of the
beam is constantly and coherently excited by the betatron
excitation.

We define the fractional momentum deviation between
the beam momentum pbeam and the ‘‘magnet-momentum’’
pmag (the momentum associated with the magnetic field) as

�p
p
�
pbeam � pmag

pbeam
:

The top plot of Fig. 26 shows that the beam momentum is
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constantly oscillating against the momentum associated with the magnetic field. The bottom plot shows the betatron
motion of the centroid of the beam for the first 400 revolutions with linear coupling at a coupling strength of �

R
a1ds� �

0:005 m�1.
2. FODO cells and random linear errors

The booster is made of 24 combined function FODO cells. Particle transport in each FODO cell is carried out by the
transfer matrix from D to F with

MD!F �

�������
�x;F
�x;D

q
cos x

������������������
�x;F�x;D

p
sin x 0 0

� 1�������������
�x;F�x;D
p sin x

�������
�x;D
�x;F

q
cos x 0 0

0 0
�������
�z;F
�z;D

q
cos z

�����������������
�z;F�z;D

p
sin z

0 0 � 1�������������
�z;F�z;D
p sin z

�������
�z;D
�z;F

q
cos z

0BBBBBBBBB@

1CCCCCCCCCA
; (26)

where  x;z � 2�x;z=48 is the phase advance in a half-cell. We have assumed �x;F � 0 and �z;F � 0.
Similarly, the transfer matrix from the F back to D is

MF!D �

�������
�x;D
�x;F

q
cos x

������������������
�x;F�x;D

p
sin x 0 0

� 1�������������
�x;F�x;D
p sin x

�������
�x;F
�x;D

q
cos x 0 0

0 0
�������
�z;D
�z;F

q
cos z

�����������������
�z;F�z;D

p
sin z

0 0 � 1�������������
�z;F�z;D
p sin z

�������
�z;F
�z;D

q
cos z

0BBBBBBBBB@

1CCCCCCCCCA
: (27)
The parameters for the betatron amplitude and dispersion
functions are �x;D � 6:3 m, �z;D � 21:4 m, �x;F � 40 m,
�z;F � 8:3 m, Dx;D � 2:54 m, and Dx;F � 4:5 m.
Figure 27 shows the betatron tunes during the 33 ms
ramping cycle.

Systematic sextupoles and small random dipole, quad-
rupole and skew-quadrupole errors are introduced as kicks
to each particle:

x00 �Kx�s�x� b0�s��b1�s�x�a1�s�z�
1
2b2�s��x

2� z2�;

(28)

z00 � Kz�s�z � �a0�s� � b1�s�z� a1�s�x� b2�s�xz:

(29)

The dipole components b0 and a0 are applied to each
particle with a random seed to simulate the closed-orbit
misinjection. The random quadrupole error is intended to
create half-integer stop band in order to test the importance
of the envelope dynamics. The quadrupole component
b1�s� is generated by a random seed with zero tune shift,
i.e.,

H
�x�s�b1�s�ds � 0 and

H
�z�s�b1�s�ds � 0. The ran-

dom skew quadrupoles take into account the quadrupole
roll and the vertical closed-orbit error in sextupoles. All
random numbers are generated by random seeds with
uniform distribution from �1 to �1. The magnitude of
these random linear error fields is controlled by an ampli-
tude, i.e.,
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Ab0�n� � Ab0�0� exp
�
�

n
Ndipole

�
; (30)

Aa0�n� � Aa0�0� exp
�
�

n
Ndipole

�
; (31)

Ab1�n� � Ab1�0� exp
�
�

n
Nquad

�
; (32)

Aa1�n� � Aa1�0� exp
�
�

n
Nquad

�
: (33)

The damping of the dipole kicks is intended to take into
account the decoherence effect associated with the initial
closed-orbit error. The damping of quadrupole kicks takes
into account the fact that the particle orbit will eventually
evolve into the matched ellipse of the accelerator. The
effect of dipole error is most important during the injec-
tion, while the effect of quadrupole error requires a longer
time to settle into matched beam ellipse. We choose
Ndipole � 3000, and Nquad � 4000.

The sextupole is inherent to all combined function di-
poles. They are introduced as a thin-lens kick at the end of
each half-cell. The sextupole strengths are �

R
b2ds� �

�0:0173 m�2 and �0:263 m�2 for focusing and defocus-
ing dipoles, respectively, for each of the half–FODO cell.
We also include sextupoles in the short and long straight
-14



FIG. 27. (Color) The fractional part of the betatron tune during
the entire ramping cycle from injection at 400 MeV to the top
energy at 8. GeV (see Fig. 9 in [8]).
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sections to explore their effects on the emittance growth.
However, we find that their effects on emittances are small.

3. Space-charge effects

We assume a Gaussian charge distribution:

��x; z� �
Ne

2��x�z
exp

�
�

x2

2�2
x
�

z2

2�2
z

�
;

where Ne is the charge per unit length and �x and �z are
the horizontal and vertical rms beam radii. The horizontal
rms beam radius is composed of both the betatron and off-
momentum width contributions. For a Gaussian charge
distribution, the transverse space-charge potential is [20]

V�x; z� �
Nr0

�2�3

Z 1
0

�1� expf� x2

2�2
x�t
� z2

2�2
z�t
g����������������������������������������

�2�2
x � t��2�

2
z � t�

q dt

� �
Nr0

�2�3

��
x2

�x��x � �z�
�

z2

�z��x � �z�

�

�
Nr0

4�2�3�2
x��x � �z�2

�
2� R

3
x4 �

2

R
x2z2

�
1� 2R

3R3 z4

�
� 	 	 	

�
; (34)

where the singularity at x � z � 0 is removed by the
addition of the �1 term in the numerator of the integrand.

Because of the space-charge potential, each particle
experiences a space-charge kick given by
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�x0 � �
@V
@x
‘ �

2Nr0‘

�2�3�x��x � �z�
x exp

�
�

x2 � z2

��� �z�2

�
;

(35)

�z0 � �
@V
@z
‘ �

2Nr0‘

�2�3�z��x � �z�
z exp

�
�

x2 � z2

��� �z�
2

�
;

(36)

where ‘ is the length of the half-cell. The form in Eq. (36)
is obtained by using the space-charge potential of Eq. (34)
up to the second-order expansion in round beam geometry,
and exponentiated to produce zero tune shift for large
amplitude particles. The space-charge force is approxi-
mated by 48 localized kicks per revolution. The rms
beam radii calculated from the multiparticle phase-space
distribution is used for space-charge kicks in the next
revolution. In order to test many conditions, we will carried
out non–self-consistent multiparticle simulation based on
the potential model, i.e., the space-charge force is modified
by the rms radii, but remains in the Gaussian-potential
form. Although the distribution function may become
non-Gaussian, our space-charge kick remains in the
Gaussian beam approximation.

4. Betatron tunes and the rms beam-momentum spread

The betatron tunes have been measured during the
ramping cycle as shown in Fig. 9 of Ref. [8] (see also
Fig. 27). The rf voltage, the synchronous phase, and the
bunch length during the ramping cycle have also been
measured. In our simulation, we use interpolation between
the measured data in a ramping cycle.

We assume that the (95%) longitudinal bunch area to be
0.08 eV-s. After the transition energy, the rms momentum
width begins mismatch oscillation. At revolution n > nt �
9600, the rms off-momentum width �rms�n� is

�rms�n� � �rms;0Bf�n�f1� �G� � 1�

� �1� exp����n� nt���g

� f1� A� exp����n� nt��

� sin2��n� nt�f�g: (37)

Here Bf�n� is the bunching factor, �rms;0 � 3:0� 10�4 is
the initial rms off-momentum width, G� is the momentum
width growth factor, �� is the decoherent constant, A� is
the amplitude of bunch shape oscillation, and f is the
oscillation tune. In our simulation, we choose nt � 9600,
G� � 2:0, A� � 0:5, f � 1=150 (1/revolution), and �� �
1=�15� 150�.

The focusing strength of quadrupoles in the Fermilab
Booster is about 0:33 m�1. Thus the random quadrupole
strength is expected to be about 3:0� 10�4 m�1. The
dipole bending strength for each half–FODO cell is about
0.131 rad. The amplitude of dipole errors is estimated to be
about 2:0� 10�5 radian in the horizontal plane and 7:5�
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10�5 in the vertical plane. The horizontal dipole field error
corresponds to about 1:5� 10�4 error in the main dipole
field, while the vertical random dipole error field corre-
sponds to about 0:6 mrad of dipole roll. Closed-orbit
oscillations are evidently visible in the profile data of
Fig. 3 for the first 4000 revolutions. The random skew-
quadrupole strength can be produced by the vertical
closed-orbit deviation in sextupole and by the quadrupole
roll. We assume an amplitude of 3:5� 10�3 m�1 for the
random skew quadrupole. This is equivalent to an ampli-
tude of vertical closed orbit of the order of 1.0 cm.

To check our program, we first examine the emittance
evolution in the presence of linear dipole and quadrupole
errors without space-charge force and sextupole nonline-
arity. Figure 28 shows the rms beam radii and beam
emittances at the defocusing quadrupole location. The
vertical beam width is adiabatically damped, and the hori-
zontal beam width shows the characteristic off-momentum
dependence. However, the horizontal and vertical emittan-
ces are constant in the absence of space-charge force and
sextupole nonlinearity.

B. Results of numerical simulations

In this section, we will examine the effect of each factor
of our algorithm on the emittance growth.

1. Effect of the half-integer stop band

The half-integer stop band has been considered as one of
the main sources on emittance growth since 1960s [1,2].
When the tunes of the beam envelope function reach an
integer, the emittance may grow and beam loss may occur.
In our model, the random quadrupole field is introduced as
a thin-lens kick in each half-cell with random seeds, which
produce a zero betatron tune shift.
FIG. 28. The emittance is not affected by the linear errors and
the coherent beam oscillations due to rf cavities located in
dispersive locations.
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We first consider only the linear space-charge kick. The
existence of the random quadrupole error will produce
betatron mismatch. The effect is particularly important if
the betatron envelope tune is depressed toward the half-
integer stop band. Figure 29 shows the initial (black dots)
and the final (red dots at n � 11 000 revolutions) phase-
space distributions for 12-turn injection with the amplitude
of random quadrupole amplitude at Ab1�0� � 4:0�
10�4 m�1 (top plots) and Ab1�0� � 4:0� 10�3 m�1 (bot-
tom) of Eq. (32).

In the presence of the linear random quadrupole error,
the phase-space distribution is altered by the linear space-
charge force while the phase-space areas (or emittances)
remain constant in these cases. Emittance dilution occurs
only when nonlinear forces such as sextupole and higher
order multipoles are included. The nonlinearity introduces
betatron detuning that gives rise to decoherence in the
betatron motion.

We now explore the half-integer stop band including
nonlinear decoherence. We introduce a random quadrupole
distribution such that the stop band widths are about 0 and
0.1 at harmonics 12 and 13, respectively. The correspond-
ing amplitude of random quadrupole field error is 40�
10�4 m�1, i.e., about 1.3% of the main quadrupole field.
We turn off all random dipole and skew-quadrupole field
FIG. 29. (Color) The beam phase-space distribution for the
initial (black dots) and the final (red dots at n �
11 000 revolution or a kinetic energy of 5.0 GeV) distributions
for a beam with 12-turn injection. Top: The initial (black dots)
and the final (red dots at n � 11 000 revolution) phase-space
plots �x; x0� and �z; z0� for the Ab1 � 4:0� 10�4 m�1. Bottom:
The same as that of the top plot except the amplitude of the
random quadrupole error is Ab1 � 4:0� 10�3 m�1.
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errors so that we examine only the random quadrupole field
error.

We fix the vertical betatron tune at Qz � 6:95 and vary
the horizontal betatron tune Qx from 6 to 7. Since the bare
vertical tune is far away from the stop band by choice, the
vertical emittance is constant in all cases. Since the hori-
zontal tune is varied across the stop band 13, and ap-
proaches a smaller stop band at harmonic 12, we expect
to see large horizontal emittance change during this pro-
cess. The top plot of Fig. 30 shows the final horizontal
emittance as a function of the bare horizontal tune for a
beam with 12-turn injection. Because of the nonlinear
decoherence, the perturbation in the envelope function
gives actual emittance dilution shown in Fig. 30. The
horizontal emittance is affected by the stop band in the
presence of space charge. When the space-charge force is
turned off, the emittance is much less affected by the
presence of the half-integer stop band shown as symbols
of X’s. The bottom plot shows the horizontal
Laslett–space-charge tune shift during the ramping pro-
cess for a small amplitude particle.

The space-charge effect is a self-adjusting process.
When the emittance increases or beam loss occurs, the
FIG. 30. (Color) Top: The final emittance for a beam with 12-turn in
13. The stop band width at harmonic 12 is intentionally made smal
space-charge tune shift for all cases shown in the top plot. The blue
shown in the top plots. In these two cases, the beam distribution in
charge is a self-adjusting process. When a large space-charge tune sh
the space-charge tune shift avoids the resonance overlap.
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corresponding space-charge tune shift is reduced. Thus in
the ramping cycle, the linear space-charge tune shifts may
be different in each machine condition. When the betatron
tune is sufficiently near the stop band, the beam distribu-
tion is rearranged by depleting the particle in the center
core, and the distribution may become a hollow ring in
phase space. However, we also note that the actual random
quadrupole error is expected to be 10 times smaller than
those used in this calculation. With the expected gradient
error of the order of 4� 10�4 m�1, we find little emittance
growth, shown as red points in Fig. 30. We have carried out
half-integer stop band compensation experiments at the
Fermilab Booster and have indeed found that the effect
of half-integer stop band on the beam emittance is small
[21].

2. Effects of the Montague resonance

Montague resonance has been extensively studied and
considered as one of major sources on emittance growth
[5]. In order to investigate the effect of Montague reso-
nance at 2x � 2z � integer resonance, we turn off all
linear random errors while retaining only the systematic
sextupole fields in dipoles. To investigate the effect of
jection under the influence of the stop band at harmonics 12 and
l by the choice of a random seed. Bottom: the magnitude of the

and magenta colors correspond to the large emittance growths
the horizontal phase space becomes hollow. Note that the space
ift leads to resonance overlapping, the emittance increases so that
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FIG. 31. (Color) The emittance evolution for a beam with 12-turn injection when only the space-charge force is included in the
calculation. The horizontal betatron tune is varied across the vertical betatron tune to examine the effect of Montague resonance. The
right plots zoom in on revolution 500 to 1000 to see the details of the emittance exchange.

XIAOBIAO HUANG et al. Phys. Rev. ST Accel. Beams 9, 014202 (2006)
coupling, we also fix the vertical tune at z � 6:85, and
change the horizontal tune from 6.75 to 6.90. Figure 31
shows the effects of Montague resonance as the horizontal
tune is varied across the vertical betatron tune.

The initial growth of the vertical emittance in Fig. 31
arises from the phase-space mismatch. When the horizon-
tal and vertical betatron tunes are equal, two emittances are
fully coupled, and the emittances tend to be equal. When
the horizontal and vertical betatron tunes are not equal, the
emittances are exchanged so that the space-charge tune
spread moves away from the Montague resonance line.
Although the Montague resonance can cause emittance
oscillation and exchange, its effect on the emittance growth
is small.

3. Effect of the linear skew quadrupoles

Vertical closed-orbit deviation in sextupoles and quad-
rupole roll can induce skew-quadrupole field. Random
skew-quadrupole kicks are applied at each half-cell. The
amplitude of the random skew-quadrupole field is esti-
mated to be about 3:50� 10�3 m�1, or a focal length of
about 300 m. This corresponds to an amplitude of vertical
closed-orbit error of the order of 1.0 cm.

The random skew-quadrupole field is much harder to
investigate because it may mix up with the Montague
resonance. We explore the effect by varying strengths of
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the random skew quadrupoles with an identical random
number seed. Figure 32 shows the emittances vs the hori-
zontal tune Qx, while the vertical tune is fixed at Qz �
6:85. The random skew quadrupoles are applied to every
half–FODO cell with amplitudes 0, 3:5� 10�4 m�1, 14�
10�4 m�1, 35� 10�4 m�1, respectively.

The blue lines (square symbols) are emittances for the
calculation without random skew-quadrupole field. Note
that the Montague resonance is most important when the
horizontal and vertical tunes are equal. The emittances are
shown to be nearly equal in Fig. 32 when this condition is
met. On the other hand, when the horizontal betatron tune
approaches any integer, particle encounters coherent kicks
and the horizontal emittance becomes very large. The
phase-space distribution becomes hollow in the horizontal
phase space.

When random skew-quadrupole kicks are introduced in
the accelerator, it introduces linear-coupling resonances
x � z � integer resonances. When the skew-quadrupole
strength is small, e.g., gsq � 3:5� 10�4 m�1 as shown as
an X symbol (green lines) in Fig. 32, the effect does not
differ much from that of no skew quadrupole. When the
amplitude of skew-quadrupole strength is increased to
14� 10�4 m�1, shown as black lines in Fig. 32, both the
linear-coupling difference and sum resonances becomes
important. When the amplitude of skew quadrupoles is
-18



FIG. 32. (Color) The emittance evolution for a beam with 12-
turn injection when the space-charge force and random skew-
quadrupole kicks are included. The importance of the linear-
coupling (sum and difference) resonances are clearly visible
when the amplitude of skew quadrupole is large. Note that the
random skew-quadrupole error also introduces stop band width
to integer resonances.
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35� 10�4, as shown in the red lines in Fig. 32, the linear-
coupling resonances becomes extremely strong.
Substantial beam loss will occur whenQx falls in the width
of the stop band, i.e., 6:15<Qx < 6:35. In particular, the
sum resonance x � z � integer produces a very large
vertical emittance growth even when the resonance is still
far away. Figure 33 shows the initial (black) and final (red)
phase-space plot for the case with betatron tunes at Qx �
6:30 and Qz � 6:85. We note that the distribution function
FIG. 33. (Color) The horizontal (left plot) and vertical (right
plot) phase-space distributions for a beam with 12-turn injection
for skew-quadrupole amplitude 0:0014 m�1. The initial phase-
space points, shown in blue dots, have normalized emittances of
about 1:7� mm mrad on both planes. The final phase-space
distributions, shown in red at 6000 revolution, have normalized
emittances 2.6 and 3:8� mm mrad in the horizontal and vertical
planes, respectively. Note that the phase-space distribution be-
comes hollow in both the horizontal and vertical planes.
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becomes hollow rings in both the horizontal and vertical
phase spaces.

To examine the stop band width of the sum resonance in
the presence of space-charge tune spread, we examine the
emittance growth vs the beam intensity. Figure 34 shows
the horizontal (solid line) and vertical (dashed line) emit-
tances as a function of the horizontal betatron tuneQx for a
fixed vertical betatron tune at Qz � 6:85. The intensity is
varied from 1-turn injection to 11-turn injection. We note
that the stop band width increases with the beam intensity.
Substantial beam loss occurs when the bare tunes fall
within the stop band.

The skew quadrupole generates a surprising emittance
growth mechanism for the difference coupling resonance at
x � z � integer. Figures 32 and 34 show that the emit-
tances grow together when the horizontal and vertical tunes
are equal. This is counterintuitive. We expect that the sum
of the horizontal and vertical emittances should be constant
at a linear difference resonance. The reason of the emit-
tance growth for the linear-coupling resonance is the
phase-space mismatch. The beam is constantly excited
by the phase-space mismatch when the tunes are equal.
The phase-space mismatch induces emittance dilution in
both the horizontal and vertical planes.

4. Effect of dipole field errors

The effect of dipole field error produces coherent beam
oscillation. Nonlinearities in the accelerator converts the
coherent beam oscillation into emittance dilution.
Figure 35 shows the effect of emittance evolution in the
presence of space-charge force with and without dipole
field errors. Since the horizontal dipole field error can be
produced by dipole roll, we expected to have a larger a0

term than the corresponding b0 term. We estimated that the
FIG. 34. (Color) The horizontal (dashed line) and vertical (solid
line) emittances are plotted as a function of the horizontal tune
for different beam intensities (from 1-turn to 11-turn injections).
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FIG. 36. (Color) The emittance evolution for a beam with 12-
turn injection when the space-charge force is introduced.

FIG. 35. (Color) The emittance evolution for a beam with 12-
turn injection for the case with random dipole field error (red),
and without the dipole field error (blue). The random dipole field
error has an amplitude of 2:0� 10�5 rad and 7:5� 10�5 rad for
the horizontal and vertical planes, respectively.
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amplitudes of dipole error are about 2:0� 10�5 rad for
horizontal motion and 7:5� 10�5 rad for vertical motion,
respectively. A large a0 term produces a larger vertical
beam emittance increase as shown in Fig. 35. Had we have
a large b0 term, we would have produced a large horizontal
emittance increase.

5. Effect of rf cavities in the dispersive region

It is known that the quantum fluctuation induced by
synchrotron radiation loss in dipole is the main source of
excitation for electron beams in storage rings. The accel-
eration of localized rf cavities in the Fermilab Booster
causes coherent beam betatron oscillation about the closed
orbit as shown in Fig. 26. However, the effective kick
angles of these cavities are less than 1� 10�5 rad, its
effect is small. If we had all cavities located in a single
straight section, the resulting increase of emittance would
be about 0:5� mm mrad during the acceleration. Since
these cavities are distributed in 10 straight sections, its
effect on emittance is small.

C. Putting it all together

When the space-charge force is included during the
injection process, the phase-space ellipse of the particle
motion becomes mismatched. The magnitude of mismatch
is proportional to the space-charge perveance Ksc. The
phase-space mismatch of each particle will decohere and
the resulting beam distribution will reach a larger emit-
tance. Thus the emittance growth rate is proportional to the
space-charge perveance, i.e., d�=dt� Ksc, where t is the
revolution number. This may explain the reason why we
were able to fit the vertical beam emittance data with the
model. Figure 36 shows the rms beam radii at a focusing
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quadrupole location and the emittance evolution for the
beam intensity at 12-turn injection. The parameters used in
the numerical simulations are 2:0� 10�5 rad and 7:5�
10�5 rad dipole error for the horizontal and vertical mo-
tion, respectively, 4:0� 10�4 m�1 quadrupole field error,
and 35� 10�4 m�1 for the skew-quadrupole field error.
The characteristic of the vertical emittance growth clearly
resembles that of the experimental data shown in Fig. 10.

The emittance dilution occurs mainly in the vertical
plane. This has resulted from the combination of the ran-
dom skew quadrupoles, Montague resonance and a larger
dipole error for the vertical motion (than that for the
horizontal motion). The situation can be different if the
machine operation condition is changed. The Fermilab
Booster has been optimized by many years of operational
experiences. The current mode is certainly an acceptable
one. The contribution of emittance growth for the 12-turn
injection is 50% due to the skew quadrupole, 25% dipole
field error, and 25% from the intrinsic space-charge effects
(Montague resonance). The effect of large skew-
quadrupole contribution is due to a large space-charge
tune shift, and a large linear sum resonance at x � z �
integer resonance as shown in Fig. 32.

We now compare the emittance evolution for various
beam intensities. Figure 37 compares the evolution of the
vertical emittances for 6, 12, and 16-turn injections. Note
that the emittance growth resembles that shown in Fig. 10.

D. Other observations

We have found that the horizontal rms bunch width
oscillates with twice the synchrotron frequency due to
mismatch in the rf potential well after the transition-energy
crossing. We found that this mismatched horizontal bunch-
width oscillation could actually occur before the transition
energy if the beam intensity is high.
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FIG. 37. The evolution of the vertical emittance for beams
with 6, 12, and 16-turn injections. The emittance evolution can
be compared with those of Fig. 10.
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The vertical beam width showed also post-transition
oscillation (see Fig. 6). The post-transition vertical beam
width oscillation is out of phase with that of the horizontal
plane. This may have resulted from the Montague reso-
nance. However, using the betatron tunes measured from
independent component analysis method, we do not ob-
serve the vertical emittance oscillation in our numerical
simulation, unless the betatron tunes are nearer to each
other at the transition-energy crossing.
IV. CONCLUSION

We have carried out systematic IPM measurements at
the Fermilab Booster for the first time to understand the
emittance evolution for space-charge–dominated beams.
The vertical emittance has a very strong dependence on the
beam intensity with d�z=dt� b1 � Ksc, where Ksc is the
space-charge perveance. Using the scaling laws of the
betatron emittance and off-momentum spread, we have
also succeeded in separating the horizontal emittance and
the rms off-momentum spread from the horizontal beam
width. We found that the horizontal emittance is less
dependent on the space charge.

We use the rms space-charge potential model to carry
out systematic numerical simulation to understand the
observed phenomena. We found that the vertical emittance
growth is induced mainly by random skew quadrupoles in
the presence of a large space-charge tune spread. The sum
and difference linear-coupling resonances play a very im-
portant role in the emittance growth for a fast-ramping
accelerator. The Montague resonance plays a minor role
in the vertical emittance growth. The random dipole field
error for the vertical plane, due mainly to the dipole roll,
has contributed a role in the vertical emittance growth. The
random quadrupole error is not important at the Fermilab
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Booster because the betatron tunes are far away from the
stop bands [21].

Although we can use our numerical-simulation model to
understand the main source of emittance growth at the
Fermilab Booster, we do not have the explanation of the
slow growth of the emittance at about 1 � mm mrad in 104

revolutions. One could introduce an rf-noise model in
dipole or quadrupole fields to produce this emittance
growth. Since we did not know the source, we decided
not to put it in our model.

As we found that the sum and difference linear-coupling
resonances induced by the skew quadrupoles are the major
source of emittance growth at the Fermilab Booster, it
would be very important to carry out additional emittance
measurements with skew-quadrupole correction scheme,
which minimizes the sum and difference stop bands. We
think that the beam loss at the Fermilab Booster arises
essentially in the longitudinal phase space, and that the
skew-quadrupole correction scheme may be able to reduce
the vertical emittance growth, but may not be able to
minimize the beam loss. To minimize beam losses, one
needs to chop the linac beam pulse as the source and
employ longitudinal phase-space painting in the longitudi-
nal phase space at injection. Work on experiment with
skew-quadrupole correction schemes will be carried out
in the near future.
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